-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathumm.py
235 lines (207 loc) · 8.47 KB
/
umm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# from imp import reload
import numpy as np
import mallows_kendall as mk
from scipy.spatial import distance
from scipy.stats import rankdata
import pandas as pd
def reverse(x): return x[::-1]
def is_duplicated(perm, sample):
for p in sample:
if np.array_equal(perm, p):
return True
return False
# Requires scipy 1.2.0
# from scipy.special import softmax
from scipy.special import logsumexp
def softmax(x, axis = None):
# compute in log space for numerical stability
return np.exp(x - logsumexp(x, axis=axis, keepdims=True))
def binary_search_rho(w, ratio_samples_learn, weight_mass_learn,
# 0 <= w_i <= 1, w is sorted increasingly,
rho_ini=1, rho_end=0, tol=0.001):
w = np.asarray(w)
assert np.all(w >= 0.0)
assert np.all(w <= 1.0)
# If pos is None we take the largest 4th.
# Find the rho s.t. the largest 25%(ratio_samples) of the weights (rho**ws) take the 0.9(weight_mass) of the total ws. rho^w[:pos] = 0.9*rho^w
# codes as a recursive binary search in (0,1)
pos = int(len(w) * ratio_samples_learn)
rho_med = (rho_ini + rho_end) / 2
# If the interval is very narrow, just return the value.
if abs(rho_ini - rho_end) < 1e-20:
return rho_med
try:
acum = np.cumsum(rho_med ** w)
a = acum[pos]
b = acum[-1]
# If b is very small, all values are equal, the value of rho does not matter. Let's return 1.0
if b < tol:
return 1.0
# If the differenc eot the target weight_mass is very small, just return.
if abs(a / b - weight_mass_learn) < tol:
return rho_med
if a / b > weight_mass_learn:
mid, last = rho_ini, rho_med
else:
mid, last = rho_med, rho_end
return binary_search_rho(w, ratio_samples_learn, weight_mass_learn, mid, last)
except: # MANUEL: How can the above fail?
print(w)
pos = int(len(w) * ratio_samples_learn)
print(pos,len(w),ratio_samples_learn)
rho_med = rho_ini + (rho_end - rho_ini) / 2
acum = np.cumsum(rho_med ** w)
a = acum[pos]
b = acum[-1]
print(f"binary_search_rho: a={a} b={b} a/b={a/b} wml={weight_mass_learn} rho_med={rho_med} rho_ini={rho_ini} rho_end={rho_end} w={w}")
raise
def get_expected_distance(iterat, n, budget):
# MANUEL: Should this be Kendall max dist?
N = (n - 1) * n / 2
f_ini, f_end = N / 4, 1
iter_decrease = budget - 10 # MANUEL: Why 10?
jump = (f_ini - f_end) / iter_decrease
a = f_ini - jump * iterat
return max(a, f_end)
def remove_duplicates(s):
d = {a.tostring(): a for a in s}
return list(d.values())
def design_random(m, n):
"""
m: number of permutations to generate
n: permutation size"""
return remove_duplicates([ np.random.permutation(n) for _ in range(m)])
def min_distance(x, s, dist_fun):
return np.apply_along_axis(dist_fun, -1, np.asarray(s), b=x).min()
def design_maxmindist(m, n, distance, budget = 1000, x0 = None):
if x0 is None:
sample = [ np.random.permutation(n) ]
else:
if not isinstance(x0, list):
x0 = [ x0 ]
sample += x0
m -= len(sample) - 1
while len(sample) < m:
best = np.random.permutation(n)
best_d = min_distance(best, sample, distance)
for i in range(budget):
xnew = np.random.permutation(n)
xnew_d = min_distance(xnew, sample, distance)
if xnew_d > best_d:
best, best_d = xnew, xnew_d
sample.append(best)
return remove_duplicates(sample)
def UMM(instance, seed, budget, m_ini, eval_ranks, init,
ratio_samples_learn = 0.1, weight_mass_learn = 0.9):
np.random.seed(seed)
if eval_ranks: # If True, the objective function works with ranks
# FIXME: Do we really need this lambda?
f_eval = lambda p: instance.fitness(p)
else: # Otherwise, it works with orders
f_eval = lambda p: instance.fitness(np.argsort(p))
n = instance.n
if init == "random":
sample = design_random(m_ini, n)
fitnesses = [f_eval(perm) for perm in sample]
elif init == "maxmindist":
sample = design_maxmindist(m_ini, n, distance = mk.distance)
fitnesses = [f_eval(perm) for perm in sample]
elif init == "greedy_euclidean":
x0, f = instance.nearest_neighbor(np.full(n, -1, dtype=int), distance="euclidean")
if not eval_ranks:
x0 = np.argsort(x0)
sample = design_maxmindist(m_ini, n, distance = mk.distance, x0 = x0)
# avoid double evaluation
fitnesses = [ f ] + [ f_eval(perm) for perm in sample[1:] ]
else:
raise ValueError(f"Invalid init: {init}")
best_f = np.min(fitnesses)
# ['rho','phi_estim','phi_sample','Distance']
res = [ [np.nan, np.nan, np.nan,
instance.distance_to_best(perm, mk.distance)] for perm in sample]
#neighborhood = 1
for m in range(budget - m_ini):
ws = np.asarray(fitnesses).copy()
# if neighborhood == 1: # Fast process the common case
# best_idx = np.argmin(ws)
# ws[:] = 0.
# ws[best_idx] = 1.
# else:
# ws = 1. / rankdata(ws, method="min")
# ws[(-ws).argsort()[neighborhood:]] = 0.0
# print(f'fitnesses: {fitnesses}')
# print(f'ws : {ws}')
# ws /= ws.sum()
# rho = np.nan
# FIXME: For maximization, this need to be changed.
ws = ws - ws.min()
# FIXME: Handle if ws.max() == 0.
ws = ws / ws.max()
co = ws.copy()
co.sort()
rho = binary_search_rho(co, ratio_samples_learn, weight_mass_learn)
# rho = 1. / len(ws)
# ws = rankdata(ws, method="min")
# print(fitnesses)
# print(ws)
ws = rho ** ws #MINIMIZE
# print(ws)
# ws = rho ** (1-ws) #MAXIMIZE
# print(ws,co[:int(len(co)/4)].sum(),co.sum())
# rho = 0
# beta = 1 / 0.001
#beta = len(ws) / m_ini # smlen
# Round to avoid numerical instabilities with numbers close to zero.
#ws = np.round(softmax(-beta * ws), 10) # MINIMIZE
#inv_sample = sample
# worst = np.argmax(ws)
# worst_rev = reverse(sample[worst])
# inv_sample = sample + [ worst_rev ] # + [ reverse(p) for p in sample ]
# ws = np.append(ws, 1)
#ws = softmax(-np.asarray(fitnesses)) # MINIMIZE
#ws = softmax(1. / 0.01 * np.hstack((-ws, ws-1))) # MINIMIZE
#inv_sample = sample + [ reverse(p) for p in sample ]
sigma0 = mk.weighted_median(np.asarray(sample), ws)
#sigma0 = sample[np.argmin(fitnesses)]
#phi_estim = mk.u_phi(inv_sample, sigma0, ws)
# FIXME: We do not use phi_estim but it takes a significant amount of time to calculate it.
phi_estim = np.nan
expected_dist = get_expected_distance(m, n, budget)
#expected_dist = 0
phi_sample = mk.find_phi(n, expected_dist, expected_dist + 1)
while True:
perm = mk.sample(1, n, phi=phi_sample, s0 = sigma0)
# dists = distance.cdist(perms, sample, metric=mk.kendallTau)
# MANUEL: We probably do not need to sort, just find the min per axis=1.
# dists = np.sort(dists, axis=1)
# indi = np.argmax(dists[:, 0]) #index of the perm with the farthest closest permutation. Maximizes the min dist to the sample
# FIXME: This should already be an array of int type.
perm = np.asarray(perm, dtype='int')
# Sample again if the permutation has already been evaluated.
if not is_duplicated(perm, sample):
break
for p in sample:
assert not np.array_equal(perm, p), f"{perm} found in sample:\n {sample}"
sample.append(perm)
perm_f = f_eval(perm)
fitnesses.append(perm_f)
# if perm_f < best_f:
# best_f = perm_f
# neighborhood = 1
# else:
# neighborhood += 1
# print(f"UMM: eval={m}\tF={fitnesses[-1]}\tbest_known={instance.best_fitness}")
# print(fitnesses,ws)
# This is only used for reporting stats.
res.append([rho, phi_estim, phi_sample, instance.distance_to_best(sigma0, mk.distance)])
df = pd.DataFrame(res, columns=['rho','phi_estim','phi_sample','Distance'])
df['Fitness'] = fitnesses
df['x'] = [ ' '.join(map(str,s)) for s in sample ]
df['m_ini'] = m_ini
df['seed'] = seed
df['budget'] = budget
df['ratio_samples_learn'] = ratio_samples_learn
df['weight_mass_learn'] = weight_mass_learn
df['eval_ranks'] = eval_ranks
df['init'] = init
return df