-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_mnist_model.py
37 lines (33 loc) · 1.01 KB
/
inference_mnist_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
import torch.nn as nn
import torch.nn.functional as F
MEAN = 0.1307
STANDARD_DEVIATION = 0.3081
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = x.reshape(280, 280, 4)
x = torch.narrow(x, dim=2, start=3, length=1)
x = x.reshape(1, 1, 280, 280)
x = F.avg_pool2d(x, 10, stride=10)
x = x / 255
x = (x - MEAN) / STANDARD_DEVIATION
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.softmax(x, dim=1)
return output