-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathscf.py
156 lines (125 loc) · 5.06 KB
/
scf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import numpy as np
import numpy.linalg as LA
from vampyr import vampyr3d as vp
from Operators import NuclearOperator, CouloumbOperator, ExchangeOperator, HelmholtzOperator
def scf_solver(mra, atoms, Phi_n, F_n, precision, threshold, max_iter=30):
"""Kinetric-free Hartree-Fock SCF solver
Parameters:
mra : The Multiresolution analysis to work on
atoms : List of dicts containing charge and coordinates of the atoms
Phi_n : Starting guess orbitals
F_n : Starting guess for Fock matrix
precision : Precision requirement
threshold : Usually set to the same as precision, set to -1 to limit iterations by max_iter
max_iter : Set maximum iterations
Returns:
Updates : Vector of orbital residual norms at each iteration
Energies : List of energy contributions at each iteration
Phi_n : Converged orbital vector
"""
# Setup nuclear potential
V_nuc = NuclearOperator(mra, atoms, precision)
# Loop parameters
iteration = 0 # Iteration counter
update = np.ones(len(Phi_n)) # Initialize error measure (norm of orbital updates)
updates = [] # Will capture wavefunction updates for visusualization
energies = [] # Will capture energies for visualization
# SCF loop
while (max(update) > threshold):
if iteration > max_iter-1:
break
# Initialize operators for first iteration
J_n = CouloumbOperator(mra, Phi_n, precision)
K_n = ExchangeOperator(mra, Phi_n, precision)
# Initialize vector of Helmholtz operators based on Fock matrix diagonal
Lambda_n = np.diag(np.diag(F_n))
G = HelmholtzOperator(mra, np.diag(Lambda_n), precision)
# Apply potential operator to all orbitals
VPhi = V_nuc(Phi_n) + 2*J_n(Phi_n) - K_n(Phi_n)
# Apply Helmholtz operators to all orbitals
Phi_np1 = -2*G(VPhi + (Lambda_n - F_n) @ Phi_n)
dPhi_n = Phi_np1 - Phi_n
update = np.array([phi.norm() for phi in dPhi_n])
# Compute overlap matrices
S_tilde = calc_overlap(Phi_np1, Phi_np1)
dS_1 = calc_overlap(dPhi_n, Phi_n)
dS_2 = calc_overlap(Phi_np1, dPhi_n)
# Löwdin orthonormalization S^{-1/2} = U * Sigma^{-1/2} * U^T
sigma, U = LA.eig(S_tilde)
Sm5 = U @ np.diag(sigma**(-0.5)) @ U.transpose()
Phi_bar = Sm5 @ Phi_np1
# Initialize n+1 operators
J_np1 = CouloumbOperator(mra, Phi_bar, precision)
K_np1 = ExchangeOperator(mra, Phi_bar, precision)
# Compute Fock matrix updates
V_dPhi = V_nuc(dPhi_n) + 2*J_n(dPhi_n) - K_n(dPhi_n)
dJ_Phi = J_np1(Phi_np1) - J_n(Phi_np1)
dK_Phi = K_np1(Phi_np1) - K_n(Phi_np1)
dF_pot = calc_overlap(Phi_np1, V_dPhi)
dF_pot += 2*calc_overlap(Phi_np1, dJ_Phi)
dF_pot -= calc_overlap(Phi_np1, dK_Phi)
# Update Fock matrix, symmetrize to average out numerical errors
dF_n = (dS_1 @ F_n) + (dS_2 @ Lambda_n) + dF_pot
F_tilde = F_n + 0.5*(dF_n + dF_n.transpose())
# Prepare for next iteration
F_n = Sm5.transpose() @ F_tilde @ Sm5
Phi_n = Phi_bar
# Compute energy contributions
energy = calc_energies(F_n, Phi_n, V_nuc, J_np1, K_np1)
# Collect output
updates.append(update)
energies.append(energy)
print(iteration, " | E_tot:", energy["$E_{tot}$"], " | dPhi:", max(update))
iteration += 1
return np.array(updates), energies, Phi_n
def calc_energies(F_mat, Phi, V, J, K):
""""Calcuate all energy contributions"""
V_mat = calc_overlap(Phi, V(Phi))
J_mat = calc_overlap(Phi, J(Phi))
K_mat = calc_overlap(Phi, K(Phi))
E_orb = 2.0*F_mat.trace()
E_en = 2.0*V_mat.trace()
E_coul = 2.0*J_mat.trace()
E_ex = -K_mat.trace()
E_tot = E_orb - E_coul - E_ex
E_kin = E_tot - E_en - E_coul - E_ex
return {
"$E_{orb}$": E_orb,
"$E_{en}$": E_en,
"$E_{coul}$": E_coul,
"$E_{ex}$": E_ex,
"$E_{kin}$": E_kin,
"$E_{tot}$": E_tot
}
def calc_overlap(Bra, Ket):
"""Calculate the overlap matrix between the orbitals <Bra| and |Ket>
Parameters:
Bra : bra vector <Phi|
Ket : ket vector |Phi>
Returns:
Overlap matrix
"""
S = np.empty((len(Bra), len(Ket)))
for i in range(len(Bra)):
for j in range(len(Ket)):
S[i, j] = vp.dot(Bra[i], Ket[j])
return S
def starting_guess(mra, atom, n_orbs, prec):
"""Primitive starting guess, works for Be"""
# Define projector onto the MRA basis
P_mra = vp.ScalingProjector(mra=mra, prec=prec)
Phi = []
for i in range(1, n_orbs+1):
R0 = atom["R"]
def f_gauss(r):
R2 = (r[0]-R0[0])**2 + (r[1]-R0[1])**2 + (r[2]-R0[2])**2
return np.exp(-R2/i)
phi = P_mra(f_gauss)
phi.normalize()
Phi.append(phi)
Phi = np.array(Phi)
# Löwdin orthonormalization S^{-1/2} = U * Sigma^{-1/2} * U^T
S = calc_overlap(Phi, Phi)
sigma, U = LA.eig(S)
Sm5 = U @ np.diag(sigma**(-0.5)) @ U.transpose()
return Sm5 @ Phi