-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUtil.py
280 lines (242 loc) · 9.09 KB
/
Util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# -*- coding: utf-8 -*-
"""
Created on Wed May 11 09:45:48 2022
@author: an553
"""
import os as os
import numpy as np
import pylab as plt
import pickle
import scipy.io as sio
from functools import lru_cache
import pathlib
from scipy.interpolate import interp1d
from scipy.signal import find_peaks
rng = np.random.default_rng(6)
@lru_cache(maxsize=10)
def Cheb(Nc, lims=[0, 1], getg=False): # __________________________________________________
""" Compute the Chebyshev collocation derivative matrix (D)
and the Chevyshev grid of (N + 1) points in [ [0,1] ] / [-1,1]
"""
g = - np.cos(np.pi * np.arange(Nc + 1, dtype=float) / Nc)
c = np.hstack([2., np.ones(Nc - 1), 2.]) * (-1) ** np.arange(Nc + 1)
X = np.outer(g, np.ones(Nc + 1))
dX = X - X.T
D = np.outer(c, 1 / c) / (dX + np.eye(Nc + 1))
D -= np.diag(D.sum(1))
# Modify
if lims[0] == 0:
g = (g + 1.) / 2.
if getg:
return D, g
else:
return D
def createObservations(classParams=None):
if type(classParams) is dict:
TA_params = classParams.copy()
classType = TA_params['model']
if 't_max' in TA_params.keys():
t_max = TA_params['t_max']
else:
t_max = 8.
else:
raise ValueError('classParams must be dict')
# Wave case: load .mat file ====================================
if type(classType) is str:
try:
mat = sio.loadmat('data/Truth_wave.mat')
except:
raise ValueError('File ' + classType + ' not defined')
p_obs = mat['p_mic'].transpose()
t_obs = mat['t_mic'].transpose()
if len(np.shape(t_obs)) > 1:
t_obs = np.squeeze(t_obs, axis=-1)
if t_obs[-1] > t_max:
idx = np.argmin(abs(t_obs - t_max))
t_obs, p_obs = [yy[:idx + 1] for yy in [t_obs, p_obs]]
print('Data too long. Redefine t_max = ', t_max)
return p_obs, t_obs, 'Wave'
# ============================================================
# Add key parameters to filename
suffix = ''
key_save = classType.params + ['law']
for key, val in TA_params.items():
if key in key_save:
if type(val) == str:
suffix += val + '_'
else:
suffix += key + '{:.2e}'.format(val) + '_'
name = os.path.join(os.getcwd() + '/data/')
os.makedirs(name, exist_ok=True)
name += 'Truth_{}_{}tmax-{:.2}'.format(classType.name, suffix, t_max)
if not os.path.isfile(name):
# Load or create and save file
case = classType(TA_params)
psi, t = case.timeIntegrate(Nt=int(t_max / case.dt))
case.updateHistory(psi, t)
case.close()
with open(name, 'wb') as f:
pickle.dump(case, f)
else:
with open(name, 'rb') as f:
case = pickle.load(f)
# Retrieve observables
p_obs = case.getObservableHist()
if len(np.shape(p_obs)) > 2:
p_obs = np.squeeze(p_obs, axis=-1)
return p_obs, case.hist_t, name.split('Truth_')[-1]
def colour_noise(Nt, noise_colour='pink', beta=2):
ff = np.fft.rfftfreq(Nt)
if 'white' in noise_colour.lower():
return np.ones(ff.shape)
elif 'blue' in noise_colour.lower():
return np.sqrt(ff)
elif 'violet' in noise_colour.lower():
return ff
elif 'pink' in noise_colour.lower():
number_ids = [int(xx) for xx in noise_colour if xx.isdigit()]
if any(number_ids):
beta = number_ids[0]
return 1 / np.where(ff == 0, float('inf'), ff ** (1 / beta))
elif 'brown' in noise_colour.lower():
return 1 / np.where(ff == 0, float('inf'), ff)
else:
raise ValueError('{} noise type not defined'.format(noise_colour))
def RK4(t, q0, func, *kwargs):
""" 4th order RK for autonomous systems described by func """
dt = t[1] - t[0]
N = len(t) - 1
qhist = [q0]
for i in range(N):
k1 = dt * func(dt, q0, kwargs)
k2 = dt * func(dt, q0 + k1 / 2, kwargs)
k3 = dt * func(dt, q0 + k2 / 2, kwargs)
k4 = dt * func(dt, q0 + k3, kwargs)
q0 = q0 + (k1 + 2 * k2 + 2 * k3 + k4) / 6
qhist.append(q0)
return np.array(qhist)
def plotHistory(ensemble, truth=None): # _________________________________________________________________________
""" Function that plots the history of the observables and the
parameters with a zoomed region in the state.
"""
def plotwithshade(x, y, c, yl=None):
mean = np.mean(y, 1)
std = np.std(y, 1)
ax[i, j].plot(x, mean, color=c, label=lbl)
ax[i, j].fill_between(x, mean + std, mean - std, alpha=.2, color=c)
if yl is True:
ax[i, j].set(ylabel=yl)
ax[i, j].set(xlabel='$t_interp$', xlim=[x[0], x[-1]])
ax[i, j].legend(bbox_to_anchor=(1., 1.), loc="upper left", ncol=1)
t = ensemble.hist_t
t_zoom = min([len(t) - 1, int(0.05 / ensemble.dt)])
_, ax = plt.subplots(2, 2, figsize=[10, 5])
# Truth
if truth is not None:
y, _ = truth.getObservableHist()
y = np.squeeze(y)
ax[0, 0].plot(t, y, color='k', alpha=.2, label='Truth', linewidth=4)
ax[0, 1].plot(t, y, color='k', alpha=.2, label='Truth', linewidth=4)
i, j = [0, 0]
# State evolution
y, lbl = ensemble.getObservableHist()
lbl = lbl[0]
plotwithshade(t, y[0], 'blue', yl=lbl[0])
i, j = [0, 1]
plotwithshade(t[-t_zoom:], y[0][-t_zoom:], 'blue')
# Parameter evolution
params = ensemble.hist[:, ensemble.N - len(ensemble.est_p):, :]
c = ['g', 'sandybrown', 'mediumpurple']
i, j = [1, 0]
p_j = 0
for p in ensemble.est_p:
lbl = '$\\' + p + '/\\' + p + '^t$'
plotwithshade(t, params[:, p_j] / ensemble.alpha0[p], c[p_j])
p_j += 1
plt.tight_layout()
plt.show()
def interpolate(t_y, y, t_eval, method='cubic', ax=0, bound=False):
spline = interp1d(t_y, y, kind=method, axis=ax, copy=True, bounds_error=bound, fill_value=0)
return spline(t_eval)
def getEnvelope(timeseries_x, timeseries_y, rejectCloserThan=0):
peaks, peak_properties = find_peaks(timeseries_y, distance=200)
u_p = interp1d(timeseries_x[peaks], timeseries_y[peaks], bounds_error=False)
return u_p
def CR(y_true, y_est):
# time average of both quantities
y_tm = np.mean(y_true, 0, keepdims=True)
y_em = np.mean(y_est, 0, keepdims=True)
# correlation
C = np.sum((y_est - y_em) * (y_true - y_tm)) / np.sqrt(np.sum((y_est - y_em) ** 2) * np.sum((y_true - y_tm) ** 2))
# root-mean square error
R = np.sqrt(np.sum((y_true - y_est) ** 2) / np.sum(y_true ** 2))
return C, R
#
# def get_CR_values(results_folder):
#
# Ls, RBs, RUs, CBs, CUs = [],[],[],[],[]
# # ==================================================================================================================
# ii= -1
# for Ldir in os.listdir(results_folder):
# Ldir = results_folder + Ldir + '/'
# if not os.path.isdir(Ldir):
# continue
# ii += 1
# Ls.append(Ldir.split('L')[-1])
# flag = True
# ks = []
#
# L_RB, L_RU, L_CB, L_CU = [], [], [], []
# for ff in os.listdir(Ldir):
# if ff.find('_k') == -1:
# continue
# k = float(ff.split('_k')[-1])
# ks.append(k)
# with open(Ldir + ff + '.gz', 'rb') as f:
# params = load(f)
# truth = load(f)
# filter_ens = load(f)
#
# y, t = filter_ens.getObservableHist(), filter_ens.hist_t
# b, t_b = filter_ens.bias.hist, filter_ens.bias.hist_t
# y_truth = truth['y'][:len(y)]
# y = np.mean(y, -1)
#
# # Unbiased signal error
# if filter_ens.bias.name == 'ESN':
# y_unbiased = y[::filter_ens.bias.upsample] + b
# y_unbiased = interpolate(t_b, y_unbiased, t)
# else:
# y_unbiased = y + np.expand_dims(b, -1)
#
# if flag:
# N_CR = int(filter_ens.t_CR / filter_ens.dt) # Length of interval to compute correlation and RMS
# i0 = np.argmin(abs(t - truth['t_obs'][0])) # start of assimilation
# i1 = np.argmin(abs(t - truth['t_obs'][params['num_DA']-1])) # end of assimilation
#
# C, R = CR(y_truth[i1-N_CR:i1], y[i1-N_CR:i1])
# L_RB.append([R])
# L_CB.append([C])
# C, R = CR(y_truth[i1-N_CR:i1], y_unbiased[i1-N_CR:i1])
# L_RU.append([R])
# L_CU.append([C])
#
# flag = False
# RBs.append(L_RB)
# RUs.append(L_RU)
# CBs.append(L_CB)
# CUs.append(L_CU)
#
# # true and pre-DA R
# y_truth_u = y_truth - truth['b_true'][:len(y)]
# Ct, Rt = CR(y_truth[-N_CR:], y_truth_u[-N_CR:])
# Cpre, Rpre = CR(y_truth[i0 - N_CR:i0 + 1:], y[i0 - N_CR:i0 + 1:])
#
# results = dict(Ls=Ls, ks=ks,
# RBs=RBs, RUs=RUs,
# Rt=Rt, Rpre=Rpre,
# CBs=CBs, CUs=CUs,
# Ct=Ct, Cpre=Cpre)
#
# with open(results_folder + 'CR_data.gz', 'wb') as f:
# dump(results, f)