-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBias.py
349 lines (281 loc) · 12.8 KB
/
Bias.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import os
# os.environ["OMP_NUM_THREADS"]= '1'
import numpy as np
import scipy.linalg as la
from scipy.io import loadmat, savemat
from scipy.interpolate import interp1d
class Bias:
def __init__(self, b, t):
self.b = b
self.t = t
self.hist = None
self.hist_t = None
self.N_dim = len(b)
def updateHistory(self, b, t, reset=False):
if self.hist is not None and not reset:
self.hist = np.concatenate((self.hist, b))
self.hist_t = np.concatenate((self.hist_t, t))
else:
self.hist = np.array([self.b])
self.hist_t = np.array([self.t])
self.b = self.hist[-1]
self.t = self.hist_t[-1]
def getOutputs(self):
out = dict(name=self.name,
hist=self.hist,
hist_t=self.hist_t)
for key in self.attrs.keys():
out[key] = getattr(self, key)
return out
def updateCurrentState(self, b, t):
self.b = b
self.t = t
# =================================================================================================================== #
class NoBias(Bias):
name = 'None'
attrs = {}
def __init__(self, y, t, Bdict=None):
super().__init__(np.zeros(len(y)), t)
def getBias(self, *args):
return self.b
def stateDerivative(self, y):
return np.zeros([len(self.b), len(self.b)])
def timeIntegrate(self, t, y=None, t_end=0):
return np.zeros([len(t), len(self.b)]), t
# =================================================================================================================== #
class ESN(Bias):
name = 'ESN'
attrs = {'t_train': 1.0,
't_val': 0.1,
'N_wash': 50,
'N_units': 100,
'upsample': 5,
'test_run': True,
'L': 1,
'k': 0.,
'augment_data': True,
'washout_obs': None,
'washout_t': None,
}
def __init__(self, y, t, Bdict=None):
if Bdict is None:
Bdict = {'folder': 'data/'}
else:
for key, val in self.attrs.items():
if key not in Bdict.keys():
setattr(self, key, val)
Bdict[key] = val
else:
setattr(self, key, Bdict[key])
# ------------------------ Define bias data filename ------------------------ #
self.trainESN(Bdict)
# ----------- Initialise reservoir state and its history to zeros ------------ #
self.r = np.zeros(self.N_units)
self.hist_r = np.array([self.r])
self.initialised = False
# -------------------------- Initialise parent Bias ------------------------- #
b = np.zeros(self.N_dim)
super().__init__(b, t)
def trainESN(self, Bdict):
# --------------------- Train a new ESN if not in folder --------------------- #
# ESN_filename = Bdict['filename'][:-len('bias')] + \
# 'ESN{}_augment{}'.format(self.N_units, self.augment_data)
ESN_filename = '/'.join(Bdict['filename'][:-len('bias')] .split('/')[:-1])
ESN_filename += '/ESN{}_augment{}_L{}'.format(self.N_units, self.augment_data, self.L)
# Check that the saved ESN has the same parameters as the wanted one
flag = False
if os.path.isfile(ESN_filename + '.mat'):
fileESN = loadmat(ESN_filename)
for key, val in fileESN.items():
if key in Bdict.keys():
if key == 'filename':
continue
if any(val != Bdict[key]):
flag = True
print('\n Retraining ESN as {} = {} != {}'.format(key, val, Bdict[key]))
break
if not os.path.isfile(ESN_filename + '.mat') or flag:
# Load or create bias data
if 'trainData' in Bdict.keys():
# print('\t_interp saving bias data')
bias = Bdict['trainData']
np.savez(Bdict['filename'], bias)
else:
Bdict['trainData'] = np.load(Bdict['filename'] + '.npz')['bias']
self.N_dim = Bdict['trainData'].shape[1]
# Delete unnecessary data. Keep only wash + training + val (+ test)
N_wtv = int((self.t_train + self.t_val) / Bdict['dt']) + self.N_wash * self.upsample
N_wtv += int(self.t_val * min(10, self.N_dim + 1) / Bdict['dt'])
if N_wtv > len(bias):
raise ValueError('Not enough data for training. Increase t_max')
Bdict['trainData'] = Bdict['trainData'][-N_wtv:]
# Run training main script
path_dir = os.path.realpath(__file__).split(__name__+'.py')[0]
main_training_file = path_dir + "main_training.py"
Bdict['path_dir'] = path_dir
exec(open(main_training_file).read(), Bdict)
# --------------------------- Load trained ESN --------------------------- #
fileESN = loadmat(ESN_filename)
for key, val in fileESN.items():
if key[0] != '_':
try:
if key in ['N_wash', 'N_units', 'N_dim', 'upsample', 'N_augment']:
setattr(self, key, int(val))
# elif np.shape(val)[-1] == 1:
elif key in ['dt_ESN', 'rho', 'sigma_in', 'upsample']:
setattr(self, key, float(val))
elif key == 'augment_data':
setattr(self, key, bool(val))
else:
setattr(self, key, np.squeeze(val, axis=1))
except:
setattr(self, key, val)
# --------------------- Create washout observed data ---------------------- #
# self.N_wash = 1
self.washout_obs = np.flip(Bdict['washout_obs'][:-self.N_wash * self.upsample:-self.upsample], axis=0)
if len(self.washout_obs.shape) > 2:
self.washout_obs = self.washout_obs.squeeze()
self.washout_t = np.flip(Bdict['washout_t'][:-self.N_wash * self.upsample:-self.upsample])
assert self.washout_t[-1] == Bdict['washout_t'][-1]
assert len(self.washout_t) == self.N_wash
if len(self.Wout.shape) == 1:
self.Wout = np.expand_dims(self.Wout, axis=1)
# self.parametrise = Bdict['trainData'].shape[-1] == self.N_augment
def printESNparameters(self):
print('\n -------------------- ESN Parameters -------------------- ',
'\n Data filename: {}'.format(self.filename),
'\n Training time: {} s, \t Validation time: {} s'.format(self.t_train, self.t_val),
'\n Washout steps: {}, \t Upsample'.format(self.N_wash, self.upsample),
'\n Num of neurones: {}, \t Run test?: {}'.format(self.N_units, self.test_run),
'\n Augmentat data?: {}, \t Num of training datasets: {}'.format(self.augment_data, self.L),
'\n Connectvity: {}, \t Tikhonov parameter: {}'.format(self.connect, self.tikh),
'\n Spectral radius: {}, \t Input scaling: {}'.format(self.rho, self.sigma_in)
)
def getWeights(self): # TODO maybe
pass
def updateWeights(self, weights): # TODO maybe
pass
def getBias(self, *args):
return self.b
def getReservoirState(self):
return self.b, self.r
def updateReservoir(self, r):
self.hist_r = np.concatenate((self.hist_r, r))
self.r = r[-1]
@property
def WCout(self):
if not hasattr(self, '_WCout'):
self._WCout = la.lstsq(self.Wout[:-1], self.W)[0]
return self._WCout
def stateDerivative(self, y):
# Get current state
b_in, r_in = self.getReservoirState()
Win_1 = self.Win[:self.N_dim, :].transpose()
Wout_1 = self.Wout[:self.N_units, :].transpose()
# # Option(i) rin function of bin:
# b_aug = np.concatenate((bin / self.norm, np.array([self.bias_in])))
# rout = np.tanh(np.dot(b_aug * self.sigma_in, self.Win) + self.rho * np.dot(bin, self.WCout))
# drout_dbin = self.sigma_in * Win_1 / self.norm + self.rho * self.WCout.transpose()
# Option(ii) rin constant:
rout = self.step(b_in, r_in)[1]
drout_dbin = self.sigma_in * Win_1 / self.norm
# Compute Jacobian
T = 1 - rout ** 2
J = np.dot(Wout_1, np.array(drout_dbin) * np.expand_dims(T, 1))
return -J
def timeIntegrate(self, t, y=None):
# t_y = np.linspace(self.t_interp, self.t_interp + Nt * self.dt_ESN/self.upsample, Nt + 1)
Nt = int(round(len(t) / self.upsample))
t_b = np.linspace(self.t, self.t + Nt * self.dt_ESN, Nt + 1)
if self.initialised:
b, r = self.closedLoop(Nt)
elif t[-1] < self.washout_t[-1]:
b = np.zeros((Nt + 1, self.N_dim))
r = np.zeros((Nt + 1, self.N_units))
else:
# observable washout data
wash_obs = self.washout_obs # truth, observables at high frequency
# forecast model washout data
wash_model = np.mean(y[::self.upsample], -1)
spline = interp1d(t_b, wash_model, kind='cubic', axis=0, copy=True, fill_value=0)
wash_model = spline(self.washout_t)
# bias washout, the input data to open loop
washout = wash_obs - wash_model
# open loop initialisation of the ESN
b_open, r_open = self.openLoop(washout)
# do not keep the open-loop bias in the history if prefer a smooth plot
b = np.zeros((Nt + 1, self.N_dim))
r = np.zeros((Nt + 1, self.N_units))
self.b, self.r = b_open[-1], r_open[-1]
Nt_open = len(self.washout_t)
Nt_closed = round((t_b[-1] - self.washout_t[-1]) / self.dt_ESN)
b_closed, r_closed = self.closedLoop(Nt_closed)
b[-(Nt_open + Nt_closed):] = np.append(b_open, b_closed[1:], axis=0)
r[-(Nt_open + Nt_closed):] = np.append(r_open, r_closed[1:], axis=0)
self.initialised = True
# print('initialised bias')
# # ESN PLOT DEBUG
# plt.figure()
# plt.plot(self.washout_t, washout[:, 0], '-o')
# plt.plot(t_b[1:], b[1:, 0], '-x')
# plt.xlim([self.washout_t[0], t_b[-1]])
# plt.ylim([min(washout[:, 0])*1.2, max(washout[:, 0])*1.2])
# plt.show()
# update bias and reservoir history
self.updateReservoir(r[1:])
return b[1:], t_b[1:]
def step(self, b, r): # ________________________________________________________
""" Advances one ESN time step.
Returns:
new reservoir state (no bias_out)
"""
# Normalise input data and augment with input bias (ESN symmetry parameter)
b_aug = np.concatenate((b / self.norm, self.bias_in))
# Forecast the reservoir state
r_out = np.tanh(self.Win.T.dot(b_aug * self.sigma_in) + self.W.dot(self.rho * r))
# output bias added
r_aug = np.concatenate((r_out, self.bias_out))
# compute output from ESN
b_out = np.dot(r_aug, self.Wout)
return b_out, r_out
def openLoop(self, b_wash): # ____________________________________________
""" Initialises ESN in open-loop.
Input:
- U_wash: washout input time series
Returns:
- U: prediction from ESN during open loop
- r: time series of reservoir states
"""
Nt = b_wash.shape[0] - 1
r = np.empty((Nt + 1, self.N_units))
b = np.empty((Nt + 1, self.N_dim))
b[0], r[0] = self.getReservoirState()
for i in range(Nt):
b[i + 1], r[i + 1] = self.step(b_wash[i], r[i])
return b, r
def closedLoop(self, Nt): # ______________________________________________
""" Advances ESN in closed-loop.
Input:
- Nt: number of forecast time steps
Returns:
- U: forecast time series
- ra: time series of augmented reservoir states
"""
Nt = int(Nt)
r = np.empty((Nt + 1, self.N_units))
b = np.empty((Nt + 1, self.N_dim))
b[0], r[0] = self.getReservoirState()
for i in range(Nt):
b[i + 1], r[i + 1] = self.step(b[i], r[i])
# # ESN PLOT DEBUG
# t_b = np.linspace(self.t_interp, self.t_interp + Nt * self.dt_ESN, Nt + 1)
# plt.plot(t_b, b[:, 0], '-+', color='green', label='closed-loop')
# plt.legend()
# plt.show()
return b, r
# TODO at some point
# @classmethod
# def trainESN(cls, filename, training_params):
# dic_params = training_params.copy()
# dic_params['filename'] = filename
# exec(open("main_training.py").read(), dic_params)