From 09fe59d4e92958be790af84294c9fe388057192e Mon Sep 17 00:00:00 2001 From: Morten Hjorth-Jensen Date: Fri, 20 Sep 2024 07:11:14 +0200 Subject: [PATCH] update --- doc/pub/week38/html/week38-bs.html | 397 ++-------- doc/pub/week38/html/week38-reveal.html | 324 ++------ doc/pub/week38/html/week38-solarized.html | 360 ++------- doc/pub/week38/html/week38.html | 360 ++------- doc/pub/week38/ipynb/ipynb-week38-src.tar.gz | Bin 193 -> 193 bytes doc/pub/week38/ipynb/week38.ipynb | 782 ++++++------------- doc/pub/week38/pdf/week38.pdf | Bin 327759 -> 302712 bytes doc/src/week38/week38.do.txt | 258 ++---- 8 files changed, 603 insertions(+), 1878 deletions(-) diff --git a/doc/pub/week38/html/week38-bs.html b/doc/pub/week38/html/week38-bs.html index 4db63dac..0dbd1f8e 100644 --- a/doc/pub/week38/html/week38-bs.html +++ b/doc/pub/week38/html/week38-bs.html @@ -107,54 +107,35 @@ 2, None, 'creation-operators-in-terms-of-pauli-matrices'), - ('Full configuration interaction theory', + ('Full Configuration Interaction Theory', 2, None, 'full-configuration-interaction-theory'), - ('Slater determinants as basis states, Repetition', - 2, - None, - 'slater-determinants-as-basis-states-repetition'), - ('Slater determinants as basis states, repetition', - 2, - None, - 'slater-determinants-as-basis-states-repetition'), - ('Slater determinants as basis states', - 2, - None, - 'slater-determinants-as-basis-states'), - ('Slater determinants as basis states', + ('One-particle-one-hole state', 2, None, - 'slater-determinants-as-basis-states'), - ('Quick repetition of the occupation representation', - 2, - None, - 'quick-repetition-of-the-occupation-representation'), - ('Quick repetition of the occupation representation', - 2, - None, - 'quick-repetition-of-the-occupation-representation'), - ('Quick repetition of the occupation representation', - 2, - None, - 'quick-repetition-of-the-occupation-representation'), + 'one-particle-one-hole-state'), ('Full Configuration Interaction Theory', 2, None, 'full-configuration-interaction-theory'), - ('Full Configuration Interaction Theory', + ('Intermediate normalization', 2, None, - 'full-configuration-interaction-theory'), + 'intermediate-normalization'), ('Full Configuration Interaction Theory', 2, None, 'full-configuration-interaction-theory'), + ('Compact expression of correlated part', + 2, + None, + 'compact-expression-of-correlated-part'), ('Full Configuration Interaction Theory', 2, None, 'full-configuration-interaction-theory'), + ('Minimization', 2, None, 'minimization'), ('Full Configuration Interaction Theory', 2, None, @@ -172,6 +153,10 @@ 2, None, 'a-non-practical-way-of-solving-the-eigenvalue-problem'), + ('Using the Condon-Slater rule', + 2, + None, + 'using-the-condon-slater-rule'), ('A non-practical way of solving the eigenvalue problem', 2, None, @@ -180,6 +165,7 @@ 2, None, 'a-non-practical-way-of-solving-the-eigenvalue-problem'), + ('Slight rewrite', 2, None, 'slight-rewrite'), ('Rewriting the FCI equation', 2, None, @@ -192,10 +178,11 @@ 2, None, 'rewriting-the-fci-equation-does-not-stop-here'), - ('Rewriting the FCI equation, please stop here', + ('Finding the coefficients', 2, None, 'finding-the-coefficients'), + ('Rewriting the FCI equation', 2, None, - 'rewriting-the-fci-equation-please-stop-here'), + 'rewriting-the-fci-equation'), ('Rewriting the FCI equation, more to add', 2, None, @@ -211,7 +198,8 @@ ('Definition of the correlation energy', 2, None, - 'definition-of-the-correlation-energy')]} + 'definition-of-the-correlation-energy'), + ('Ground state energy', 2, None, 'ground-state-energy')]} end of tocinfo --> @@ -275,33 +263,33 @@
  • Raising and lowewring matrices
  • Transformation of operators
  • Creation operators in terms of Pauli matrices
  • -
  • Full configuration interaction theory
  • -
  • Slater determinants as basis states, Repetition
  • -
  • Slater determinants as basis states, repetition
  • -
  • Slater determinants as basis states
  • -
  • Slater determinants as basis states
  • -
  • Quick repetition of the occupation representation
  • -
  • Quick repetition of the occupation representation
  • -
  • Quick repetition of the occupation representation
  • Full Configuration Interaction Theory
  • +
  • One-particle-one-hole state
  • Full Configuration Interaction Theory
  • +
  • Intermediate normalization
  • Full Configuration Interaction Theory
  • +
  • Compact expression of correlated part
  • Full Configuration Interaction Theory
  • +
  • Minimization
  • Full Configuration Interaction Theory
  • Full Configuration Interaction Theory
  • FCI and the exponential growth
  • Exponential wall
  • A non-practical way of solving the eigenvalue problem
  • +
  • Using the Condon-Slater rule
  • A non-practical way of solving the eigenvalue problem
  • A non-practical way of solving the eigenvalue problem
  • +
  • Slight rewrite
  • Rewriting the FCI equation
  • Rewriting the FCI equation
  • Rewriting the FCI equation, does not stop here
  • -
  • Rewriting the FCI equation, please stop here
  • +
  • Finding the coefficients
  • +
  • Rewriting the FCI equation
  • Rewriting the FCI equation, more to add
  • Rewriting the FCI equation, more to add
  • Summarizing FCI and bringing in approximative methods
  • Definition of the correlation energy
  • +
  • Ground state energy
  • @@ -943,206 +931,19 @@

    Creation o

    -

    Full configuration interaction theory

    - -

    We start with a reminder on determinants in the number representation.

    - - -

    Slater determinants as basis states, Repetition

    -
    -
    - -

    The simplest possible choice for many-body wavefunctions are product wavefunctions. -That is -

    -$$ -\Psi(x_1, x_2, x_3, \ldots, x_N) \approx \phi_1(x_1) \phi_2(x_2) \phi_3(x_3) \ldots -$$ - -

    because we are really only good at thinking about one particle at a time. Such -product wavefunctions, without correlations, are easy to -work with; for example, if the single-particle states \( \phi_i(x) \) are orthonormal, then -the product wavefunctions are easy to orthonormalize. -

    - -

    Similarly, computing matrix elements of operators are relatively easy, because the -integrals factorize. -

    - -

    The price we pay is the lack of correlations, which we must build up by using many, many product -wavefunctions. (Thus we have a trade-off: compact representation of correlations but -difficult integrals versus easy integrals but many states required.) -

    -
    -
    - - - -

    Slater determinants as basis states, repetition

    -
    -
    - -

    Because we have fermions, we are required to have antisymmetric wavefunctions, e.g.

    -$$ -\Psi(x_1, x_2, x_3, \ldots, x_N) = - \Psi(x_2, x_1, x_3, \ldots, x_N) -$$ - -

    etc. This is accomplished formally by using the determinantal formalism

    -$$ -\Psi(x_1, x_2, \ldots, x_N) -= \frac{1}{\sqrt{N!}} -\det \left | -\begin{array}{cccc} -\phi_1(x_1) & \phi_1(x_2) & \ldots & \phi_1(x_N) \\ -\phi_2(x_1) & \phi_2(x_2) & \ldots & \phi_2(x_N) \\ - \vdots & & & \\ -\phi_N(x_1) & \phi_N(x_2) & \ldots & \phi_N(x_N) -\end{array} -\right | -$$ - -

    Product wavefunction + antisymmetry = Slater determinant.

    -
    -
    - - - -

    Slater determinants as basis states

    -
    -
    - -$$ -\Psi(x_1, x_2, \ldots, x_N) -= \frac{1}{\sqrt{N!}} -\det \left | -\begin{array}{cccc} -\phi_1(x_1) & \phi_1(x_2) & \ldots & \phi_1(x_N) \\ -\phi_2(x_1) & \phi_2(x_2) & \ldots & \phi_2(x_N) \\ - \vdots & & & \\ -\phi_N(x_1) & \phi_N(x_2) & \ldots & \phi_N(x_N) -\end{array} -\right | -$$ - -

    Properties of the determinant (interchange of any two rows or -any two columns yields a change in sign; thus no two rows and no -two columns can be the same) lead to the Pauli principle: -

    - -
      -
    • No two particles can be at the same place (two columns the same); and
    • -
    • No two particles can be in the same state (two rows the same).
    • -
    -
    -
    - - - -

    Slater determinants as basis states

    -
    -
    - -

    As a practical matter, however, Slater determinants beyond \( N=4 \) quickly become -unwieldy. Thus we turn to the occupation representation or second quantization to simplify calculations. -

    - -

    The occupation representation or number representation, using fermion creation and annihilation -operators, is compact and efficient. It is also abstract and, at first encounter, not easy to -internalize. It is inspired by other operator formalism, such as the ladder operators for -the harmonic oscillator or for angular momentum, but unlike those cases, the operators do not have coordinate space representations. -

    - -

    Instead, one can think of fermion creation/annihilation operators as a game of symbols that -compactly reproduces what one would do, albeit clumsily, with full coordinate-space Slater -determinants. -

    -
    -
    - - - -

    Quick repetition of the occupation representation

    -
    -
    - -

    We start with a set of orthonormal single-particle states \( \{ \phi_i(x) \} \). -(Note: this requirement, and others, can be relaxed, but leads to a -more involved formalism.) Any orthonormal set will do. -

    - -

    To each single-particle state \( \phi_i(x) \) we associate a creation operator -\( \hat{a}^\dagger_i \) and an annihilation operator \( \hat{a}_i \). -

    - -

    When acting on the vacuum state \( | 0 \rangle \), the creation operator \( \hat{a}^\dagger_i \) causes -a particle to occupy the single-particle state \( \phi_i(x) \): -

    -$$ -\phi_i(x) \rightarrow \hat{a}^\dagger_i |0 \rangle -$$ -
    -
    - - - -

    Quick repetition of the occupation representation

    -
    -
    - -

    But with multiple creation operators we can occupy multiple states:

    -$$ -\phi_i(x) \phi_j(x^\prime) \phi_k(x^{\prime \prime}) -\rightarrow \hat{a}^\dagger_i \hat{a}^\dagger_j \hat{a}^\dagger_k |0 \rangle. -$$ - -

    Now we impose antisymmetry, by having the fermion operators satisfy anticommutation relations:

    -$$ -\hat{a}^\dagger_i \hat{a}^\dagger_j + \hat{a}^\dagger_j \hat{a}^\dagger_i -= [ \hat{a}^\dagger_i ,\hat{a}^\dagger_j ]_+ -= \{ \hat{a}^\dagger_i ,\hat{a}^\dagger_j \} = 0 -$$ - -

    so that

    -$$ -\hat{a}^\dagger_i \hat{a}^\dagger_j = - \hat{a}^\dagger_j \hat{a}^\dagger_i -$$ -
    -
    - +

    Full Configuration Interaction Theory

    - -

    Quick repetition of the occupation representation

    -
    -
    - -

    Because of this property, automatically \( \hat{a}^\dagger_i \hat{a}^\dagger_i = 0 \), -enforcing the Pauli exclusion principle. Thus when writing a Slater determinant -using creation operators, -

    +

    We have defined the ansatz for the ground state as

    $$ -\hat{a}^\dagger_i \hat{a}^\dagger_j \hat{a}^\dagger_k \ldots |0 \rangle +|\Phi_0\rangle = \left(\prod_{i\le F}\hat{a}_{i}^{\dagger}\right)|0\rangle, $$ -

    each index \( i,j,k, \ldots \) must be unique.

    - -

    For some relevant exercises with solutions see chapter 8 of Lecture Notes in Physics, volume 936.

    -
    -
    - +

    where the index \( i \) defines different single-particle states up to the Fermi level. We have assumed that we have \( N \) fermions.

    -

    Full Configuration Interaction Theory

    -
    -
    - -

    We have defined the ansatz for the ground state as

    -$$ -|\Phi_0\rangle = \left(\prod_{i\le F}\hat{a}_{i}^{\dagger}\right)|0\rangle, -$$ +

    One-particle-one-hole state

    -

    where the index \( i \) defines different single-particle states up to the Fermi level. We have assumed that we have \( N \) fermions. -A given one-particle-one-hole (\( 1p1h \)) state can be written as -

    +

    A given one-particle-one-hole (\( 1p1h \)) state can be written as

    $$ |\Phi_i^a\rangle = \hat{a}_{a}^{\dagger}\hat{a}_i|\Phi_0\rangle, $$ @@ -1156,15 +957,11 @@

    Full Configuration $$ |\Phi_{ijk\dots}^{abc\dots}\rangle = \hat{a}_{a}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_{c}^{\dagger}\dots\hat{a}_k\hat{a}_j\hat{a}_i|\Phi_0\rangle. $$ -

    -

    Full Configuration Interaction Theory

    -
    -
    - +

    We can then expand our exact state function for the ground state as

    @@ -1178,6 +975,9 @@

    Full Configuration \hat{C}=\sum_{ai}C_i^a\hat{a}_{a}^{\dagger}\hat{a}_i +\sum_{abij}C_{ij}^{ab}\hat{a}_{a}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_j\hat{a}_i+\dots $$ + + +

    Intermediate normalization

    Since the normalization of \( \Psi_0 \) is at our disposal and since \( C_0 \) is by hypothesis non-zero, we may arbitrarily set \( C_0=1 \) with corresponding proportional changes in all other coefficients. Using this so-called intermediate normalization we have

    @@ -1189,15 +989,11 @@

    Full Configuration $$ |\Psi_0\rangle=(1+\hat{C})|\Phi_0\rangle. $$ -

    -

    Full Configuration Interaction Theory

    -
    -
    - +

    We rewrite

    $$ |\Psi_0\rangle=C_0|\Phi_0\rangle+\sum_{ai}C_i^a|\Phi_i^a\rangle+\sum_{abij}C_{ij}^{ab}|\Phi_{ij}^{ab}\rangle+\dots, @@ -1208,9 +1004,12 @@

    Full Configuration |\Psi_0\rangle=\sum_{PH}C_H^P\Phi_H^P=\left(\sum_{PH}C_H^P\hat{A}_H^P\right)|\Phi_0\rangle, $$ -

    where \( H \) stands for \( 0,1,\dots,n \) hole states and \( P \) for \( 0,1,\dots,n \) particle states. -We have introduced the operator \( \hat{A}_H^P \) which contains an equal number of creation and annihilation operators. -

    +

    where \( H \) stands for \( 0,1,\dots,n \) hole states and \( P \) for \( 0,1,\dots,n \) particle states.

    + + +

    Compact expression of correlated part

    + +

    We have introduced the operator \( \hat{A}_H^P \) which contains an equal number of creation and annihilation operators.

    Our requirement of unit normalization gives

    $$ @@ -1221,15 +1020,11 @@

    Full Configuration $$ E= \langle \Psi_0 | \hat{H} |\Psi_0 \rangle= \sum_{PP'HH'}C_H^{*P}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}. $$ -

    -

    Full Configuration Interaction Theory

    -
    -
    - +

    Normally

    $$ E= \langle \Psi_0 | \hat{H} |\Psi_0 \rangle= \sum_{PP'HH'}C_H^{*P}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}, @@ -1242,9 +1037,12 @@

    Full Configuration \langle \Psi_0 | \hat{H} |\Psi_0 \rangle-\lambda \langle \Psi_0 |\Psi_0 \rangle, $$ -

    where \( \lambda \) is a variational multiplier to be identified with the energy of the system. -The minimization process results in -

    +

    where \( \lambda \) is a variational multiplier to be identified with the energy of the system.

    + + +

    Minimization

    + +

    The minimization process results in

    $$ \delta\left[ \langle \Psi_0 | \hat{H} |\Psi_0 \rangle-\lambda \langle \Psi_0 |\Psi_0 \rangle\right]=0, $$ @@ -1254,16 +1052,10 @@

    Full Configuration \sum_{P'H'}\left\{\delta[C_H^{*P}]\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}- \lambda( \delta[C_H^{*P}]C_{H'}^{P'}]\right\} = 0. $$ -

    -

    Full Configuration Interaction Theory

    -
    -
    - -

    This leads to

    $$ \sum_{P'H'}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}-\lambda C_H^{P}=0, @@ -1277,15 +1069,10 @@

    Full Configuration $$

    leading to the identification \( \lambda = E \).

    -

    -
    -

    Full Configuration Interaction Theory

    -
    -
    - +

    An alternative way to derive the last equation is to start from

    $$ (\hat{H} -E)|\Psi_0\rangle = (\hat{H} -E)\sum_{P'H'}C_{H'}^{P'}|\Phi_{H'}^{P'} \rangle=0, @@ -1297,15 +1084,10 @@

    Full Configuration of Slater determinants), it can then serve as a benchmark for other many-body methods which approximate the correlation operator \( \hat{C} \).

    -

    -
    -

    FCI and the exponential growth

    -
    -
    - +

    Full configuration interaction theory calculations provide in principle, if we can diagonalize numerically, all states of interest. The dimensionality of the problem explodes however quickly.

    The total number of Slater determinants which can be built with say \( N \) neutrons distributed among \( n \) single particle states is

    @@ -1319,9 +1101,6 @@

    FCI and the exponential g $$

    and multiplying this with the number of proton Slater determinants we end up with approximately with a dimensionality \( d \) of \( d\sim 10^{18} \).

    -

    -
    -

    Exponential wall

    @@ -1340,9 +1119,7 @@

    Exponential wall

    A non-practical way of solving the eigenvalue problem

    -
    -
    - +

    To see this, we look at the contributions arising from

    $$ \langle \Phi_H^P | = \langle \Phi_0|, @@ -1355,7 +1132,10 @@

    A (\hat{H} -E)\sum_{P'H'}C_{H'}^{P'}|\Phi_{H'}^{P'} \rangle=0. $$ -

    If we assume that we have a two-body operator at most, Slater's rule gives then an equation for the + + +

    Using the Condon-Slater rule

    +

    If we assume that we have a two-body operator at most, using the Condon-Slater rule gives then an equation for the correlation energy in terms of \( C_i^a \) and \( C_{ij}^{ab} \) only. We get then

    $$ @@ -1372,15 +1152,10 @@

    A

    where the energy \( E_0 \) is the reference energy and \( \Delta E \) defines the so-called correlation energy. The single-particle basis functions could be the results of a Hartree-Fock calculation or just the eigenstates of the non-interacting part of the Hamiltonian.

    -

    -
    -

    A non-practical way of solving the eigenvalue problem

    -
    -
    - +

    To see this, we look at the contributions arising from

    $$ \langle \Phi_H^P | = \langle \Phi_0|, @@ -1392,24 +1167,24 @@

    A $$ (\hat{H} -E)\sum_{P'H'}C_{H'}^{P'}|\Phi_{H'}^{P'} \rangle=0. $$ -

    -

    A non-practical way of solving the eigenvalue problem

    -
    -
    - +

    If we assume that we have a two-body operator at most, Slater's rule gives then an equation for the correlation energy in terms of \( C_i^a \) and \( C_{ij}^{ab} \) only. We get then

    $$ \langle \Phi_0 | \hat{H} -E| \Phi_0\rangle + \sum_{ai}\langle \Phi_0 | \hat{H} -E|\Phi_{i}^{a} \rangle C_{i}^{a}+ -\sum_{abij}\langle \Phi_0 | \hat{H} -E|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}=0, +\sum_{abij}\langle \Phi_0 | \hat{H} -E|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}=0. $$ -

    or

    + + +

    Slight rewrite

    + +

    Which we can rewrite

    $$ E-E_0 =\Delta E=\sum_{ai}\langle \Phi_0 | \hat{H}|\Phi_{i}^{a} \rangle C_{i}^{a}+ \sum_{abij}\langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}, @@ -1418,17 +1193,14 @@

    A

    where the energy \( E_0 \) is the reference energy and \( \Delta E \) defines the so-called correlation energy. The single-particle basis functions could be the results of a Hartree-Fock calculation or just the eigenstates of the non-interacting part of the Hamiltonian.

    -

    -
    -

    Rewriting the FCI equation

    -

    In our notes on Hartree-Fock calculations, -we have already computed the matrix \( \langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle \) and \( \langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab}\rangle \). If we are using a Hartree-Fock basis, then the matrix elements +

    In our discussions of the Hartree-Fock method planned for week 39, +we are going to compute the elements \( \langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle \) and \( \langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab}\rangle \). If we are using a Hartree-Fock basis, then these quantities result in \( \langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle=0 \) and we are left with a correlation energy given by

    $$ @@ -1456,28 +1228,27 @@

    Rewriting the FCI equation <

    Rewriting the FCI equation, does not stop here

    -
    -
    - +

    We need more equations. Our next step is to set up

    $$ \langle \Phi_i^a | \hat{H} -E| \Phi_0\rangle + \sum_{bj}\langle \Phi_i^a | \hat{H} -E|\Phi_{j}^{b} \rangle C_{j}^{b}+ \sum_{bcjk}\langle \Phi_i^a | \hat{H} -E|\Phi_{jk}^{bc} \rangle C_{jk}^{bc}+ -\sum_{bcdjkl}\langle \Phi_i^a | \hat{H} -E|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=0, +\sum_{bcdjkl}\langle \Phi_i^a | \hat{H} -E|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=0. $$ -

    as this equation will allow us to find an expression for the coefficents \( C_i^a \) since we can rewrite this equation as

    + + +

    Finding the coefficients

    +

    This equation will allow us to find an expression for the coefficents \( C_i^a \) since we can rewrite this equation as

    $$ \langle i | \hat{f}| a\rangle +\langle \Phi_i^a | \hat{H}|\Phi_{i}^{a} \rangle C_{i}^{a}+ \sum_{bj\ne ai}\langle \Phi_i^a | \hat{H}|\Phi_{j}^{b} \rangle C_{j}^{b}+ \sum_{bcjk}\langle \Phi_i^a | \hat{H}|\Phi_{jk}^{bc} \rangle C_{jk}^{bc}+ \sum_{bcdjkl}\langle \Phi_i^a | \hat{H}|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=EC_i^a. $$ -
    -
    -

    Rewriting the FCI equation, please stop here

    +

    Rewriting the FCI equation

    @@ -1554,18 +1325,18 @@

    Su

    Definition of the correlation energy

    -
    -
    - +

    The correlation energy is defined as, with a two-body Hamiltonian,

    $$ \Delta E=\sum_{ai}\langle i| \hat{f}|a \rangle C_{i}^{a}+ \sum_{abij}\langle ij | \hat{v}| ab \rangle C_{ij}^{ab}. $$ -

    The coefficients \( C \) result from the solution of the eigenvalue problem. -The energy of say the ground state is then -

    +

    The coefficients \( C \) result from the solution of the eigenvalue problem.

    + + +

    Ground state energy

    +

    The energy of say the ground state is then

    $$ E=E_{ref}+\Delta E, $$ @@ -1574,8 +1345,6 @@

    Definition of the c $$ E_{ref}=\langle \Phi_0 \vert \hat{H} \vert \Phi_0 \rangle. $$ -

    -
    diff --git a/doc/pub/week38/html/week38-reveal.html b/doc/pub/week38/html/week38-reveal.html index 0d3905ff..b1c199c7 100644 --- a/doc/pub/week38/html/week38-reveal.html +++ b/doc/pub/week38/html/week38-reveal.html @@ -901,220 +901,22 @@

    Creation operators in ter
    -

    Full configuration interaction theory

    - -

    We start with a reminder on determinants in the number representation.

    -
    - -
    -

    Slater determinants as basis states, Repetition

    -
    - -

    -

    The simplest possible choice for many-body wavefunctions are product wavefunctions. -That is -

    -

     
    -$$ -\Psi(x_1, x_2, x_3, \ldots, x_N) \approx \phi_1(x_1) \phi_2(x_2) \phi_3(x_3) \ldots -$$ -

     
    - -

    because we are really only good at thinking about one particle at a time. Such -product wavefunctions, without correlations, are easy to -work with; for example, if the single-particle states \( \phi_i(x) \) are orthonormal, then -the product wavefunctions are easy to orthonormalize. -

    - -

    Similarly, computing matrix elements of operators are relatively easy, because the -integrals factorize. -

    - -

    The price we pay is the lack of correlations, which we must build up by using many, many product -wavefunctions. (Thus we have a trade-off: compact representation of correlations but -difficult integrals versus easy integrals but many states required.) -

    -
    -
    - -
    -

    Slater determinants as basis states, repetition

    -
    - -

    -

    Because we have fermions, we are required to have antisymmetric wavefunctions, e.g.

    -

     
    -$$ -\Psi(x_1, x_2, x_3, \ldots, x_N) = - \Psi(x_2, x_1, x_3, \ldots, x_N) -$$ -

     
    - -

    etc. This is accomplished formally by using the determinantal formalism

    -

     
    -$$ -\Psi(x_1, x_2, \ldots, x_N) -= \frac{1}{\sqrt{N!}} -\det \left | -\begin{array}{cccc} -\phi_1(x_1) & \phi_1(x_2) & \ldots & \phi_1(x_N) \\ -\phi_2(x_1) & \phi_2(x_2) & \ldots & \phi_2(x_N) \\ - \vdots & & & \\ -\phi_N(x_1) & \phi_N(x_2) & \ldots & \phi_N(x_N) -\end{array} -\right | -$$ -

     
    - -

    Product wavefunction + antisymmetry = Slater determinant.

    -
    -
    - -
    -

    Slater determinants as basis states

    -
    - -

    -

     
    -$$ -\Psi(x_1, x_2, \ldots, x_N) -= \frac{1}{\sqrt{N!}} -\det \left | -\begin{array}{cccc} -\phi_1(x_1) & \phi_1(x_2) & \ldots & \phi_1(x_N) \\ -\phi_2(x_1) & \phi_2(x_2) & \ldots & \phi_2(x_N) \\ - \vdots & & & \\ -\phi_N(x_1) & \phi_N(x_2) & \ldots & \phi_N(x_N) -\end{array} -\right | -$$ -

     
    - -

    Properties of the determinant (interchange of any two rows or -any two columns yields a change in sign; thus no two rows and no -two columns can be the same) lead to the Pauli principle: -

    - -
      -

    • No two particles can be at the same place (two columns the same); and
    • -

    • No two particles can be in the same state (two rows the same).
    • -
    -
    -
    - -
    -

    Slater determinants as basis states

    -
    - -

    -

    As a practical matter, however, Slater determinants beyond \( N=4 \) quickly become -unwieldy. Thus we turn to the occupation representation or second quantization to simplify calculations. -

    - -

    The occupation representation or number representation, using fermion creation and annihilation -operators, is compact and efficient. It is also abstract and, at first encounter, not easy to -internalize. It is inspired by other operator formalism, such as the ladder operators for -the harmonic oscillator or for angular momentum, but unlike those cases, the operators do not have coordinate space representations. -

    - -

    Instead, one can think of fermion creation/annihilation operators as a game of symbols that -compactly reproduces what one would do, albeit clumsily, with full coordinate-space Slater -determinants. -

    -
    -
    - -
    -

    Quick repetition of the occupation representation

    -
    - -

    -

    We start with a set of orthonormal single-particle states \( \{ \phi_i(x) \} \). -(Note: this requirement, and others, can be relaxed, but leads to a -more involved formalism.) Any orthonormal set will do. -

    - -

    To each single-particle state \( \phi_i(x) \) we associate a creation operator -\( \hat{a}^\dagger_i \) and an annihilation operator \( \hat{a}_i \). -

    - -

    When acting on the vacuum state \( | 0 \rangle \), the creation operator \( \hat{a}^\dagger_i \) causes -a particle to occupy the single-particle state \( \phi_i(x) \): -

    -

     
    -$$ -\phi_i(x) \rightarrow \hat{a}^\dagger_i |0 \rangle -$$ -

     
    -

    -
    - -
    -

    Quick repetition of the occupation representation

    -
    - -

    -

    But with multiple creation operators we can occupy multiple states:

    -

     
    -$$ -\phi_i(x) \phi_j(x^\prime) \phi_k(x^{\prime \prime}) -\rightarrow \hat{a}^\dagger_i \hat{a}^\dagger_j \hat{a}^\dagger_k |0 \rangle. -$$ -

     
    - -

    Now we impose antisymmetry, by having the fermion operators satisfy anticommutation relations:

    -

     
    -$$ -\hat{a}^\dagger_i \hat{a}^\dagger_j + \hat{a}^\dagger_j \hat{a}^\dagger_i -= [ \hat{a}^\dagger_i ,\hat{a}^\dagger_j ]_+ -= \{ \hat{a}^\dagger_i ,\hat{a}^\dagger_j \} = 0 -$$ -

     
    - -

    so that

    -

     
    -$$ -\hat{a}^\dagger_i \hat{a}^\dagger_j = - \hat{a}^\dagger_j \hat{a}^\dagger_i -$$ -

     
    -

    -
    +

    Full Configuration Interaction Theory

    -
    -

    Quick repetition of the occupation representation

    -
    - -

    -

    Because of this property, automatically \( \hat{a}^\dagger_i \hat{a}^\dagger_i = 0 \), -enforcing the Pauli exclusion principle. Thus when writing a Slater determinant -using creation operators, -

    +

    We have defined the ansatz for the ground state as

     
    $$ -\hat{a}^\dagger_i \hat{a}^\dagger_j \hat{a}^\dagger_k \ldots |0 \rangle +|\Phi_0\rangle = \left(\prod_{i\le F}\hat{a}_{i}^{\dagger}\right)|0\rangle, $$

     
    -

    each index \( i,j,k, \ldots \) must be unique.

    - -

    For some relevant exercises with solutions see chapter 8 of Lecture Notes in Physics, volume 936.

    -
    +

    where the index \( i \) defines different single-particle states up to the Fermi level. We have assumed that we have \( N \) fermions.

    -

    Full Configuration Interaction Theory

    -
    - -

    -

    We have defined the ansatz for the ground state as

    -

     
    -$$ -|\Phi_0\rangle = \left(\prod_{i\le F}\hat{a}_{i}^{\dagger}\right)|0\rangle, -$$ -

     
    +

    One-particle-one-hole state

    -

    where the index \( i \) defines different single-particle states up to the Fermi level. We have assumed that we have \( N \) fermions. -A given one-particle-one-hole (\( 1p1h \)) state can be written as -

    +

    A given one-particle-one-hole (\( 1p1h \)) state can be written as

     
    $$ |\Phi_i^a\rangle = \hat{a}_{a}^{\dagger}\hat{a}_i|\Phi_0\rangle, @@ -1134,14 +936,11 @@

    Full Configuration Interaction Th |\Phi_{ijk\dots}^{abc\dots}\rangle = \hat{a}_{a}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_{c}^{\dagger}\dots\hat{a}_k\hat{a}_j\hat{a}_i|\Phi_0\rangle. $$

     
    -

    Full Configuration Interaction Theory

    -
    - -

    +

    We can then expand our exact state function for the ground state as

    @@ -1158,7 +957,10 @@

    Full Configuration Interaction Th \hat{C}=\sum_{ai}C_i^a\hat{a}_{a}^{\dagger}\hat{a}_i +\sum_{abij}C_{ij}^{ab}\hat{a}_{a}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_j\hat{a}_i+\dots $$

     
    +

    +
    +

    Intermediate normalization

    Since the normalization of \( \Psi_0 \) is at our disposal and since \( C_0 \) is by hypothesis non-zero, we may arbitrarily set \( C_0=1 \) with corresponding proportional changes in all other coefficients. Using this so-called intermediate normalization we have

    @@ -1174,14 +976,11 @@

    Full Configuration Interaction Th |\Psi_0\rangle=(1+\hat{C})|\Phi_0\rangle. $$

     
    -

    Full Configuration Interaction Theory

    -
    - -

    +

    We rewrite

     
    $$ @@ -1196,9 +995,13 @@

    Full Configuration Interaction Th $$

     
    -

    where \( H \) stands for \( 0,1,\dots,n \) hole states and \( P \) for \( 0,1,\dots,n \) particle states. -We have introduced the operator \( \hat{A}_H^P \) which contains an equal number of creation and annihilation operators. -

    +

    where \( H \) stands for \( 0,1,\dots,n \) hole states and \( P \) for \( 0,1,\dots,n \) particle states.

    +

    + +
    +

    Compact expression of correlated part

    + +

    We have introduced the operator \( \hat{A}_H^P \) which contains an equal number of creation and annihilation operators.

    Our requirement of unit normalization gives

     
    @@ -1213,14 +1016,11 @@

    Full Configuration Interaction Th E= \langle \Psi_0 | \hat{H} |\Psi_0 \rangle= \sum_{PP'HH'}C_H^{*P}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}. $$

     
    -

    Full Configuration Interaction Theory

    -
    - -

    +

    Normally

     
    $$ @@ -1237,9 +1037,13 @@

    Full Configuration Interaction Th $$

     
    -

    where \( \lambda \) is a variational multiplier to be identified with the energy of the system. -The minimization process results in -

    +

    where \( \lambda \) is a variational multiplier to be identified with the energy of the system.

    +

    + +
    +

    Minimization

    + +

    The minimization process results in

     
    $$ \delta\left[ \langle \Psi_0 | \hat{H} |\Psi_0 \rangle-\lambda \langle \Psi_0 |\Psi_0 \rangle\right]=0, @@ -1253,15 +1057,10 @@

    Full Configuration Interaction Th \lambda( \delta[C_H^{*P}]C_{H'}^{P'}]\right\} = 0. $$

     
    -

    Full Configuration Interaction Theory

    -
    - -

    -

    This leads to

     
    $$ @@ -1279,14 +1078,11 @@

    Full Configuration Interaction Th

     

    leading to the identification \( \lambda = E \).

    -

    Full Configuration Interaction Theory

    -
    - -

    +

    An alternative way to derive the last equation is to start from

     
    $$ @@ -1300,14 +1096,11 @@

    Full Configuration Interaction Th of Slater determinants), it can then serve as a benchmark for other many-body methods which approximate the correlation operator \( \hat{C} \).

    -

    FCI and the exponential growth

    -
    - -

    +

    Full configuration interaction theory calculations provide in principle, if we can diagonalize numerically, all states of interest. The dimensionality of the problem explodes however quickly.

    The total number of Slater determinants which can be built with say \( N \) neutrons distributed among \( n \) single particle states is

    @@ -1325,7 +1118,6 @@

    FCI and the exponential growth

     

    and multiplying this with the number of proton Slater determinants we end up with approximately with a dimensionality \( d \) of \( d\sim 10^{18} \).

    -
    @@ -1344,9 +1136,7 @@

    Exponential wall

    A non-practical way of solving the eigenvalue problem

    -
    - -

    +

    To see this, we look at the contributions arising from

     
    $$ @@ -1362,8 +1152,11 @@

    A non-practical w (\hat{H} -E)\sum_{P'H'}C_{H'}^{P'}|\Phi_{H'}^{P'} \rangle=0. $$

     
    +

    -

    If we assume that we have a two-body operator at most, Slater's rule gives then an equation for the +

    +

    Using the Condon-Slater rule

    +

    If we assume that we have a two-body operator at most, using the Condon-Slater rule gives then an equation for the correlation energy in terms of \( C_i^a \) and \( C_{ij}^{ab} \) only. We get then

     
    @@ -1384,14 +1177,11 @@

    A non-practical w

    where the energy \( E_0 \) is the reference energy and \( \Delta E \) defines the so-called correlation energy. The single-particle basis functions could be the results of a Hartree-Fock calculation or just the eigenstates of the non-interacting part of the Hamiltonian.

    -

    A non-practical way of solving the eigenvalue problem

    -
    - -

    +

    To see this, we look at the contributions arising from

     
    $$ @@ -1407,25 +1197,26 @@

    A non-practical w (\hat{H} -E)\sum_{P'H'}C_{H'}^{P'}|\Phi_{H'}^{P'} \rangle=0. $$

     
    -

    A non-practical way of solving the eigenvalue problem

    -
    - -

    +

    If we assume that we have a two-body operator at most, Slater's rule gives then an equation for the correlation energy in terms of \( C_i^a \) and \( C_{ij}^{ab} \) only. We get then

     
    $$ \langle \Phi_0 | \hat{H} -E| \Phi_0\rangle + \sum_{ai}\langle \Phi_0 | \hat{H} -E|\Phi_{i}^{a} \rangle C_{i}^{a}+ -\sum_{abij}\langle \Phi_0 | \hat{H} -E|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}=0, +\sum_{abij}\langle \Phi_0 | \hat{H} -E|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}=0. $$

     
    +

    -

    or

    +
    +

    Slight rewrite

    + +

    Which we can rewrite

     
    $$ E-E_0 =\Delta E=\sum_{ai}\langle \Phi_0 | \hat{H}|\Phi_{i}^{a} \rangle C_{i}^{a}+ @@ -1436,7 +1227,6 @@

    A non-practical w

    where the energy \( E_0 \) is the reference energy and \( \Delta E \) defines the so-called correlation energy. The single-particle basis functions could be the results of a Hartree-Fock calculation or just the eigenstates of the non-interacting part of the Hamiltonian.

    -

    @@ -1444,8 +1234,8 @@

    Rewriting the FCI equation

    -

    In our notes on Hartree-Fock calculations, -we have already computed the matrix \( \langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle \) and \( \langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab}\rangle \). If we are using a Hartree-Fock basis, then the matrix elements +

    In our discussions of the Hartree-Fock method planned for week 39, +we are going to compute the elements \( \langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle \) and \( \langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab}\rangle \). If we are using a Hartree-Fock basis, then these quantities result in \( \langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle=0 \) and we are left with a correlation energy given by

     
    @@ -1475,19 +1265,20 @@

    Rewriting the FCI equation

    Rewriting the FCI equation, does not stop here

    -
    - -

    +

    We need more equations. Our next step is to set up

     
    $$ \langle \Phi_i^a | \hat{H} -E| \Phi_0\rangle + \sum_{bj}\langle \Phi_i^a | \hat{H} -E|\Phi_{j}^{b} \rangle C_{j}^{b}+ \sum_{bcjk}\langle \Phi_i^a | \hat{H} -E|\Phi_{jk}^{bc} \rangle C_{jk}^{bc}+ -\sum_{bcdjkl}\langle \Phi_i^a | \hat{H} -E|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=0, +\sum_{bcdjkl}\langle \Phi_i^a | \hat{H} -E|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=0. $$

     
    +

    -

    as this equation will allow us to find an expression for the coefficents \( C_i^a \) since we can rewrite this equation as

    +
    +

    Finding the coefficients

    +

    This equation will allow us to find an expression for the coefficents \( C_i^a \) since we can rewrite this equation as

     
    $$ \langle i | \hat{f}| a\rangle +\langle \Phi_i^a | \hat{H}|\Phi_{i}^{a} \rangle C_{i}^{a}+ \sum_{bj\ne ai}\langle \Phi_i^a | \hat{H}|\Phi_{j}^{b} \rangle C_{j}^{b}+ @@ -1495,11 +1286,10 @@

    Rewriting the FCI equatio \sum_{bcdjkl}\langle \Phi_i^a | \hat{H}|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=EC_i^a. $$

     
    -

    -

    Rewriting the FCI equation, please stop here

    +

    Rewriting the FCI equation

    @@ -1580,9 +1370,7 @@

    Summarizing FCI a

    Definition of the correlation energy

    -
    - -

    +

    The correlation energy is defined as, with a two-body Hamiltonian,

     
    $$ @@ -1591,9 +1379,12 @@

    Definition of the correlation ener $$

     
    -

    The coefficients \( C \) result from the solution of the eigenvalue problem. -The energy of say the ground state is then -

    +

    The coefficients \( C \) result from the solution of the eigenvalue problem.

    +

    + +
    +

    Ground state energy

    +

    The energy of say the ground state is then

     
    $$ E=E_{ref}+\Delta E, @@ -1606,7 +1397,6 @@

    Definition of the correlation ener E_{ref}=\langle \Phi_0 \vert \hat{H} \vert \Phi_0 \rangle. $$

     
    -

    diff --git a/doc/pub/week38/html/week38-solarized.html b/doc/pub/week38/html/week38-solarized.html index 7eba4d81..67264bfb 100644 --- a/doc/pub/week38/html/week38-solarized.html +++ b/doc/pub/week38/html/week38-solarized.html @@ -134,54 +134,35 @@ 2, None, 'creation-operators-in-terms-of-pauli-matrices'), - ('Full configuration interaction theory', + ('Full Configuration Interaction Theory', 2, None, 'full-configuration-interaction-theory'), - ('Slater determinants as basis states, Repetition', - 2, - None, - 'slater-determinants-as-basis-states-repetition'), - ('Slater determinants as basis states, repetition', - 2, - None, - 'slater-determinants-as-basis-states-repetition'), - ('Slater determinants as basis states', - 2, - None, - 'slater-determinants-as-basis-states'), - ('Slater determinants as basis states', + ('One-particle-one-hole state', 2, None, - 'slater-determinants-as-basis-states'), - ('Quick repetition of the occupation representation', - 2, - None, - 'quick-repetition-of-the-occupation-representation'), - ('Quick repetition of the occupation representation', - 2, - None, - 'quick-repetition-of-the-occupation-representation'), - ('Quick repetition of the occupation representation', - 2, - None, - 'quick-repetition-of-the-occupation-representation'), + 'one-particle-one-hole-state'), ('Full Configuration Interaction Theory', 2, None, 'full-configuration-interaction-theory'), - ('Full Configuration Interaction Theory', + ('Intermediate normalization', 2, None, - 'full-configuration-interaction-theory'), + 'intermediate-normalization'), ('Full Configuration Interaction Theory', 2, None, 'full-configuration-interaction-theory'), + ('Compact expression of correlated part', + 2, + None, + 'compact-expression-of-correlated-part'), ('Full Configuration Interaction Theory', 2, None, 'full-configuration-interaction-theory'), + ('Minimization', 2, None, 'minimization'), ('Full Configuration Interaction Theory', 2, None, @@ -199,6 +180,10 @@ 2, None, 'a-non-practical-way-of-solving-the-eigenvalue-problem'), + ('Using the Condon-Slater rule', + 2, + None, + 'using-the-condon-slater-rule'), ('A non-practical way of solving the eigenvalue problem', 2, None, @@ -207,6 +192,7 @@ 2, None, 'a-non-practical-way-of-solving-the-eigenvalue-problem'), + ('Slight rewrite', 2, None, 'slight-rewrite'), ('Rewriting the FCI equation', 2, None, @@ -219,10 +205,11 @@ 2, None, 'rewriting-the-fci-equation-does-not-stop-here'), - ('Rewriting the FCI equation, please stop here', + ('Finding the coefficients', 2, None, 'finding-the-coefficients'), + ('Rewriting the FCI equation', 2, None, - 'rewriting-the-fci-equation-please-stop-here'), + 'rewriting-the-fci-equation'), ('Rewriting the FCI equation, more to add', 2, None, @@ -238,7 +225,8 @@ ('Definition of the correlation energy', 2, None, - 'definition-of-the-correlation-energy')]} + 'definition-of-the-correlation-energy'), + ('Ground state energy', 2, None, 'ground-state-energy')]} end of tocinfo --> @@ -886,199 +874,19 @@

    Creation operators in ter











    -

    Full configuration interaction theory

    - -

    We start with a reminder on determinants in the number representation.

    - -









    -

    Slater determinants as basis states, Repetition

    -
    - -

    -

    The simplest possible choice for many-body wavefunctions are product wavefunctions. -That is -

    -$$ -\Psi(x_1, x_2, x_3, \ldots, x_N) \approx \phi_1(x_1) \phi_2(x_2) \phi_3(x_3) \ldots -$$ - -

    because we are really only good at thinking about one particle at a time. Such -product wavefunctions, without correlations, are easy to -work with; for example, if the single-particle states \( \phi_i(x) \) are orthonormal, then -the product wavefunctions are easy to orthonormalize. -

    - -

    Similarly, computing matrix elements of operators are relatively easy, because the -integrals factorize. -

    - -

    The price we pay is the lack of correlations, which we must build up by using many, many product -wavefunctions. (Thus we have a trade-off: compact representation of correlations but -difficult integrals versus easy integrals but many states required.) -

    -
    - - -









    -

    Slater determinants as basis states, repetition

    -
    - -

    -

    Because we have fermions, we are required to have antisymmetric wavefunctions, e.g.

    -$$ -\Psi(x_1, x_2, x_3, \ldots, x_N) = - \Psi(x_2, x_1, x_3, \ldots, x_N) -$$ - -

    etc. This is accomplished formally by using the determinantal formalism

    -$$ -\Psi(x_1, x_2, \ldots, x_N) -= \frac{1}{\sqrt{N!}} -\det \left | -\begin{array}{cccc} -\phi_1(x_1) & \phi_1(x_2) & \ldots & \phi_1(x_N) \\ -\phi_2(x_1) & \phi_2(x_2) & \ldots & \phi_2(x_N) \\ - \vdots & & & \\ -\phi_N(x_1) & \phi_N(x_2) & \ldots & \phi_N(x_N) -\end{array} -\right | -$$ - -

    Product wavefunction + antisymmetry = Slater determinant.

    -
    - - -









    -

    Slater determinants as basis states

    -
    - -

    -$$ -\Psi(x_1, x_2, \ldots, x_N) -= \frac{1}{\sqrt{N!}} -\det \left | -\begin{array}{cccc} -\phi_1(x_1) & \phi_1(x_2) & \ldots & \phi_1(x_N) \\ -\phi_2(x_1) & \phi_2(x_2) & \ldots & \phi_2(x_N) \\ - \vdots & & & \\ -\phi_N(x_1) & \phi_N(x_2) & \ldots & \phi_N(x_N) -\end{array} -\right | -$$ - -

    Properties of the determinant (interchange of any two rows or -any two columns yields a change in sign; thus no two rows and no -two columns can be the same) lead to the Pauli principle: -

    - - -
    - - -









    -

    Slater determinants as basis states

    -
    - -

    -

    As a practical matter, however, Slater determinants beyond \( N=4 \) quickly become -unwieldy. Thus we turn to the occupation representation or second quantization to simplify calculations. -

    - -

    The occupation representation or number representation, using fermion creation and annihilation -operators, is compact and efficient. It is also abstract and, at first encounter, not easy to -internalize. It is inspired by other operator formalism, such as the ladder operators for -the harmonic oscillator or for angular momentum, but unlike those cases, the operators do not have coordinate space representations. -

    - -

    Instead, one can think of fermion creation/annihilation operators as a game of symbols that -compactly reproduces what one would do, albeit clumsily, with full coordinate-space Slater -determinants. -

    -
    - - -









    -

    Quick repetition of the occupation representation

    -
    - -

    -

    We start with a set of orthonormal single-particle states \( \{ \phi_i(x) \} \). -(Note: this requirement, and others, can be relaxed, but leads to a -more involved formalism.) Any orthonormal set will do. -

    - -

    To each single-particle state \( \phi_i(x) \) we associate a creation operator -\( \hat{a}^\dagger_i \) and an annihilation operator \( \hat{a}_i \). -

    - -

    When acting on the vacuum state \( | 0 \rangle \), the creation operator \( \hat{a}^\dagger_i \) causes -a particle to occupy the single-particle state \( \phi_i(x) \): -

    -$$ -\phi_i(x) \rightarrow \hat{a}^\dagger_i |0 \rangle -$$ -
    - - -









    -

    Quick repetition of the occupation representation

    -
    - -

    -

    But with multiple creation operators we can occupy multiple states:

    -$$ -\phi_i(x) \phi_j(x^\prime) \phi_k(x^{\prime \prime}) -\rightarrow \hat{a}^\dagger_i \hat{a}^\dagger_j \hat{a}^\dagger_k |0 \rangle. -$$ - -

    Now we impose antisymmetry, by having the fermion operators satisfy anticommutation relations:

    -$$ -\hat{a}^\dagger_i \hat{a}^\dagger_j + \hat{a}^\dagger_j \hat{a}^\dagger_i -= [ \hat{a}^\dagger_i ,\hat{a}^\dagger_j ]_+ -= \{ \hat{a}^\dagger_i ,\hat{a}^\dagger_j \} = 0 -$$ - -

    so that

    -$$ -\hat{a}^\dagger_i \hat{a}^\dagger_j = - \hat{a}^\dagger_j \hat{a}^\dagger_i -$$ -
    - +

    Full Configuration Interaction Theory

    -









    -

    Quick repetition of the occupation representation

    -
    - -

    -

    Because of this property, automatically \( \hat{a}^\dagger_i \hat{a}^\dagger_i = 0 \), -enforcing the Pauli exclusion principle. Thus when writing a Slater determinant -using creation operators, -

    +

    We have defined the ansatz for the ground state as

    $$ -\hat{a}^\dagger_i \hat{a}^\dagger_j \hat{a}^\dagger_k \ldots |0 \rangle +|\Phi_0\rangle = \left(\prod_{i\le F}\hat{a}_{i}^{\dagger}\right)|0\rangle, $$ -

    each index \( i,j,k, \ldots \) must be unique.

    - -

    For some relevant exercises with solutions see chapter 8 of Lecture Notes in Physics, volume 936.

    -
    - +

    where the index \( i \) defines different single-particle states up to the Fermi level. We have assumed that we have \( N \) fermions.











    -

    Full Configuration Interaction Theory

    -
    - -

    -

    We have defined the ansatz for the ground state as

    -$$ -|\Phi_0\rangle = \left(\prod_{i\le F}\hat{a}_{i}^{\dagger}\right)|0\rangle, -$$ +

    One-particle-one-hole state

    -

    where the index \( i \) defines different single-particle states up to the Fermi level. We have assumed that we have \( N \) fermions. -A given one-particle-one-hole (\( 1p1h \)) state can be written as -

    +

    A given one-particle-one-hole (\( 1p1h \)) state can be written as

    $$ |\Phi_i^a\rangle = \hat{a}_{a}^{\dagger}\hat{a}_i|\Phi_0\rangle, $$ @@ -1092,14 +900,11 @@

    Full Configuration Interaction Th $$ |\Phi_{ijk\dots}^{abc\dots}\rangle = \hat{a}_{a}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_{c}^{\dagger}\dots\hat{a}_k\hat{a}_j\hat{a}_i|\Phi_0\rangle. $$ -











    Full Configuration Interaction Theory

    -
    - -

    +

    We can then expand our exact state function for the ground state as

    @@ -1113,6 +918,9 @@

    Full Configuration Interaction Th \hat{C}=\sum_{ai}C_i^a\hat{a}_{a}^{\dagger}\hat{a}_i +\sum_{abij}C_{ij}^{ab}\hat{a}_{a}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_j\hat{a}_i+\dots $$ + +









    +

    Intermediate normalization

    Since the normalization of \( \Psi_0 \) is at our disposal and since \( C_0 \) is by hypothesis non-zero, we may arbitrarily set \( C_0=1 \) with corresponding proportional changes in all other coefficients. Using this so-called intermediate normalization we have

    @@ -1124,14 +932,11 @@

    Full Configuration Interaction Th $$ |\Psi_0\rangle=(1+\hat{C})|\Phi_0\rangle. $$ -











    Full Configuration Interaction Theory

    -
    - -

    +

    We rewrite

    $$ |\Psi_0\rangle=C_0|\Phi_0\rangle+\sum_{ai}C_i^a|\Phi_i^a\rangle+\sum_{abij}C_{ij}^{ab}|\Phi_{ij}^{ab}\rangle+\dots, @@ -1142,9 +947,12 @@

    Full Configuration Interaction Th |\Psi_0\rangle=\sum_{PH}C_H^P\Phi_H^P=\left(\sum_{PH}C_H^P\hat{A}_H^P\right)|\Phi_0\rangle, $$ -

    where \( H \) stands for \( 0,1,\dots,n \) hole states and \( P \) for \( 0,1,\dots,n \) particle states. -We have introduced the operator \( \hat{A}_H^P \) which contains an equal number of creation and annihilation operators. -

    +

    where \( H \) stands for \( 0,1,\dots,n \) hole states and \( P \) for \( 0,1,\dots,n \) particle states.

    + +









    +

    Compact expression of correlated part

    + +

    We have introduced the operator \( \hat{A}_H^P \) which contains an equal number of creation and annihilation operators.

    Our requirement of unit normalization gives

    $$ @@ -1155,14 +963,11 @@

    Full Configuration Interaction Th $$ E= \langle \Psi_0 | \hat{H} |\Psi_0 \rangle= \sum_{PP'HH'}C_H^{*P}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}. $$ -











    Full Configuration Interaction Theory

    -
    - -

    +

    Normally

    $$ E= \langle \Psi_0 | \hat{H} |\Psi_0 \rangle= \sum_{PP'HH'}C_H^{*P}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}, @@ -1175,9 +980,12 @@

    Full Configuration Interaction Th \langle \Psi_0 | \hat{H} |\Psi_0 \rangle-\lambda \langle \Psi_0 |\Psi_0 \rangle, $$ -

    where \( \lambda \) is a variational multiplier to be identified with the energy of the system. -The minimization process results in -

    +

    where \( \lambda \) is a variational multiplier to be identified with the energy of the system.

    + +









    +

    Minimization

    + +

    The minimization process results in

    $$ \delta\left[ \langle \Psi_0 | \hat{H} |\Psi_0 \rangle-\lambda \langle \Psi_0 |\Psi_0 \rangle\right]=0, $$ @@ -1187,15 +995,10 @@

    Full Configuration Interaction Th \sum_{P'H'}\left\{\delta[C_H^{*P}]\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}- \lambda( \delta[C_H^{*P}]C_{H'}^{P'}]\right\} = 0. $$ -











    Full Configuration Interaction Theory

    -
    - -

    -

    This leads to

    $$ \sum_{P'H'}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}-\lambda C_H^{P}=0, @@ -1209,14 +1012,10 @@

    Full Configuration Interaction Th $$

    leading to the identification \( \lambda = E \).

    -

    -









    Full Configuration Interaction Theory

    -
    - -

    +

    An alternative way to derive the last equation is to start from

    $$ (\hat{H} -E)|\Psi_0\rangle = (\hat{H} -E)\sum_{P'H'}C_{H'}^{P'}|\Phi_{H'}^{P'} \rangle=0, @@ -1228,14 +1027,10 @@

    Full Configuration Interaction Th of Slater determinants), it can then serve as a benchmark for other many-body methods which approximate the correlation operator \( \hat{C} \).

    -

    -









    FCI and the exponential growth

    -
    - -

    +

    Full configuration interaction theory calculations provide in principle, if we can diagonalize numerically, all states of interest. The dimensionality of the problem explodes however quickly.

    The total number of Slater determinants which can be built with say \( N \) neutrons distributed among \( n \) single particle states is

    @@ -1249,8 +1044,6 @@

    FCI and the exponential growth

    $$

    and multiplying this with the number of proton Slater determinants we end up with approximately with a dimensionality \( d \) of \( d\sim 10^{18} \).

    -
    -









    Exponential wall

    @@ -1268,9 +1061,7 @@

    Exponential wall

    A non-practical way of solving the eigenvalue problem

    -
    - -

    +

    To see this, we look at the contributions arising from

    $$ \langle \Phi_H^P | = \langle \Phi_0|, @@ -1283,7 +1074,10 @@

    A non-practical w (\hat{H} -E)\sum_{P'H'}C_{H'}^{P'}|\Phi_{H'}^{P'} \rangle=0. $$ -

    If we assume that we have a two-body operator at most, Slater's rule gives then an equation for the + +









    +

    Using the Condon-Slater rule

    +

    If we assume that we have a two-body operator at most, using the Condon-Slater rule gives then an equation for the correlation energy in terms of \( C_i^a \) and \( C_{ij}^{ab} \) only. We get then

    $$ @@ -1300,14 +1094,10 @@

    A non-practical w

    where the energy \( E_0 \) is the reference energy and \( \Delta E \) defines the so-called correlation energy. The single-particle basis functions could be the results of a Hartree-Fock calculation or just the eigenstates of the non-interacting part of the Hamiltonian.

    -

    -

    A non-practical way of solving the eigenvalue problem

    -
    - -

    +

    To see this, we look at the contributions arising from

    $$ \langle \Phi_H^P | = \langle \Phi_0|, @@ -1319,23 +1109,24 @@

    A non-practical w $$ (\hat{H} -E)\sum_{P'H'}C_{H'}^{P'}|\Phi_{H'}^{P'} \rangle=0. $$ -

    A non-practical way of solving the eigenvalue problem

    -
    - -

    +

    If we assume that we have a two-body operator at most, Slater's rule gives then an equation for the correlation energy in terms of \( C_i^a \) and \( C_{ij}^{ab} \) only. We get then

    $$ \langle \Phi_0 | \hat{H} -E| \Phi_0\rangle + \sum_{ai}\langle \Phi_0 | \hat{H} -E|\Phi_{i}^{a} \rangle C_{i}^{a}+ -\sum_{abij}\langle \Phi_0 | \hat{H} -E|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}=0, +\sum_{abij}\langle \Phi_0 | \hat{H} -E|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}=0. $$ -

    or

    + +









    +

    Slight rewrite

    + +

    Which we can rewrite

    $$ E-E_0 =\Delta E=\sum_{ai}\langle \Phi_0 | \hat{H}|\Phi_{i}^{a} \rangle C_{i}^{a}+ \sum_{abij}\langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}, @@ -1344,16 +1135,14 @@

    A non-practical w

    where the energy \( E_0 \) is the reference energy and \( \Delta E \) defines the so-called correlation energy. The single-particle basis functions could be the results of a Hartree-Fock calculation or just the eigenstates of the non-interacting part of the Hamiltonian.

    -

    -









    Rewriting the FCI equation

    -

    In our notes on Hartree-Fock calculations, -we have already computed the matrix \( \langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle \) and \( \langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab}\rangle \). If we are using a Hartree-Fock basis, then the matrix elements +

    In our discussions of the Hartree-Fock method planned for week 39, +we are going to compute the elements \( \langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle \) and \( \langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab}\rangle \). If we are using a Hartree-Fock basis, then these quantities result in \( \langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle=0 \) and we are left with a correlation energy given by

    $$ @@ -1379,27 +1168,27 @@

    Rewriting the FCI equation











    Rewriting the FCI equation, does not stop here

    -
    - -

    +

    We need more equations. Our next step is to set up

    $$ \langle \Phi_i^a | \hat{H} -E| \Phi_0\rangle + \sum_{bj}\langle \Phi_i^a | \hat{H} -E|\Phi_{j}^{b} \rangle C_{j}^{b}+ \sum_{bcjk}\langle \Phi_i^a | \hat{H} -E|\Phi_{jk}^{bc} \rangle C_{jk}^{bc}+ -\sum_{bcdjkl}\langle \Phi_i^a | \hat{H} -E|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=0, +\sum_{bcdjkl}\langle \Phi_i^a | \hat{H} -E|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=0. $$ -

    as this equation will allow us to find an expression for the coefficents \( C_i^a \) since we can rewrite this equation as

    + +









    +

    Finding the coefficients

    +

    This equation will allow us to find an expression for the coefficents \( C_i^a \) since we can rewrite this equation as

    $$ \langle i | \hat{f}| a\rangle +\langle \Phi_i^a | \hat{H}|\Phi_{i}^{a} \rangle C_{i}^{a}+ \sum_{bj\ne ai}\langle \Phi_i^a | \hat{H}|\Phi_{j}^{b} \rangle C_{j}^{b}+ \sum_{bcjk}\langle \Phi_i^a | \hat{H}|\Phi_{jk}^{bc} \rangle C_{jk}^{bc}+ \sum_{bcdjkl}\langle \Phi_i^a | \hat{H}|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=EC_i^a. $$ -










    -

    Rewriting the FCI equation, please stop here

    +

    Rewriting the FCI equation

    @@ -1472,18 +1261,18 @@

    Summarizing FCI a









    Definition of the correlation energy

    -
    - -

    +

    The correlation energy is defined as, with a two-body Hamiltonian,

    $$ \Delta E=\sum_{ai}\langle i| \hat{f}|a \rangle C_{i}^{a}+ \sum_{abij}\langle ij | \hat{v}| ab \rangle C_{ij}^{ab}. $$ -

    The coefficients \( C \) result from the solution of the eigenvalue problem. -The energy of say the ground state is then -

    +

    The coefficients \( C \) result from the solution of the eigenvalue problem.

    + +









    +

    Ground state energy

    +

    The energy of say the ground state is then

    $$ E=E_{ref}+\Delta E, $$ @@ -1492,7 +1281,6 @@

    Definition of the correlation ener $$ E_{ref}=\langle \Phi_0 \vert \hat{H} \vert \Phi_0 \rangle. $$ -

    diff --git a/doc/pub/week38/html/week38.html b/doc/pub/week38/html/week38.html index 8b0befeb..c384ff65 100644 --- a/doc/pub/week38/html/week38.html +++ b/doc/pub/week38/html/week38.html @@ -211,54 +211,35 @@ 2, None, 'creation-operators-in-terms-of-pauli-matrices'), - ('Full configuration interaction theory', + ('Full Configuration Interaction Theory', 2, None, 'full-configuration-interaction-theory'), - ('Slater determinants as basis states, Repetition', - 2, - None, - 'slater-determinants-as-basis-states-repetition'), - ('Slater determinants as basis states, repetition', - 2, - None, - 'slater-determinants-as-basis-states-repetition'), - ('Slater determinants as basis states', - 2, - None, - 'slater-determinants-as-basis-states'), - ('Slater determinants as basis states', + ('One-particle-one-hole state', 2, None, - 'slater-determinants-as-basis-states'), - ('Quick repetition of the occupation representation', - 2, - None, - 'quick-repetition-of-the-occupation-representation'), - ('Quick repetition of the occupation representation', - 2, - None, - 'quick-repetition-of-the-occupation-representation'), - ('Quick repetition of the occupation representation', - 2, - None, - 'quick-repetition-of-the-occupation-representation'), + 'one-particle-one-hole-state'), ('Full Configuration Interaction Theory', 2, None, 'full-configuration-interaction-theory'), - ('Full Configuration Interaction Theory', + ('Intermediate normalization', 2, None, - 'full-configuration-interaction-theory'), + 'intermediate-normalization'), ('Full Configuration Interaction Theory', 2, None, 'full-configuration-interaction-theory'), + ('Compact expression of correlated part', + 2, + None, + 'compact-expression-of-correlated-part'), ('Full Configuration Interaction Theory', 2, None, 'full-configuration-interaction-theory'), + ('Minimization', 2, None, 'minimization'), ('Full Configuration Interaction Theory', 2, None, @@ -276,6 +257,10 @@ 2, None, 'a-non-practical-way-of-solving-the-eigenvalue-problem'), + ('Using the Condon-Slater rule', + 2, + None, + 'using-the-condon-slater-rule'), ('A non-practical way of solving the eigenvalue problem', 2, None, @@ -284,6 +269,7 @@ 2, None, 'a-non-practical-way-of-solving-the-eigenvalue-problem'), + ('Slight rewrite', 2, None, 'slight-rewrite'), ('Rewriting the FCI equation', 2, None, @@ -296,10 +282,11 @@ 2, None, 'rewriting-the-fci-equation-does-not-stop-here'), - ('Rewriting the FCI equation, please stop here', + ('Finding the coefficients', 2, None, 'finding-the-coefficients'), + ('Rewriting the FCI equation', 2, None, - 'rewriting-the-fci-equation-please-stop-here'), + 'rewriting-the-fci-equation'), ('Rewriting the FCI equation, more to add', 2, None, @@ -315,7 +302,8 @@ ('Definition of the correlation energy', 2, None, - 'definition-of-the-correlation-energy')]} + 'definition-of-the-correlation-energy'), + ('Ground state energy', 2, None, 'ground-state-energy')]} end of tocinfo --> @@ -963,199 +951,19 @@

    Creation operators in ter











    -

    Full configuration interaction theory

    - -

    We start with a reminder on determinants in the number representation.

    - -









    -

    Slater determinants as basis states, Repetition

    -
    - -

    -

    The simplest possible choice for many-body wavefunctions are product wavefunctions. -That is -

    -$$ -\Psi(x_1, x_2, x_3, \ldots, x_N) \approx \phi_1(x_1) \phi_2(x_2) \phi_3(x_3) \ldots -$$ - -

    because we are really only good at thinking about one particle at a time. Such -product wavefunctions, without correlations, are easy to -work with; for example, if the single-particle states \( \phi_i(x) \) are orthonormal, then -the product wavefunctions are easy to orthonormalize. -

    - -

    Similarly, computing matrix elements of operators are relatively easy, because the -integrals factorize. -

    - -

    The price we pay is the lack of correlations, which we must build up by using many, many product -wavefunctions. (Thus we have a trade-off: compact representation of correlations but -difficult integrals versus easy integrals but many states required.) -

    -
    - - -









    -

    Slater determinants as basis states, repetition

    -
    - -

    -

    Because we have fermions, we are required to have antisymmetric wavefunctions, e.g.

    -$$ -\Psi(x_1, x_2, x_3, \ldots, x_N) = - \Psi(x_2, x_1, x_3, \ldots, x_N) -$$ - -

    etc. This is accomplished formally by using the determinantal formalism

    -$$ -\Psi(x_1, x_2, \ldots, x_N) -= \frac{1}{\sqrt{N!}} -\det \left | -\begin{array}{cccc} -\phi_1(x_1) & \phi_1(x_2) & \ldots & \phi_1(x_N) \\ -\phi_2(x_1) & \phi_2(x_2) & \ldots & \phi_2(x_N) \\ - \vdots & & & \\ -\phi_N(x_1) & \phi_N(x_2) & \ldots & \phi_N(x_N) -\end{array} -\right | -$$ - -

    Product wavefunction + antisymmetry = Slater determinant.

    -
    - - -









    -

    Slater determinants as basis states

    -
    - -

    -$$ -\Psi(x_1, x_2, \ldots, x_N) -= \frac{1}{\sqrt{N!}} -\det \left | -\begin{array}{cccc} -\phi_1(x_1) & \phi_1(x_2) & \ldots & \phi_1(x_N) \\ -\phi_2(x_1) & \phi_2(x_2) & \ldots & \phi_2(x_N) \\ - \vdots & & & \\ -\phi_N(x_1) & \phi_N(x_2) & \ldots & \phi_N(x_N) -\end{array} -\right | -$$ - -

    Properties of the determinant (interchange of any two rows or -any two columns yields a change in sign; thus no two rows and no -two columns can be the same) lead to the Pauli principle: -

    - -
      -
    • No two particles can be at the same place (two columns the same); and
    • -
    • No two particles can be in the same state (two rows the same).
    • -
    -
    - - -









    -

    Slater determinants as basis states

    -
    - -

    -

    As a practical matter, however, Slater determinants beyond \( N=4 \) quickly become -unwieldy. Thus we turn to the occupation representation or second quantization to simplify calculations. -

    - -

    The occupation representation or number representation, using fermion creation and annihilation -operators, is compact and efficient. It is also abstract and, at first encounter, not easy to -internalize. It is inspired by other operator formalism, such as the ladder operators for -the harmonic oscillator or for angular momentum, but unlike those cases, the operators do not have coordinate space representations. -

    - -

    Instead, one can think of fermion creation/annihilation operators as a game of symbols that -compactly reproduces what one would do, albeit clumsily, with full coordinate-space Slater -determinants. -

    -
    - - -









    -

    Quick repetition of the occupation representation

    -
    - -

    -

    We start with a set of orthonormal single-particle states \( \{ \phi_i(x) \} \). -(Note: this requirement, and others, can be relaxed, but leads to a -more involved formalism.) Any orthonormal set will do. -

    - -

    To each single-particle state \( \phi_i(x) \) we associate a creation operator -\( \hat{a}^\dagger_i \) and an annihilation operator \( \hat{a}_i \). -

    - -

    When acting on the vacuum state \( | 0 \rangle \), the creation operator \( \hat{a}^\dagger_i \) causes -a particle to occupy the single-particle state \( \phi_i(x) \): -

    -$$ -\phi_i(x) \rightarrow \hat{a}^\dagger_i |0 \rangle -$$ -
    - - -









    -

    Quick repetition of the occupation representation

    -
    - -

    -

    But with multiple creation operators we can occupy multiple states:

    -$$ -\phi_i(x) \phi_j(x^\prime) \phi_k(x^{\prime \prime}) -\rightarrow \hat{a}^\dagger_i \hat{a}^\dagger_j \hat{a}^\dagger_k |0 \rangle. -$$ - -

    Now we impose antisymmetry, by having the fermion operators satisfy anticommutation relations:

    -$$ -\hat{a}^\dagger_i \hat{a}^\dagger_j + \hat{a}^\dagger_j \hat{a}^\dagger_i -= [ \hat{a}^\dagger_i ,\hat{a}^\dagger_j ]_+ -= \{ \hat{a}^\dagger_i ,\hat{a}^\dagger_j \} = 0 -$$ - -

    so that

    -$$ -\hat{a}^\dagger_i \hat{a}^\dagger_j = - \hat{a}^\dagger_j \hat{a}^\dagger_i -$$ -
    - +

    Full Configuration Interaction Theory

    -









    -

    Quick repetition of the occupation representation

    -
    - -

    -

    Because of this property, automatically \( \hat{a}^\dagger_i \hat{a}^\dagger_i = 0 \), -enforcing the Pauli exclusion principle. Thus when writing a Slater determinant -using creation operators, -

    +

    We have defined the ansatz for the ground state as

    $$ -\hat{a}^\dagger_i \hat{a}^\dagger_j \hat{a}^\dagger_k \ldots |0 \rangle +|\Phi_0\rangle = \left(\prod_{i\le F}\hat{a}_{i}^{\dagger}\right)|0\rangle, $$ -

    each index \( i,j,k, \ldots \) must be unique.

    - -

    For some relevant exercises with solutions see chapter 8 of Lecture Notes in Physics, volume 936.

    -
    - +

    where the index \( i \) defines different single-particle states up to the Fermi level. We have assumed that we have \( N \) fermions.











    -

    Full Configuration Interaction Theory

    -
    - -

    -

    We have defined the ansatz for the ground state as

    -$$ -|\Phi_0\rangle = \left(\prod_{i\le F}\hat{a}_{i}^{\dagger}\right)|0\rangle, -$$ +

    One-particle-one-hole state

    -

    where the index \( i \) defines different single-particle states up to the Fermi level. We have assumed that we have \( N \) fermions. -A given one-particle-one-hole (\( 1p1h \)) state can be written as -

    +

    A given one-particle-one-hole (\( 1p1h \)) state can be written as

    $$ |\Phi_i^a\rangle = \hat{a}_{a}^{\dagger}\hat{a}_i|\Phi_0\rangle, $$ @@ -1169,14 +977,11 @@

    Full Configuration Interaction Th $$ |\Phi_{ijk\dots}^{abc\dots}\rangle = \hat{a}_{a}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_{c}^{\dagger}\dots\hat{a}_k\hat{a}_j\hat{a}_i|\Phi_0\rangle. $$ -











    Full Configuration Interaction Theory

    -
    - -

    +

    We can then expand our exact state function for the ground state as

    @@ -1190,6 +995,9 @@

    Full Configuration Interaction Th \hat{C}=\sum_{ai}C_i^a\hat{a}_{a}^{\dagger}\hat{a}_i +\sum_{abij}C_{ij}^{ab}\hat{a}_{a}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_j\hat{a}_i+\dots $$ + +









    +

    Intermediate normalization

    Since the normalization of \( \Psi_0 \) is at our disposal and since \( C_0 \) is by hypothesis non-zero, we may arbitrarily set \( C_0=1 \) with corresponding proportional changes in all other coefficients. Using this so-called intermediate normalization we have

    @@ -1201,14 +1009,11 @@

    Full Configuration Interaction Th $$ |\Psi_0\rangle=(1+\hat{C})|\Phi_0\rangle. $$ -











    Full Configuration Interaction Theory

    -
    - -

    +

    We rewrite

    $$ |\Psi_0\rangle=C_0|\Phi_0\rangle+\sum_{ai}C_i^a|\Phi_i^a\rangle+\sum_{abij}C_{ij}^{ab}|\Phi_{ij}^{ab}\rangle+\dots, @@ -1219,9 +1024,12 @@

    Full Configuration Interaction Th |\Psi_0\rangle=\sum_{PH}C_H^P\Phi_H^P=\left(\sum_{PH}C_H^P\hat{A}_H^P\right)|\Phi_0\rangle, $$ -

    where \( H \) stands for \( 0,1,\dots,n \) hole states and \( P \) for \( 0,1,\dots,n \) particle states. -We have introduced the operator \( \hat{A}_H^P \) which contains an equal number of creation and annihilation operators. -

    +

    where \( H \) stands for \( 0,1,\dots,n \) hole states and \( P \) for \( 0,1,\dots,n \) particle states.

    + +









    +

    Compact expression of correlated part

    + +

    We have introduced the operator \( \hat{A}_H^P \) which contains an equal number of creation and annihilation operators.

    Our requirement of unit normalization gives

    $$ @@ -1232,14 +1040,11 @@

    Full Configuration Interaction Th $$ E= \langle \Psi_0 | \hat{H} |\Psi_0 \rangle= \sum_{PP'HH'}C_H^{*P}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}. $$ -











    Full Configuration Interaction Theory

    -
    - -

    +

    Normally

    $$ E= \langle \Psi_0 | \hat{H} |\Psi_0 \rangle= \sum_{PP'HH'}C_H^{*P}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}, @@ -1252,9 +1057,12 @@

    Full Configuration Interaction Th \langle \Psi_0 | \hat{H} |\Psi_0 \rangle-\lambda \langle \Psi_0 |\Psi_0 \rangle, $$ -

    where \( \lambda \) is a variational multiplier to be identified with the energy of the system. -The minimization process results in -

    +

    where \( \lambda \) is a variational multiplier to be identified with the energy of the system.

    + +









    +

    Minimization

    + +

    The minimization process results in

    $$ \delta\left[ \langle \Psi_0 | \hat{H} |\Psi_0 \rangle-\lambda \langle \Psi_0 |\Psi_0 \rangle\right]=0, $$ @@ -1264,15 +1072,10 @@

    Full Configuration Interaction Th \sum_{P'H'}\left\{\delta[C_H^{*P}]\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}- \lambda( \delta[C_H^{*P}]C_{H'}^{P'}]\right\} = 0. $$ -











    Full Configuration Interaction Theory

    -
    - -

    -

    This leads to

    $$ \sum_{P'H'}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}-\lambda C_H^{P}=0, @@ -1286,14 +1089,10 @@

    Full Configuration Interaction Th $$

    leading to the identification \( \lambda = E \).

    -

    -









    Full Configuration Interaction Theory

    -
    - -

    +

    An alternative way to derive the last equation is to start from

    $$ (\hat{H} -E)|\Psi_0\rangle = (\hat{H} -E)\sum_{P'H'}C_{H'}^{P'}|\Phi_{H'}^{P'} \rangle=0, @@ -1305,14 +1104,10 @@

    Full Configuration Interaction Th of Slater determinants), it can then serve as a benchmark for other many-body methods which approximate the correlation operator \( \hat{C} \).

    -

    -









    FCI and the exponential growth

    -
    - -

    +

    Full configuration interaction theory calculations provide in principle, if we can diagonalize numerically, all states of interest. The dimensionality of the problem explodes however quickly.

    The total number of Slater determinants which can be built with say \( N \) neutrons distributed among \( n \) single particle states is

    @@ -1326,8 +1121,6 @@

    FCI and the exponential growth

    $$

    and multiplying this with the number of proton Slater determinants we end up with approximately with a dimensionality \( d \) of \( d\sim 10^{18} \).

    -
    -









    Exponential wall

    @@ -1345,9 +1138,7 @@

    Exponential wall

    A non-practical way of solving the eigenvalue problem

    -
    - -

    +

    To see this, we look at the contributions arising from

    $$ \langle \Phi_H^P | = \langle \Phi_0|, @@ -1360,7 +1151,10 @@

    A non-practical w (\hat{H} -E)\sum_{P'H'}C_{H'}^{P'}|\Phi_{H'}^{P'} \rangle=0. $$ -

    If we assume that we have a two-body operator at most, Slater's rule gives then an equation for the + +









    +

    Using the Condon-Slater rule

    +

    If we assume that we have a two-body operator at most, using the Condon-Slater rule gives then an equation for the correlation energy in terms of \( C_i^a \) and \( C_{ij}^{ab} \) only. We get then

    $$ @@ -1377,14 +1171,10 @@

    A non-practical w

    where the energy \( E_0 \) is the reference energy and \( \Delta E \) defines the so-called correlation energy. The single-particle basis functions could be the results of a Hartree-Fock calculation or just the eigenstates of the non-interacting part of the Hamiltonian.

    -

    -

    A non-practical way of solving the eigenvalue problem

    -
    - -

    +

    To see this, we look at the contributions arising from

    $$ \langle \Phi_H^P | = \langle \Phi_0|, @@ -1396,23 +1186,24 @@

    A non-practical w $$ (\hat{H} -E)\sum_{P'H'}C_{H'}^{P'}|\Phi_{H'}^{P'} \rangle=0. $$ -

    A non-practical way of solving the eigenvalue problem

    -
    - -

    +

    If we assume that we have a two-body operator at most, Slater's rule gives then an equation for the correlation energy in terms of \( C_i^a \) and \( C_{ij}^{ab} \) only. We get then

    $$ \langle \Phi_0 | \hat{H} -E| \Phi_0\rangle + \sum_{ai}\langle \Phi_0 | \hat{H} -E|\Phi_{i}^{a} \rangle C_{i}^{a}+ -\sum_{abij}\langle \Phi_0 | \hat{H} -E|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}=0, +\sum_{abij}\langle \Phi_0 | \hat{H} -E|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}=0. $$ -

    or

    + +









    +

    Slight rewrite

    + +

    Which we can rewrite

    $$ E-E_0 =\Delta E=\sum_{ai}\langle \Phi_0 | \hat{H}|\Phi_{i}^{a} \rangle C_{i}^{a}+ \sum_{abij}\langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}, @@ -1421,16 +1212,14 @@

    A non-practical w

    where the energy \( E_0 \) is the reference energy and \( \Delta E \) defines the so-called correlation energy. The single-particle basis functions could be the results of a Hartree-Fock calculation or just the eigenstates of the non-interacting part of the Hamiltonian.

    -

    -









    Rewriting the FCI equation

    -

    In our notes on Hartree-Fock calculations, -we have already computed the matrix \( \langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle \) and \( \langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab}\rangle \). If we are using a Hartree-Fock basis, then the matrix elements +

    In our discussions of the Hartree-Fock method planned for week 39, +we are going to compute the elements \( \langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle \) and \( \langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab}\rangle \). If we are using a Hartree-Fock basis, then these quantities result in \( \langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle=0 \) and we are left with a correlation energy given by

    $$ @@ -1456,27 +1245,27 @@

    Rewriting the FCI equation











    Rewriting the FCI equation, does not stop here

    -
    - -

    +

    We need more equations. Our next step is to set up

    $$ \langle \Phi_i^a | \hat{H} -E| \Phi_0\rangle + \sum_{bj}\langle \Phi_i^a | \hat{H} -E|\Phi_{j}^{b} \rangle C_{j}^{b}+ \sum_{bcjk}\langle \Phi_i^a | \hat{H} -E|\Phi_{jk}^{bc} \rangle C_{jk}^{bc}+ -\sum_{bcdjkl}\langle \Phi_i^a | \hat{H} -E|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=0, +\sum_{bcdjkl}\langle \Phi_i^a | \hat{H} -E|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=0. $$ -

    as this equation will allow us to find an expression for the coefficents \( C_i^a \) since we can rewrite this equation as

    + +









    +

    Finding the coefficients

    +

    This equation will allow us to find an expression for the coefficents \( C_i^a \) since we can rewrite this equation as

    $$ \langle i | \hat{f}| a\rangle +\langle \Phi_i^a | \hat{H}|\Phi_{i}^{a} \rangle C_{i}^{a}+ \sum_{bj\ne ai}\langle \Phi_i^a | \hat{H}|\Phi_{j}^{b} \rangle C_{j}^{b}+ \sum_{bcjk}\langle \Phi_i^a | \hat{H}|\Phi_{jk}^{bc} \rangle C_{jk}^{bc}+ \sum_{bcdjkl}\langle \Phi_i^a | \hat{H}|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=EC_i^a. $$ -










    -

    Rewriting the FCI equation, please stop here

    +

    Rewriting the FCI equation

    @@ -1549,18 +1338,18 @@

    Summarizing FCI a









    Definition of the correlation energy

    -
    - -

    +

    The correlation energy is defined as, with a two-body Hamiltonian,

    $$ \Delta E=\sum_{ai}\langle i| \hat{f}|a \rangle C_{i}^{a}+ \sum_{abij}\langle ij | \hat{v}| ab \rangle C_{ij}^{ab}. $$ -

    The coefficients \( C \) result from the solution of the eigenvalue problem. -The energy of say the ground state is then -

    +

    The coefficients \( C \) result from the solution of the eigenvalue problem.

    + +









    +

    Ground state energy

    +

    The energy of say the ground state is then

    $$ E=E_{ref}+\Delta E, $$ @@ -1569,7 +1358,6 @@

    Definition of the correlation ener $$ E_{ref}=\langle \Phi_0 \vert \hat{H} \vert \Phi_0 \rangle. $$ -

    diff --git a/doc/pub/week38/ipynb/ipynb-week38-src.tar.gz b/doc/pub/week38/ipynb/ipynb-week38-src.tar.gz index 380ea27ac10d2fb363a3b625ea085ef345cf25b5..bdaa2c00a3609ead2d183fcbc9cb6705fc625394 100644 GIT binary patch delta 75 zcmV-R0JQ(X0l@(rABzY8#X h6wmbpV+NQeDTxtIDFcKFBQ%j{<;em+c;;R zJ?D@5(v4j2?hDM$nq=fa4aiZGi(6tu?0MFBNylZrXu#V<65ba<9RP|@BMa7yFSOeL zcUvNp`l;o|cQ8CbK0u3{#*Hs9*NxSe;oNGG-J^Fm64^{#BQQRgu?$=-o52XIXsM22 z+xGS{R`RVszziSQYr`C!HB~0BZ>Nr7V}(T>FAdYW&ICiHAzO^g3^2{2dq=J@DJXJ@ zUbw@gK(>2$Q`K{-csk*Bm{K{4Cil{45z8?^0LQU|AE81guO!&7%X(H=&>?ol#i zY5L6+w;#;S48ZGby_3^jR9EhX|kI@UXAJ$h_NXRYjW>wSEX_dVgxyaq#- z8CtcRlu2}KbShkUD0i5|_ols$BpHrSJ_V18=>8rXNaUD#J$9--%w7LP#w`#14Gc@b z_DQ4)U)+Xq&~=I1q_QF?!12v}&61gyzfHLEDVu{$5BvQYc4yx72B)(YX_nOIN0A1; z1xgFJ(vWl55Jc>`r+Ko3&%L~SR(_n9mMg(mX4_vym>`lT6e1-nSNirH)6eoU0>W6R zRQ8_Wz8IU%%J4-e#cT8KylHyFFlHY2HIHCC2$h2#a!V~dNXd!9o+q1nXQMWJk zVURsv!)#-b1UZUTqHfU6hqJsuPT z%3+Y!R~XBPGq+EUY+I$t5rFiYhg7_I}}-QF_^d5P>J(FcMANwD~6b0cK%=+ z4`|J)@*QDos1m*@+6y`2JegCW7eoNlrXf+63MyS@4#`wXPhHA5Q$u2}iBM%mcZ#Sj z6-1Z&DJ&Zjxf;i8|kD25Wu&5cPJ=Ppl08!eaClN-dSV9743V%~VE=2Nh!8IP z{j}q0iA$=2Z4=ikq4MOuLT-*PQ}g*_TP`>9{hU_Z=YgPhE@?Zm&+VMH>8wN_p8me=Z z{~Be0*D*?`VPBd?C0}~NwEDFS&^!DsoW>=UMNWmcSSNPYWrq#t!pcrdj#F|@2qkHv z9oZGtFLF(0^V}$R{H{t55+3QMIObh)c{2URI!pV`)pUI{{c9*wuio6dKNIXC-(CB@ zvsD*!!cYR*%-+<+)!EF*?(Y|bse`dKG&4&Q zk{${OCnsAH69^SxMPt|DFH`&780?LSQs&O}u?)kYh}@20^)eZ25lm^5o5oqZu83hF|dl<@wJMa1MpfXKNQga%2Oq6;Dt2JXqZn zQ3zC!MLXlBaW3@e@;=OM-kl!mY62%hS8!p?MU+HJ4Wa>xsN(OUePU)!YK!b(7p&1J zfNfpXs~IxlH8z^|;@Ja}M)L?eHUTA&4T z1te=vNEM>4sB_Eanb;TMf&$Jn|4O|g9dyatvTu~THb2>P zgX#35p&kR2GzkOjpDJlvYj~ciY9SlQ3Cj~Jf|9q@njlR?U_FztqWsk{T2@B(A5%r?!-&H7q}H}a__N<&dL zl-KCt(*^}YL#t`SOx8$Lp3D|9hK_fF<}`6HIj#g^CFa||oH9%qbQe;gLzjWC`_QiA z!%IBj!?VK*txi7^;vN!&zG?)0fPj(Ne8I8SH%|QFF8=|3q)0`W>=6x`6ojoChS^^r zd$kKtGD1!y3MVe{4>EE6RRw}o9t2Mr#0g~Anc!aJ@1VH++qqMZd~dX{!C1(N+JvQk zH(l}dhJL(M|8*^@Qf!P>nA>A$;~6osnAx#!RAe8*iE2@)kWd#=*L@kk<%(eA@e;*- zy_J2Buy_rQv~GnwaE~8sJU~(JyHDrPYzY!@QyIDwjj=vw-mL2|3H;cyV9PUOp~qs6 zZJr?8v{IRq*C`^DQP(J7*VbOKNHPdAJo<^Ztp58clrR2(sj?>gWE`@#@RPm038sVn zrS50IHa4U7gN%SIa_)dfnx9sa*Gf=?TnwDV_7<*|gdEJA{{(7_ zx}3xEUrTjUcgsW*-hc-P^a273#4+PiieKEeMQN6kPE>B`%XPZkjtSZXSEav`7`@-& zor{*82O~cH43rgzCJDKtxI|2r3Uwn#RDo3?SJKJ9+Fv3F`|=#dMw&L<85}iodYjK% zs~U;=nIWEh5G@m`u2bAVh|45YUjVRd5i&?Za5HF58!4T9H_k9uC39;sWwv6t*Kaehs$-bxM|7WIqQCmhBV-N203I<(KCTmoA{qeK1jO zMUPG;f8F(Uc5@l$xemt|dkY538I7=Q%f%Okh}wufjw0@kw{3EJg9LIM%eFX%dngdc zLUTuZgWF2*${tW@fBsNwnRR0C*#sIiIO3eKIZ_kn*q(M@=@7Qvy75Y&w;*xAhAeZh z*}W(V0&lNn1m?-p$Q>~uOa(xHh=*R5P|HR|F+kTD9W}A;zV@jb<^FGWsZnYRZgZc^ z{7KR6tu{$c&8Hg(9~mnL%746Al^&Oj6ktambB_%D;I&2|-BelhQ3#{OGXPu{$1DN@1+m`;?wi69n4vF!loKJm3h;qshm2%<$Q6XuaGPxA; z5jnNHn~a%_)Es+$Fl7cUZgi021uo#sZB=y^QN71Wjknd4HYS zosau$Nv9vJMAU>2I=S7GXDj98f*IdlEp@u$nTG!`+9emQB&@m#}7t3iD z$s}G3U_PJ|tAusLI)xNnt$3>{50;v0EheW7MW=|f47ED~X~*4+#G1){$O$y=&++v` zkcX-t1&WUI;yVQxJlg8Cr*^dg4=j~WvTv~*^Qi}UvPFCFQB}~oLjj6@b@exU$qzm1n=b`4dSx@o z!drh=Cq+C)r7-G4IROci1H<#Kwv|b|-RThY;x^Nc<(LeGKpvT5du{li3x!c0Ke_t4 z02DBB90xCJdT8JAg_fN8Fi@5@SY2JqI+rWgru6PnJ(FnOdS};$b=>Z4Tg%(A;Um|z zTegmwmv(X?Pw&r9hAk~L4%~7}&JU@jsg34+t$59y?kd2Y!>0yrp)vbhjM^)b%g9hn zuq6`_mfJ2Du51kA8l9*+NuC#8bzjm(fC(#s34iSB^3EGy<Ef4nhWg@+&mC zrRt(U!mP9e=tb)*B4d5~a0+`X%PPWlpw*{KODjm}x}Y1`C_7s%r)YtA6XsN)fLwkD zY(I{BE3=hhS0z>12p4N7nMZ4VoS2#2^O)(j`dXe?H!T9+5ohY|!Ty zMtp^4H_Fr~q>wyuH_gGa%Tb8gK^)!9Z{kh!8@kN{YS*)ZV^ogpmg9 zS7ENuor$`z6VE~E>BVE`nKr;Q(jH3|eLMQ1@aE#ex}0HX-Hz=Vu1VpZV=VsqDEK!j zQ1BpcIvJ2e&0(=>wzLUIcc1yz5Ov7!k;*rAexZeCk=+^TVUG^2Xv$j;&5@;Rcizf( z>(fzQUI0BTd6J>DQiu{K+g7kxzzRk}E2N6Lit3;QG>kmBIv zJq@bbA@ddJ+?b8Jl2UM?nVO$TFqFKt-}?=+ydpJD2;pmo`(VZ+{&R%{NsN%?fe9+Y zQvk!~pP>bUHLIFRLU5wQ2H7W$0m3kWG3e5yA(A0Xbi+}yyixsdeM%IPpplvNLBqzm((@LQc zDZpX&qP;2`_QET6+XkPo*jlPeFb09AgMjPjUaU|rniaQNAmum{=7sU8%km+rYIsgk z7F^?J%9wBY5~|7^oRcO#{=Ak}BmPYipGH)vetC>1lhS8JBb{WzEt*T^gAo$y&D-*p zs8dA~tnKoGh6&|&4*WIxfV}o0FYU97jwWt_Ij#d$u3VSYL{v2jA5%p73^ZlDEC3n- z77CW_xDYL|%rR6WftuG1uTb}N#+e{j#1ZX#?eqPoVPk_zDE5yz*cRXYtR>4E{Jf{K zlddrcxr{$sjr}*r>R8p%(Fo26?&q=xtlWpGTS4&X-eM`o5wlNNoE=14kA;hINx4EL zmEQ^Y#b;az#m}r;bvGZvjyu}#FcfX@KX1-P-{1R~^k?V3!1_ckwf`N2|B5IoFw?&V zy%`M|mrZuW-gk}Pl6c{UccZ4xmV8dxxXhlX@fqY91ti+SVZsUORKpOpzFxQO4tYzwygK%a2Y*sSPzE5wnGP^y>GMGm% zTl=Fg2Qv)-zq~xYPQ+CIVqt6fZ4NFBC3oM#GHdfZWExg5a1Tc7X>H6pIS@G!G1X4HUN}F-e!Y z5;iVdztAeH<)X0C{g^ArfwHGweg#Id_NuqT+gRrFkYXDlIWK1!NtWAO)*@%J* z6T1JI>H~r8`_>=fFrP|ANE3bdb8?b|TH>1!L79!Mv;nQ4xtT}VG%#=kFjOdgFO`5t z?RXMI=d2nleu_<>1H(HO?;Qrb54e zua>UdcIUYlWu}6W@@<1@2c+wsQgFIOeV$vA-=;aE)?C-$&)=z$Ee{xg$iNifr z5`5W48lxH?wDf0cbr)4l>!)wF+}19WL9`X->keuc(aq1&$V!EPx=*hz{2|Hk+FH z!2MGZfh*rUg)(^Gc!7eMHS!+cb|@9J$4GeKHQJqadO79GW+(l#=RSB0lm z6)TpxyBsXU797z{c?>T*RHvw}{PS=Yi-epNSlXZgp*1q@zIX2fakKmbOz@I(Hl4rx zJl>Z%1g07EdlF)yz?88}?`@6+0WKqoF1LX*0u9gW4r+SaY5+95mP!kadxN~j<`WdE zHQ9J-{A4|ry#XrI4)ovcapxyf&Z#m~ja>~n*T;UL>^gPkTzFB9R)cir7mXPawl14b zc~!Gj8V<>rS&jJfn5jiTLB6B}?TkIuIpe@(xQc4vd8s|g*fLg#+V#9d0166cXhkV# z03%glJeuj44!v<|%2F{*G^ro}N z0jHS1F)P(3=^zHLgx=ou0rrzRK-#B7{-#!}l(?Y!Wv+@wWDNp}i$U={9fe<_w8!ae zYCV((CYx@c^i5*Ley;&CP34oBn0de<^M)&!3FI@#TR`u=kwlFo9t?LT4$=zJ!K;bs zYku`3W_1%Whm`NmSv6CHf^-P3r#|TOa^oCsiPQtWj6`9%ZYh%`0HBf&L&9Rl6m$hl z&(iAO`s(Bh_@+mVKgZ(T9U|&-#&mVgmE^~v!pSo!c@{xuoe-@vOZm*i=c9?&K1J90 zPr6Cr5u2|PR6FgcElw?aVNbid`slu+({-!Q=d!X2>9REC4@HG8#xv*8SJs#g2wB$KbHnbKu?Sg(_EoLaS$k21-`jX{gXdpQ zIwu%;+z&0*X;ij`rxNF8^-k<2%TvswnRH|(m10jNP}id>nZi}EvL9(k}{8t`K|(^}ek6ENIR~R+F?on-70aQM)49q`!#SZWPBgn_5iJ&> zEaf;auSM|0%2Y6mPtNSAfCC79`57HV;4%3x8JmN+~)@Y ze|Xe=uZ-%j-cQeC9H{w3w{lOY& zBfIu3P|W|16FC0K2}u^oaKKy~NsJ)WfR?{=F%Ab}&%4HLJNIQU%ZGS^Oi;U&f>pkV zecHFcnMv^nXm_=G7K{^066kY z_d`oheq0>^rTY4syhYfcN2^6c`7A5!(Y8sq#c4t9W>c;ySI+^%hpop>9mRR&&FRnD z!?VgY9_S!GRzP=OG(IgT_-&?W4W8vuqQcVV5uZcRuL^Vao3bpmt+SO9_n|qx9~NRW zM1|~U7Ya}o-HwRamxgSAzA3Gh0l#s{w!(ID(L$YUL!8iyodW%BB?+|{#SMFmbi9|l z3aO$x4W%y%z8BCLM4yq**$Y%d7X`JQ-nfTTh7&d5yJ4cE!FI;R2v*?7PyEbB@d%N5 z7GLp{zLRws4MoB!&!ZlG-UQ(la#E!p)IhZF=jJ8_ZTd&PQ^n6ky-14j0V)sBYEUYV zKb7JtDtMHX!A{rR7+W2h&8SowiksnXrP0SB7Ljqm15O&iuq)6fJYvw_pl-@|5C+vvAMJU? zg_(PR&rzT)U%iYGQ0qmh8XBqrq2Q^MU{JF8i47pktcl!cs(ZRKB&*%U#~#9IzYMUp z;u&JknPSu_ROU^10VLz+JfQ1wsHOn%__=eYSjcq&sMm7S1uUVb9@E#QM6+4_#zNvH zN-_0=;_>JXhj~dcKPL}{)Wd8gpENrC@JXL!1;p;FGf+KwR|tv91EphTGu2fC&!@2G zp1X;;YoM~Z}2iWEIYd0uA`-cojc0y{4$ zcntnr0C``I{s)42K)^pjn*SZw{A&@$@o&5U6B82$Az>1T2>IXm=6|~STgjPVO8nuV zr8A;OQa3Ma6+G^xW)?;;DOoB-A}XHQx|_fsl**-eZAmf;KhmPM9SDBu{WeYeeON~0 z(}1iARh{P_h(b=O98ICBELtw9on%|*=j(bZP$x--sr0K&5K~}B;Q3_iapk8&hO}g? zCcS0j4mkkYDVrkML^a;DN9s#*x3*kTfhKYFk=jJGWG&{?U#pj=rLzwEBAnUR!h7kQ z8CkV+C(B&SY=gi0OZWQ&w;M*}2a*Eh=@|R~I}w;NmmD*>5`FR5!v>WR=?a@=%a4Ou zkHH?53Jui~gxq-!`;xQKW)hV?ge>i!J-ZnSWtIR~AGI8TLxiN}3y1_e!=2Wd0W2`d zdn)DGc+g9%qi`042aw}m4dlQdQpk~{aO59HWR6TJ@k*qkd#MRGqxVNFa>0bKnU1P~ zcZsZhF}e<^gfhjHd{cX-QaZ7g{LH?($U{HixuS@KqDk}fs@VwA3F)DM}Tyz2y1O^uNAG*Z&MM%i;w@#EbMnxLNPZI+9F48HOb%E#H44 z4@U%pV&uU z#-sjnI^~{`PW)|h0M5))-die<;ZId_%z zvNZ7Am>^FlY?xcFLO?zQope8f2!#WdQAbJ_yGGAD-zcf_PQn|~R7+{eFcragOnJ0AXjzh21Dm^^7;R5jRv*}G zzO6L;tO1XZ=d;|v3~O!Nc*=3vrWczcf-O;meHcIa6$5dupVc}LN-i)XvryhTxc$vA(i$IF ze%e^)dBDVHnv6qjLpZ{akfn`konA`ZH1VXvwL?Txyw}ES)WAlE$RrM!V<5 ziL<)b{>vj`f1j~mniv{4+`K`Ab*RG75>6Bf1Er3YTg{7Rw$N^KYhd|n`6$R5hfk7Z z1=cLhfdNFYV`ZwdNiRiXQ-!VeGzKu@lxBUDgQr!&X+jQ@atfcM9m`-+bcMEa!Z6}IihF$!7VX610ku;UM* zbSlQuN#>`Pf^U0D1BNkNZGZ5h?eHfid_?e z{jecLrYvJY4m0g=vr=8A?-Af5IW87^c{N5i5G1gW!;m;5sOA7P>6fW&D&{oLpk{n_ zf1p2Au^;;ZgbmZ&N7o1Dh73+W4v5yldNW#^1!^u8m^vyW*)bJMt3U{+6MQq4bpLc8 zGlG0zekYDMhxBwEj-pOv^NzA311^+ed2+gBK+XmYaro450Y{K zN=AR=t`-?m9VNTn5woNdujm(fr04Qg`jpt2=uNuA z)Jewfs(7X9O`zW*V-4U{&jHPlW4Cbjn_1bRxkMmY%}k?B&JCVQY#ss`hTY8UbR1E~ zr<0rJz{r7FmR`vT)@a1U>qYZ{I@Kd3jm6{9R7~+bpTBI0y!6_DWSFq%;P5J}YcyPb zuNNkYv}{pJ7n%;W@?#)0n2@~yhxtod;8K`CfXS8X zt_Fo{a*;1rK^Q-v8*>sx1;*=BK_-8l1pZDkMvY9)MgtWJ^cX&WdCdGF4Bo1U-2Bz2 zh|DRCb6PZ$Wgl;7vf`rz=K-^ z{~nhaRI*7rZP5}wZXS8rW6U($drNSHtjt)C(}0FN^w@`%?3~YiQ-zy%&Le8m^P}3V zjQz|rz^ir7X`Ld_-pn!RR6PG#FxR!&ahe>vdd7Jn6r(GSTf=F2PoW0l=jLaA*bCPk z`zhTt=@B_m64@uzu(_SGI1r-S|FV~0bfxnL5CZ<-EH7n=9VqRD9<)DuS^sL-{Z^AD zbQBmW`kfv(@!DUu)|V=T(hE|{+cuv>R?P>``o9u+CRRqaBp?w=z;@=GJuV0A=*>N< zPoQ1|Dj5=^v!%+jDq*;bCC;H?dsLyIA;c57neQT@#UZ_ zp*eOEm9kP%`bAQeX2cXV7;q*a9y$0qs6rHJHQS%QN5uszw;9+ zdZQ#k@AFhMmTTv+A6ggbCvk$hW-BOYuNa5}yDDUoGJIhY8VafuM<)5uBsT&;SCIyO zS)NJ**Ae9_ZO0{23Y!hnk$I6Ms8--XxT+zbKq1dTlLQ_Da=8d|Xu~ae;A)`^Om^o&P zxjLCT8#^1~iSO}XKGG#1U${Jii7hXkZIg>6D5bTKKM0Yy0xC?#v42A#nTqi-HRi!Y z2B3T_TjNmxUYI!V$7aC?vyxz@&4p^%K2;YM+k|SULQC&PK|VMAUKd=@ zmgN8YYogF&X8RDa>BN1|Wb@&xP(iwvA2h2XuYd=Dv?`Z?lkNT^e-KW5dqS$sPlkX5 zpJCox`}=M4=2W+1`L`!n$^6mUT%LfN!w#-34N)C+VuGDndB$q$s(`+4Zzun|vtI*I z2i~7+pRR3P1LR%5&$G>^lcuXzcM+$b1v+{9diH0B!K-CFkK36!fs)Pd?9eq^Eh{!p zU)u=k5{-5#5v{=?oJ#)Yl6l!ra;^S38%VS~P|-cHU<+cT1VUvKFPge(Ugukrq{ zzCPOzp|34hkN&BvV`uN63Tq7OHov}(jyEsghK}_a{Vth4+pm|4kFY9-hlQb}>8f)y z^;QvQ<_0r3J)q`n)&{Gv`e&-wf~B$9p%Rb z=m5*-)DvS_d7E-xeY^nYzfo64m6yvaD)}m*wcKy)z+3?R-ZIrOKzqbeH9B)@vy&J~4>p}^u5nBGo3hAVyo1RRR_CqoIEZ;WDU_=zG1)kGgOoV9di7T_(< z|FLt3^&#X^#|EO+O3IQ9Ipv{Wl2C2M3d6l^HA@4z88+px0xlBA~#TSue(?bH@meE zUiY$suh;}}q%;a@ivEn!0%7)(u1m0>jx*^|yIfBuh`==8wYpQA!KTimyXIE6a6$4DB z^^K@N%uVHE{2-XjoSgrCbTSq>ZD#z!3J}k~qtF6P0`Ex5ED(dY z)KsZIx*RH!`{s2X1C{V{7-y8Ff2!%uos*v}Hpy>S{d<`=fx9Nmv>bTSe+=0DRd%SB zDdjlPsb3avY6U)F7s+mgu3_idQvOjX=T~Bx7}6#H>d^yxP+EIE_2?$pQbnv8^`}#F zm!YzYn0D*!O3qgcjpHoswaa(n^6v{^12LxI-6adk<_V!?359`$npUAm$^@2@WDkj> zOejyzvKSEGics>XgOq4`lK`aCZ!m)IH(yoix5;^WuBASDEtz~gm2L&oPSo3;(?=z- zl#nkgI)kPb6k>Pv+oAb81FPbuD71Fml(B%SL^vS5?Y2`aXH-%J%&C|g&X<)3j7Ta3cCp<51GB@_74~-)l%B4Q zlk41gj!~xL7ra}Vm`)|Aa^V3>7H1JR=hX#c{%lb#YlUEjXB$s6pbe{B5sk%5@O97*4uZFfLA2*;N=jEU)NKk=U zq?)54(tW@@eC{VE>}L(ctAAKE7`MVs_6}YT354bMBtyQC_^VBZM)m;FORtw47cAej z|7H^7V*T&$or#Hs>7V}ON^{%cZ{!P@GZ>J-%F^@;CypRuz{xc8);Tc(S%p)y-B2%; ztRZb12kaI}`esIK5&m)99fB6(HPdtoNHcXy_7U8s-+m*8BuW8VMl}gAQaCKB9l( zeJ&gx`JuT~7P^ZS1v%a4RXXdW+}((+W^T|=l=GvTKhC|ajn&gC26+ZhVv?+G!7Ih6 z4JuBvrb_Mq_-F)q%oZomkQE=DX)5K~dG+)j-%yDVc`8VIG=5TuS5!jVtv2Qvtcz}a zzWzSfYqLDBuBiqjyG1sYulZ`QT|L`-Js_Rg{=^SrU^>zy-4No3l0Oeznt6JKSo&2_ zUzcXjbYJ8NnBM6AqtFEe#oG)~XLz7)qarIRXLbJR3n{DbRbAR^(_P0y^Kvd-y!0D} zusr^@^L`+TlC&W;nA@F^3TaH+V_VCDu{0ee!Z-p8cD5Yg?cLjj4MX(XEtT@ys{;-Q z2;CC#m6(u&1es0387B}pxhz?}LDkHuPnmbHic?DSp)97sVt%JN7IxduZNons#f~W? zEEw1U2=fjaVdq+w87Qdx`I4?+7)pxUN#2;O#f|K!0)>>Q2r4zZFk;zmJiotUHQZ>z zhxZFkjMp5%Dc6Dr-f8=M{=(YM7x?K6OYt5Lh45@j4{SCJshfF^yBwgP3rJ z4OZuJsy!`Kp47}|z4yp$Sq;jMxWhTDNK_bpuscG4+?iIUvMdprPNp>VJL*Q+B$(2G zXFa6oQDB}CwReH68bfr2f$VY?qKX5-pCEn+H3$4d>v=hEuz+cHAZIMvVN@7uFH%07 zQ=dGEa)Dsi;cQ3B6Gw+b$B?s&x;`GTYzxJY6uHG!zQ=L%!DKQEsl8Gd^=ZpIcYbio zIgBkpf+I|xq}~QjWn-w-JOVHUiyr2&3_>zy;ZH1SOh1U+*7}J#YFh)RPDRcV1;BJ( zFaDiHwFER~QZAk3mxoW4Btwv~fe2Z~3E z`#ZAmtdX2n#(pp?v5U95 z?Vo>Mg)^|3lM>`j~p|@kCn2AKVc-vU1Z}Yp!pB}0#cAJ^$ zFaKCEGqq9A^-S)~W)X&pxGCKG-wST;X&82D$6673X;%aC`JwmWDx2;ydJy)Vx5qvV zcaLxTD5<;?&Ht64aQ|61;Ntr44E6sN`Tr~O{{xC_^M65+Ss4F~B6F~DCIJ~y1JtMN zHyIJTPiQ=f%|4m}-WY{@D_l`2X|4uE1ujj5e)J9W!;%oP8Na#rd6U~vwnC8Zoa_E$6Y zb}hWm$c#v43*rjJsN)d8hpuT%O&(pgx?+N2YzbqoZ4a&RhE;E4 zRB8d;kbOzquT8VnLp6^qSCltuk%vVI8y(mD*5*gos|3$*pbXD(P+t(`vJ+*us?MQ1 zyZ&NHlOm|cQ6p`V*cjM+fNc?dK{^WDXFqJ{jOew-^SgO{a564SLg>-a3L?sB9TGMq zpa1v^VbTQ=^{qpGvU`WBSwpM}{vIb%pqPQK)+YJ7xz6L_4Y}ygHc{(%azsrKRdr21uTu( zR{cm1!K4)<+gmI@kw_MnEUS%>g~+DAaH|;X;&Hlv`&fkv|5kc(2K(N9ecVnO7*K6+ zm@l4VX}_={CFz(nsAej{LZP7=v>OP_7sqrFR_Pj!0R@nOz&c-VxB$aqE|0rR*_H;L z&7gOAFZ>#f`^T>h0LeUG%c3`LW&NQZGK8IU+(xo7_0ec)=J^w(UECyIQJ}{-r1()H zffKcNp}bsPx(b2q@?E@29l}}u_hRLKTwlHKX1^XV^bXM<>st}ohT=xE#m<1IcOQwz zl0I(yZUP)ZrKA3{EqtY} z_qT(F>bqNaYeJpO1K32`fUz{$hbsp~2BDJMW+x$yFU@>;-deU#E8ZD>nohzyIm~rY zsP&bb$W;7u9W5^&N-}iEQL9MI3PFRq7YcHa*&JIv%b)G@u#ZGr(C@UfKX|uyVB)Yd zJvUnyOePx`pPBR;si~-nTuW&h4VX?lwE0s(y_RL43T>X~p4vD(qv^bsnv><5)dz_F zS%_GHYJ{2oRG<-TW=KX+ks7}~o#eZdJObVUsyy8;RQuUIZX;l|o$&f0eP+Z-AD|_! zjEe@hN6)7?iNrvi3{G}M#F4zH$tl2>FHATT9xy%6CmduPSq$4ekB8JMd*9|6}fgF4~cNDWcb20$V!aF1sn%rRl(uPKunku(~ zt^Wau(l5vO6D5g!LC5cgt_bM>Rx=ujNnTzUYan!VdlVAwl$Hb+whjN0&)j-a$Yv8k zV#_UhDbO6^QHdK!HM^AK4`8`$O``xh_KEO=lC8hu&c=+_WSaodkdmNawBrGtfUP?Q zvi>D*y5a|`E}^ezNV*4MGk&E98XaSwKrS^SxNL=Q02aFBy_hEs9g{4<%m^}y^an%3 zNy;x`brYp57DLY0G~$Cfn#PeJHTU@eaxhXB9@IbF?FFN)*f3aMB>>fO6NS#rcJ}5_ zdld3o_p3JrT8t;LHW3^G6vJ;Mp4q46PRg-igZFX;~o2|8z zU5ynIPudCnv?+-c_W+UE%|?9<`p=ZPcDapO+R9tw1cx3WUac$ZZZ_1<#{wFs)#Xi* z0r(KqnObOK^j~Cl`|=;#*Om07E7d-?TLStJKs7FBYI#CS92>4OQ{)>8KK- z-yz>0?rm42=5oUw&R6GlX+Q0U0jgt3ofS)s*Sc94c$xdV_(DEdHvHzUIp4HZwG~s{ z;D7?J+rYHFP|)q&`sO}cI1GM%U$O4&yiYJkMK|{U>aqS|vHnhbjOnOA9BD*@pwxd$ z&VLUC8DV>$HBL`|uvLXU-ummSv)cUBNf`3y^Ji5;Zi`sjn2r2=S4z$KRk6`L!gx6^ zBPx|A75OnPnLG_emKS@vGwx{0xpM$bChWv0j9kmbSSx8Xad|pb6t}}0NQBBc2}W;A zp)q&mgNv5~8$v`2lt3vj&SEUM80-j;A~G{&CEG2ec~>-5OPzygFyyX8UxgyahHsCZ zrT-k>aTrx=orMq(&&zW$n>)Kl0-pd2L$c3C2rhx9j7?gx4^xItmdSA+nTWJSasu|J_7|r2UPvZ&=nzHPn%FZveQkQ2pi%0-aW#we- z-Wm;uMBVvkm6t=?9B>z32u1fL>BQ-*TkomMvOd0a9dXXtv1HV2V}#`Ka;|Ua2%wxb z$bjckngg3AdLa;Gvsq~0j_cG?&}P>8Mk-aW`T-jCx9uv;cX^@%^)^ywsuryTu*ju2 z$muba^Jg|z2Sr2?5`QSPhTi~^l@J!AEhX7%n6RU#NI}S&Ar|9XKtbjtA>2@yDTPYL zap${*J|8G6I?L08lw;wQ;z4%pSOIqjw`_DELjVd~>`zGzPO8sf;u>9w%L9z?9Ywocjx_d7o5h?|gJF&5BTQ zy!DN~+e-2T9S3)TSg_7=Rr=L2Q6VUpZxO6z3+TIDV4Tj=+@M9oJxu4c& zo>#o@c(Q~tWbJ*9V3lwep7o!5Y=jG4uu9mq2L$boca1lKHq0k<0W2*gV1;KzZUpP&(ent`|jQk91 z9OL%)y%J?3?-6yvVh;x}21~FU+@3!MqdB3G`V6Oer5J}z{t)0#~L zD@ZHOxc>|Yfai9fN0wWovf!e|0#wH8$;0m=JyEG+vxE>Q&-yqK0AArjEdn#DF8B zmXXW0n@O!2k$m_MJd$jc+hh>YLMY;{lGa%)V#VPtFru5%_&E``v`xb?Iw;>m9wJNbyEh9XXlJ3~KbmaO>Hlo9i2x#O8BGbAdcXPW&aIsjFp%xk z4c-vjFIh3zdHnD=zRW$VSp=S6PX@By%Wu%6 zY}rKiM?t!fhLE$7s~xd}?OuB4!0rm_BopMi2|^*89F`n;pPkxDyZpNqrA-~u?md|9 z1kN$(tN{X1Qk7!76=gFq4un%$`2g2S)hrZ?kokNwQx_~EXNW>UN~wOdeH00Np$#UO zk|UaEFbf&sQ1@y_3n0`+9mK8CCTcOk04R2lDIE9%R0z0IS`ca0j$T$$SsXP;#!}cR z@Mr2rIS6nk9i)>AQ}|>Rn|Uc}I5ax;K~gK3-vFqi^5^$SG)ZRGWKV5!nuHcbHH)fT zR?o|;%2UBi@f(B)ck2HC!PYx)ht-Acxr?K7GX>6mhefsWi z>~r=wWB-Twtnu7)Ue~=?PpJC~qw4RRqcKUX^jTAg`2@%b7sZa4yiT;}i}@JHc^N_@ zXgzb48CQiA2KAd#t5n_puAFg;^vwx3w!$Pk6-!q_k@@jeVri0^l9_wWR z{JxiwBO^CoWtg= zda(L-M_Kao)8}KWyT`$cjkMM$yU%C56yd_K4}hih)76w&`t>~X;i(x>MbII5mXB9i zRb6t62eHgM=FejU`KxtYuGiW;*0%LK2BKZd8yWxO-q55(qXE42p<|D?{Ou2+eY4p& z7#6gBmt^G~bd3M4ef=NS7Z=z6tZ7>R6JOrwyi!!W2A_(A85xo=yE(24gy+EmMjP-4 z9qgbkk3A_=qRG|L2->WW1fodOJJ|+FC{%Bysb3b0;;06x29Mbu|Bpq@&V=>cUm)ZD zh)P>D$kaE4;BaEI;m1D@^G{8Es0{Ky<0}URE?RZ~0|FQsb&|a-S~ufR&`kIUGNN3Y z+HW#08tV|+;f*FLpG_t=xM=yf8e|$#X1_KumcULcur9zcMyx(CGr}M3x^~L7YsfHC zd4FeJqd3?2Y*9*^Xc{h>b7{YH#k;r*!XoO?Jsylys4ey09#x75KIAR!_AXlFxd+K9 z*Ph34!~i=p_!>)XF*B@Npt{Fk1J13b!3Jr^8qi3m5+H;z#( zZoywcXM(t6I*>t}wITu~6V<E*>W^XSd#AFQ=$*(*yDH)XPMt- zQE#bpMDs`8RU;B7@UKL9=%uToBfWLwQBT0l*>`Zjm$+l)pG=0?*v+t3M{6Z0X2``Cv(ojTYWpGiE2QtN6 z01$m^a|ETQZb$XPb^#4P<#+g-IxL{3p^%a-@2g$QsuSI4X?qX)723?TNYO8EWGmn|-GjOIR1=7m3DIymk%Pa9_;?TPWSNct@PG`sD=+ z(}zy&nRTwH1Mz0DeA?@j|;iRES{^^COXD?Ht^#z75bvm5^k=&C0wBN2nd0!j5O!+TZN-Bv<-YgCasSGivqU%{q}$7;!Fhb-TDci@Z*-Y>1|%VXpn_If|_~ zbBH$#+~&vw%|yh@>I=s5zc4Q`FzXk_{$H4fQKZRYnp1GIM=YtaZ^#|asVtw4%RV`= z`K|7DGX`Wt_-n2M`YfH*B_x49;RaU~6Aw0BL<6t)#;k`tyzX{NF=ebop2Jq%sH z`kK4Jh_@#FAYmtbn%Hrar1vAXp9h|T@%Y1Bg?|7=GAIKe<2au~RVSlF8wTLRe;bu4h7DEh)c=IJ_{SC?xO;7@ zZaS=2GT#2w&nVFQw5qoviiY$d*KXhOHx795oA5CNww~f)p!eWB`Aaa%$;T@%t=~$! z9o@Z3_`BGjrq`Xn%SW4oHF1X(<>scTlg#l)o60;C7Z(yqg^5Pj z6;&q;ohjpnqlUMga4dUw$`Musy)lhWxFf+Q!qf)xqQ9-O(C(0U4b+tG$^2Ev{f+0d zm*I8=$a7uh{V^kM#vHO?W@S5?&u4)E(^A)axj$6D#8v7;Amdu#oLDxY)I)eE9L&g4 zOBp~4h3bAlcpCPo6gHCh(&zff>*{)^N*NG9>yNU1h`M_H2s>Z?DhU9mFX#TAe0_ip z%95PFh|ySca{UdI{l6J%Y`B>G2FAhC2;9npCmW@pgK{Q2BhUdg8Vdh~ng5<_PmDOq z9LK;tbe8Q`?8A^CmJpn9`J8uGviDn7dWp<=6mw`{nE#4P2JDi(P)8?W6dc^e66%Df z6@0`|r9e;h|EC!DwNctDMz6MN0k4*DY05h%tzOKZZ30h+V!Xa@GTH;=&=ou~a3&%u zGHr#4%t?&E*wcw=fKpiXM6KPKH+@D_miJ`gz}qITXM7xC77v%o`jJM9*cx@+oyUXa zC)tM&V{efxGlc{;rLaCMgfWcvn2a5I{;8|1uVz13wHJ5&V?g_Z$7$7Q`ln?}w+mu| z!MK9}zW2gZdz^vZBBjBk=~jA-)C9>+x}BP)zFIn<<9`S{Xm@Dbg6m6zis}j>`)qeb zV@_CkPr?p*tc=tF10l9-k^*|WC03j%j7`1tBzF>Y}d&eHx;!3KpB4<#misQmXUR5SQ{dMtX{k*`8x-RtPdGi{L*8U{j^ zf7CAdOgMh+P>#^3dCmBQ8#-*aOcjoE?GQyLBk2W4g?KPUJSL3p_Fo)Q-BSMifRKZr z@7eqRt@r=M?f;ve$HDqPVtlju|9fDqOxfsE^0w+H0!xP-==^NC`s6OibuCQeV@$pR z)XjVqON)hrep0K=_$eiz^60WnJ7B((!$t@1F^xM>A_V_O7$93|Yc=@XyyWE>5d5d* zoyVgtjBJ+tOc>s?p&>wnEoL2!&f=NXV_C#^>5rE3$OAUqF4XQaEL7Xfw#!Iq-e~A8Ruh#7}E|+;#Q2t?bKmUn?0Pi;EBYal@H);=@>-k^yDHxdFNUUfUYy8en zw?zCsjFxfy^VZeyba$B$WuO+JwuWi}suIXEz!Rj$UkIYZ;Vnjt6c`ba5EBuB6%!?c z1=||&J`z7%jO6SbHh?ejb)D!Q1O)Cpaq=L)Z>b<0L3{04Ac5S11_l=jlc*39f-oT^ zi~{(^jD;XPiF}Kw`M)8&z+6MyOjyPSa=P^LmpHHA_`kd%>H~E^g;7vQ;tkybo4|)4 zU?F+H7KNSgA_x5?nMVop!NJ8yoa%s3Bb3&l!Jp#o?E?J#ZNiAPddyh1fQ%+$AQZX- z_-uHasNM!iT3{Xn_@W46;&zR*F$<`heSR$f%F9gG1~m!+*2c9W){iW;>>Hh3L@@;6 zlt++XR1G`p6wLj3SpAv~4z=@i1QMv%_Z9v&^@#(0_8bEb7GjL3NG!!vUc}J{Yl8%8 zMP2UFFR+Ubl2~-8B$e0=(EZIta)A=L5W##x?3INAMK5j!$$vuxo{nKXf_VG&+w}?_ zg?tY_agGAA4+$8|jS&%%rP}D0W?m2S8Ii9)dVHO~1oil&G9rp*08LG0DY>dVd+iP$ z=W`y>pPR(vF1`Mj3fjPWHHlLoNCI?SVm>j*9(U^%a&V)ERzc4{3u3(HI-r3T4 z{~B~4gG_A80^?+T;5`7ySMS4T%q@`oGDH2PRPxnH3c=<3X2?BZi1-x}f}j6r&?|6R zat_%`1kSPY!OZ=+{s-iC`ER8NeSrhwmt^X0{+n~6M-$NUbtNgPkCC5?ET=$?Z+Dk& z^7-rhBZtGcoJ<_;2=>Ff6NEd6pZ{y%5(?hV69{SBnz+UK)}EIKl%{xo8>9yiaq9w! zK@Rr7ZU;Jqj^0v1`k=goexxDK7>YtVx$+F`JfZjb`v!o}Wxy@XutD73g0(T|2^&Qs z;Gda!3jt`4$aK$2dE3m}y*s^%_l`MVNE=h9hGzdJ1WZ2((#dig z-JIUD=eg7Z%b^b!6!~8l49NMgZn}x&=B79H^AEKwom`U_`BFxm&;&S56fXqu{V@Gq) zDF~!7W0Gd}gn}6Tf-O_Z;cN12pWMvpJ4_?%>2tuX29!#!mZ`Ek(|Homp6w!7;5N?P z!C{vG^D)WdzRyFpfB;cdd9*HT@N3i)Q^LX*z0^AX6+c-EYiN{dPP-GVS1v!p*gr=1W{J>o+l;Wd zF*R+-w=$5^|5au6?O)Scb@BMQ@%Jq;EcG1TN*=~b8>Mw);~sgi`^Filsw9%FBqYxD zYYE215yN)ZX`;^Ky85k?v!jWIxhCqWS930IH7$RdPrF?nGH++a{qW=EH02j7T{knW zfi1Ua4<=K5%C!}3tOhmWJajeC54|SGTfJAEvy%%R2eV!oT&_+umK|59dtv zp1-@*0cu(PL}b!lM5*e!^QF9efsSc7%PBW@Hn=T5oaoaeyDj7Pw|&~ z5no=>gHK6ox;FNKXK&iNPEUnR4$|UyOw-sX$s))E0_kb0W}l|;|-bbNVsEvq4B z#t%|;av8`gGk2K4Dc80x&c0)0H(hxs``;UEJdWw~d5|OmKaXnuGV_80KQ0(fq!|7( zl+_4#G_AE!^tyeWXczbz)zFy=JWW>esD~8y<>T|k=KoYOpL?}sSiEqu<%A)XaSy22 zLQi8(zWrJLj<6Z#%HpIMalY?H_;#n6i=+a&SA``}iXe7bM^{EL8^?qQ>k8?_x;?Ki z*MxJjj=d`c%=g??+aJ)b`Pbn)I0YA((ca#nWeZH6HX| zpE0@~?@P-X5uMT+b|Y;SWR07M=C8i|dvWlUm@RaOVE+ZNXLQe;;M@>9<0HaYdw4I2 zhkKQLw>a)TW*eCJNEKU-lIl{hqLFf+c?^TS-*})8bbK=*s%&|rT~T;OGgDkaE?47a z&UyJ54t23P1OXd0hE$d2#bQXXcvg)bNspIT=XzwCm`2KDc^lfY`gMl%=jC|Z$qdXp zR>9h>ZokybTZY&KH9-i5fyba5W9YVIQZTzveXGNLXbb#ALzxM+jrY zoFj&%KIiizNya3NB;C{&yX()r8B;WgvN90=^ofQ32+v@C+4U3<~6f2X0f3OoC085FNt1tM}uJw|b6EAK(Bt%Jfc7AEb zg|H8L!ZJsz&W!+J(9B109*#5nH^0)-s3^&QoCf*R_HZL7Dy_ zah;X|&mm`>6&;=Vv@hYS$-#Pij!7uunr}@6T99HS zpkAU@KyVVgC)5*AcPk}imbiXdpX-A_u0s-{Q0UYMm!}R{Bg=?w-V8w|!0b0{z{A_3 zrr|7zvPAf2i^4|2z(TrwskuHP9dA-p{Qybo?kU#4*BzG8f{8;5tXJEU%GhgIFkHUZ zx*Ib=-c(7Lg1jmSdSz>MN{gG?y}5r zWRjgU-dWR}{o;?egm7QyV(y-=+bD3#T-6X@du!zj%cX*C7_UVex3z1sHMy&%%t@=0 zj(tYxIxm}|vAX|f68>qG>2S{TcdMg)!yj`Sc`;ZS#P+T&ks0`BpIR0OKT=a6fZt4* z7_(?Cm!*S+A%<(FAObAG&%vfLPOJ+5#$O3}Tdy$rl6>!5D7!5leQ<7QEDZlhHv3HwGENB^2&mU8c9a>nom7{?7i+ zR+I3(oVdtJ{JYnooLWMiT-^*SU|u3;SjN1bbtJ22SamH`m^+U@D)%IfuAUGXpuUjt z?Lndb91k(0y1QXVyVx0Is)0j7jT{j!x)?`FD-#j3sYx>Yxrd{S06&$KBqpenh{o>F zdosT5`qyLJ+^oc$qHCRNEs1TL798;ts)xWMEOitNCTIpHTl|M`4$hYo;2nH&N^}`= z9Y=U)+Vd3H#xj6Ip9|+O$7K5FeMh;3g_(}~QryMq$ccI{m5y2oc zVReWsrhQqHac}XQQMw?+=0$fRaY zyldsct!M~M{odMC)o3*;!0}$^bbDL8rC|J0O;OjVDPqZg{kBqpG;h%Bc`(dNrwdUr z69<7q{M*C9--M+68;h9jrBX`KSD{{bMErQ4+Ac!Qc->#DVz_vn#?g{&N-BSbgQ}fe zNWPb(@MUw`JBC&zRu-c<3B#6rUhj#xQI%LllSa+0o!VR7HJC6I0#AaXDG5O=!HBbF zAO7H_Bw{Sa<(Kco)*q?m<|CapKGMl+=R27nts#z^8Y*rL+sddVZu}H_Nb>pjdy*># z+^ch*x#2iocp<&daL;p&<|j!UTz@K;O-)9r(tax$pYxfM|BdI)$#JPQtqquziHa=x zPL-Zeo*i3*ER#W61uX69#FSCo?(a;SO4o8~V>h;14bzNL{+cgEpTTh*<~3q zW{DPs@3y9<3FC|4dAq5^Mh6^-qEumT$lcEiMn^gLvCZ+$e>Rb@%GpO4tr7;D&SkP% zy<(h+@GHDXMBx$R1dm9o0(=E!(lM~nQfwie=J$~~sP?Y$PyCSKoG&5X)DT_ts7%#%f5+!`mBJ#` zcW1tbbgyPldy)l3OUJ6GvnA(Mc6Q)Jde9okX5hl0G;~MjdBDtdfY0JtG5Eo{p9;_k zv`XqVsG}8JydOLV)<`r$DlaP%B;4CjteIpoHQDKw0;^~cM52MNpV;O0MaD6&0>r8hOB+11v78~+Yba9 zt#*CkUKiCv*o^J(em{lEnM2HaeE5x*lb{!6#D3(AleeGn-o72b93aMARCE_z=6v`j? zqPNNN6Uqerfikj#+%&z{+KC01!CFROc={ijD z{QJCkX4J?vLOY{BFveIOuuJ=Dcr~8!0t+5x&K2uvqBUe%UxGD41^j}?2>%*YUg+i2 z03TnovyorG%hA&^t&Ur{!?pNNBBseWF-`R5DQkDN>X*lqj%Te#i;NKx+O@W$5;zeL zoxgGBaw%1E-$Gk@suV=w>QgZ(+!fd@|MeLTP%W8Sy`zD?t<${-ro%TF{#ay*pT)}a z%g#Go6XX?<5Y)#hQVY$@@kQy>>fKSD2Ij5Jl}@loh?@!Ks??gz5~`JcxyU(uXg_al zi_o>MMYoJ-+(_FGnZ&wFtw(x3beol6)tRS!8}Cd+8OIcOPa#Xu8~wceJLQZP?DTBP z>C9R2`k?UIcnqWGYp`0H#d&jZwqR<$FT6)`+?VT^%_upv1jV6YbK}1DVc2GR4Mci$ z)GJQGLs>{I>8^R|Z)B9D|J)!R`b$KVfma~M8vzab(zIQIN00r)2$Jz|rU{TSr{G^`a4bddk@XZ3Ik;Nflw=PbKc5Q--Gd`CvY< zFw{fPkp%*4)`kXD_J<)@D~cQzuGMBx=iNM!Zme8t7OnW`Q8Yv+#(f)JK za{0U5Qgb#H6Y5k9{i`3&h-2%V!fyztYX-ZkZFzCW5@mZne+`FP^Mv3!+<=@L%D$qn z(F>O%tT#yOvnfy^+qyVO(?Z;itiw0s;L@p~z)tHNec~@2g4SJk^&-0R=-`N55Qz@E z)~=o}_`RftwL~kT1p1fpn5YI<; zn`B)|_JvgCWi1jdc*%4{Tnpu)rBQJ+W^vPV$Xt6i;Mw8q9h$NdJSTW)jt|lUW<cP+Baf&Tnf&eWeek7LbfH|-L)k}_s!TJeOXNHw$1m=wE%4k{ zl2MBPj%yBRon7?cotM8;~lfDJhaT+Tc$50Xpu!6c~5%^Jt*>@0kHl&)Co zw}IW`poOEn%Kw0MR+-DC8KfUj+3Ncvr#g|COJ|JaCSO|(6@eK9Ussu-&YUX(G2kQK zVdl>yZ=LI>FGYGh;~u>JDEZWtsG#_T`~x4IE%u>jufLd-zzm?X3CRW(jzJyrk`Hcw z&ma`9l*DpyrZ=2&Ri8_ZVh^gNdU&KU`ZG|zqqgoa6y_owG-$MjgQe2jPIbugM(^x| zTG!Y>9ewfrA=|z!2vg+QD= z4~$C>x!BjsI^uxjAKahpqT1!pUVwupyIdxG)GJNIev56`3G~mJkjOH4l`U#wznZiT zPiQ59o$y#2#6eIa!^6j5n!3=;G?`D`q!;FjSGsCCCIdF8>1ooHog*Z6;Z)-^d?g*- z_UdX~+Y#U|#@Ji(_BFCRUeMPmjodYLOG?DEBzRsZ9sf#W+nPN#`k69yb8Kr24B24z zJpeB@Ih>-S^N{=Csv~Zh6`z(yn~P>ATXb9e11vmgDB#J24ybLUX`sZJC4`m-fg4dtI4D%2ilB2eeUvf?8C9>{>Iynjyx8vg$yF8AVncoV zppRMZT5`aGn!`c`4kK(4&J^SmL>wEA_h{c7;ekBkxR-r@@B0nu)1=P4td`hM#@E^z z1!K25w;H^gZ@rX#p$={77`i+T>PI|ON%v$iUPL&{inaEOVH6>exei1n)f7wyK=4vU zNMZC`Eky09Tv_O2I8o$r(T2=b=YqF&zD17kD%omnHzC9e_ESLbk5@tEzL=E|$$n7( zLg2?wSNUHxyd*;4UaPfGEm1l?{yl4E9BG0B?y*ps$L~v8W;SZ46_wR*T8A}Wo!24Aj5CkjRv9$IV*KtS zcB|G$4=KBEV%JF1;1!I_B?Ks2m8C|Kwt@9Ln+Ylb zk(gi$=SWwKuFF%FBi~0lmidC5EIrb`+taBmW53LXz$tt2RC7 zn({es_MFSI1l2`)kw~LsMt}#COovnYXp~9h_ld5Z>p9S#G5}P^Sy0}1n3zH*t7bBg zOJ~c*qWsa2EZ${jo*YWqxop?9A3%%k40|>T#g#zrY|)Tnw4!zl|`++dHlss#3~}gX**o-Zl^k2SO!UNbcE$KB>o-VZi9ZsJ}Sf zOZ$&9AsTchf`kTl0+T$hv5e^@kLfv*=TSvO@*a9s4!imAB$yPp>3aGj?r_qZ@+6r- zIcWV-olX*{v6QocO(|-lwx@he@YcCc0w1T{3li4%hNGzkAE2*!5`SYa$JUoA0^1!U zrze1pc)%jw%dpRd7Wsm{)qC?uWr5a1+oohumAB|J+z{Q_t|lkd)Y$=~e_@M|=$GQV z6#P-HWI6kHD1;JORgd(@cxrzu0yGadDkn-D^BBm8b-k0U7ZTeJ)|fEqvkM@ zv*PG|(^gi(4Dj>@htf!BRt+Es79kMxcFtV^jc8RdnS>j;b}vnKu1?uh@Yyz-`xQ`F zO)7-8SUr!mO31UPFeK|={X;&_nCWqx^joCqR*g^`q-@J|uNbv0wb6rhiPK&5%zbhF z?|sp#g0>;j`4sMPOhxz*E3h7bKyKpjfu{a>*8hh&HbCEIJ1^yOXC8MhOY@=b5oAvN zl^SqRN(dU<5S@5C>`M_p(UxEm9wBwj(*%~Hz~{}5+u?nb_LyHO5S0c8v8FnPxREO| zuiXUoX6DSoberot>d)*OHRu;<>G2NVc3)Za9rI6Z`rY%8$PXVnG9Qd;UZE=cc%t1g zxet@vb3l~ok`2g&pcY`G>S&2=a)sQH;ZzYM!#m4FpB9yN#f9N7sUx#-cz{T zUROl#VlgoBSM7hLZ@;ANldILzh8ZAMf@mJBe^5^nH-N7nh&i&ZLBhwtF>qoz{mXoP z&+_`keS8G!Kew%9P?8Q_`u@$@PugE=)m%+MsW1KZ{2meEgbw%W1v-&;Cg|315boj+E z0>E+fum?}+?-)KpANeFpEW>W!bNTy*yv*Ok+qoC`RVd2+MRFtZqV#hc*b^N)nmf#& zx2DOY5<#KW028qn7k64|EmS?`4iYq5j|HVj&4q36l2KaD}?HDjw3pB&Hc1LV)k zGDw=(dg&OwA}^pJ0E1$TCNAUvY%z?)qij4O^ZgB3wJS*PGeoJYY`fXy^;I497hq*t zAbozNk(&EuyqLKRqH%n!>b3w|7yr+R4ne;`%t-jCLbt6DJk8La*;2r!0i=j;auCC6 zW0iG00m<5DzU)!_a|pUFP+(MvX zw^^{Smtj^h_V3K7#7GqL{+Xb|AG|mHwHg?;iL&YLF^g?I>N~oPN+K$y&OcYy=}~Ld z<-N)76v;QNy}pP)X#9T^-G5iZYh;Ept?CFL6e}bYjbM4PKV-7_HiC`oCoDoAOT}U) zXaN3mN?qQyZA~hPPfjH{0{Bj-xLQI>&%+;MWm89edO0NGrmQQ9fcTv*#SCVO_;DlY zu&cffG*b#Ml)-$kGe!z<12hSa)+XY{Z z(wDlmGI!ManAN~wgC{$tPOzk#BQ8tESV?3k|J(8No!?wjWt|SAXkGVT=@WY7mOEYQ z5?uZ>8ZDb1RTszWx-i(ZE{;dOCPJB)lTUqVytTipieyYlDcQ7xz1FSPNetqL>|(ZE z@|lEtDAjt#Eiv;jM8LUdm44Y=2j&(kv{%Db)1o$hm}teaf+3MUF@K#HX?Rv)VS((x zv)|3xkB^BzlS^DDQ@@p4CE`5a`t6m>e7Etw1;7|DzNVeUbQw3?CmDrZo(7qz0-Bi96*mP*}(m2bmS* zuCHlVZyH6+=GiLXAyW8s9N;-+IbRDc+0^~AbGDpgH{Hwwz-^8qOFkS)2CxdTtlfT* z>m;sPY=xnS$zT368hZ%6U=Dqgswtedol=wXWfJv}&??sM;`!@#n9%0CE0)lIsqvb`k`nEHM$};lZDO*P*39?zM~Y&B73AF)H0Mu`%xuF7%x1ks9T+h8URK z)-!&J;!nhjT#g_o*B206riBovB%J7ROERS~8b-VlrE3Wf~qtVbl7~68om<%deavRk~XqptS0t%B&I$n3f^h zeqev`dYBx4a|sK%8PVS{D#L3dsAfgEWiCJRg`e6|1sMEchV zaRq@%grZc)V#kZuFj&O{{VLz}InT7?7#3__FIr!syYR95i{nEEh4r5z!(kRJ=UFRx z;(`SJRmmZ@<#b5kZsf6(RY4dH!wG`rvO4;zV76N-0!li>f?i388TwbvPaQ z^WBVf1FL{&Q)Q2$j`|gjl3)1Z1-?J_x}Exa#>OcTyWfjLP#CFWDi`O@!_%DSvGv@s z8R;{NT~e_MwtT{`m~99f_GZ(gTTYrT8-VUn*Xu*I#wR;}u5PioCmN^FRw|;M;n9Z> zw#9w`4WIeGex(_tq|3b9AHySu(U%4aT|w!tHjSDfYodj5#P*<0qKg5UNYInpXqa(I zfb`ifl79ux4-$n{KMz}VDpet%LdvRF{J1h1vpMmpjYRPSN6W~Nu z6sma{k5qo+ctX!6bu3C@Ag9kox*BtwX-RUP1HazVh*20}Q%Am;m_1>RX(3ehY4h}# z_GROV{&lz@@o{K#A3@(PepytTeD~tyPDRJI*2BJGJ;TbPzQyGy+RSez2!;8Ee!ii8 zkbF(oXd%e4xo?|6lnRIc8vHn#9f4^OlsV;dJ=*UDEk1&e+FS%$8^={k-HrUVR7BOs z{SwhQrxY#wWX{C-;|hE0QkM!Y!EQ^ZugR9rxF9F1pQCssw2fV7HN^yId6Xt*n88@= zu4C0>yErTi0tf!L)keMWIZz9@Bv#1Q+Op)Qc!eI=Ksa)A#<{D{(sCK7Z-avOED?IN2&Cc)4p!c(?`#j;rUi-bJFqOf2NnkbZ%pAy}&HTPHLlwwpc2P6FgHS z5;dao?7S*CD5!8gF%dGg@W5{i=s|9guir8&u?5uZ@Sp(J7nT?(1cYgQ1}Sz3g$>CL zh`SaQh%_R?bwWS!@XO2Q z=H^S^v=t!uZCo)c8EOY{a0UFnz>0bt!3O+UpH&#|FZ@RpyC5oOV1WSqM_E6Jaf~xm zQ9cO$&bJWZU90LCx(&!^Fe6VW>~d=`w?yUVJhLew82-TCEO3yUpii_*rmO8Bqidm@ zeq`tY9GGz5fqyoPZU!3qKhAF~;->E!q|YgPTO6oI!wq_X>I^bgG_s}NO<3#)G3OBg z!Peb1d?+BH#zqY}5*y43SRVc2gKwFVb;5%PZDd1_7fF7fRze967OnSxI`}$wBG`rY zYqjm{##(6Xkp;U3KX#Y6<-7w{*gM;>-T4;1-kFbsP}G|^Xw{T z^Ai#6VraO2O+Df65MW=+xCI8ZstmpbB+870lyx1D$ao7c^ffr*eYOBErsb z2pO|B7D$VQVITvT#O+&t1L+|YA3$=^-@7Y>0t(X0fqsWXOb@v;qS$`dODzf#fLFfI z%l)sUSqMFfz~CGHJrXtaPAmA=y2>}a^~YGTNGA- zkCPh?*(hJ6x!qqM_?63NexUO7HECyBQKR}@TcBK`v! zXzK4qZ!;_&2?yQNl&vLNPxDqgA6YE!WF?!Xr@vZ{Et5n}LYT@J{{5 z`in4_{{436*M;uP67Hb|UhMjNIc=tiL{v6!vg^V!Cv#o;9~#@oNHVJd@tsVoO8=OG z`*WR!^r_EM^x)vuO(UQJL(=U1VfzglE)U<^7e@c^qP2Ofai&dOvag7mtQ*tT(tjS# z;O9l)v(Tc*d?gu1*T&EEct2W!v`LP)9F(x0Lj#8C0U^vX>OwMcnNmGy4=_>4g zQ^xd%hUuMRNSWhKruI(J&8~7Yh+ySHkEGw7zR7GvgOkp*bTI<0P79!GE z1qw~s*GKV z+V{)U?rSk6t6x4KtoW$))6;lWo_o5+np>`J%cYVrV-Py46hTy?1G|VGgI*I^vRBAF zbLEC3w zh%T(Z)QPZ(W*}GC`K_+g>ruuhxahms80e=P{f;CbkPA@;Io@=F*KH373#`p3N|x=V z`aZzAZy=rst?T9Lnn!7=WiP6&wL@|Qq#<9eZ@B?QTDOIk3X$9Nklzyb+*PJU3v>M0 zhe2#rJlWmuLP`^+!9d9jgoKgDComPi29fZtB+?^(SL?hd7S5gG&XNy1_e+ zLM{{CgX|+MD`I@S(vb3vLupV3Ot}PK)rN^_Fl~H|s+JjVB}6xB+XDW6GCAa-G~jDZ zVgo?06#i1z^ysXN*oF6J(T~X|a|dV(``_$L^_hnaU%7BchlLlJj!=hdR-~31^(PA8 zAI=NpGjAzLnJ2uU5#$6hX(fFYE-mr8ERs4?A~9R@Xe#gR=BX60(~)5sJIuP7S9Ax< zZ=BoR7ZqW}gEWIM3>z4RUrAwS1S^T|`}RPvF{hFw1E%@L)m+HSqLbwf_5aj@O{2l(-pl_LaPh8SS9 zQ$kkoVOv4)JE6SE(;?T8?t-C>SA(Op%6}5EhabkZS68X5IhAR2P-C0mlJf7wQ>pUb zhmT5pOcW#`DOjECz^>47@2cL`F0fDq$80jZbg*)6)V zy!p$UyVC5WZS_2Hjfbs!ry{%V^K+oLaB?E6Kgn3(A+Ts`LPbSs8<$LFU8-eQd3NRJ zp>#)~f-kwcpdztbmPfrZpYH|nNUE_p7iQs8X-9a*{)1;!e;{r5y5uAiM&i;rkvWB8 z2fEWxKHlH)8E#VPTgG5TQzgR*_yzF-rvae2gU6~Yrzt2y)tY1eHVHORe)7cE_#2@k9lLtLDfMT_V7X)&Z`QN3G^|O+N26uRRre+37v$hpf0w@*tz)rL7-qYxJ`UYZ zx1Q!S01CE*C){NFrZ$wWpb^LYB`-Mm%(A~xwE?V)C6xc0#KMrSK%IbNa9~_8JS!W+n z^||!s)k>%cV-h8rkD*eyIl$3TwLKdj`tyXav8-9H%{I%M6?!4RmHR`HwCIF@2T{Mf zxr1($3a)?Cb;RLJeS?`eCg=1SJF}@qm>Sbp zdgbYvRpvYItlk!w)&eBat}Nd&@s(n!+SQ96*Zt*Ybw1nj_yX@YHDN+Pk$T{%B`Fgl z-M$((#Akxb&_-g+r|=ZWGCbQSz4#;>QiNKUqxh`kewvT8l>;-T2o*yny|f&=m{}() zH`C<6Wo(yPNk@=g5eaw|DsuyJrZb-|m`ji3Z52Qge~{#p-kiWuO)ZqOP{gtEOTOlkm%_2-T~l^%vSZ=W!TCE4 zrV8hXIoWy30=Y+jYf~Lho5wpSiFjD`p~TJ;iqG)MqdKCHeuKX%eua?|n9e51U5Yx( zc}*XF&%9~VrY*s;lIBN4FdARnhFoYlO1alatDy3l%s)Zv$%ndb^bsoXz5GBh$w zKW)51vI5wDcgev;cj{P`-oz`bMmghfF5I6l5X3LTEa*83Pa}RhR4yx18P2wRy3NB1-U+1B|5|m1woR;m%P;t1=Ijq~1R<)q*PauF46QBP z^zT&K46)vc;8Cb>+3#WxzBIkNrIw%3JCS-5)oS*&;r)vb*Wb?dp$IFt_@!o)&3&ZI z_Q*sXOe*Ciq9l;E8=lg1o@tez{y`a*k zlR8O%)lPFGpFE`)4vHoWHOg8=z=7c1zklCqX%#UdW0BFtnp6TpTk=K2`Y?K@uWm5=DS zI**Mcf_arj=~jah5bq4FzsMAa6G=WsBpN|!;`XLN_=Y9}NrkH7Ryy?W{EY?8Ub zyIZfdBsc7ZwnAI`#%4!OUv{AzWvMI^&@KG9DcQ@)q3tj4=)^0%FHLd!88L5frebA( zed7qsBwCREmX%|EuiwH*@NT6`dfmj~&howjK1=DfTYE&~p~DpgPLxb)&e`ms9OL-g zHDSJDw0N6&AH9UCKt)h%jf_)!T@8eaa^(s~xA6Gj0hB2J>n1M-6#a#tj=wL?S~55( zVfNDToPX7OfnZ}a5s@*Rd-r9`$6maDfgKjwn8Ykyrtq2#fOU363G=?8l8JE!teVyuUMgu8uP zG^`n1Z$;t`&-(3AcMcx}5;H@~B-RJX{Krgs_=;`(j#aLJN~uf3#5e`>vY?fQ!YB_| zRk-mRms@c|jg_T|<>a4{-|Y&tZ@7D!FMKx3oJ9+`IRCto$>#e~sL^nCB;kE{XxJq5 zf;_k*=Y33(cHYhe`65A^u?Zx@E#OuO3bc}857LNXZ-alQ0xGSUxlT*QmTzLC@qgwdCN3}_F2>Cqmrc{8#$g&5g?ii#TWm5Wbz z(r9m;%>AgLyMZUClfzLFjQ(I-&Bif%jvQ9}s>&k3j-Sel3@6pt@v926UOo_fAmysG zueXtyLd3D9C@E3vP}M!~_H1EVZS_}h>ck3D(Uo?yj10R-((k(@1Cn1%@+uR4TvPY?vAe5vDIbCI4 zQfh}AVMXeFR=++ZnsVxU?99h+#Nu^(5DSm;&Da+|Bx+VvrQOV#2KM7Z>is&KsMQN^ zEeAL51Qd$9+@$V*?YH;Tn5(-|mXLgMo%1Q^!mrC`uk`H#@dU-)14DjP`{irq${o3G z>&=$F{JQfMr!qDtuLEE@*bn_ZK~YyhTS&vKVQz0tM(N?MK78yriDh%i@!?#~LA|H0%P^MZ`af}cr$?|#LXeVgA<`P4_znShV; zHrTUbO94RXix?X%-{5Z_*yThW615B{IbplE2)1=It zrW+*7IW(c%OcGMJGj6JUeg51_l>D&)3dtT^!y4vzxbjhUnW+ACY6MuzKlFX_eX558 zHBg`P)C22(%5O|*q_;4dA)=$zz?6YdpONv+HXSC;1(#2&~a4$-_aBVF>exWgmmVHw$3YJ~qTreooihz?PR zgZ#|0s7#Q|%kQg-`0t`{;uxMqA9yMzPPY>}o4mGvd>C&X0lrT5ap$B^vs%1U-US1L zeZalwR$e~!EJGxVV85I!`ksO0<1hFL2!e1sk`eqzF_=+0QV-Ik{X^~{YOco( zJE|j=Cwh_xG$1#$j(=02;f>m_j+4SEHm2yaWYy^EKpRIB;rTDAww6lYh z4Ski&cUuHsEfg8BF|cbjdPe0xQ7A|xwmw~Md>zG2Ea!etBcJ5B6~Is)mr0zjB(lQj zWP%EjBoMkf(HgL%GdB!P^Lv!)R>^oSqvuI~;;DZ5}P@p&g{st<1!M3emH%Y!<@ zn-n=ez5MzqC~z~c={3*jf*(&5maA|-?HJ6FkE~t@Z{L(^B;sNp3NU-W1ep+DJ!+h2Uxs zX55xN7o0TvX`n4G`YNCLk=@OW*9$~OGV`1(6Z+O{qvtb-$hZEf>(b#Ox0kzr`}{al ziFM*hN=y1o-Gx8$vkWfzIHnbIKxtX|Y39{S+f+y!7ZaHJ4m-0MfLe!$hxW)(!wt6X zz117M`nep^g%|2>;!mgcGdb;_?pI>lV?UtnI>Gd^ia9j`` z3nd8CB-L6J1GL8Y}&i3nwXBobEPvXc3zudG#kd$G&^YI4YKIeHV>VLP*c3&*>{ zX%p@R-LWYvXo~xx(Y;0aOq0a3(S^89zN3M)OZE|M=zz$^1Cy;qlHu4hrF#v%YE3&L zCp_nBhMlY-QCGvB8Pg#@6K<#`BVkQz*TxY0Y;zhX_OA=Cl)L7{o8FUu>lAFTKI{)C zdY~v?j1xhD6U4@eOGpK#S{Z$rs-CLZz`xFcZx*n?xcSqMp5 zp)1nZl{Z>{Q%Evo{crzZeex*QLL3`(B z@~d8drvdVv-cd6@T7B++d#r9ChL1)?j@fYZ&~bue@2t?!E3aMU{2&d^bX zS8j#cx-eQ~K zeHOW#&6~=d(?rRKkY$+uQpT9yZ7X*zZd@^4YULn}@!LlTo9B z%NxvYBlbg0JVWKzrsKTW7d0^{F(MV~15xyof($=PPPD`D2Zwp0heuCN8w6S$EAXf} zv>##sUi$vVt%Fv7VNJVF$tQ@vojNPY`c*ae5^9TC1exKc=4Y>odb>@47iI}vo_Ft2 z$V;eHz$I%z&F-8tdU%GzeKD!q^drc!g!W(C<*!us9%$!O+a%;pWFM)#$g$_xZc|o( zeY!Lb3c7+_9dWx3`lpetUcE(3MkkwvO9myVbgUVVCe@FBSj;}Gp%7u|P)N)D#FaEY zT$mC^5LD8(BGc}=S1l9~)1v4nz7`?Bgb|U}VgPy8eR_6R?B~y}=~pWIWjVgKS9kZ& zhg%p=;=nPg#ibE6&8N%(CF|(u7Ps+v_Fv@fl-njZKA2?32EG7Bp#@BTc!6`yE0czh5P}-dts5zJ=`>GUq$a9(K{7vmq z(cs*#yAD?U-m;#M=GZv%EwFX%M*992*#gIYXz!i!FM4)?A(JM+~qNM3@`Dgg%KCC zx;-TaXo2ubW@g)5lg!I)k~78);gK8KhIXXq4h<6zvc;#?_0G&raEf?*`NhlSHg!#Z zKD4b@ol=s#Zjx_^?bRBJDU0<^JVFrAC)|)FSo2dMH_#=_twINS!^7!JNYD`N-gG+2 zwyt{oyzd`4IcLRFXsWoCEw6PQ-Pb&s<8*F(5WDA-0iT#oVERF)ffG{cGf3$z=s?vA zP3zZCx&Ju3nR-|$#>cS9)fvM~Hy=xXV1m>==j9LK8Np#{C&h(!djfv{4G$7%18rRgO#*qeWtD$f=^?k{Jt3xh5Tk@Az~A# zO1I1%bMbXe>UF6EE&4N2lzDg6n|B_l%Y2+53y1j$6lKlM&}4OLSW7jd@{~<~TySZ_ zZsLOqxx`aIs*{r%ht{j$0q@Cy&BHn8LSh2CXiUe;(K!nTY?t!K>X>CTKHK?4$- zrjcR{l+Bq5D5tc=zM<(C&HnuHDdGqmK|A61=xeGK!NFKA_o8yFWRkN>pGgF>!DTmuuJG}4sB}kv8ZF4_hy;Ck zn5=KL{T#LpTMysT>maj)?oYvLNjrD2d-pS_Tyd2 zDRlRirb-v#>2uc7H*vfWGO_g_07dd(V9ic-lk#98ZjlGhi|>|UbdYW7*g(OwddV80 zNYwk#LM{Rq&v6fyx!_QL7VaFcHEqk#4{Cw4^>q!>65gf39uv1DOuuL;k-E8%y6Kc` z3qYlendhFk-o~BEk2+eiQ*t!NHF9|hj4aboZ(y%v-kF5h)zG6u@=m#61LOA=%y}~x z7j8~6Zy0QFw|tz5vitPuV^{Rd6#e@=U7Z0`=W5PV`(zT<+v_WTLsImE;>l#jDumpa z!{eLoWhKssbGlz{jJ(vD_Mv61V3oj`AlZzENb*)DmoLPJYrc`HPj8_I9Pz&R&|zzP zYnl8}{*D*jJO@GIT~Z&iPBHF*1I?2pyDD&#izfL6wYopR^%zkqALW^Su33Vo>2Y{3 zId9E45&E29{^09>bQ2GNr^D`j-F3P4`0Fvr@F>&gC3;!UT_J<{(Ii{%^5cp^?Pqpx zlB{)CVNa#MA0Ygp>&YX}CPAqN0SEOx_NC-}3> zq9qmd9+7Mw@*hWc7 zNJt2RbSmA7gn%>%f*_@IcXxyD^!C1==YIbGbKdvtob7jguD-sX>wA7DVp4+QQa~U;2ndw?+Yo`20w{spp|$``et;SR4nYyHDI#3F zkWhOEG$zmAj{r_E7eG)_Qk?g{nmH}EIXULz{_zBnm1`bfv zUkZJM9ohqgga9xA3<`$8Q5Y9DxGe+;z+?yLt7-tWT_Etkj5Yo;;062{4nUA!@Skvh zynh9P!hbu1z+i;43kdE7h1&z{pfCtPTSbE(?TO|EfZ(>j3_&my0^<*VatA?SARCOq z@6tg46?t6%2-D%8{!m~f)CG;=M?qn~dKCB-1~X=5xUC|>*%<;yqX>T0rvybpz?ivv z3H&)+Cpf|b?)|r92Zh_({c6M3%|*Zv4s~^ds4D%j!9WE6!R#SufG7|MlmH3?Ag%z2 zC)h#YR{{es7szj=;4c_|(}S14V-!{^HADxZ$r&gF)dC9Rv#c>uv$?2?BxtqrrgpfIHT zt%6{-=ie!n;b4UAuQd}A6$5~fNRSr+5W^)QQBi=mAZ8zJA)dc!3=rUlBhVNZ0H!@( zfE@x!@as$k0Rl=87#j2o{S8O}1ausr|A>+p5%pgp#@+^h2?9GoFjuA>`aihvKlooq z{*OWgAOMCU!EVlWFia(X!x%aWKwRB02mUuAjER7$69#hr2ND4S1Y9sT6#QSQL;$N@GX7Co0)42k1_2C6GgNC$ntj3xRvr~&{e_Owv@UjQD?L;WZ=6G z9ryNWpQm|CTEKL|<4iP`a>s(gE?;){*+Gjvguxa;Yu_)P7`||4Csvo9)Y=Tkj3dtY z`{i@-R^gSh<(#WV)XEdd4S+Ks@0g4!fesxdpV7E~fgNGW#5#xmVrotneHUq#p!okG*NDo?QA-UZrC zuEd7ma4(56myu9jka`c{5q2w|#?EF>C;H6wvOgvB7I(b2*i`*xX$7AaPcbJ!@vC$5 zTL#v=;K0PAvY@fgWQumiE1K-9lE$Bv!-Eum#Q|&8F{w91FLiIA2&?6>fd|H$CXoP; z$cf#p`<=%jdBS2z^zUC2-KSEzzuF|RyAgYV=5xzMie9j88eDz) z^o8gVZJcG=`Qz?qkwW1%o|F|;-5YNoS}iDv0shMl7pyEB-@f?6XOrrjt&+X6&5p9mIZ;SFtMw4i#u&M?^ z%d5Dy>8>SN=TjH$*R#WG0^Zm|4>RFT?yvUrzkPvpX$MXlNwCjk{VmuBsjA{R&)jU;4Mg_i$mfry}6>s z=PpO>v7hZ+%U>P5ZXpAC(i>c}r}#c9LrIn^WIn!2>{=z4sJdGanW8EN40_vt4>=*+_|;^QX=|JuqxDGhOfWK?Y!pm+jQ{2gQ%Z@bnag!RM^*y zCQT*i9g|5rpL)n0HN0I1`tG#)Pad+NsS+k}4B~Z$Uit{ z+R=>5DW%=wt`K|rvK3N&=$x{D9W0A49ak2Tv_zMq;i$TCY++a0dZ)+QvLHc9H-DHe znSF~)_E1Ydm@b+M`$grTdB!7Cqa@zLw^x@9)kt8jpyF`p7y+ z*N12yP?3@QM%6}4U29r@b!Hxs?mQI>F;Qt7?X{{?%kdBNZIN0lxf^QAM2dG`_8&}#{>eIINQ8elB=CaUF8Bwpy@n+F;l+m_?o=3-evJ3 zDeh;N`_HF~XRw^qy4S%}WP^S?uk|Sw-n^#l>!U2Hl#jQ{Cr{;Pa*Z!?k`mInyxnY{ z+jHJX$3b8XsVg7M@Yr(7bN%6{Xe#&8vT7Mh+y25tKAszQ3YEb{;{=wxADcfO5T7ZX zrS8fQmvks;zx`8xv9?3@mXy_bPMwrt z+f+VCQ~W`pN6jha2k%vmpBc*>w!AR;=`4Kfoc#1C{UyME+##~qixJQChW^i!btwTB z(C}W^#`1RwjsuxbOR_Y;S`~Zs@T2#=YE(W#l%X)}^+4RsOQ^jpW7a&0lyz#rik}O^ zbfxSed7f)io1)hZT-XQklpgD+8I>Jc_YTL7cl<04&-_Ea9#Hwha^?+U>67r=xcP>paU`-7VcjkoJ?m)4#HVV z>gbBHv1y+Sh;e1p-)pBBR*H}*OdRRN&f63V%jrdO7JY6FJc);DZaLN}_ z%oS&)wfebhR-407Ii|^uR4Z*AFFDWr&3v4%aBo>|*KmHDK}&3zN6?tH?c@=S+k0=U z5@fk?;*g~vk32W$H!=aPSz|(Yhsl7=sD|u+!IG|5JJ}gexrN#j<$|_eiGHI-gy~iY zZCkV;7M@d!NvR*<);Wh_Wn8J);Zx7bqu_(PE?xsFQ?}RQna`u_yB&I-60lDWEo&6- zzYS*DyK~WggPT`Oovg#fK1Oaxt5+&I{ccSbnF3^5Wr%>?EAH6MBu2De2h2f1y_QRV z3J>p_uJ6zqv}%@g>D{nuhD#ZSHDSM^#+dnv3EB$ zx^nY9Tk&@+h_7b182wPZuxV1cJN*mki}t$I6P6aLm(j)zCRL&Pj{^%cRfl-9zsquN z+MEbcabUM6f3PZ9@!g`Wk``A}A$TKy9ei|x5*^Q_x|+0ccLhs~E-|EQ>E=F;UUeu8 zXn0i_2uX7adY;O=Rx)BK1k?8#f@JY`webAUkdvfyL-YIGjq2j0f69x9X9-*jKUQ5{dWPIIiL zqRi3BtbBUspwNG+0-L-xM{)J^+2!iC4s_<2ae{R+Q%0XBVG*+K3am1af+PV&ZoSnM z;HW4uKWq6$Y43m|hP5U0J)$QJ zV&?1tD%Y%Y0__wdiE^}&50ZNjiLI69;%V5M=6iZ}Ay>{%iw~_!UCvA32C+G(O{~Mr z@EcVtMs>1ay#9lQ&pN&QMhODGJZ*TeXzDoN5cgB3^CqbG)Wak`H=CQ^$n)s+McC zHAC#05_B{8+cAJC-FjZ%;=Q8L>(B9B%FB`XLBd8*n|t4IA!-mj;s>OR5#5&wqKtb& zjzL{G2nAYpaxU*xa($eQzMH{2zrSv*PNF{ zxZTBcLvLzrJ;9GAAt*M>1_W!`th>q7rzYW)pQrkb)w+uxhpKufV37GyZ{(AMF-a0BwMe_Gq8=>AH`(T$ z<&dbyHYFR32%qXS)s!ibl)TlIkbBaCX0c@`B@K%_rnqb2#irJI`ib2EGlM0dejYc@ zW3IkI-Yu_?3}{4|+CHpo=q`F!bnMyVa56qurj&{rB6aZ*9SKFJRgg<)HqPP^lv^$t8jxSRJYS9|JUBxJ~AjlMc_hXd~wXRCWJ z9pWb1kKkd!*`{E#(e9_W69cNFym7$XJH6mjew)1WjHg>3E_Va#aY5@B>x9!-`-(fr zU6}-bi&)8JqFo)|RRWFB?W~*DfR7@_86Cr!@p~@ZB+ea?exCfw_u8^fEHwKr(mizL zxfk)(Y_>w{ZgIu;C+HFd_NS#ypC;Bz4$8&7r6FzfmJ=sr6Cq1IXI^-hd&gisfALX$ zvDCI>JQjTPx*<-nIhsae)IUT6npF8Ag6}AQe>z>dqlDju>0Q>6P)h91VVEq%$OE2J zU_-a6_S0|JooLex+8=R`M{xKpvJCIiGS21HwyD;;C8!6ylb!}T9!$$Niq{*C8Z@yv zz5Y=Z7??+X_ylI<%}H%su@?l*Htr>oo2$M5#B?dCTUk~?X~aUVdqXlcP-t4izB18& zD*Em{;yG9dXSW26QPh?!V}wR_l(XEnDL^HuSoiWuwmUW?EpStd{(+Kr8@x(d@eYtB zezezE_Ct((S-wDBjFlJoH0(?J{l^HNDefk(2e_A?3X-9^slwD9Y`w?a!cwFy00-o3 zwpXy>6;NyJ2Xy9fk}qF$?E4(|eSfEaIKTWOz3bHWOpl;sYofa~k@1%sGL)l^V_Ozs zg*pdgC*=Y+IJs!lH8OlNY7&xu57XAO<*rFWWM^zUErPMA&ew~o|*%Wfo= zq}ivd^1hB#sS)5d3K04Mxn`7he1bJIvZT1k<|%WmDm6;(evPl05MLDuXzp+-eb}mZ zYWED1uI8rQXiL0l+P<-eGr#ZPv=1v$#^x^LefRV2VQUyZ4p2AZ_5(@3%*L`K{=Mw$ zM=kNIu_QgmB5c?UvMtxN-6|~D%jR`8~txvEq=;s(dT?PWfHU9ORfiP@RaLP1c$ z#Opd)C1inM?DAb_wNOo#11#XXz(~&X0i_PURl#pmz$S*xjY|FFm62PyKN&_Ib7-hZ zs}q<~rU<1o{}8(~QVz21Yf|VTF<<<)Xb3+o#giE4@OoSmR^z>(WM4`2VcQhC$x4o2 zpuo$IQyQFJ%l$lm25MCjI}xIxH#mnQG2=h|LFHaox-x-$w!lt!O5l1q!Nw_R&fO~W z&Zwo}+8EFaCBx-AIJ<|>cpIn>FR`0z@_#Za2v?w}dr6hCPg2`n9^VvktA+Hdlc`Qe z7ffYbY8dhEdDR{L(D^3JYK42{&b=o;*?O>3R8Ef-P4#1cn9*??)yC3Y$5xt3LjUsh zJ-5C9wi@<5d~lD6`bG422DhaHQEJ0tt!=FqL~XbW(5UjRhh%u-6uG6Eg#OmR<;_d_>CUDrR$7Vbh3My!(qjX z3qT0RV9&mP4b<^9z{hs6xJ}6P)fi7{3a^qB{9ZS_fDm*nzq$o{@R3ZDud(~Z^ZXe} zQMZWvww;;;qNVey@^6T!uCirqm#8Q1!qWOk&cp7| z(Fg2}tgOkcy0&Sq7ddH-EF`q=N3*sU5p@*>v0QO~YV5kBY}5u;;UZtV8T6PR&r+EZ znGIBjeb+A(yBfEQdb4M}uIRhT$5IIsw2$g7z{_wFt{9WLEx~@ye*g6C8^bLPiJhqp zt_x++tS~(th0RRd<)K5&KWvMXC-iY+_At+l@HVV5CCdpA%7{` zTIe!=Xfy8nN8@MQ{WBaou}>o=-glH+X?9$Vy^H;h_hY?e@76k1XRZa(j#pMuz=vt= z5mRa*uNT3zQV@}%Yqac-Z#!hv^PH){iMvVfny;XG&%5JmX>*(7z|Ay=Fe4SB;9K^rC7MT#`0_kt|rQK;!6S%*HW{3YpM4oD)}|nzrL@ zTJmG%gU5gBlzDCUJmBqNnUO)<9&MSgXIiLTDQRIkh`wUBl{DEp+?6sEzS3lqIXhKI z3gv5>U+6q1{2KBkxY@wM+y<$*bUHUT;3>?uA$#l$zu=>ie@1=(=L@>4E;U#oHmcx% zZIFuKM=iM|09Bj1rw=Z^{qh4!d;Q+vcOuDFNe>15UuJugJD8^yxB6u-dW^jJ;BfNo zPN{FRUu$p4MTgb>joo_vYm0L6`%hYiM_11+dsNv;9!-b?D2B+^!knCHMGjufvD&aO zpqt4w#+^J&NmoqT(W(fVzz3tQH|+<1_B1;+V*3@}bYR&xJ_;dU1F)H}QAmvCBu*at zgm7Bf^1s1Vk645qM!8%hwQU699Vkn(b1OJp>i5YjOA7^c?=wvZf0_}I zp)!J3`SsAMN`0mt=6X2f^!~FLvu+?+$qH}b&G4H7%MSeS90dhab-i`%6Aj6KwgHQw zh6s!DchAuTn)%D??qiIt9b@HZQI`;bqAbb|){RY7@+*RK2P_}kM1d2o`qJhmN|y^)&mIb2$OV+;@qobSv+5~o$e{txlrrt$?5LrOZ1 zk4!JNl)?qhz$c7rV{fe(qvNwk-@>`u)}Js|-B6XSZaB3$UrpM_Y1!#|Uv<8BHcjGA zG;>xh!zFyZ+CZ9e)jalpl)OIu3ms7o7MJ?CTd9Oht0t@vnHl(T`{hJLt#lvm)W8o~ zUCKE^v;I$Q6w3FH5{s>5$x#nZ=!$swE4;sQBQtjUX$kJ!Qw?#g+#MoU5f>Y>G@33} zm)v85SP!zzJA?z#r|iX9Kj)aaYjW#kQlLChVRO&FHP|0gm|dZN)g*hVlR81H9m!&~ zIvgQID@P(|rs(RU;7K@WHs^sOA&7=Vrc0NPf5g#F=umxv$k^-OxPRZyeK(WkLl&B-#k zNLQ?>y7OSaPkeiSos&qWav%A*z-IsagC4Ec*OiI>A+JUDT7*t=Eo7g`;;?#61wL@> zkfJvfjMHg}H_q;T>}GUVPXKSnFooCkAyM{+M=V37)4iSaw0VqS$!YjS$0JKWd1lWQ>ZHSY+XY_rd2VLRvrK@aBr@%@K-C zL5&7lxd5M_YU%+4@by+(g#ht-lV3!=){Ad}Iyz{t7s=~^*deS=j!!|5h2>>?SktsRJ|a*Sv*ZVbxZgj%=2Hyz}XVY5Rwib*+!6X}TNGW^m7wc!8R+ zE+QHCcdB}ML{V9Tcwxm~bfliK&@^c_v_%9sFpP+(B!?%8+$wGw@RJWKI7ynoaUIjX zt@D_FDK0b#rXv3+<#R^~)H|()iaiNO8mlr9WC1CExCK-cS{F8qfPhF!Ne@VOBi-FC%`glwFw7t` zG)Sj(mmo-oq)2xNNQ*Q`Neco3D)Eh8?|a|({{LFvw`Q%GInRFfK6{`2>@&g4pliS_ zX9u?hE5l((Zhjs@TwBUj#0|pThz0 z^YH&C+#l~>fgrHo&Oi_d?&1oBc|%|h0DA}&4A4>51K{DB@o z2oz|GBK%Gr2vC;O0{~GK{;3ZEa)Y=c5j+S8^jD3%zrvu7SqWyR0C#Z#!;lEvU->CQ z+`u5zxqI{eX|6L2?g{h#du0!S+1dXp!_M86*9ZoA>JC;@{KG*(xc^`dU?f18PfSEa zm>&Rs3IKb79C?3jVCe0C3jS^U4WnxC_jQH40_;&`fc+u%VAKn)F9PTR1|Z$s!T!Gg zZTR06E>0L@CS;4ug9C zL;u}kUVT*qEo~*vKPCUiC@&B90{C(Zhyl38MEC&w{QM#SQBh%kfdBu-(FH>OqpuG6_ z{$)cA8ORxRiy%o@Q2;OasXN322nEAXa{3z= zK)FCshk>%8z56!7nm!l)`?V29sVIRXkqIR3L4fY%k38r%+blc9Q# z($s$}{HREOZa}-=;`~o=R3HQdrI|mK|4%bO?rv_VD8Hu$)v3SNzpp_s*b5B8o&N|2 zNrXDpg|=PR$WeQ8Z;fKDu60BunD$2sBUxr&`Z{W2XQ@m*mAA30dN`7 z%k9`le{Raaw1yluwIGUn;AWoTZm4E7 zevSSd5_cir7DM^nd&4{~b9j0AUCuy%y5LEHMsKx9RX7PHsgF8C?nu%gC0SyQ`db7V zi@flExk6cL0wZOSOE}94hK=aT&*_4J*2FF&R}Dj(!D-EXwr)@sbcJFVH{ zbK|E2^z(8tbz3`BB+O*R<|Y{9jRgtw4T)zBHMh|+wC|aUhsgy_6A_R&e<`DVy-+EC z^8Te%aFbN(<3PS=ixbCp6!i|`iE20Q>-BuUYn5Q@cFZe)W2KSTVdiL4qRpy~6iR?J z?k8OB$eT_D9gBWk$&ErM1w#tXM7EDw-H8JQ0NHQUabaNK&{ z+c%zl$KyA@kPzAoa<$rdqkZK1v;3*NBH#fb>s*+a;6{~JAd8qUCSIg*fFl04#}Dv< z6K{eAKEim=9PJx%H=!~b3*-g+=1k96(CQIZbrv39n(Q~I^S@h{JRm}t|}>SrmXoD?5sHpfq+pZ#P> z*~oy>E8mh^1ZWbY>pSwlrc=&;wf$OLHSW(D0mWCiv;-6vE%vbCgwlA}&%i@C?Z+SH zXzd@;*ZW^UWoSSgE0K&}s;mO^D?eM7yM%8NeSnmNYLx2?O~o;&-H)l8uKT(D@S8sI zjWu%GL?W~E{nv~^cUiVaQm??QgUjgMwXHM)AKvxQS4f>J!pzZAbi}13n3lEX${i#h$sufaen1{;YY*L)Q@hl) zLNBk+^qkKkDYjD^QuT3vW&>RahIsuL%vt@u z%v!Q5$H!1n4}w_=sYP9Wg#U&LVX|zYc9O8wv0!SH;a2@)`<8Hj0F}31aYRV74tr<= zekGsi^yevNg0Op`DtLuIlJtFEk({2|@A^heSP?5aE}cnk7WignuFI#6?0xkA(KRri zix9A9RXFutS+B7kd_DbI))GYbIJp)^CHj;#g!1zpjmRq@XB{bu!z$nH&V7I8QOm7Z|V(E`Gcno7I($opQ5i-ewm-BUn37{H(<<{h~G)Qa<@V=h{BZ(T*IM5#P&qk8=TN&9iITh2+7TTb0HOn`46^oxrjz z%d;Js87@5Z!xLL%J~TPQkw_%*RwvS<$GQYdfA@X8Sb_n-3PbmhLC^K#UUvfZMYEg8 zMO(K-QN3B(PUpa;f5#l1m@}R?aUA&@)g*6M2`a^**$qIl6XhX)&V=}}eyC;Ta<;9H zih>LybFd$HxyX}Yr#5X=BzB}oUw4P;^V??e+x8FaL+x=&kLGrY>{u&%w>qi0n;Y@o z383*(_XC)}#`#CgcT&g9Em7dPjD%I2T~YNFXc9ag?>d{0e+7-4z8Qy;&ZAdGXKSh! zeQ42GIy-I5WzYDA{WOwV0%4YzDPHs1qdtZQo4vz+nT ziSsg~LFrH-p`FZf?GrLg61EW2kg&cBXKj-=rd@~1bCNsq{`G0Q&h?AE*sJ=7Yzs5v zRswU(M11ISe^=KBE}^YxF=K?gP(POt`1HGjG9gO6troJX(0uO~B!0>93m)_jjyRts z6z0+Or6|1t#eJxo$4Jr|*q`OCI;SPyN6v*|T&aSy!sm4r8g@OjziczAi1_0bAK-t% z&darY!=Eolka*gOXMHI3Q-#r&wOnW< z{D~Hzn62|+Z)$D$5v33BQhnpR&y;4bS*Txgl;Rz_0U>U}?`wQYhpvs$RAvT0noi{g z*CHx$BJ1C+QO-5VZKgDLw{{yEqU*tFie?vns_wV)sl5b%;#?FmSLpAN&s&k@>xq_e@6J-5;!f# zVY*n%fZO4mm$MNzaOy5?~3Tage1^L&hsd@;*m1=s{mJZe;bDH#>bVN4vm&5BBAJ{C@q6e_>k+ zac^eAqUP8tf%^W@$*z?mr1aXn_*fhv`C_R_poifr>55Ur55H`*v`1Lqg^fe^?I(?* z_nzto`CnX3`AOZzWTC##^a$(t>GopnAhN{1me9rdZ*C=X;L>tBxXJ}`)o^u7`8ibx z2ooy|1&d~Xo54#uN~?a8K1V|of55ZLt6WM=J=8qHSCEF(&sl4UM(1Iq@dV>JQc-pi z=mx$7Z+>)fJ^7*@0dJ74sa;PCy0t#ulbZ?==}sz~q*3%2+{l=kmql z56%=biFYNvFLSir@qsDWdqt(~{XE43N9aiHhN8Yms6ZW2le3(fWdu8g)+J#;qd~#v zThp|8*c+<8kSrSE`ok-hw?lrCt7H9zf9V$;bdywvH4kq0 z=F2%#Km=8RjgtA#yjfii5R#cjyFp^E4Avd!C35h)eM(_#$|lV?|CnRvdB@PGbE&uBC44>l z5^V_(cp9a;(Sskaf9Sd1d}&!2h}TY?K(=r9(pM>oY`CcRxo6Nk*)nhf(8WZ#tkqnfBy0n;Q+_GIMrr{Ih8bXR()UiHglz0a9Zn6_)B zWW27Ycix=7q%ll>+Mzu87}NS@MvgeC6ShyH_W}F1z(pg@f0xBaLUN`v7c0o+WWyXH z`hJ|eVL#{9S5^-4>!(iw4e!8Ckdo9hG0rEvI5K4dE|l!KBjfgG&DDpgYwHD<-jCQe zs%@ATe9NhcN*LPo=yG`ZSP-jT&1d%8@)ewwGj7k1lva<-k&_D!IvO;wdasy%Fx5$s zQhf@Z&5_x&f0Gpiu@hMemQ$q>?9I^3pfPi3`K!|OQf2NIU5o_OiV@883_tQ&>~Y0Rah_96)e(PT-hu+Bq zY-Y%|Kg&(vsERkdez|6Vc1W@V|?;GV$&`3S7@`SW}gjX7P%`e)h==1rJt!`6F|feJXshU7jg zQ}*|^?@3OlrNmqX-LVlueJU&Qe^h5}yIxynvhmlyhea5Sy%1ng8c4jZE#Pcl06c}e ztBVT02q4;PIPqB9>pTn4STym?(VAWnl$ni>e=XBGvHUJ>LMcH?>_MLpMwD^)$-2bd zP7%NaA^P*VH6r@)!&YBLO`3-y+BlFwTuEH(!S&NliY9zPW#$B;3#y9q1OQ zg_QP|st)Ja2(nec=y+y@-;V63mUFAkhq5+a_7|sKo!+rHyO_%xqR|XO-w(;xO=b~A zeGnNh@u zr-n~@8w>r6b4f#QI+Tx+ad^67QffcwD`I!$FvJV4Zn-vF&hXyzNR^~bUS@9nMOzGQ5}ych-HD-}0~bt9}k zBH{N;@e%1UEPgfdZ#tuKo~16UlyA;G&Q0IL&#%VP^4MBsbD}_&glwz=@V|~1z`h=4 zTaH=w>!H6lc^IZMmq-=qLckOADz57Ip1yep#Y6^NThi&#XPg_>;O)LP{wk6=e}XOv ze|o~>Fbl1K7od-9;&b5mTAA~(@C_2POd&drNQVf_vi_aIp0aI164{s>!^#xE3@h-Q zk$FJF&qhzf|5L%cjT3jp@SNl*0{>H%!0W!pVm#L$OIo*WsXXLCoB>LmoHBSr!o`s+ zP_eTo&AQSPFo&~yYRcQQRyIOlON7S1!e8% zBTuSXL+ZZJ7L(@?lJ!U$mDJ5@FFw|U+c_;FW(fp|BBb#$A5l|%O`AlrK1sDB6XR48 ztv%M>#KOt6i+SwZZ+Q~q()@xqg7W^rSEAh3**LNyJ1P&#=cef4Sf**`e>e1=a95JE z-Asl|r9RykqRKMxhvR)tx`bluCsmBu-44m}(Jx}g`sa1O#GOgVTj|B?lqCy(@8pob zFIXSq4r|3=db_GNK(Ke4XRU(;zOng$OP|5iwQ3XW&n-r#$JpP*!H;df8Ot2QRo`B@!@9$3 z;Sov;G|Q9itb#b4Q5e||+K9fV^Zo0-&4Xc_64#^* z-=@`4H4zGhG>vNo3|`Ng7cQjO6-&bgADCY2{iK^z&^#+RO>83f%J97RsiT-SOu1<# z`z{OqGse(OrDW;RaKAvYwXq#m1Q&-P>ZmA~)OSrN(!dQ{#UT-V9=n5w2}6u9GohwJlW z%dlzX#|Yp2e=@1Ni-JG-8e%DWf7@PJ&Ad)|$Uc+F?fX_IzPU!{ z;|~EM{nDNWLa%o_`#AKGdi^+Op7IV8iR*3G2G^~**^IO0&}`e|b03N3+6*=C84IP^ zyWJyuQLb*K&RTeHWwB&?z${%a1yeJiy~9yRgNx67%(Ov=>^r=!`h%A%^IheP4+Y-1 z<7OyHaO?s$(&P8c?eczUdl1kDJ-FT85*5z*J7tU(+L9MGBH+U-1j>saimk%^T3g3 zrLuT|Q9nw`{9dGIvrcfQTAdwRF4%$me>`O(k$oMVs#z7IQ1VtnQ~839bR)kRRQPHo zIbmsOM$7&sgxMdfguq3p*Ox9;_LMf;f!-KGd|^IArQeC4Uay(c1+CK9SD(H88lSpU zB9KnIrFOd?&-IyqGa3t)-_YV)!InG5^yhi7Bl4eoux2!P0)l2RL7=>31H!f4E1t1y?-$px|K_mJ^;t&LUMEyFrj?VNtqt5b+}y zJ2o91o z8ewI%>rcSWDKjrzaqKmvS5>s!Z>~Lz!V@o7ccx_J2F}KQ_O-StKug6Te+RtXdr)V1 z{V1!jeo8A`p1;_L34hB^w!wXBJA$`7A}!_!6AR%T(6FG?n${3=N?PAFV~*$1EQtMV zjfF+V>lGQ`wFV~+p`j{9`Tl$VgUnf+yIVPPUW(#?RrH>zM3FotI!+d-4N? z=b|uavQO!vYllB**>442e?cvoZ{U?pdNd>7<@K{`T0F>gbM_@?-LghwFx;bNnWM(3 zB@`(G3!-{kzw&u2Cp1~4+r-4ia)~a}e2Pj_^2J%*SLkEchzzy6#At)00hsUj!OV$Te|b6`8GSKfnS<$I zPbLm*zcax6gQE-6iZB0-GksI0g8^;BI);O|gnJ|-3$nW<2iIK6a<4-grI%!B{K_zTA4XdEdTA7;0_FX+| z3wl-2-OqkIyl@bA?hBI^={beN-UP0ysM)JagO7$U&jm_pe@M#VE3*DnU;SoVEKG*F zU4TP<_$v-4Ya)XKK9oCr83(mff$&PwL@06XRX$FfFrgxC8sSKe7nAwOej+n# zjsi`xBn|bxRpiae$F%zk#zpefoI%1+QP-R-?mKsd-$Ny{Afs8uHW`Hen^K#5gn&X$ zYvBypZuowkf5WNUS%ByagXS_`3Dt2-@>{cXlZGU~PN;>39-hDdn z9doUonSR>w9X1Cobg7pnVzB3;LXzI zr`7VIuWql6d_$ZI)%RYjTMo{>qP?p_fGem*GXxk~zNbMtrV!9IM~5R}oGH$b`81v{ zDbKUloE%n4)i$3Vl60&KM?@6%(33w|!c_-5ESFR9Kg6z2Q69bke7gg{5@7=H63? zMrM>0fNrCirRw4K#O2VW@^c50^RCD0jEW0^_<#~@i||pWSWWbB^HcnL>m(sDlbR{H zk?8M&e6@!se^%oya|p!Ei(`LqI7&9YIOro?e~+rgV=ZVO!sS ze_19$<-m(^I%>B8O{CIG{>L+!D^_%U?q5Pkco z4gUOhA4G916ii;d;BtFUpq5z}f>|L=f6L9C&M#w7Tq`wI&*j7neMgg2s$lA$huBg4qH+KG{qiOnZDDs4^!=N_7msFLv`QM7e<%~i zyHBJKq_~>1kJr$qtZPaok_~w1oaj$>kw#o|{6w)sWFh8Osh&T)Y+{&aeJ7 zXwvCUaK6e^8y0`K824>5^zqy8f9E`A5?2qV+pC{GEeze=Pn7ybU!iv1+AQPjkZr&7 zqLQuue4KMg+Dh|Bvd`3joP!JQ$x8%rOK^Ku;$1cPS2#gheBRScs1SLjH8-bpEY6Hz zRGo5fk4u^PwQ^d5sY#0>bQ!jjJCa`VZfY)B9i2ks%3I_0Ys7Pc$y%}fVm3-nGSj7M z_|NU@dv}*vot2gEY;SpuAIP%mcnvi`itZ;0Om9&oh|~xvWbSCYxNYe?OtHaOyNHQ4 zz*`MO%PeUxEm9F1D0Q=fPGz}yM@Qc*?NBbOHZVLsFaAH=e}K-H5zPb>mx#;(7PlE1 z0)`ux?eqZ`5i~Y43NK7$ZfA68G9WfMFf^AjW&#xhI59Dov19=$e{}^^lx^28QsO8g zT_QtBGjt=8(h|}G=r9a00y8i(bazTgNGc^rBPG(E($Xa$AxL-VKkEB_@Be=1taZ+M z)|%(JuO0W^_r9)s?lWmW;gz#QTEHG55g1+p5Wgf)LGy{RIFO%T2*l4X2)KV=500^e z{RIQ=8^BO#I1(ZGf4>|QP%sDvizz}dSU*i90;uL>2NVzj3W!Pyh)MGE0|oi{CH{6q zq9lQe5NEh0P!j}HLn2^kz6^8BQLc3mjtu)P2N z0BSkF5PzIC{y6Xe|2i9>07&3J>HdoTl?aab9Sng&k@gM{gc}@T4YY#W!GKziG(Z?v z3=a^3u>9o+f3ZU&vGEXR2;2^0fpz#@IRyAfP6r6VHuzV2XebKqfI)-MaJyeE^8HGK zJ!K_?r2^949)`f60l(@~gri_k?6JG?{h6#S0_lSA_-kPWM_5|@YQoaVflnU+cXWcO zD*okyg#iCx)-ViEgkM5bR9FHCa|FU%p*DQK((Ac7f53hl1%AQU4!k@ZkPbjAY!fgq zxD^ch0(hVy&M+Vbl*Ylq*Gc3Il#4r2@hoc|CU165ma17Mu4`u$~ z`oE-R2S>oPk!bj@y9FD?&;MUGtiGVO*!u&G<>hY^3@e|1@2iA>A}xREOi)A=2tlDB zZUBBPodmJ-_7K1d(h}zSo5?^v5CVz8h5)fWdI7DFD8R3=3IX{bXl&1Lv@LcDHouI& ze{lgp0U)0x#M&Br9Diei{6IcCY%wrLC+x8PMzNqh9N~oi4itbFY)gNye_s_am@5nlm>Neyr2?P753D~elcRUx{rZV;;Y(v!jB!V( z2!?IqjfaiK^%Uh1NBL)##Wa0M+LP~se}~6C>AAK~2V6~C(){KVRbFFolscB>cX=~= z&JJ3vVfQSNbk>7nNny*RJFz+pB+tP3VD^`W<(S zBS~mKOTDdBv^bcYmcm_)DWfm0i1DCo@qSM0hOHl&K>hd7OlaKs+>Y7?M-|~$ zSwN#`lxL5yW=>T7!J@F0!QEJye=Y?QBH~OsspU(-PixlR7d1Jw9}; zDkM!b2+@#saJ0XB1a*mAZ-eRJyD=|?wVn3}ZO$;_tVZE$d5Iucp7@%!e+p1V?Y^^9 zeBMVV5OADV)DqXZ-oW!;2<(+82Y&U4RGbE9hZENv(Hw)<`-KIr88GRkaH$(fZP z@*|1r-gG^lR~xnYr^N(bpNHSvhuS7@2EN=!xtDJ4I9_|o#|NE}Ca#@0<(|)tB>D8z z8S+EcIAU>HkY_{xgD*i_f4Q5Fb*mg%USkM{JYm{njQb1R_py1$Ii38&K=-AL| z(l#`aCI=|Gr?xl)QX8Ip*Jm`V^hb~y@UT-DKzcIy1NLm}r0Q%cT#kN3Gg_`U zyg0K@5eak83$@iAf4D=JBP{tPo|^PnY%o~#2t?$+BQM%OsWTQzJ8(IL?f1|479)h(dnNJrbZU5L^8(h`*sxD}&)Pf|2RfAeQb({+iU&kF4Zj6Mnr zCO%R8AR83Tb5#*?q@BF)>%?wK0uLa`vH#0<`>~W2&n)VqP_d0}M~H`;C2Vxa+~!16 zs6q;Wmh^hM)? zrEk;Fw40e>e>TwBc$qp*XCCQlUIj0Syfev)rqY@6*BlDh0yPT=Mf5*8@!-gW!P~BZ zt^M?6ZTdxEAk*4KK&<*1j!vGgDC(xkY&gqhSKp?4=eb_nA(M0nmm8It{A6ae>qQ@b zzR|sUJV#cO#!sh=8PG$bnY{eUoais_oNuW3rU-CFf8(~qpuS#(%m=djf59_v5FH;h z>>FrGAp1^iYHYt}totz6tuBR087N|TKQoSWOMT|ZV*F>`QPq1eo(ityfHGaBH_+^| z9oM(X2d7wrHs$7F0W{J7c|{-@3HxN& z=?o?Ne~Xa$PpLknMsa8DFKjD4b5@mc@O2V8wJUu$rmxD{mFR^-o6Mt08rExvUqviF z`006n&SaGHS-1?eEiA|LmD+j(=TkeE5LPhb*PTp*SUu9xQ&EOcD{{bxjt8@^)A29y zmY2Drm%iSDI}~dup#bf=5B*mh4~ z&Z*Qi`+DDl!J51=|CRA;+RwoS5TPZ!RC2?#4}Dz=`-*SgP4KY2w_)m>3V0V5IXOi4 z-SMY6u$%xuU!{IQEVrCX;4Nm*H#XLhD4*bZLgYWvgRiM5C^~%iVkL*ptqhs`K{6v~ ze}E|@l9X9-87M_=&$54z(#nogmu#p2pf+_wvoQ?W_IsHW_{b?AEJsk+KA%1FTiIG! z3{KKL_G2t9+5KR@%NG6qeW%%G$XkSAfIm$aGU_;J&Cm%v4KsjX4S2HdV6 z-&xymgC)4>F!1`OQabbzoYNp8N?pB2v~fA1m9 zc3Bve++9F6>-oE)DAHoBR>CUTHK@!;jFRB(nQ_%rvufRyt|sp8m^O`9R+2Ze1kg9= zwHig>hCq$E9=t0GD`^vw`16!U@%XSbm0()-W1TxR&m~M-T^uJ~zn&v~J#@Ts>X@l=*@q2;c)vNopPV%D@+1%a;MuD%3-qT?4E@Bhj4vbLtbLD7&@Sh0_`U;`pehxE z`c*qYQpLvMf4E(V!Pl#;Zx*0}1ZIwx%HDn{S1%gzd^1KK@5d=ScF4ACQFE}W!DB;V&Y~wn&Z*W(D=7Dr2Z z9kDa0^By2Smimy$tlr~8e_XNj>L9TvgY`P?rn=G4J!HN^(D#Y(>@uG*sC(*^2U(jT z;VrOauD@;`Q-WI7A%7>X15_Xjnl9gNppIw2luD#m+`4KP&>m!5{q~M3F6l)?s9p6p zH?A7|3YJRh@V9WYVQH7y-j<^z&lk+bc5~ELLNokE8W#0JEf4a8gGw@|3tY;-@ z&5Ea$7ThCbmPuJUKlCjscw)u-UdxxAoQ6%4+BjABve(k^vZUgOi9Ta%NcNa-n~W(G z*SpivnFmcA|1pP_k?rEZNrM7?M$Xbq*3;*|fPHMKv!pSEPYt z0khXqEVo#^h<>ns?TJi*!=%5`a!&X?QsKDivHGVhTwtm6f2Flul~1B`m)6CXZ}rY| z?s=^Ye-Cl%kF#66i;T#Pi;-T6sA<4aUCf?&kgS6o7zlaiX_>Ed-nzvexy%(;WM=)W z&r9}=Ha|hMZ-HLG^;-$W`Qp|wSGbbEqo|>ks`2-{igRLFXCt3*%cs=YZ!>)xf41-2 zbf%dUV!Bq7e=UyO2z)`u*Ycy@O8LlUV!1IiraVK(H#3TuEE=Ek$EefINKYo02)b_Ez>`*FW0ms@BhsG#`<6(3srJzP92eUDhzJWC(@e}{L~2R|q#R#!f&itqJE3T55^ z4=Ej`#+%#V@_fHkg=I&wkuf2tS^cgK3}nn)b{nsoGZ!zjwPh)~XN6DN6^vi823bN` z+u32A3qHPnMG$2-W4Q;8q3?`{GQ`yNLLYwNG@mN;)H>l<5f)^eKp5FdIP59Cf1m|l zSSb&e2O*KRn5L8PRGRezc&Z_g#9Y&-vnk{Azw-%`%N*WMfLcdZoRRIGCHKE;np$+uuh&m^H1ed>oWj;`GC4UH zq7yv|$k8W^i4i4J#zvhj@3@s$eQ~m_No^F92JTl?$UVY|dnw5LnVX-XiX!c1<5{3g ze{#;mDUt5liZqGKNd0S1X6G&(-7CHCgMc4DlgRCV)Lo~3bUo>H?WfvO75dBZlhleA zWQvNj6&(*hyvnP5VF&?5bb=UqG41(7L#BtOlT==Jt#f(Af zQ^Y9BjXJiL7KDCY2$g5PkR#I@hukhTe|Jlgv_iV+bG!6P4Ui=pH$(JI;P#8GsMfG)A|8I zrTtkt@N1sL!Ha64S<6bQT~!d=dFxudpkWAS6DisKO}>NGuZp*GA9@X%5ZtIdf0pS; zbjp0{UoZN>n&-xHZLOxhLq{JSZ#if>FUUSy+&=sL4?zjZ3&^&|XnB#(q08Wou}Wsy zVo+tA|9oO*j1Y@Rokk#%!d9QfFlrD=9#7feFRK;Hii>(pI9r}x+SJ3#;;_@%zg3c? zRzLwHTT@~ps<_~u{3&ewYI=~Je^=Pl{Nc4ZtHj6+;*;k@EV1!*b}k+X@3aTW4Utvu zX_*0d=`gk<*-oBpV&>N4tFT*l$Ocj00d$rhQK~5Qy05hHoqIxj7Xz{RV7BE3A#u;vqGPV&eh;dcFEiufCVl%oCB%gde?GSDYZSf+ z%ZYI$VGMFQyQn#ODyaM8vhNwZZbk~Yc)>5*YJJMV&(%H@O80i7DJ%CpJn-t+6m2MM z9-!YVIdMChmm*ot2O1vSR+hN=B}0zRn?xNy?lHj=*nrjslp@_9%q9D3BcO$(xu)%`?isP7u8nP~gl6J!bAtzeN9wT?s1Yl(#F zr(zM&5~{qNRa|zL?W|dP?;?LdDh8=Bwk&&xckUmE*vo5LQVdKbf1F246p2FFlMFVb zcz+g;btRnf!l|UqTh}b^XsL9S`7hJOWPbp64L(`TH(3hZq?1M17FcHIKH7iSen~Hk z)0i-kA!)rwbQ&WQM!Nl=>_^I${bCklc7I>oc5zUT53gvU7_H@e`2|~zIwY+f+@W<} zWIfnsAh>C~U-vt=f0`tSc*g7`I)ckmsbDeGzq>L{h?Fl)!TQ*PF8ZM@=CmkwE-qq+ z@GGX}@MZlptLTU66O)|?`34DN_}IjOz)g*T+i14&(dL?~#ucd$x3S(xv%9p-#*D%2 zH^h#*dC8ic9kj0NoG=4SA#R1!1K+#M)?dmO_a{j`3cI3}e_uW>Yy9}s@N;;UusQ4I zJk2}i^6#m|^7Zn%Orua@>Q}T-|FtP)$G*%H=j;IL>tOg-hGV$Ag2Q!(z zeD-Qt+*VKFZJh6xxpyw8y}lyzc_<}K(KJWt!DHJQq|qi=SGl8hY@lfcun+UCDZN5vu&2@IbHV*W5>E|MP3es>g zX)e7sf1*0dlR2W;MO8qVwpAY*C_N7dm`JT^CCKQ9j~Knp99j)2ZRImNTkP|k&_RE% z;q*bqdnK=AYH`oHnBA$NCZD?LR9f^VzmhKtAT8^MYf{ub_gzkYaOcsd%6>G4F=tI~ zz>A2g`&(nYM2_U?Jn>J<`GV4OtY})V4E85>e`H+*p>3d%Y6JBr^sb~v1N!AvH--Qj zbw6F&rzjV^K0+wIr}QE}@2J1(wP~h4T0M|;7CFCH&IJCp3c-fQwUTzOA3?CFNI??|8dQNyRYl8HwpT&AD zZHAhy$tfM3Z>)+Ajc)aMA%fy~vdzK=)w@Tiuv|P-%{bWe;7GjXTA9|<&?IBmfKg{^ zk$Bd;TZgXzPI94qmm4zu`5h$?6r2iTf37ialJ)pd^-h&co_S}H@5U?c&^tefg3E6m z@ep|C6v}WCt+otU7_@$@{HChW?xegW*&62t$`Y3028{n8@A&MM8js^%wOy~V```yr z__j;@Enn@qosH`ja`gvQd4xF0H)R8i8kmtD<(2Q7FFJ*uXd5n09!VHHZ=JgXe_m8N zy!)zxq{Igz-fVo{_VUH>&9^k-6!-kILYem#^{$vjwgRDdCU@n&kz3t1 ztZKiG)^^K^%WJWiBOS^fmAB?3xf`cG0P>eqT^lyji7b&~5BQ26Va{eLE3w^mEtIZ) zQ#CW8^>q3(*PL^;W##wP-tA9ae>od|OI_Pxv|OwL{9<^Iy_BAv$>YefijEr|kA4WO zURvElJ(4o{DygePT71vhQlK!)OZ9_xFp;Zgcb4@T#{PZlMr}uzuKuikb5*l5NQ3BY z=?Udnrih9BOByTOqkZCro{&l8w<=;*7WFyH8}hggkx_3es$%^x(ZO;#(Z=DqHQ0mxSV>oKyFbLT9 zts3-UpVfYO%kM1k(XfgJmDfeTsT>`NQ{iq5k+hU)&@ON4r8}o(aj5%98Bwt^8KPwf{g=&;Dz_gT-i)riy>2YfzczzFP6~+83ki``4N>O4bO7*TJP{MYo&|3h#QG zkK{0|k%YG`k9Mst69J$4&f_XJ%C8r$zP%V0_ySLf1F{ev*ml}!f8~7t!sZ95ee+;e z>#f=%_k})zqU~r3Q`N^fyrzorYxODea>A$MjcwJ^=E<}af!~bGBz3eS%s}etWClbG z#GanbvqDmAM0kE8+~nD8KE07CJ^DULu3C*a+WVB+Bpi%00b71FlQ;+O^Qyk#eX#|q zTGZQ=@F{rflt?{mf7rv5mdxaES%SAuftT1nw(pRdRFlFDr<3N+Ee2DXo4F((z98c2 zXla&rA9>7^?5uk8QFV8ZDNV5yB-0G)xi|^&o_R?NAO1qz2{3s#vBEYh)%J2Ohbho` zT}{ySEWK)XlVBW09=l59X}G=)cB9G;Z62Yui2p$?lj~MAfBSi$atjdO9=7hz;T%J2 zsO_a57>)$Q0p3FATR#Dcf5*+QztMmK-&M~_1Ra$Y*WdO)y3y!AsrD1luG@qLXMft7O&ZY!`w8j(=s z-{1onWyDSGaOJ7ysv=YesA(c6j|8rhjVnPFC>V&xf1+R-A82O`&V3g9%I(?}j#5-u zwg~E(O94Lxs#jtZNJ}=^#Y6EzO1e{>Tp=?1D@*GoGk4tf3vO(RrHetb-1h+sE7Nw< ziSivcmpbC>?Z$-?cp@QT&NNiEF@Du83|f7?)#!VK2_J5MwWvR4)_CPwN1v(eG-Ki( zxo`xgf69w&!5N(LNn^vuyq>{*k|&sT^ss>lc3dU8|7q(WSIl8w@?eqoymZgrupy}@ zewcFC-ja3E)%s;M##G&>yHzolf3J4EndtV)vmSodqa+pE;iLrqCQEi%6RD>;%g@;;Me@|Bes!wlH%gNR8r(X3A>UOS`cH7sI z-Tu+eeq}`qjEJ5;wCa7+fE1;y7BoQ7rFNj+Z>Eo{5{MQ6-{4p3&pdtHn5KlDOi&(U z7>`f3B+<d_ur-2jwYacAIx(S*yuR9?nRHIh5&f50f5UtZV6L6I*KZV#c6glneV{O=Eqg2} zAdw@wc9V!byccw%J~$a)f!6}S=|Y(>HO+02Te81jto{pAA zI~^2W&a(vLYK9qh{2bE#;5OF@e_ilm0lMJAAIdo_vUis+dEG8h8legUk6PXMJm<}; zb@coN$s!r2;DHhS7-3Be3SAVuTG-tE>2^ZaA?PV6Ug+f-K%G>GtAzcaPK0__J!2|{ zcRbAgjPG^$yYTX-L0&&ErQ`JOHfOu73bUbUs*6pYG+usmH)TZ^DWn{d*vz!P-9exy z{|DsqEP$60%>)yd0~!Jsw;^T%Rvnk5MgkPKi-Q7!H3Kp@HJ6X;1RImDM+*=+FfZ!51DicK8bIHTp`@d#no37gDQ)Q6R>}wZrZ%PMJ5(m% zIaRKqw$xP4T6*@Ci;s{X>k%ClL7nJm+OAGOXo6J)G<8`|Gc>h2+NLoy zAz+7wrbj$snHVsCixy5Qj*M}YRp>XNvf5!*BqUM4v6VHJX3(*%!(ObetS8o@)q3Ks zF{!cv(=E|S23>)q;KIn*SUKV^wOB%^pEgxFLlQJjLqfy^VwSTcFJnn|4$~b8jVU{t z9*KX(QCGyq=tB%kBSVMu4OmBF@S50Wh_hbPR6{)SEXK-zgRaIGO|3jM!w}!SgM3MS zJg?$o<%u&yGgZNoh7rT65J{3IC{i0wlY_1z?SK$cqzDcZ2a_hTn?Ne%NPvcfts33| z2~ahTbkqb=E9lk8ghZGRU_Nb4F%8mbrEQZS8DJ10G+VQ}(Q=9u9vD$J&|MN7l+t1b z(X$pJPDI6jCS^v3^hG&E`f6yba@GK&87_bd$y2#R`>;@LuOUEIX($RPDUV%Q(iTN3 zLz1VRDUz%w^`IHS*=F?Vr=$AoU*~OAKOdjAqx$gTeAS+>mZYtk4D{uwe%UTBE*Fz_ z$=1nDNA1aU{NUnU^$HEf>w`!-r-MFF+P@wV#l`r4d|7?^X;mLr^~>tB&qhRkL3GJJ z64Rh2Ed8*0rP&j_tm^N7_>pKFkiyfK0jcWzayEPY0b?sV$LwNpJReV5(iEQZe7st< zi}Om$>X&U=1L>O@A#!yePYRLZ!6wRSjhF=U*qfi@yIshDOq z$*C8A7n9?5RlTD1A3mZ{O`1hw zEymM$MIPrmL4_)r4o4`tk)X&`Ulml+cOj^5&$|d}$FX;1AqBHb;S33|C$v&HYXN?+ zaMHGL!kq{w?jfA`mla(RlxeoC2-(-|3kvCf-mZe$b?pDU6`3Y&3n$!(aN-`qi64t_ zt`Gcu;gkaD3G>FnQQMZI?!muLy<}L){cfZKrb?pDZ1r4Qty5;THhh6Y*KvmWA)1T&x(>K+t_5SOJ?Jv_w z`||S#uR-dS4gNsk{n`QT&MJZ>ZW;qT`Gc6-wXuLCG+p5}mpq5)H#3XT0*#3Wcv00H zB)pDW_gd!;Y~^VOI^zsq)2>pWHs>_jY>DCKuI$w`+j6VZmMF_})RADGRg9K@F(zV% zCg}r{@v=9N@C0K>yKzE+VKCsAKu0Ch}KQiguS_aQyM!AB5k4G4dKaz&t+FUa!F`3XBHlP>LUH&@2Mpsx&Dl zU+;TrctT=M2??P(1eF!u3K#l+%f06-T{Ek}t6w3v-6DI*hbncTfF)mL?p2V&lx<#lo}GG`BT#-;ZrQ0QdJ28JSQxrP;%VQ3=MynsHy#Dfno zZUdw7O~C17jBC36$$T1-$Qi;#Bx0QsQ;8Nl5K4l_a6lzxYCuCf%+v{g2FX;3r-r(F z+pr1t-K2b&HAYNK_}xWF&@SIuTOS+xD6Jv((kS0I{5>S{*Y&L>{eDj|t=|%S1P2%n zPBET1M+^{y$@(T{%leiXCg(#NCqdZk@Ix}?Fo5UQmkxW=jSt~1Xh zgm}y?IjsviKC!#8D!bM!3+8a9CAf8KN9CD=VjDtNyjgD_EML9m$QmO(@Fqb{-f^%F z8_7^uNtHFAi-1m$_imhFYxQeA@Qvm%Hjj3p0VVoY2hxV$=)h`!UBbRS+pc%$^_u6> zF43!U;8r}J^FkU2e|DV%EoHKgEU(IQqj!uEPyR^0tmmSURY8Fwaw~~W1#UE!&hDMt zwZl62Ih-S^vQ^sKg&yb86O!bj7ti+0AG24a) zsR11vDuA7FU`wEXU|7MtLWbsPZ=?t&akNDXMtg@f&f53zrVN(pERdt9$IEYImUMJa`$OF5M^+EYq#E&P=9q;S!Z55R0o$w4pg`70az2V zKCIK#oQ#%9Z;>R2gzOrIh&m5xQQ$O3YQCT%sE{ma9riSif1wvTo^&-Pw*LlKA(0#d z5lF0@iHms_Y_zPFqB<7Fj+`lSIE+<_vJ~fDUb1!jo27lpvYg>(($Ntj~->mypBg$4<$=Q=cGXlZX<&dsRA&UfA=g~~Srmnw_#qYqg>rB+F5=H)bmGV)S1Zg`Dwh!f zB|d0ef9p#9iRO%>C~}&u$8f@F^2NNyMJGDCJup;(8OQhJI0<9YD!b3z;CjzDmhZc< zT!-_$yW@yQ^Q9F+hq*Oei9zY4C6S5hZsvNlKqDsMq#Cr+N|M=JXqFY%&EVBqOZOm( zc;6XF0a3aKt_g547r5T+j4jy2?y$QA@O%k?f9nql)f$PsjDX}_M@eutFH|6k>t<96 zDO2SufGeA@s1~}yUodHt&2O#%q+oa11C%(f0DQ*~Zb!+Fs!6j&rTmO50GCIUqXo*% zjOC&mHs`xFV&X%%HO>&8nXg)VH78#n2$UB_MmaA3<(4@XSa6zEi~oiRO2<(8L(uZl ze+R$cV&B)jfVv3;6?}wx32_UixgH}$n3H44;E>Y2R?_BYfpo*?ciy z(g?xv9kt_<)#q|bWjx@AeXQIs#>t65_3m zH;&zg%~}F^u(UXjcb;zyIX>r+RJ-60JgrS!m_SmFGnL4Fp<#V%*j)>*_&P#!k!%Cs zuCi|Mnvt`!&HDJ$3E@>LPQf?p++Om^I>~etG)fzey&GI7wU&moYt0(ySc5#|e=04w ztXR)2#tSss9mtyr{E4XL?2LQm9f;%nk?{-_2Z+sY5Af>!VY{3xrt{UsLSDr`9iLIp zqvK~^J^SX9!=p#vtA;veif$Her;fB%Heqa zq@A9=T~+jeMbL52H}v$yYCM}xf9{{3&RTRHuiCS3>3F01`#gh`nh3ldFYvDZZ}pqS zc+$RIP3I>U|306!Kdt&L3(VOxUC#SMF6YGnbUm1!_8#&RkLvntWVk*;q81mon4%(`gDxO(?vU8wTpT-K6`UAu4nCX zSAiO()SufkO>Ewcxf2q$ZyAP}GfA!_p z-yJcl22{hl&T2f~I;$JADuzK;ZSi36@ckqEeUAL#^JiZ_{f>`3=qgg^4jsZx^y8k= z>ti>A$G%@5){pAP^^^K({k%S|zp1~i$v)~yeNz8azpbbBKkJ|CS$$TY*Yo;c^`c(Z ztNOD3rGD4v!(JZqf9T0~&z{~FJ`Bj73X{$+7R^b}de6~Xu9 z-9P(&F7)v~ZeAQd{N(8P{?UNZ#Oj{KZ+52o3}=0avM#$Yyr z0x>d|(M16hwD zxdIlKjWq)dx2OUG&oY;L*#aWBnKc757ng?u10lEVOal@qmv}V;Aq6otG&eYxq1gfz z1U4`?F_#ga1So&Eb8v5M5-l9tCpmHQi*20Pwr$(CjT76pZQHhOJNe$3xihzJ)mQtU z?$xX7S-qa#ReO^Vh}haVDY@GjGte;5(sKY5MHCeo=-F8S^t4PcBqV|k#`;d?wl+fg zPR1MnRbwN7qOl!-ff2w+PtO2D0uZ#db9XQ|HFE-x8&ZG#8w99W=^L3_n>zqhY^`iv z%ni)|TrMsyd@hd8v<}WZwEr|I8XE(g%!~mh=2pf4L0LISjyk@nvLY+Q^Toc|iB7#W-V!*;f^ zlF_#|29OKdTH85089M-^ZHG$mJBpaQ85_x&JN@IgiN4i8KK&b4HU7`#NE;iOJ6r#!-}oO>{<&5oTN^9) z|8wL&v;6x&I$?QXekFCP|82p)%fdE>wnpYQrT|5!e+<=kF!~?x@3Ne}`F~dEzheHo zQUHI3|C>weJ2{xU0W|4p|Ft9Z|9bu#Y5!lAfPk%=Ck^92I1Ljc1Au|~&mRCAJDd0a zBiGQ`!NJ(Z>EEvZGs}PTe{Ykqv750W%-XW8A!m?9N^?k=k8r_kIXKnqw4O56G6V3+ zRQHW0viYEyk?!FY*1Zx|t}7hwjK2Z*?&W`u_cd$=VO0$ zW#VcQSjo=v*FZG^ei`VODN~KEH;XraWLU%gfQW;X3Yao4c-BS+ixt$+ALXtEiw*&O z&MMw&h{QqXRhw)`I9JaI1o}K2D!R8%!FP?VKw$1iLc z#sG~ha!KTQl8ucAOTreC3?eg(=)`}+*lmb57hQ0O0(DG!JJ62=C#`0%%V&N89&^-s zIw7{!H2GlT8sEB@DdLE9@yK67=C~X(DVMQ|4)s}jO`4l;c3(k*)RYg<6*4C+C{d&qz595y9O z;3`{Otf@1}l3L7*(Wc^nR200Z#~3K|#W&SU0)n|TO(wcUCCS$J>({M&*=zjBWV0!V zH>_gx$iIkLghGMfiI7&K1v*)_zs`1fKJ~yatz#ndUbN{8PP;<%R53uo0&Za^lQbfe zW+TvM4KDlu;`suOKB7IoC^~=3%UagPxbPC-i-Jb%?w#fG?XCT|gsT}#$Eg!9nF#$a z`B`bwm<-!;sF^ir2KhBciuUJKI0y^K{1%MhqY+x#l5+-&BX5WC%{GWN%n+MVOfEdo z@oxcl`}{PBzi`G?%+oP1+t2lYa4emQg&^TvuF7)&jN;D06Mjr+uDyRO8>&Uy6!d(D z@XRF;xVJo&ziOCsRAML59<34?092q^Gpv~6?goz{XG1X;Dh8Nk)_w=?Qx%?g$~0;M z7Du<|c`WP?%d~ekS~`s`aB>H({q_SjGV?$W`qDq{H9cZbtdsxN+J8br8-qu8vrltkRZ|GEYAGo!nHkL1ADpbPW+qwk_z2p&lh!*49NtJV^ z7E=+11}(EtC0T!cLdF)i-`mp1nuDma(w-~Af_i#l7Fv@iRPATmkyEUkKTWcAr=!t488Bx zh#|Vn^Hv+NNd)Gd)qXPUBN*R}g!YCNDv2ydT5NZzUwKwZk0tUEZFuyAPozub-oFDY zF*+US8eD$_SYHGcEWV#WD8ngOV`}NkVqcnZ|6#Le_WL6fx_#Q|n1SfrB6#jad{dZq8f-%ujrSd(k@#;S8 z)t{U|7FpMmlmap{U7;zdfbGDp;d~TzBB&rTk!pYHL#)9rm;054$v?}_Go4^;cTam{7H=X#g&v`z~ z*YFY~pVS?*%Lbk*|KvbXKCi^5dEBr8;oGdw=sO2Cs)tE~VCOFDTo#Nx|Mtx1`~gP z*QFLHqLE2MI0M6Mk#$r%U(y)>{8+*E(wz@K43wFgGlfZUjBCT2l%bR!>~?^v6~IjL z;i`uhzqy}h1fStYOu2nShR0)Tb@#3<3=Hd0P^slz7t*3;0WXPdK{j=fc#!sy8%`Zw z?O*fysV}-5%OE)>1CpU^QaEfSfX#pJjxj=>qO}&3hTX!Yl_zbQcE8Q+YP+v-L{;(s7QFxP}wtXU5GUWMa5fCiF~l-R`soTQ25(w(M*LGQDtYb@7gcx#;($JlFd4Fo#U`lo6dgbCVv^DW7>PpPbm&doZuja&0_Pt}9 zHhL~WoC=Fn9h2y!Zi&2X2WNl$W^c}|G&|o!vDD6x><*4`ylhI8_{+|FPpq+fl_HN_ zR$7ill;FEoucO;<$hAcXXwvY+si!ushhp+z=D97UZm9Wu( z#R9%BqjG?6b#q1R2{Nw(8SS^SApMMYTi)@xFebTA=E1und=5NS&vAbX(zl2#Qog>p zD>aPAax!Zi<*lrst<$A+MgGT9uQqY5nO)X1TiFPRU;)cUlARF7YRo45SA(lXNp#6E8*3@Kgmi!?&&@N(iGR@ z$BE9*7{yq4tLO6*__?Kqn^4h4YXvJStTFDHA%%yxg&*-QWl;qR3_DSkiT z|Aac^lGe9Z9AY{+NVA#aAYFNFE{#3% zXk-mZb}m$*;#u4IxC`&!x!GQbjjtZp$6S9$49Y#wYY3diN4=^{Chi@Lb0SCbytut< zmf7GgX|I3A>8Q1JY&9AyO~0&?C4}U-zQdXF$9XwPFzJ_qf@s4Y1xedXVYguRM2dB#p;iAg?encxc!}os+QnSp9JwcwlwUI4FLCM#jvF1!9 zKpmt?4Ci~#HyHOJ3_70vtGhNG)$2A&}CHb@*8+<~Cw?EgZe+bD|bpuJ%Wzk7U zX;*(MDVj#l?40=&3htJBD!EbDxLB|G*lj-bDERfSt`3-p!I6QT^a*R_5jbZgc2d+qEc@+Zjt}UK-qysa!Hv00k zaync|lVw5cqRQ&8gPE|59^a4o^@Q~Ji>ZGB4E{&^q<~aLJBt3(78B+1zn44oSIT_hX?}hOl6+YT#+TnA3$B^`L5>|RDOR$l z!x)8O*V9Vq+b3x;4CB6aM6X7bk$5H1=Hm2& zWpA#^n*uY6dyp!Z=UyH*7SHS>LraABmQ8cU6Yb9DVi|!~li{qYC-{od2i3{1QWegD z?0iCIe28TFcGW3Sf=UoaLeh%fX2ix^%ULYbSG9KQanlu8pc9YbGJ;d9o+AgbCTML6S5x6>#(S${=){5NQNg2qPJxLjr}Q{1(Xh;jvm0p@`tt z?Z2bn$e^qHYfpHUQ9St4$dOvj(1*W}?7g^!lootx@BUK-u#C1YLCPUm;&^~(;VoVs z5F$l^Ji&>AaVITT5iGfl%Y}bf%nIS9I3~WYxK(N$&}{Y2ulpsh=bNeEV_R*h=q*rU zlc}Ym8L&*!HFRVup2c&y)*t4Wqy9zdt7Fa9yd+@Po?4r(go|ZoDocsk9;nP8idix-#f+IuR|XaJORbw<#o&UZJ?tjhjbW}q%*+lc3dw8 zeB{meg^90tfJS7}Bw*|zO7GJvwaBD~(c`rafJ|LL5pQ&u`DCZDOeX|M)mr`D!imlh zk|-u?kx}*w&POi-%avCwIOCP$v6&-PVrbxN7XrQ`T7{FKHWeob%{x0NGP_wwZkg zk~D@(BUnWnXmPf&*;+@mtWt8&dEjOBaD4!~iQlBZUov z_emJ5WB`JNCGY#dAoOb%pY;W_0dBM^WmS=EO3SU(Pb(!nKPL>Ms#)24r@DEymXc$^ z?6Z#@!Owr$gS;;qX)6R+^U}1kY?M=?D(RZD1V7ED_C*1OS@+c$$Ht(ldkE_q#uZ=_ zz_i0XY^SAbH!9J&!wb2;OmZEEs0t57dL+n2QuG~e_O0F1M+XJBdKQAGd(km!s&(X) z^>gv87_6s!{#RpH_|#uQf@t*cYl0L^%k1i5PA$xd>Vz^W=9?lXdKLh7l@_gPiNAUq;v)Lz*MLbTan_oArN?@gdy9_%v&`9ki#T^}}W%ZvLq}bay?i zCcX64vrN-K(aU4V&+?^-#M;!dt8$X>oKZsgLR0$ihZq?T8tB4*g;+)#u5G!~!=|hW zG)x`HdgJjYPiw=;gpZK2d977 z(L3Isc=oXp6wQMSX?4)m&EoUj$7TUSff+8$b}^MC*RDo*$Wo{_=bh1J zsL=7ZvMP$Gc$}{~KtdOyiA9nhwW0+5WA3~tninEM8si1E9D}7+8*QKhoHa|c1A!Z9 zqZVNKO9@ah8eMC{aB#h0Ex^iXV?BS6EAj)h3eOo=yKr<(_mDHhL91AYKok_9dmK-M zxa^BiKF2OTAy)B~9vUBPiI3CQVRoMrxUAtLvb|OLbZR*67z+Y z=Lb8aODYwc0Xi>durKv*bgBQZ`?6n(#+56_2l@3JeBWGUXny5E!a>pfLYse!?E{0i z*mR&0Cq->6xWjl16?24b7fSSjHh$Gf0FV%Fpidc1+k*jH6_EweZm^&*J7bm;bv*{; zOCz-GAL6a6<&_=!VjQgC!N~FSiyyyzQ%>_Zx5_hn+C9IUD3^yZRn>Uj5tme8ef%FCw}n$R!=rO5$y%GIDf=@^I?>`>$r_hX z#HSf)KgC?3DqYIFxH*5PC_CK~4pg?58+2GB_c4_XeBIqvv@0HiG~SX`ZgN*2rEkx8 zjYl|7^2r6;15&dwkBmW5^6|nCOPfhj`I1n55YVt7ktQZaS~!vV6e~x~UE`=f$x$ve zP#0E_6xX&x;3oSE+DdTD7^mdAR{XYBOdX-h>=|lX8%9og*O`A$vO?5V7kuYcuvZ}HNTW7rH=bs=~#M<1j!grS{bmVmpSukyw2ZGHTTcKODf z)9&??bcAUfsO5-z-xq1kP;sh}?RA$rhRFD!*(iZuS-vD!kk^Og8A<^=Ad}NVaJh?Q z2UvPYUNc(S0-0j*I*e-l^cm? zfDoFlw#XFXQ3Cz1V(;9Oz`*n1i2dTczia_2NU?vg7U_N=N)fTk%L^ciLIC6tf9xjA zw(nS%C&*o#^u_0KtbPGUG5juRaHv5d?Cb;qw9-E0+BjN3544a)7z$~qdy@kq9VWBG z8_vb&T{@C-!bUq4Gjpn4(Qz_=)*OU264`jN=rwJV#UUOM&}mS`S7f93LtP4h?duIB>9S=$UwXh&N6!E+bb#uiGx*cW^{ zAJjQST!-q=o*V=sChN9ZIIFgvT?7$nMB}|sAA?K`)gKd)km9y2DMRYys096P9f8eE zffBY;B=qorOjmbUTOwvnu9QQ*pZL3C0t7FVHF6spnoDG>^Qk_NiRwuDWws4t`}IH$*IuS~66YN@Pn@l~ zomi+pZf^GO%XWM`_h%Rwap>-Uc9OLeYwGUV05DA?u+hV=;LdY#rX1#DRJi~%Mkv!~wTj%`-`yrM7uP(|H9mZt+_ zJgiS?jZZb0(6O3F|8RF?sk1Y~Jj=e0yH|W+g>;M?Rg>OjP6G4F9aC1gA6pX~f-*p= zF>NdVL@Bw?Mm*B?fw=eMq$FKI8DJ$VTUgCY?a-! zodCZam9>zZVy?3JXEv`8-8SgnVVoy;N-A841Bz2-SnQkIzRTz+2@t*cQot>>1Uq1i z00xDWS5Z@DoRRX|mO4ius5FbH?gm(VGljT?ZM)^Tw0<&@X3b`T+j!_UF2Iz@Vn`Rw zZTy5|MBi5*AT_*R^}eQ4HGrsUz;6FtkcTY!I8!cvFhIlDv7-(ybev1fcH!=QT~kF2$Z1o=~dNX8pC9 zkA^Z6wJn}=N2{>7;m!_w<#_G+$kqNCDLkq7ORla<7YjRS9z_OfRdRpR;MoUtAubh3 z(>{lj+)Q+20$%ez>eG4>a+bJ7KAvq2lr@dU#{Cj6%{Iy5P`nJ-FCH3N^&Dd88m((T zaS~?=Jnz|k`vRVpEdSCk(W+soU3qBmAV9H20%NB;q{9aPBBh63FQl+J)w$k`f>doaF{;7ZdkizauwWGek5z7ct zZKNC7JU+{inOUZi8Slw5XTBMxC4c$KyqVFfO(9ndA~n{?B7D;#L<#D4dn?SOqWg1r z-^kKFcJnk#8DRjPZtdb$4IMxwQe^i_yR*y=0gB;6JyJ#CTk}O|eCq%Xt=jyn90ga) zmuZBDHL)U!eina(Ry9&m-yhg-^M@<$!DljjcvZOH?H zvgLZ@c=P8++DmHV`J&3=K~hzTn`p@k-}Lm3CKK(kg66wy>)*`2Dg*mpxHThcQHmsgJUn(0v1DKDxdxS0#7Md zp@{=ZJQMa2oINuV9#~BIEHZo|VcnEj)M6W0;k$xiR(k{Fmkw~zO>!ntNA4Oms)s3L zdm=9Ft$=?3wx$OR=41S*pvnDbiQ3^kQbN-M8aZn@omL-YF}j-4SF%B^n>qK9L2smv>+OF72~r0H)tByV`ZKaCF3h@ywZY1K z-8qZ9uJBcr;4vU3B!2?mVav~*-+J~iGs7o&=CmTu52p;w>$GKSCTokgRh>JJ1h0zE zxlMu`)rFJbbYwJNmfSw7@M4k!+OKBTWPSTQ9koX_K+Cr-I-z&DddwG?EAtpH5}Sqk z$5MZ2?)Lm5hM%T)GhTB$8CVjfce;7`8&IH2nP?JGO4JMLZhb#^DsK2W=BB%Km%EIJ zSTL#={#3(JP=n+_a%&UA4HIf$b)o2I?!t6tKkb^$;?jMj=lrGJ(Hv-L=XAlPKVsCv zSJ6?W1w8@yVe2)j3hn3PS9lR8^N0U7{GES6sn^zZtx?mGoy|bABVF!?ikf_azM6wt$vKY9fD< znoTaqcSqL+fwh#=d(@u!Zre~uye-qYkKDGt(f>DOXsXl?5S0+?LV5DZ13wkeNgL3b zIs0hp!EYOR(Sh;D}CwqSpf%AmGbl%J84hyvphI6XP>MTbUHayZ;CmN%?T zA=XgBe#qt{(7&fwAzLsp_l4eNM6RA{P`@X2gsLI3ao6CRE7|9m{d6lg^ zu^l2K;0*m%cYnyId=QXy)YMD)-iTih@5tN<(SpcVOgH;*ox{M?3z{2Pe>ahebXcC94wQ;ERj48sd$<$)^-o31Q{!1!LV+H*r=vjxiXMJ zQvRR(@0CP+RfZY+bA_aWY~OdW3Iq=o~qx<*4J-Lr`z<3JH5k*FY>oezqE;dIc?)geJ>LT<0A z*+n(D)J1aAZnE`PV3hU!jILQ8ZQBd?vknqTPcpXGtYBFy)d>Q_^fA0>SL=E)o=G7d z`DU>ID{rq`N+EyRWo9LHSo#Fa|$$?e(0{ z9+dCcyD3WFa24t!9nxIP)wV6!&&f>i73IF-)r#)a;l8m7h(2Ytbaye~;Kd5Z-uY~} z(oPMd$`X}xW!Cv+J+>;$&%)7^1paXog6g)!JuoT&5AA;R;H{USHK5_{0vl79h}akSY;z zi=1Ut6wUDL7b<(`q4lSB%fK?CM>jx%?0oR?7vN|a!S6Bf>D-2gM4^bGtQaoFE=YQt zo~Hp-0? z)$)Hvt-D-H__%b0dfLqDNT=FmBOgVR(UHWPqMkcaTo1_ItRg~%ZO2}x>7JUEP8+cP z(VwO<9Z*RrJ~gx)MCicJimbg0bF^VXpnStu0loa#CvXXkzzg`}vS1R2kKt&E;7()M zbIfoa_iOOT3U}@5uyCsrO;;9$7z&+>#o~XoPJtg##~RO;jmeauCY9Tk^}y8XM8_KF z523yoKdd8Oh#;F}j?*>Kj}rq7h@RZ+tw$0H0-`|?%;Wr>^|j7hX(J*}{Jm!qCZO(z zp+H2L;`HngIr{DbFNF`A){1WDrf9LV9QNav!_ijOshyUl~I)SHiDmU5EG>7S->I-HPjX!jGqA z3G`B`OLHV+gy;ss6W-o;2xGcpg=5Msm{>1qLx>?Mj_fRv0g5yr_6`&l&kh&B|y94`zQ7GTVLEriY<1-eiPi!M3iriEU19uV)-93oJdz z{$}lKKT->v+85-@T=!-D{!je$sjYz329sOz%4NY46rXM&zQkDedqgL&vG#SBK#!pQ z!689&zm~r0_HL9ZyV3O&hNmPlZ!{RhoV>dnL7e>+22Qs8*l+D*oKc%(`0h-Y9kFc*X5b=)QObpYW+#jyDje}22g&_SnKW*7@%2nAej zD)HG(ey;7n4Q>(xw+O^RGG~AMCkpyp7V~cm<8Aseiix4}J?xIguL$yjuh1^gbz5$G zEz;&V*!In~k>CLCKk(4lJR9|PtzFHDr_pSHQ~%pFfusTgn$^p~Y}!sz=Sb+w-Nta> z&oXWT#2^WNK3VqnsBsF+TP04~+O0FOrPjBvl;g{XsQq&El71-x)xLipmNvahPffe$ zY$VG--?cXy`6}6#75uIRxbmEm_Um8hp5vOD7~q>1Qm}3#<=F*Evsu(D$beRCO)VUC72ISop7pcZ|_kIcHx$Bp}|vVVmOSryf7ZdrH za$_ZbfPvDX?zj;GCt;v6n1#A`VfN|qiP>xYe=IOpNcknZ@Yl?a2IjpPw+ zHEsRJu_OneG{^U`*E@jKkrY&g7UY$GnQ@+F_i6i}t%9|yS~7pl#w}y;`VIPyw{}f^ z2qv%e3^~Y}kTlAsMR9A^Q2&vIH$#7L+uY|$x9_sQZ10~N$=;19j)V3Zn(&dKWrMyv z9@CH$@|h<4n7|bk)^wCfmwTrW_wmiav5c?sO<@lRQ3bby=p$F~$Lh(-{1ha&zXNcH z+f=UV^xrls&47O)rg*Fo@WuNEPbJzO_Aj!$v}NOQB#NGNlf&aLID=(&LdPuY+ljt( zDV1xIH3ck!O=x;YxN!e@pkSczTa+D-W(b6(6?TKxCN`Q4Re~H)=5K z0ZSwlO%$%Kn^ePC^}Ku8(2F)DK`P!8awFlI6f4q$48DJALn!BN$HgHoX72=ZQ0C9E zYxCJKAix`Xw)mLiQV!KXMlvE5e%pyF1YC%+c{%sZ{0M6e=k}6q9IQyQaDhOi;3SJ6 zVcCEVl{0AX;Sr^Hh`vcbYK%6gFjCq;FrS52Yd_4kLj0mba!`|($yarwEbh5=eQoPr zm0Pr|U=2%a?WN4F^M_%jy}-ySqr8^ znt~`=nlHtAAtAu=KNUb#&?TA>>wg1Mbe9BD^2vc;viGuRmiy6;a@5-(Mv+2jR5jk7 zt?Fj`{O9K+TM?Mjj=syn#Z>u@j1k$nLut|h8*)S|-+A>`9Nwr^Oh4s*O?J&HJ>o}a z>r8*IpR<`inL-%439cM~p;39(dq7b{ZDRX$^jT6g?=GDcPx*h(S)_FsKt%4vj5J!;bHI^X`v5|!$LcItUWeqOs9PTIA z+QB-o-D{8VXtG*4-v;?j;!s6b_Q!`!>lcC1Fy2Uz45a+JTI-Y=|^t$RueoV z@$Y8Yxd#W6j6usXVB-bvW{hd{7e`IMONB??s$+eR;;Jh_O$Q;D0=d5iJ;KbU)C9Qc z#-Db5px$W~9_*`TsbP3hQ{VKWfHvkK#N1K*hxSFPztYy{F#P##c{Hmyo+-lHb#s5@ zET4Qh=fnb`O77(VMNRitA8~CC$LQW1AO(VJU^O57C;|KS9V0}*U|VoB8keek0H29J zDu}5i`lI@9qUc$F_y)_(GFFfj6nBIKEjiA~gJP(O$^r!ZZ!`omK@qToU6i@gAtCGc*vDRRCiU_^C7uzh~HFPUmOa*GgE8uTVt=oR$9@U5Of*V z^U7u$SJDX}j88qYDQaL+7PNdLLi+bgWx$~Q`h!FM$2tuKTRxX>YL)bymhgXZN2>_{ zf8CLX;|wfUJ(ndjHA!WXorluA*>^5eP{3L%TyiS)>qKyzwF8&bN@%=O2G({QY`a0~}tAxbm812E@ z*_5#muKcyevO{ThsxcWbg{csgK$oAx<$xr-Hu~l2I>w(z@6EL*UMSbw&{R&u>s(Xp z>+f@6)ZMNt{MaW-8y1CEmpm_vU{&Y(`3h|DNFx zyGrHM5&ap0s~wHkLCId2#^+;BGiU$(4JLaP%YLC8pQ%&oG+Z{X-bNyQ)=|?1B)9k) zVnHg}t+n%R732M^JdOj`CAVW~p{il=(?Cp?1>4)&6V(w8@YmFwwO~dF(&L9>HNFaL z{4{UhOfIAGq(Y#tx>A3*@<@{em>noShboo@k{#z43~I65)Tt10PdEjNYgKJqzsRo4 ziY6qKZ`!hSsoIH9izkO0!vxQ@04!jlKy?1BJa~1JMfWB5uiORYK{}fC-(@aC{<1BE zhI$=JhOVN_gA`lC#s@mlGFmR_vJu^Vs<(JL+x(?;66qz~s9%2(q1#*_9uPcWc%lzd z5LmMJoIHUaP~HP^etB6N_(UF@ES8x{2u7)w#?rF)m=rE#0_4^Ltb%D-s_NY#u9ZPI zU6(l4Rqk)J$Gu~)pe!|=zi1%&$sm96UWGB`aoMJaR(5%|(BIxj8J(O;Yn?$^w+Muo zh_+VCt0G{i^(udGV;3fG_ASH5Zqy0cMouMKoHcvPzBj`jd9}!FOqCd4_ADUtRqhrm zj?p=GTX`YwHG3gijy|B93wxP!T=VZPza$$dnpb@U zBgME1y>V|ol<^%SV3{PEr3`q&zvH!%(IV`S8I+2gbAOLL&vPlR!XC0mavB8)3EHb( z#0hMP2Gc`I^pV1rdg#)oO;S@pK5ep5VmzdFxK)8B&_8gXD!Y-oG+D)ia6GAlY4Z>s zN6LQ=`Kl^_Vyixg3-{s){9YKLVR!hw7G()mVcnu9o z5=crw)UA}k8Iw0-5W+_6L(9GcfqB;=LST39Za1JG z;Cbs2M|SHhKf10-64vOu9%7eR5Jc5NDmk9sWzUeE#yO>e6_(XKrL`9bbo==Si{yWF zlsi~YzLUh~v&2Gl2p3Bdir^eJwOh1qfo<$Y9`o}~atus;V|1XwvTbbJnb@{%+qOAz z^2M5oZBIP0?TM3#ZQD-XoO9oL_x#gX0lT!?EMhzjB@w8gZ}lc zKA|@&tJaGYiDx+Z?Mt zAuCIKa#b&F=AncHVTE}@pZSN&TMnZNdyd<>Pq=)7nH;!DV|Y=oeQ)AG^IsI0Nj8#M z9(I`BNbZtF9l&j99DGhUjQ$)fK^ zOP7qwS(Cp^^5*yXmjd2Ru3dCv5A~5`QO`x;Tx}IWb4SeX`8I|mr zpJ{n*1w5H0qRRjm1n0h^u>#8ae=)Qg=>`$wpz96)^7u_dT?m_$RKgf1A*^bR!|Wo1 zJiCpBn}#z)lR9RzJpcz*EuG38d?629vmA~jJ*Bo7{<)T1TVgwS_Q_dxJH{eVMYyzc ztXb%^GidB;cG3Z3u=eeL^AY;1L=?_Z-4-6h&m_60>atK^y$LvWaIU0IHlHT2)*9D2OpfR@Z&xFEOgJHnSzG9^G>A8O3?XyaY`JBY>hV1r9v(>`Tr!AM$hJ zsTXG5{<^XQW6GBakn#{0`6TEkW{d^=_!?0YuBMxlwz!V#mII?LLD`M(P+E0QRo(C> zo4vm!E|em{qu?WZeXqY^tqEE|i4g47q3U6o1-yb!L$$*-yRCLE@rr>YCi5q3M&zzk zwfz8%dmQH`$OksB$uHun`P?a}|Mh%#JAYWxLS1;Jn(KjTNkPvl{%}r;4JyU2Dt>q% zcx(}>3ZW`YppcmB!uPue!7`po6*?`N(qQ_%9ZHHfvQukz$p;^?x14(u21y1%z=ob> zO$huYsH_C5IT@v0Ea+H_^UppqJ7Y8_jiOVJgM)7KDFU<|nPbmZM>ryn9VarpH8*Cb zP0cf`?=@j7c(4@h;r`*^{_eR%K{Zm-s9I*{Ud})dVCl$*GwPxC&*6Krtvz{*^rC>c z;T?>%$so|0D;+UAX&B4}Wm|+RuU&0VVi8u@G(M1DPuRPTyb;a}t9++qH&+lIXXBcW z((~JwLjd%fumVu_Xhna=05u)1wff*;jA7uY-3GgzCpgjA96z{HSW)50n2bL$bBE_2 zHJ9jb=tA?qT61*O3aNfhT1UHL8im8C!npCIIT}SsK~Q+Z(1F%8)mDrM8b{dP$0z3d z-p9RpE@ghnqh7GMQXGm%}2)-uoxLZxU0cwfVjKnjKv2E^!pvgIu-x z9a~AxI?4wRvpAPjwe~tlN};G^NO`VS=MQYwFE_R_(Kd^G*e!3}Jj29H_7g=PXWR`M z#z0Tuu2wE@pKAGwMra9FmnzZG6T3m02*b>4`rj-G90v;U+=j^wZoO42U-a<`X0o(W z9BRId9U0*r z^K%CTL%0&9lh2~t!F+l;Apz3S@F}Oi3Wys_@R^k12P>P_@2xE-6c!`lxT|{hKJA|8 z^8+%vgWw&S(Wc6CyaJtkPft$3;V)UUYj+>&HVyJ#T7&Pq%HCJTq-0L{O4GSMA?$L*U{vVs;KE_=k43FPB9mp;)`tUmzQpY$)Rz(Tef+4qg^&ML849rjGciwH7v~cNszEpt@!o-YGlcKOl2AcL|<2+So-brc*2 zE;C2$jXcYL!#nE~T7qM=Ugu`2or>MUnpZwn$cI#8WBVxWZjt@bYLp-l8sYskvNVRJ z6Ok6Z<__KCxc&xDc{0bI#zvv{)mwQ) zDQWU`T8TCMs7vUN<}teCcu~sfL9Oqc1Ho{^ZBAbJywu*04MxKcvGVvI2~I;$N1t?l z-#OB$W92|j?ep~K&pv#@$2mX70`9fj=C8j%PwK%B{s&QTTppYhg5_T(ERCfY6dRn2 zo%Mg_>%AVgoM#GQakM2@$0S8}5aRqp%dFK?>zi0OztSkB4grYe*1&&L_Hb-2wM|fe>Q0eG~vPf_Q`=6k$tiYN>Ho?nheV=4(>{n(i>h}HCpRw(pgdL#hOOtT@laPfh zSQy02jf^UgWO;raD&fGW+rOEm4$}DppVOoHP3ffO+eptVh&v!q42=__@L8WzU4?;A z)d#}sqG!ivMO6zfyt#;TZVax>S?dD4pGAhWjRIv*i-($*Uq-iItb%;F?;K+D!}m4* zRbSx~ge4Ojy~ELmiogdaOYQ5~oKP$8^Hv%eGAE~J^QWiKa}5npv#`84JoW*^z4MI= zLDx%1jYf^xfqivAekD^l{IrjmbdU!fQv?t>oS8qFu9b9Vd*8R{?ul8xbO0KV<1bfl za4Kjwu0SlhyB?3w2cs>3H0R4KDr%+On>EO*6;%G*z6u0|kBKfY0($@B>ko&khcn0; z_s8Drmd>>w!vkc|1l{88I^&i(^4&V^bZBxt~2}(x%Ggcxo;)EVW5K}cZ<5j)-OJ&UeH{x7Z zpe9)@r)pp~LXU^6few+}VujFPm<% z5YNDrV>Qb@Z|v}XrL}S80-hkfKWXz2K9=4kpB}yinG)68y)GP=fdJREdzwaO8#<>l zYCTdx;VcTc|Cz)mM3ocG+jl%U0g9g-76jtSQC6X-Nz-}hc4mpq2MBND$2CgvQ^xm| zBWIbn6KBLGLQeK>)HPlU?`I`rv2zMnbYr3KG{U4t+`I~YD*V_I1JcCjyFB&UhP3Me zU%RDQaajC=4VTQyv{rQ#g>xfYh%LM$QfU_$`kf9(7TL zM9BWS+&)TgoFKD(OP^<^*?VVK>(*O_c+x|3J5u1h?&mPEAjL20fqiacc0|1>WtERlY=5F^@sqk&l z-)ykaoiH~-HC0E7#7Ss*I(jD{&jzILW1_~&I0sKj0jY!aSe6b$IRsm-FUeg`X3r*i zHC@lo{heB2f?a+L49Yp77Aa=hOADWaL?*?jL)NLC|`m9*#OiP;GDL(Jlh=;`>v5ESBP#emb zi$ojZGO1!{lCdDBVt5Rj;awwIXlQ4oFhgZ8s;b(dz6}H zZHhA52l%-XD}g)avaSA*v-6n!Soxgm)Ojby(w(f`(#Al^uzon9v3b@f!fv(Qa0o`N zSm)cXohwaDX$`{!UpDo zg8=#+d0bt}1!T8`uf{<*rl+^}5v8a`tQc^iqiFAhl19~x*1DRrH_1oozt zo;5Ge;2q7>g7XlU=XeG4*jLG{Rb2q4|cX(*$! z-Fj56NwP@Z>E>{3Rr;&2e!`@(l(4iw6xi>fLJx4X%;kSbihWq=XPsw_UsnvQKCRM) ztW#GNX8Yq^g=QraCc??Sb@7YFG&IjJ*32u0T@K&%w+*+Rw&d?Wa>A<}8Kq^|1JC`mQBaVpv+% z3uEghS*_{yyiI@3Ymbg&pIkBrEIY(P%bXjkc+gjo&18QVrY9zULh;FB8@lQ!QGc&j zMKP|~0_*!Q7~UwtQ&3yc9>J6tk>AQlYir#Ql->0j9p)50L$4y{&C(z?ph7a6YpcM) zQ%%M&BXli%Ehbf}S-?fyz`jH}iwCg!UZ>_Q&$UQT{Z&#wcb(#kyD7=oFElskWcN)J z&_fJ-2&^APZ03caP*uM7+;l0r7dIfRci*Da5tO{%2TrLLC}NxIe&<`Z*w z^B6)U{Br<%^@mc|u%=XyAhteL1_Z#n0L!*19TWd+ln=RndNti}QA>cS3A>Iv}PAdA{Q@2)Xj$kwNm! zz3HKx#nMlGK+d9!dheVISt=%m13hDu#)g)H)d*LQZ9wP25@*&Fcg?9R$yj0J^F*V! zI?ix#(g-0X3W#v=2juKxjbyyS&U2D? z{HV?a>K&tSvz2+tm}aMRp$V{Jv9pzP^X^hAVNC!{tN6&r9r7zBo$quHmxYnWPIbam z^y;N^NUJeJ!Bpk1ubV;LsY@#>j$fj-`I(S3fzW=pD`*{O&gN3#F}kIWMuRZw&D&WE z3&^RgUi}uufd7(%MsGr1TqBHhqtG4rn22&M=_^s)0&75yxx)bUVlwF(i^bo@6B6=a zt#r!Tya624zndooUG>=7F~D@UnNSw-Hbj%LXx=HF!Z7bo+f-NOX@|NY<3fl+6XiH!bI3#IKAio9S#9mlR@ zhJb@e`q0?bka}qrJy)?`(g&60atYPALnkW?q<-HGbMM~6{=GQC-?5;4xzf~LTYI~` zLVQezFJj3E9;lDeuFKs_FZfrVDGa4ZCj8n$oUFP+I918jlG3%_Cy1_!&6a_;3YZ|4 zDc`;)AUI&B;qa~C=gxg;S!#DwO8 z6CRwCPi59|qP2j#+Xg|bzp#2M!vrx=%&=|e>v^^Jjb!HKSanO3xomxl>N?w1BGD*W ziPEy32dp9OUF}S^F9!a+l}h+;l*XUIzHNfi@U|9j*L*@^d(EXuK>=yc1q}ssr0yE+ zp($30{2va-F#DyzIUc7IFTre@8|Jq{NXWH^y$I|gyCU<$NKnY-XG3#*8%0D(7wtJK zz|V)ZP?+poCPKi^%uGdlN&D}uK2exT6Jh9RSH;V?&>;@>3HNqlpk7Pv1d_2pn;mD; zX%Q{RUB+opN1gYZ=1AusQat4GOr*#`Z`$i~&>Fm}Zr@&QL=_fZ?G-GB0rc-gugaP= z>OaiC7g=+_oA~NHC8tVTcF<+5-F=I(1LE?AOMUwfTfoTC$n36?;zvjbk<^{Eu9BsU z8fgP6^+$hA@yL8{>#qO7VHf9y8#aUC7YTv5DEU6g^%{fL4D&B*`|Az~O6jSIn~Qt~ zH+*DZ`eWP=KKj~XvCY*3oA)$Y5;m}v$w^ZFXn)cRH@-R+)9cor-teG5OT%t|2ROSw zVOchrPfR1olnB-YgeuD|4#&SOa@i7GAw|uHP|jVcRX4sb#;kL{JeKlTw?ALGEk z80p!`IPzp1O~(nEY<6x8n&z%W!scsZ!JgSj^1ab=9JI)!=sk?mSo~^w_w#h8A=d;v zMEX3~KdHzjdRvb*bBEJgnN_4CQ*DNIv#HLJGoMF;zj$>;Fv(L++PI427zlaBI(8)$ z+*d7G7$7y0HzkSKUrB&l`sKLY={ea38kNqID}ASz^bVCXv!U|n5$imC;UEyY&H~}H zEEmosLBMJvX){=H0QQKYYpA213-jG~XCPugk-E;hVwHeioJW^0(@i{BWt0AA@O%>+y0Jv31IWlN_%z0<|`nk z6?9*?T>rhfvCv3%#v;)(*zh{@L+yArcK^&J)=qa(h|~0EqTNe%B-vHV1qNJ0HY>^`|2t_Q@Pv_1uVQfE|>8Acu?Amvo}UbL2-82%%9 zq4hzj>mx!_8=Zc+W1>}_Zc0b$9;Q$*wNCHgSSebZ7O_Hs2mmYgudAl!(#P@AMq3Nc zX~UeaWVu&AuWaZvOAQ$F6Py;yn%?RSO>`WR`@OEeq0N1AfYkeqS3!QDJN2H(*pFs* zDPyGl`9yK@!+^hWfRN~Y62U^^cnv6PujV9W)4dlCUTveU2=mN!x6<*KD+~PY*aJ_y z6t3jRotL2T1^ltIlXD(Ej_u2Z^xrl>`4EndZ^YD&2qk>eBbe>+vP$}pEq=Usz?Fv ztB0c}YPXK2|DYFZ$WafqVkvzGc;m zEV{q?ED+uxyR8YvyV)U82#0yAf;WUMzE!uI8IGN-XsQ^{dH=_~y6k^@=jUuLYn>o_ zn5>hk=GC)P zOAG6xS*g{l?{{kTA!v+ig-5!Fn@t57q3m1V_YoL*_s)EsBRxJg zolwvcjX++~-raQEG4D~qvSbzi*yQLw!;LiT03IZz%+T5wV;`?IRfyuwbvDWop?_np z6-TRx|9D2+zW(}g%=T*HRxtzG((TjdLw`TK`ID~_`!Urb=}tQ*+>Xf06_%p9X>CyZ zy|vPY$fg9eFkFoR6O;R;yV_hcH8hx!i?0;VpGnDLRAZmUymJZd)r z2B@^K?}UOSI$aJrM+simSJ`MZEgGzsKUKtOKfBN3w|jZYHEwKEsOLvy8hU{LHGvS? zxi9wYU;lKM*uJSZ?0A0$2s@n=q(LWxgyWPQHi%QaLJ-x z>8G1ha1$SEwmw>gog~&&=>01hbHsbF4hTJW3aRxG_5#HF;y$^@z`S2v;OO)$idp;G#yb9gcE-9VH zmSoFj)!T|K`H|87C~PiZy(IT8<-0Wg8FMVP(KUvK24;J0d9a!~*Y631QIa1f3mCo< z70-0D9-~^FORQijzbbV$ZVm3<^R)&qoD?a6t~^E&RjpG+$434MeHp{dDz`cf=a{+g z9U|U&@?7P5k&Z@@S^K^P4J6zik92j5N$&`!F^@lZuPe`;5%oX6duit=WO_M%!&~CU z+&qf>gD;oyGaTg?O(~5ORku8qGJxWEaAd>=_bRBmpiG8osk`ouLesh2qttJ1wFOTI zXpl38sd)ZwhD6q1V<$0z!%nvYm{BCib3;uE0V?^;NDa-0ZPwho)2n4 zDdIH(K(!O-|r$gukY!)9E86lOI)biY6DRoX=nS9%09tY@0d0XZX?5pR zAuA^n2=*Sf${|kN0Qf_62rXkf;UA_2#c`h2%Um%V)nWJbYTjU%oJhZ;7^XRKN zLkp&(`xu`) zv_np?)*zN?mx0j>;06dg4DU#XP2G|3iMl059iHfTqUo>gM<{*z@{|2l)YO6Y=$|sv zY2kgh)C!zmDbDFSByK0POvUTYT)iQ6l}Gzp=GK-^5>F%4o<}UXXCH*CJ{^yf9e-l2 zaO!ZC$H|x zEJma3T|Fa&LXQ?XM3nB_?Bn&UB4EA~I^~IIb*nD2YQML>bXgBO$yJ8eo^m5r^kB(3 z=KPqX9;8_S3~O&--wIUhR6eXtyZXX07z%6C*$aNt$MHCg$od13KRErzFX8ii?p-|x zqms&|nd9_&fNP!y0vsH0w&GUL4%!NQ-MMd;M!VFl7J>#|GTd26*%lXa8_4bCSw^mO z(-cWt>|`;C;3T9DN2eYW;E=R14%ezP;hRnke*P42N*^0Przh3^iA6{95lbwJ$ zU0*6GmX;~SOEb+DCP1`1hY@!Rn|hIF+&`jY(EnBe9D>1plTIFv`^C|-qvaeLMR}}R z#e6#%l7$m&INTW}gOofN!joeXt=Qp@IiKer{_DEC0PnBdjm+M`?I^ZRT}z$r+U--x z8p}?1IkXZuxue-p;r$7u&e+L#u157ZT$; zSwWWA^%;61683l&%z?V2{hQQ2I%5dAuhKf)0A63w>EdWzL&ci)5ZE5@A|x(jzZ*p9 zM4VZPFm;;wZndrVN63XlR`4ufu!8oLNKCQub5bzfO9+yPL8^-H;>8iI;R@)HeD9}K z(H+dacTWqU+v28wfwc&|@!0-l*mGs}8jO2eq|>1%4~uq*t@`C|*75KMw-GlY8ha<* z5kTBVMs7f~!VQKh$HCroVShOzMA9H9n#n7%y=<}@y*+D+KRCsqsx7Ayb+xup7+7!h zS@PE@Th5n)U`bh5Mt~Fqj%6I+ygYdAx46&O`89(cU7@TCei*txPodIGKn&82x#VP_ne%F@eUFD5<8?AW*mL z%KU~rj~Y;#Ev1BASiazN0FSg|qF_^=z+NZ%Lwl^E8N1KDokoj1hki_3yoEZxq@m(YPl9V4Vm~XD$)} z+3`_Bb?ruf*;YtMY8sgfll(iTWbA5H>%4Fe3p|S|U7~s2vZ(16TH|&iJk3&J*PG?* z(TlF9hT2?SP~0)~_)LNWe}b*MiFg`JQ+{G`dd z7z2p!$Rl- zoFk-G()8drj66o%^1IJXuhOTXd@dhKQ~wn&n>d8jefEkm2`4 z-5C|5v(9wv=E0aTpIKq~cv`X7asPCIY^XtfV0I+Bob%G*X%>&~lly%3A2SDmVxTCMj&ASdfT zpT^I|DEEqvwss&6k;QW#t}7}thaz2bH(=;YyDAKb24N))U;eG~jV$bK#Gx!( z?>`XNmGidbplvi$uax9p{##IuEf^!d$TTgLe>q%K$w?C`FEw-03>$k)!2 z&K6PO>3SoeMq%dYwzlB-Bi}7}u&lD2S7pkZy&|;mBmUdLh*x^%c2^}=KpfcDeuHSk zrBSH_B{ayv`}!rx)uBo;lO8FFqlsqV3V5Fj9rdZ`Ow>g<^-lgCsN6zg#2e?yeDqKV z)mpSjIa@DUN4lHbdl0y;NFQArm3e=5R&LJnh}Jd`z6tLLBbLP6Pirw*}olIZu|CdbRJzbK?$W)w_e+UhC*DIFJDhA3|TZ1oW!!#VSxr52|2z^-vy;j~IJ`sD_upqvYc_;a9=!=SpgUASmW2vsj8Jk6MI2*JTYQ#*x?eD* z4W2z=P6}1K@7xiFIC~VHi>~SDMupIT-o^wP$X4e^@F?C!Z4dbxC$26UfblH=&VmcFaHc_V~U0E(IEoC}FLF1=D*Vl3C*D z&q0LJAM~E;6Uu9UJj;2#O=RPKt ze^t&UPA&S&nC_d4`R_v`z%#$EhN6oEYOrYB!4|Pq*+E!X# z&s>EkMp|4-gNJV6i7ss5x!2F7m_YN)q+$}uC1%zN0X=FQ3{ON!(IWcT`wI*se>|y+ zZ7%_0RdXbJoLTH~{*5sJYt&X;AO@!E_pdZ4q(3cIU`0-KTqdp%ZLF}ails-*x~r6RyvOPrn{ z5jkXtA>@1{*2(R{M=}Umc)ty!E6XZATKxmZiL|{3-ZW{;G574Y*KJ~H^RGt>*Aeh? zTB)D(i*a`=5qSc*Wzfb4;0oSFH+W~aK#jTs0o1~8s24_+!=dSJ;VCd zT;H2Oar52N?Wm^uQ6y0)O(`Hxd7D67@NthrK^yjalyOiTi5fGrqrJca8ySJj1*oLu zE-ZmO{b=>XyWw&YrNJ0hS$GhWTn!!jO_XxL;xRyD{1)q|J1bHs(yXz-P6uD@l^M8&bONjlY3I?5`fU3q!pC)SD zz+`KEAxR5>HGvw!qX1*ly$a_@bRPIT{?UQ0ptI2A&RHHm)3M2RZWk8+2Ma%42e-@2 zZ1~T@COYCk1Z9ufICr*fAAYDQJ=IlO%yVtbzMB{Re0d9hb$vGU&lW0c#3ws8!XE44 zD*@5ETz8lj<|m3Mnr9rs7>y9^U3>NFLIz=Iq@-J*G4t3gG7Ku5h2HgLY3Nbg|BlA) z^_SVwv3fqIP{l8{F)I)gwt`uDe&Md8*=~@|ZgP(?#?;&>tlbX0lo=s1`H+MLuR$X;8)ZI zCr^Sawdcy+4Oo7pcJ=#Z5KmPOo>XH2LmxH-oO?b?0++K0UD4n6IOBAqMr+Vlzm^v# zwo>!Vkx!X@u10=vY5owQ+(>h1<8t6+5}c0q#+}(UPkeUaz5SI^RKatholuJrfu+9|HCq}jmYT2gks%(ZN)YBJ^QgiMycA#f!?E4k%$6&(o4yGv8^oDfH+lY zcjMBNbK*}0v}$*MOpKO*$(+k9Zo zUAu8ApUiO3^Bb2968zfIzNfdE+TySiP^(OIOKF(W)F|^an5}`X2%af}Z}sC(KJi4Y zFW$eF8=a2iNiohjCIY*Us-L%*QKNbYj0otZRKK@qTVF_?bI`g7S4N;VtpZ*{TMt1ke4Qiuu0rR@bkR0-c?w zL{Q>Fu%2YO@sus>4Bc|oCQC+)UAZ0|I!6M|!PL!I&T<7exAJICyIsntd#lyZkyz5W ze*HdgY}?vN7D6{42nGe(MELBM#+QLS2PuY_?HAh{H&edqKmU@&&ErnLC0Nf!5kjsq zE?WXihD)y=NmkjkG9(1y&=hh7z>;JTX224OfmB|0u86Y(iMe&0yDY}>nUmZUGnoOS z%D)Vc;8S^aM^dX&YKIX+xph11#nIF$Z}VP35;2VyDSrX!(&5!mc7_poQCqAc-L64@ zDCf@?v&^PCR64G)6p3ldI|w0@_@4%a%SIVWyKKK~(>bq}B?wDe%|1;C8w^{{+Dd`93*Cv4LPb zL4GMh7tL1v9ln$dhKo?-mu_$TN29Eb=JQX*QF9st#Hotd9&4)c2jR;S*NY=I?015S zh`AV_02|jovC2!t9`ALz!0w*D-*p7@?FTal`bOmU4DQ=Ktz2BiDUrfMt)d}|by1(C zG&$nV9tK5;XX_p`W^__FX;QmQa{L<#`kVlwOGtI;pRg(`u47eQL2&#M4jY~9Z&e&Q zTro72mcw+zIpBt!Jo^bSkRq~~e{Be!6=fdf$j!mKG5S>2Q)Y2;rQ+iJ;eNo8x?#Ma z#(2nB;HjX}@W?V{p>IM3DT`Sdo@u1Mq3$5x8fqO}d&jt`e8Q9Ps1#M2)Of31Pht|J zk$rrDGne%s{ZEtWr#m=yOA9Fkm`_@EGdOz7L^cEi7$|cBDn<)Z9>hIZ+VK`RS_?)Y z#3L9eYnpHw#8Asj34{|EC|k=vg$*2xjXjOH0b;yGxC#OWJgqGo0;5I02BHr!nL1Y_zj1aXU63xq0o8f?k`Z-eUik4>=be{E4MWIYfkU}^4^ z5a=!c?&gE1$<#og|JP0PFoY|38d1alRsVU7Y~dS&I0Z|)YlbjR%U_0o_y-*cVbO9q z`5zZ0?GRWk7c&sK;Az_bu@)~wD1xWK_y3C*Y8`?eJgs}^pD4KnK?k1ZGWt&p+lAnR zNF$&8C(a*2AcBK&v#0HyK-|EvGXJBxVqs=ZTR(-s|6lFv6e13k{l9GAcw8KCOp-RP zZtmYWIobXn=QkTW8_Pe=ZyG>XM~#dJE#RqU#ta?Z{zQ~(uS4KvFvlwVD zWLBL5@!J`fTB1V=1^yaK9jd&RhNb4|IFp)c1%D!}Xq0)Tv*V6!)NZ1*ViYFS?`-A@ z$aU%d(0S(~Shmc*7>aCO$xzKuc&n(|Z08HFaoGMC4Dlc}J3^I27+Qc_B^<_*el{5f zG`EkibzZ!$Ba@{N0u}0KMiBlFB3$8o-Dd7sDryAjV&`kTZ>pK-po$0}Cb80I+X{h7 zvjPaipylk_^Dc!L@37EFpvf8xIQlyG(BE>{2Dw2X>zI|TEfGz&_1!u_Yjk@N{}xef zQZs9Mfiqbna)GT|n<)TtAYKk4q?i<|Bu>$&VtpCv**KIc6p=d^V4!AX2%FTV$y|$r z-#}GK$erw?EczSC5o{r$Va2U5Z$Wr!p|q2>H+bQkg5aeXD#%?3c!KA-O)y1La}uT7 zNT!_Cb#@7s7|IEY)4{;eYMGmRCRP!-95h8(Kn%}zME(xIQ^XYMt zo*CnZTO}FD!(k6}(KuXV^Wby+3`2sP8-RF|atamPL&%R@`F8rbH0QqoP5KE&OBD1opvDNC4E*`2oahmX zOLz+A821ZDeR=^n+sPkI(v2u>dCSR}lGq+)+=ulOWe|p>rB)pgSA|dCNU;n0tqjYz zz=+apM5qo#Echy|$~?eEo~dJZ%YuEEP6xW$s~vr}>fA5=Zzk9{NzMYamlEo)7UE8| zg18%yT&|Fm6uZwMcGpFB%d!+nwK=U-jl(N}^ww$N*c!5Fv2@YtNtg{@R6~PYeSa9# ze%=;lQ7p1Sjz21?lFv$M!-C1;rMz(#*UZNwUQU3o;Ky7BdWEqnNSMrB(JN0&yD)^E zvYWF{ty=(QxlUs+<$P~dkc0Oeru&0Vh}$9IL?-frN;Z%55@ho5f%}fg>fw>{$K7ke zTcrH1QOzx|wU_9=q@Vn$mT9iEVX^^~IgRWv(%U9H_f+=eLGSVYVTLby<$K0^2*5f# zPy(_uUe@)nJVpGY!H{6vsbh zjur9cclVNIV&Mnj|iKlDv9HyU|QkpmgVD<)RHiWloc|rWuDuRDSp`xur!)64NcOvK959V z(nFQQ1}P@}feTt{u4N04t=w$lH-#Ft%f0$3)k-Mo%)oh`Vnoi&$Byx&y&RD8#=AOf zl#-mFKd271<>y31IhPk-ii6?hzGLs95JuqnhmrXW@e=4R(ZtOIj-7N0?}!#Gkzh_oOo8Crhfzoz{4>!Thd z{x*F>9AW=j9|m}5&5;;N*ybKpV?nd8pKvjsU<}#XCq7T>J(6ymgcd0@kYtxCyo1{j zW}l`D)x$WV2N9f_-vvQYn+uQu=?(uAjv~yCTv`;KUckL)WL$q+fd)2&%KY%QUf$+F3Qcw6|b0s|6BIK$tF2l zBr_dSMWfg|>~CcQsi+Np60>kzq(SD->IuSJ(`#!A{w?Hgfy#xP{>22M(H37=tpjG{ zG`YeQR1;{Ofc<-ydTLC3M?ImfN!-OTM*N7PES|*z8#*vO^Kl$ZxbSW)jKv)aMqYvQ zI|-S$1Rx@~%lTIE`L^Y!m&v%_&(Md^ZS@Oxv+M<`EYq<@q+cy6EXXv1FQHd2oRj=I z)#e$rlhVwc^LV}jL0$!CzGASTkU4ar93qibXFmi)mi&=JCGZVIA;|O>?t+AVz(n~9 zn0{nVT{3aZ8?h4fZ0o~KG9tq@ha-NW-TIbVD}eVzB{RNlS!~k;l0Cd_Zl;f{^^4p_ z9y1A%`Vy+;4I{dMT9$Ti;J|D7BF+(dK+4FV_2`;ZRb0id2%>$B`04s+@Tjf@cMik8Y_WB}MmZE#kEDQz9EVDZ! z3_!!^zOX|$;}cAh^=qI~jk>zSb9%w5L5;h*9OPd$lVllDd|ulVTFaS-mskX-&gdz$3Q;>#vh3yOmfc$=!`VCt=);nx&l* zB%;mw9hF>2@8lZ7#mpP>Bgo)8zZToyjs9`3*CC_2+M@*p> zAtut0sxLS~3qDC*ytkC(YN2IO>nNSjYS=L^eRB+r34c9kc~y-h$#F zctxUCFtZN8xqak2pZo&4eQ zFUp_{Z3d9TwN!SQ<+@@q(}u)U{zsZ}foAGX{?3)mRr!BE+%F0KuW>Jpn~FV-fS`%D zhI4gBx1$0C3;lQV^;z?CXLI|x;#4N~Egd}+=owT8evt9j@GN|HG#?Sf&TCb?M0yy@m;{<8ERPx!+Ue{5}_wClxOwz zkk#WXwR%>zUzMbTud|vKcG2s;_xsG*5*ZW!X+R~hWQ~#5$aGwh5cRsB&qFCQ-X|NN zD!cOU1xTOd8hWE+1fZ!2ueS`Jx0S&UT72>dI~6yU%yocX0! zRSg*9GMzD-Q;zW>WRKP(4OmrFiJ_%4p2fpij`5O*uKb_E&OMyzHjLwD(`ICsl~Z{$ zdc}0u#*C5C*g|A%l47VPXW1r^jFdw zx9fWUf3N5HSi!kX zM*{oIF(GQ?phocknkhHJeWpln>80w|*Sj+zn91d}`asa)5DB+K)rop>O~UNKE7c&<=$~1;8<036Y6_hyTy>K<(cS%~OHBIFNVX9C5a`cJ>|)*c}c89F;&J+G9zm|39J!T;#(_ILwVg;cRhu;D2b%v+RqF zDq$Hvo}EnllwvhLz}@XIIKtgP8022Q{H8HgklS5R!QniR6N*IObrf>Db-mA3ksAzi zKOc3;)5(Map}f++iqN8juSFg*TYOzDk}UBQqt8~3xqP1^^(-k|Nof?nZGAc#W(SjMeVOGnt^fDd( za0(5gOi-FCsRqNpF12}!8E8dk!#}#qpwf1@IHy-)xTmJre(5)G{lE6K{Mi2lgJx-~1(478T5I ztv4HU+a{YeO+QDi-y>wtKwVEG`r%pLTL?sDCc^V+lamF$?T+!-byZcFYCpQzy(?*= z1kv%z(A|8Ikcx{&_qH=1Q& zNa@Q!#ju%~7WmKEKT?RfnQ9KB|&rzEz86#lA99KJK zxYXi4emX6z{1@6edE)r-)pdMH$mk@86bkAcesfN=I(JM71R-nAKG{%YN~7rL6( z@MBPj09q)#Vb}V=4AX@jYvN9IOGWH!z0k`-{{Dj(eEZD_iq0ZZJXqk9;>PQm9m_-9 zYdy*=>4|apmi0)2cpy}FkK}XJ2`K`Mg}EQm*lwqKq1Og8J?Wp`GQl;;-`nrPB#`gryI`4iV_tu-bHtYg5C(Y+@%<5 z(QIt9)79sll=_oVKfn0C;>n73uF&io7m6E@-3-!~y0ei2mx99Hu2-sb{xy@ynZUmy zNxZ?JRKehEa1(QRviIAk-|go8q3h&R=XJ}^=^}PgV=YEh)J;QYeR@20mr$k^Hf&X# zY(A&My@mQRse*~_F0xpPEjU!tjXI%ql=+w+Ve;l8n2m90}0Sps#rQSuNm(S zt2od{SaX=Z?^lgmuu82*kPHVcU~jxfft(Lm qHN#m6hd5j|DCmX;JhD*Rt4td0Kw delta 126187 zcmZsiQ*w zSN}O{)^j`hlpmnl)d!rFJCTK&4wM-$Am7J~I`HHjfqy|d__e!Ak1l4IAJP8}G1p;L zq5>j@yuaxPom@~15PtHq`QqGV=ClkJdKQpfEQndmbZoC6&RRwnM?Vt8j>_jea1ome zqOa>t>vs~}t6R=E(_S1H(9}Rpr?sJ&CsbE+K&ssxhbz`|;hi7*Fu~KC$N;PAF9^vm;!HwNrzw0w;52Dm z{)6uOO|yg~YoTeSVY;-C?pys-5!F+^z+>(M%O3cFd|3%2*VkC&fTJE}!ff+! zG%9anIa8-M0(!3qUQj&A*>}leV^R=W!c0=)L&*EV#(wF-!zhaT zu8rFI95cO4$!Mcc?&;8Sn{u>6USTlD1m$SegYQ8k4p#c2%E9T|>(f$R=E1`mo_+nZ z0~tC#6`GJRIc|J8_q#!qB9(E5oIqVb6yB%k<&^U#@punj$gaGh5Hsb@H^RDYn;}0B z_KeVUG+dO)R z<<%tlPHljuSf|hfmQd*pjoqM^LEP++;jk$Px;{YuT9sf|<@un;A4V&O2?sUOB1wY2 zQQv_?4*my8pf3*muyV`1AHbY4Lo>WMO!yl!WG{%){Peej?-+%Mi=a#1BviB*E4Pn$ za%y5~AS1Vhb1=zCh)T1%tj~5FAVz?QY}fOsWSF5mav(~t z*$tw}bF{dN-Q)E?CRk%Y?J*mEZ0uqy&v^DS3)$5(quCsd15NI%00v-`5hpzW0^bLw zUbM!U^BC~fbtWb^g>i#tsr^6e@WM=V%u229)#rtn)oz#7Zhe)kl8-8Hfd|(vdePB6 zk5<};bPjE72Z6L#nez>Cm4w#ZeO}IU=^$%!u|O~rjI^hyML;Xl>w4Qs?Z)&}Iowi~ zH95~ds|{9)obBoc&M&oxkJ3f^o77`Oo$_q+g=X(HOWMLsw8!z#z{o0u2^9hQwa`qA zI>I=-HfN7)t1ke0`!2(cAY?`%n!v%UBCU&dY+4(3D&-{<`!_k+dj8%AkFJKJG|&XC z_xMOEm1B8*q7{U_N+G)>W!`x}k551*J=(PJK?=F|0pc*FaG0_%!}WVbhc0a2J5rRk zLI+Fm2n!Q8Q}{I_%qZqtC84}{?&|8#A6G4m?3*qZxGRS1$!)WXrD8=B;F9q@v3T0w z`)7-iAw^(|U_e2WNfn({s+&1i6`)bg@fYoM_o4lGsEtw+Ti)O3Z)GSCP}J^rDU+12 zj>&x6z-*THQRb<9>?%aRlPL8AEM1@;b`JzcZ!+s6mWY5Bwvyos%`le43Vfz5yK>y##MkpEkcWQpbA*aMix7~2ccY`@VlFyd>D;Hqh@?yVjhMgJ!t~%cVQQtcSfY&MtL~L_Hs$3*Um^y?usC4I|IGe+L2L8F_2Z|Z z0Q6Tb3GqBY6bn`{%B+n^Nh;1*do?4*%y5jwdODOaYc6@E0!tN_(>Z*S9el-wmHW!H zthzo<9AwrxHnd`zTxSHJiVfUO=I$E%EH&lo>4@|==|EQIB$>L5Vj6olP-eK3bk8^L zIIir&S1IotH+}Kchzgw3xFe-wrYgO~!7{r1GvVF7312`Fss(#)9c7D`uS{YX$?+>J zR$5!S-^#++n5%Il1~P_VjDhDXh5)z5DvX0?=#Ep zevwTX)mg~wl2=WtnbHmy7#&y^sw?KsB%%BZW6z7-VN$Gc>#cDSEDs%taZ?46=Pa=) z`S82%{r3AJ#8QT=PnqYm?p10`&}gtLiu`KFJ*&eDdhdLA?<5?iOPWG%heCMN_jCLN zQc!g#63&Y!VqorKQq<*WU4TO=QQeI@OItQpSzDMzR8XX!&zJ^hrf+!C6j)v9i>d0k z9sPA%8M9sOkBnLij63JxE(1wDMvZdQk4Ln%A-aIZS0$Rz6h!K;pBDE4H_iah>vca% zL-`{am+gwZtt7ic+{>J7nn>I&Ci#zTl8OE`QL^NT0`X(rxqfi9tm|*`C$3}pw zS%%z)hD&o%#sALRh!KTsC%Zlt4Ok#;YY`R6)?L0&>0oFm ztC`lE>BSKY-I8Ki>_9Grra922)Z#>ux)k`0!1&<9x)Qat<_avM$1K?z^3u)!tEvOO zHE6JwZ@mRZ`iO_(ijKMUIDhaOR%MagXS18+#H&62g7%gv+xxZ`eF*v%j>Cc3{vRO0 z&iZdiaB%z!5*zB$iF4ejol{lQn;C(@nsyWOy2Sw%2ZA+m`1Z`M}mWdh>icqR*nIykSC|LyZuXQJNZ|zQA>?M*wY-!PPa;P9JV$>aN<$OvFn>Fev zmeFR`O0SmH1ab0<;W_`wcYRGO(xiF}X+K$X!MN1Wli#pn$-*QxgOgC}{LFqRGAyyZ zbtzJApap;BJ|x~^_Ag{Q=&;<$YAF##s_7pJ-({u)awv1HB$NUz2`m24x+Q2@bWP!B zpL~b1NwDfVu1@t#iwcq+r6djt=#~vKlySc0HGcr(0{A7yUxNu zUk`D%+qutpo1MpN7OB*4*HnZUOnLqICBFE44Z>s&rx%x4 zVREpMQ8rx*EgHrFS3eV%6AxO=1y+W z_f>mezm1{VYVV;I540nD00iYs0#RTho$pGmP5o^d#f{kzG@K;K^cciG3%E{|o!VjJ zL7E;+()*ufKcFT{pBzquAFc}@1b-#0frgCtHse$rJxaMeS44MljLayFnB+2utC z=bL#x&j^mt51ze@gmDh88BC+F#Je>vjdI}5l) zIEHpa5bHmz+)wzr#fJL)*?%*Ne~Xm^8@c2xADZ%LR&UBK71}OSOQO;CnH+7C0!4DI z)!u5YcM10CVXsrPkt|=)jgX$c{qbp|E}YGzAV(0{4si?*2Df)KvZ9$}QqHpLoSNlla@o6(Y zP3O%wW0XH+>zlx4%!AVAt^K8)El~G42xnQWe2Ziev>8|w0?YHxW8o-4J-+G$S1nI| zqkENJ`vV+ zuY!@IA0B*2aV||x2=;eNcV$rnK_n(JOPS!UUqZ`b6Z8DM#&$@>&@{YhbG*+_3DfR{ zjwx?#_w*V(AAhDve-uBm&-kI9SL=lknKA*f?Ef|+i+1*Y%)_N0SJ;G8&% zzW{RwSGG<#?!#Y&9b|@!#*_a;?h)yQ?`2|G=;4peXj#F^wP=r4Sw(#yf;dlw$t^>s zcp|=j?Am+F*9)IE5Ycx%&`_6FPV@i_jg*y6RPyxkHkd^`ZFp?sw#Ihkyhdla3CRCN zFixrISF58BS9=f?C^0_foC;Ql=u97AzvacElr>zP!I>xH3DQ7m{Y{ms$>WzAyK}JY z5!w`8jQ(KKICfCw{3iKL>O>f+}o@&P9|4R8>ureF!q-p%K z)jO2&C0Tm%?l{2%d)hcfIUZ;{rkrlpc71VIdN7@XTwBNJBs!i;km1S0NSVNQ{8UQHyn63IJGXNnaZ*9otd%|UB> z9V8K&9$6hy?(crUygSyB8s z2@32F=7l&h&`RyAGnv~~N^j(J8?v){&Z$vZwba!)pr0kt^;E<^8dDoTHw%ZVt(;do zWz^Nb#ls-N=oQAFB}-XI-Wf6uwF2EtMwB$G={!f(HYDR-fZp0q?s6l^J?5I*6(qip1Ac~4 z+8OY8Q0?YUWUUL=>R4*E&O6BluGU|zLlW>=-^65bkg6N1#hF|yP}W)%hfLj?@E(uq z3qLyGg;}<&Gx)hu%-ps-c6g*h^ARsSUe<}LQ|n_Jof=UR*LO`rXU`XCWwf~cTMH!x zg+G{STEq!KZ_m;|X2l@NJ8Os(`Fp;ej|}Dx$XRZn(V0#SDG%VUjLVapH8;^i39nh; z#Kf+HgH76ZZJ(qEh+(?d=F}jB*5Qh-hL#H!3bsL(!Xhq$8~UAjW{XThb6lIT7N9%2 zt_4K*skc?A6&lRUH0c&%C1~&&h=m#dCKtFJhV)f`I`2j&^laD~PybU@&-kZC@0I8- zXwrro>jxV!w;yZJH>OCLz}i5C)2L!s$T_Nmo6Y;r_T&p8m%2Hu&0E#)U2Os%*?H?-uva;M&3BmG z#F~%3BV~Vn(tTjFq@L~n4;K*sp9$e$O+-t_0Ao#LiJ=260HtFy{xw}(Z<^Dpyf=>6 zklU!O_DO|nu8I($=Wfgyw;6!nQ`}uOMNO3T$%rcgF0`v_BJ(<{I_VH8mx2-ms*VSS z?Txv82Qj6B4)ue{*6sDR69?lz7S8O5UU$$Ka=RTiw|m|14s$b8*2<2mf+%GI;?ff@ zveXq+KCZ-)(hD|2CoZ>p3odOUcD)l( z)OHkY?ag%-f*+pNx`-lP!MBLD_UG<~VVn51drSOf%#|_<38iQiDrGpcv8Y)!3+f*3 zdk=4VWHyCqP8fa*mXaaT7G(8*pfcBCu><`VK_Jd`sw|eC#Ky4?ow*mS-`=!sBB=)s zTLYO{Rszs>B039vWkv5eoU661{H^y?uk?|7_Yso~S$9WO1=^5B?97Fz^2AI0tJN*h z;3fO|H!<*pQAw1rYtx(Jfn>B0fww0Uqx$4nOc*3I=qwr?`4Qq~p0+gp(){f=XX*4v zAeCxbs)5Ds@9WyXxK7bmVTszIOxcW5nNfcEC9D8Wwp@;Mt(9nbMmww_j-ubZ8S&kO z4Fn=B%3N9G)d8~jz{qy^mgg`iL*dJhxuN&6HNHr#qtui9F}E2I5XJDiXU0UOh$J}m zptiLlwu!ORhxk!}z{D#coJ<^h#3aKXB>qSa(*<<1`so0c5F`GCFda?CKloRN(85Fs zY=CnPBFvJ1>V^&10-NXM{KOYQM@h3o+6lVHv&fw=+HLU z>b}=rpg})LW7Y>uppHN?g{7dz{niqv>{fy3SNpqzd)hV$70wfR$G6sRxvzjKNpU`! zG@%=*9J;^R-bR7e|pvMEH~la!}Z^8wfvSZh}C*;-4J zQn8esv}t0>czE?pYHP&a-e_Cj)nDVY27|jrg54wdY<3O@@VMV$&C9*_b^P&=#pF-S z{e#WKxwp|rcdqU2+Macrwj)h%x^Z=+r_Dd+SYwXAsF|L= z!cB%z9??N?UFdhgTw7l$Zzu~!61V@O-v3X$Tq!K}kQm@R?1?N8w4e=jE%`NO9G@eg zyIn~m&K8qQJ4v*pS1RNwK6A;L5^UUWjuZ8-5B?#CKY%8c@?s;VWfwVq;_NFdnQ0EP z<2x`7T-qqWV0N`IDi9H$5p51pxp10YBtNi@nyJIR9~y03pFcQwAofmHUhWkpv}m1# zju|^5_Y)SEAzV-f9b`>=`Xz`xvcf>T`Jf~x%Q`{iNvkZWcA(0S+a{JNBmQaNlK3)G zFo+mh7b+z90!$0Z9Un~A>pBIk^m`t7XTRnY&Bc?M66o~P^esxTGyIl^B~4{6vGL+% zmDER_%peFU?7qX4GJzC!vO%RJXSN?JLbt+1`@=L+h?h=eJ@Yl0KW8f zB*v#1b58{LUR&=bElF|`sw8R-*Lt+UOkWR@_*s?T`2|j9Yc5H`$qkQ^9|iR(3$0lr z^<=cM!G%HXt>~gx{#3&&s97iop<_^#s-c?5b&TD~vxzm5+rE~br;IOPDO?rwPqPnL z%GqL3hR2YD0D+HB<9x-WeGlIn3`e*#+!c0hbZQsN)Zz&1e>76p%2^1w*bUS4TGp|a z4#%}#5x%$%qv#~9vEIP_ArYOc6hgQ)U@f#VOGnZv7tAc0U}aF zFIRBS!Ylu~iF%B#Y@{% z4%ZQ|Ms9+LE>{I;t-=5*5a&ubHZoLZP#o@_C z7^($tf^xOzI;ud)EVwj9sY-2hs=qGgrL4yzl)jXEM|2MU1fWl9MQsLpRm5Q2%{2kx zU5^B!TWpkhT}Sj2B6Uj-@FpPDq`CsQmH=p#GLc(D&6QFsAI`bO*@P#J#XzLtMr#Kd zN+&&-h%?mU8fXM9C3TJ77^8tyC5DqcwAft_P|tQ>$~md*R;|&1_>k_91pc#Wvj40@ z{q_&L5jnTu-pO18yg8NUX;-RT7o<{icV_Hgd23~#YBY6yjn%|*P59C}+x22pItkBQ z^-xl`FWm)NCW$KsW-CUB*3Hy$co@TvnK~Hn(rSxa&^;gxNP4%>+;`)I% zSj%xuiBu5vx4Pr3lIk)KunZPh8{f$}b(yVilM(;UjtMQgH;T2?#USuA#Pi7e>UVe1 zQ9OnLpEemz{-`L0&eoSf^%&}IaB>g7C6$g=h5rycZNv|G z%JY)Or+utxEtLALOZwAeb1mv1kqAX{A*8?IxitnI0fqLc&&-j$eR8X|Cw>@{h;ZLI zR&zA@VI-7ojmS!rZj|Gmw|b3>qo`9iku?*q9ppHc$f-C*LEXt^rSd22OjASGJa#B2 z-ISQ%tcV3fKEy9LR66lSK^r!j&PZ6W%ZA-|tP@NKzp!(a$ka`B0zr1HT*n*p3SN65 zaILS}6cuF-C*wW#nJJPhkLt?+$a8MIq6U0~`J(MqOG&KICY`x4BGD;&EvUb9wxUh88>W8kmm3<4P^kaBQ*Q z!>ZV3J*#pB{Zd-k`rC(UtK_&^=Id;+wqRQ+;!~=*6y@;CBWZ)fWA!}$%c`5TH`avR zIs}`Ie|c`Cx6dpP%(uY31=#nse{dArheH=9{wayEb7tzbvww1QfWqAC@y}TCzv6N( z=6@w&tStYI%NNwwZ2z&aK2yMBMPJmEz8^Y(V<_1fe#qlqK}Gg9zg?O}H$t8V%9G0_ zHyWi{in$n02keVTO6B}CwmzOvfCa0x`RyIlg$`Ji-%^)-5S2EIVY5uCDP*eDqL`!G z&03E%Qzv?&LhrS2G{i)9Q&HACbBnvvh%9)3eXcqys6`qvUWGzN$&fT{oeET#LS8t# z0Xuu(nB>5G5?gkg?#QxMad%;;+A5U!sbm}J!e0R+!<&X(hBkNdI(NLWzodNa8UD`R z)7ugt)Em{8%xnNBmOA%OJRn7zD`UCVnYl?FEw+d^<;mICbKc=Wqk#}vl_m4dN=&EW z60e&86lU7#-4&ZEiBJw_cJdQceo4~tT^nv}ckyduvd>-D_V&UI1Ufofs!Oc^wz0N1 zt{kpy^KLb>cC`TVqG5_jw&A-md#EvUP&VV-5P7JA!_}ad0L4u+apr~`6*BBBlNhK2 z$y^0BaRKJYl4F)=kwtKGvfXxp#2fy|qTsb4s4$aOOccG*?#m4j5NS6u3hrDt!nW*2 zpk3KQlh!z?xRj84Cg;a>ko5|wV#!KMV0ajlSb<{0gbBm1f`o1<`(Bgod;Vud8#YK2 zocXLP5!Zw|6GT)q3vXst}HrO-}6G6Tv5O_N7`uQ@5^^0!3l>r8bo32IeaN>Ev>@v0Oehw|=eS+q46>NYae{xZeGQI4*6dp96Txyn)oawXZy?7Y3(6i8RdP-_2T~F)J`jxs>uuTtW_%Q8f7<=oe<1!&=v@5NoQWWY zQl_@-VZT|vC)gBM{Y~*k>mW-aZnt0&3b);jV{rXZNfMPEese2o7Z!4J+dh*ugZ&~f zhiw&(utBP&3rd4@NyDV{#bh*sQVD?Fto}OPp`$~~Kp!!}b1?RSIw>>(Ex*DuDfmUL zIOCDk{r-MwS8UTrwRgk4c+oSgI4xK~OiaFcjiKDd5?DGVZY~p767unm0nkRX zuJ+Hn_79#Viw9m&4`LpY1a_=Y+I>D59*C7a4s`w#<2e4sI5u|nf5mhc8d^?!>;T`Z zs_A?-{ff(kvFl!BlkI3q#BqgG2g0TsIZNyzgON|q7>1Pw^n=?zR zkbEQooo!@4wg8>9-d}KRkPZXYJLoJE%qH*+l&xK_4p)D%K}LbFrp&emhVM6*%ZYY} zKs(!JAr*Z_fXJPfaW#knoJG=Je8$_~SK8K8hVl=ttXi4IXo=(|=fn4%U4ywporQT< zCF-puot47@W`l&6T5D4o>I>J$xA#z^Yggpk3xcq^AjSTuf#B3(X0X(Oy*mtHSSp!Q zYhDJT8Jc*x!#TpVyPls_hdBip3^9D+H1=W)T2JKqay6zgoq8bCaSBTNUJa%F-vn}r zwi>UBFHg$4OzX`n^?ek~C%PJL9>CU>H(9=GD-eh4&Z1iK@_qnsjTyuNKK1?P$hBZd-^_RNj{fht^Kcds?33)dlYT+*)x>JrJVNMe za{5TpvIV8fA$TCRiBP02S9B#=N}7R$QK5Ys$hh9L(MgE@LO*0yW>P=V$GPR>b0tU` z23UN~_ui^}2yj?6Ta(J5#J2?u6RKiJtlo5%tG}6qDvH89g^R^Jrc@*x>XUwk?6r@q zII4E$_Lg$&QbKltq^dQ2(iw0eIE&qfMG1u4_QqE`Bt;<7u&fujpuqRJx%aWecV(Hs z$1h7NUd3(;Z^h91%HkE!&HG2i`qM`nS;+5lef*>l%z(6(ax7t*eMA6mAv5K{Tgn*rF>vTqi;jdL9x&d9pnI++zL^ zj6+ffeYMs;MDP02C<3~Npch3|HyemojuAuUq(~O*H}91Ku})2-yI^{~RmWrjvyH=% z^k3kA<&KDcxr~vv3n3dTTqCLZNJSrp;g#GSGb4d6MM+bj_4Kf&e`RXYZ?^IO5Jv}? zTeEkqXY0!8OTZ>61J+z)vEzpBQoHp6d|gG@&>E^0Bh==fEG$&6w;cAE9ip> z(PM=W{~b`e!F~&_>6U#7k9;3BfT32}QoTc>4^8HpM+J9?8Ta@-V_t_q33?G6lh-KQ z${EDK+*+)bvqElZ>5{T~ktmZPF0+2+dcpeCAicIU^E}1vJfng72`W9!TMs{Jh@6dm zDShQe+Iv!TG64+UMnV4)#b`%#Vrnwkp_r@K*z~}5_F~Xbu}V=*cj>%ktqcu(tO^)h zBceYX7|+t_D8^a|q%%~wV(`#9x|1=RmH@#mNd_D|1&m!NXUpM}c=NTZa=EI8JL5m-~B|I*iSow+lG&rr*9)AcEMoQ-qSM#~FK!mCAh{XI`y zc=|gFW%yF#>Kg_>{8CcW!Rnn7Q|W6@$Ll=t5;p22Lxm7B9n)`*4~5E5;Q{6PTY1p; zo=xqD!DN!Apt3x=Guvph5>$p451XgetEaYuoU}~%qFOi3*n_-VAY!>2cHI@D*MdrU zOlUL0%Fkv|^})WWg66hs%HFc$6{8d^VFJ#IK!y*kV!iLuLxju;TqG&k#~3*A%jvW8 z3_W~YWwy>T_KoHOB_s?XmmeA_hPyfk8#DY)=lX4}eFoEOv(Ju)Ep|k03InxYZPRcC zR&J3#*D-ifm^2Uj2baZqb9A9!PQ!jA<>yeXj&3J&;ci7=4bL#BLp65)fwbKJo+jDZ z|NX8yp`m5B#`)i*-QKiDH1z0lKJHUvAA6iFXRZbtgXWGwr>{OxiPv)O@(m^X8wPLk zqa@{EAfb5A>18q*AhZ;gldTuuliZu!`+!l7+K<^6BHhp4mqe>_aD2L8hw^#9PtO^q z5B-G6;EY1-*70KTc=`ax6$U>ZY-sKpj0pNIN(6yrpdF`O90&D1 zy(OhdBB$DOmfSL_Djp%nEl~^Ke~n-kR)fFyfGvJK3}W1-qW1r&z>9DaE}@@%T7IIrn{SLI{zC(5p zQh(Ye#(Zi-LxnfC%C)+JN(1Xrg zAKk*Dy%5=hX`9xd&`t@*`YCskAjI!b#1Ta*bV8hX+_wD#_5(*PnilFwDGoj7&9=N< zGKG%s`K#zR5s=P5?btLuKAi%m5s|_XCkCR5X{>!z*_|yi8tr@E8~`LT%50Pw@AlB% z-X3|H0wSSxq3j1>{CL1zhMiNIrodR|;!*swht9{$EL<*Qp>NQBa;{~oma7u@*M*1y z>W}g`M{}7KzM14T$*hc77R0!Fw>lp4p(mf$j-QE)2+OxFQw6rw`{qop#)SbxOim;s z!JiZQp3ZG>d~m~zN7$z&G2x6=(b*CtOsJ)&apUp_d>xc#1-}eQk!Ul zl%EBS{Kp2aFekj>{X}#9m zN?c?SNik4`gb;!7Zd;`5D+Lcsbag;Tk}Ib6!x~+uF|w!aQPl6tVBn3`tD>~GzQzHp zw?eStqOkFN;e%OhGZgg_k)C(!>Mm-dqE33OS^7k0lW{TCNS?pjIph4D?R3rH@rlse z_yT?)umvkz&gYMi3MkPmU8UB>zoPxg~rC)wyY3{l@cps2oDFB^GxSv~GoO`{ zwlAnksOI5WX4G@uqawq=8}DG+Gy|xM?>%Icjmib&KD zCH#8Wd|GbCVN`gyUMjkx8ydwis6cW*v?jE8$JHVvEL2ajc6PMhBH_T$t0DiPMm8kGL!+7N{HXSL&$?!9hS;jfNvi?3*!CY* z>7G15=ck7^rU{gx2@PfXIW@q-j^SqUii~Qg&Fe-uAvmA7yPi0xAo#5|F~_Gk1=X|o z*Kz9`DMX`!iRDXH1pgW5{#5Tbc(C%` zN_byWdMV4TCCpR^s#;XEnnZyRj7~CX{F|JXZZz_xTx=xdxde9N0UxJc<=J;a+a}G; z6Ssa-CR2jU;t=l(uL|X{kf!tzfDzKGWF+La2c_ZK2d|R6hRq$s0rU zNkZyQ?;#MNDWG4ze?KFt09+jNw_ynlBN^HhO7SAr_!X{>ca^#m$OenIM$TWAu(5wF ztwT$5X^ZhLzcV8>__Gav0b*b?%K9DQ)XncF6`ce*}h@=)ZG^FKQ~0Lo%c6-0N9tGpcECItE8+# z_}{n8yV~chAggdio>OQT!x+auFqy3Vh8U;rs=0LCXtz(?55|wfp8R=cz#e-+1T#l4 z_3Bv<`q1$|GYwo5;#|K#U()6$!OsAlxIy9DZL-$KHX@f*+^MT{dTrj6LLk8z%8!B22NcOI0FX+ecCUDofR| z$WJ6zNLr)}Bi!;fTVG5l=dO`TXpE)Bc`9U8J!#guKu_$GAOeOjiMU6r0bJ~p;@ zYU+*)ER5ZH-?+Ir>G-HK@B?W@O%n<7VLq`MW7x6%4^^rw&JeX}1QL2#=+jPQlXIRR zK@Ot=2x zzVB8RM1Y7n?&)+k@7NSM%4yt0>9=(amaL_}A5H~<6%2pz{UW+b_&qlp7Njdfhcd^O(B*Z?nf5^o7_W%WUKp8^HfBw7mv)GXW!)y za}kRY+wtf&K zkJ_^3lC)TC@hR@ryJOv;xI6SmX8L{NDX!Y=k*cHf{+Q|sA+o9Kw^!aLA=t1$pYu~3 zXFj9K)sA@(RylX~^1>Ul9$oRsgFP;-a@>}qNNRp&z(XDq(mS}K$yO5-j4Kqu`}BdV zJH2C?Y^-q*zH}9I{uwOYPmc+OUhev$MLp~eM73?u&yl6P9SpzjgcS-16E{B53ML=5 zAa@9da}bVzgdc#%2nDMYLq(%Va}HQ;!v6&ixRmg@wV{cNB9+)iIVkwN@gU8Ukg{Q_ zSZ}eDkEXDwf3h7S;iU$#PCY*=hn05Z6zeK{!w6WWmT{zha=QTEn4wEhAY|yqQ9^Rv z?5e^}+8$J=)qqJ0EThR|y)4<%LVho4c`&1Q@x9cFB12Q&GW3ZPR@HYk>$R+@^JJNE zVo)tjIFS9ue0L0u14+HeUnYY{CMXcf4&iqCs~6>TS6zdh_5}$<^28%Sie#~*xJVoD z%S9m!byal-s@J!*2jZthQ1HNSs&nQ>GHT48&ma`-1w9#Ij@2P7;$k^=NCY@ZFAq*p zed+=;qQ8&bPtJD$VR!)f&iEQ%Ra)@i;^F@U9S>oO@d>!kf083Ugn zo0NP`1R`a}PZXXURkX<0vNKuzSi1E1`;zA(Qg-E|h76IDBJMW{2&XyiKw3RXW{Jz<(`l?Oc?7GPy zCgkklCC4|AP^e39I@Eq+&B^+FE>od4a)f4j(VsP#Ulcer^g2*zaw&z(4Z8y(iiKsR zhYDVDCo2BB@hxRZxQX zeDk+L=@{E_@xN?|H_n4+-;5TB9a(+9tf9=M!k*bd7{}&eav+LR^3{cGMwJd~YMq-- zqJpjGQ>ib7Go)z2d?=I{)mGlFp*A*|gtdeK3-wg*tX3@`1vA1CcUc?5$0-Sq-cfdAlVAn{ zwp;`$MDk^wvGQZML)L0c@;nCjQsiB0Al4ez{KllTfmhDlALnUC0XzS^KeGj5cVx6) zgzr7S*2*|9$T1oTZszojn2h%OqtLRVa)-u1IFxHhcnMC~`-SR@1p7?*Z@g-6W?0;8 z$wIZDndMeo5+ot_r>i9dTzCg#cnJT1 zhVioPeil+i56#!B^-@OCT7QPjqVh z`b!mM^(q`%^!Brq>u1L;2P80~E!fv*8v@V1Y%iPJ*PfUg#kVsG@>lBM(3|&5g4#d5 zUEW6j#K*N#=WLBO6#gjC^d|~U0=^YI#{YhK&V<{5{5rp4@}%g-HKWQ1d~_G zM2aYfXK07sdY)D@iLGvwjzwuCh3?yyD=qZxP(?n*cAlWRR%&62nWb?oi)I}dxlL`l zAMfj))%B2+A~b|upXd&&EC`#ogymTG{LK_Sno-U2BUuLN_Qt{X(9MmAV6u+E*ioc7 zMI&mluL|rYL3F7~bO_njGmtIR80S>I#?Z=sQs`wr`Z2L7o5BP~lk+s^1HYZ*uY$L( z&x~`M{2~E)7}~sES0y0eMLmHnth}(4My?dY$OO#;T z+Dn~Sn0G^~PW2$kH{ahL^@EpObk5?MJ~hz2w|4joq;dW~wl=z$CSidfW2U z;{6O^qx$&6i=}_Y@#OnvgjN?(HU*zfo`r=>jv0VFx@4=%QD(5_h23lceKXTXXGICo zc#8hF5eo@fWZ#<#eqWZ#9viApxCRJboOiAi4mRpyY2-$WGF&s<$!n`ky2fd=(X5~m zwXX*9C!HI6p`kZrz~&>VBf#-O-8$eBeiBiXO6t56TI?NP?zpzSy1wCne2`Ly_^6N% z;YyX_<^M>zXI&iycqu~zqIqKe66bn3x2!4Ty_l2!KR zCZ3EIj{qF+-B}EqJ}|lG6^({HjFOrc3k;aS%oxav@(AqW=f1B3=0QktpIeb25?^J# z-t9e}wsF-Us|)Xn-s-oZfY{O4;hJ+OOnO|g-_bf(>~VED85qW70c?bwrRQFF)S=Qg zt9i9C#l2096IO{2kc76e9t}Hmx%Pr1NF~{c@0qae2sPANq`{qIZB9kk`p}n1;Dj_Yk;# z6A$_&0k>(Ni+gNPqa!_vn+G3r!>=w{*|}ZDFZUCJ(5k#15%<(!*|qR;zPrv!Ib`2z z_B2g8!@TatFa$C~;-e=Og&}+iSUy1+z|!*(6M%GIMYKOW33)C43hyN$jcyPYO0^y+ ze3H(-{-|BGWbK**x>bzPw^~K-P4qwMOHaiaH^|319H4=QR}#b34G@LkjT%-bBi8{I z3eE?WsW<&8YX&~|QSC~_sJSVo?(f{gw5JY9=h#rX4n0Xj z)wSV!LZoNP4C_2421{=~(xbwtX~V$^X`s10x1u&)Slh48T=e3WM%j~&q<tTHiNn355(8p{8iL}v)3DsQ zPFsZVKU^uOAx3eo6|m1!!}`aj1Tv#-pqt7*Ebk=4XWtFrvi|sSEVFgsB&}%}?Z*xA!v=ca4c(2wWV7BcX=fe%wj8RB-jtPB<4(>kZ_5e@l$ z?iHT9f*(QVIEQ$kuR`^Q>j+K>^l&ewL3U~PS;iI)=-KNVW>n!lItGkTo^9xN_*Hss zf3H3UWuKU(PYwnSowm~0<@^YM`M96WkUa$Peuza5T}9ZULzV6UbEkqDJD08hi>GsJ z&m`KybZpy6$F^;BY}>Z+MjhL>ZQHhOn;lP|b7tlb)R(&UUbP(XC+3%`3!sL$HM8~_qE2dlbtrjR* zN~m(}WNv2|ZHpUv0BdsY;LpbL4XEnHsIz|PfTh7>hfjc`-(ktbmoJgt>|MRuFs3g+ zL?3&W%!=xcRS;bswm3ERnb<5W^}xG{5p#QLzPzf;M13#k3^0$BPTxn(pOKd7LQkw{ zl!saLI#m1pI{_(U534wbpb*WxtxR)Le}!Q6(f9h-Uq8<$R}griL7=}jwRnj?2}z@b zndO&L3w+t6Jq0Df?)rW;-=Jtr@t28?DcD+$1Sw@fIgF(ei%T=@Cavx!|^m=fy;2aKArzbFf(qy+IP_*ZwP!;t$22 zQ_v`+A(9Yd0%CIP5?W!|7&neyeY*Emc|4Lp>@E&Q#?QY`3sbR~nTV~t;{U=1#3AfF zXn?~ws3GA%)ChL$ca*If4Ybdug8te{wo=D9wRGQegm%App>H3Z>U6jZYRJY4WlKZ4 z7ujk|0oTyw)oFVM#Vov&Q+Q5!o@inWYrC*;Fx0#bItG?tBpD6L#QVz@(V$^3)}EZT zuIwrBX(i3rHVwp(u)yB1mo+=0DXJ732Y?}77R)vJOrWjqHZuK7DfzXE?zs?7S;b_g zi#ImV?TVMCvs>kYkvH{J#EKT)w98jnL)Yk>9Yl@wgd^5QcXe__%Z0|#EnUjSI=H;o z4Bbvia`u!;M{Q-30-!zpLggen@GJ6>`lR2RCu8GqF7JAQ-u`;Si-TKs$IU}V5YY@>!Fw@Y(!=nufFL-6-aOu3wfk<+Wh(!a#^H9iU(^E7 z+F(#Vzo4fJIottd?PKN7p56N*;GEoVR#DY*rN@znZ07T*DGC^L6p*Vp%c^eRF#268 z%l6fn^X`Bveppq2B0(DfK5|#c2DnF!Wu8hqldbq%ViTz`skp{*1zbE#{i&_0{JIi{ zb1QK2Pv4~K7ly-auGqlz%~L`xm$Utdmv$3WYr>EjV_M@*Nb~<&CG-d7T=X=Ck$qCm zK&TJHgj!A<&XDaSJoPW(Df{B%-H2eIC$r7)_OCzYzXLF~yl{*NIwL;^@c8D;@+pk93gSSLX8wTq zhQJuHjh*fU-GfQgUm@ZoaD9WY^i$kp5a>i{at?hUxVW&hp15Y@qh^IIz{*MPP6JEL z$-Ys?oc<<~`63ZRf(-|6+X86#a-@zZpm3UTk7OA@2l^pjZXDHjQoks!oUogF)_RY+ zWa{sJbu?KOZ}4A3VlP(gHpzjy9nwuaA=134>28SVq1n0WqMveAr$q~ef#cpBZ^esH z>I7Y8CCo}B8ajxODfCOAja6fP>*| zM6x#-RKd2bmF}Iy>J&h{_A0&h8ecDf&1+c*soGM+1}0q#XT&d>!%2-d27C^&8clk2eF1NhZ$zg?y5Vqe{zt{3O^|7Dz zA@yc^=Bk+q21`>uAp>=9F{mLi_rXSHW5F)>66}+4=O&+pg%7#PuqcqBZpIKcV>gH8 z)g!1BzRd`0esC$0jsfDN3f1}0i-0T07mvNg%b%IQxCT@Z-2b~SIU4V)`9VQhnErQf zva$c~-n`b7js1sh=ss0HQ^T&t@=LUe7tto&epxDk(8{v}u1?)iC6>mO+9CSs5s6PA zqci0hhu8+{)?j5LHV?7ifs?}1mEe3ohtA=H=7r|n6-JCnE0SbERun_dXReTK@_pFs zj^%$3cL_%R;|7mEn49`^(cmiKU-Vbw>0u(;8FGv~?C9j+Q2>ZlJ&El=&V}9 zeLYz5(^F6VvtIqJ_v18`mcBl_x@UH&hoWd(9Y!gS3{lA5Ifxs@G@w%EvbA+pAViG) z44`01e@y0zI#H1l@8Hyr4D&ayf4+88NJB0vbAItE*3=15#tO$Z?jEFUqqFaE^xZSR z%dy5Jg8ZrAxUpa9D0OD`X(^v*nPGUf)k}^}t2wUVAs$0MhKsr()iVstj+=`Y29ytEM+s}4kHwH?ZPltl@&86E*l^ViZu%$O zVJH?Q{oJ`qf``{#v3X#yh7bus#EY?<`Ldv;rvsl6Niv^Ahi(cGlsGX% zh$&fpC`cGWdkips?BPd=6tZn6BS+{fn!BDA;C-Ij|z~x=!YZqGBO~5 zpjM${iOC+hO)_>2djLBy2@ACk%94N{B6uQ;3aUGe%x!&5r?<}dnt8&T2RI*S9FTWj zns%r8t{=}*x4WdH`leKbeuWCfF_+z+C2C%9s0ZOmZi2##7)0*lp}|!-<5$JUa~J(chrf)uw`s44S1|FmJO$ zVxndwRmN@%$r>>5;DXlWs?YtFbL*eAxi7ySBDH`F8B3CIkDXgG(o2?y9<1#fG-G#F zGy4cU7ap8B-yi(kM@9LFf|dd`IvNi?8a(`odg3H{Au~y!0{n<1mL|%e%zy|cQ~pu? zorXnEzO$XSF%<*-^}=Zo2_Y=Io-R{UB13N$Z|Lh8H<6i+(!3sMc07_hNZ4|9R7aPi z$b}B|_;2aeq*Pq+40mEUc49BuqIra2(Tj=swRNF@fDEnb?oPcoTbMz;Zt_pqMhHc; z+P~YcOV)cO2W;a086a)F3Cy47_@Wv!U3vOm-{>s-iWoW`(Uk&=k!N4-xx;B=!Ev5# zo$j$fEXBW38UE_NYg`>6WvF_;@i%`Q*$p)Tm+3ig=EM>|9DIWf*T2nlyQoc%**;cX zG^%`CqNGQ?b`XV|EiqG?2F=cyaUtq~Re8xh*M=Ot4} zt8ZV@Cn~wI$#G79FoMq@uOIgfJ0IC0^Pf4As7Qkb!oilfKS2Gj4J7Nl$cWVas(xlM zYoOZs&I$)QSisf&*J3z=*BF2GI`C{Lq~@WM&;Ax(O|xb+X8=j+?1Z4!I=*R zoYO?VCcF0bEYzp14S^uWCKGfS6T<{U(_<$9GChpVUOV$!nLqT%O5 z$5t>&et@TLa{^&5HQNycCD*$Q8ukFVT_jKvN!~#jsp&Rx4-^t`5q=|YYr(L_O_gy) zvs&cGnNSmevJtOy&zuP(1ynL*%kKCMxzM1EQ5&MRa2#lLPUNK|0CBOdE)ilKv@ISV zA9+*OktP6M0pAi_BzC)A!`1zqGlPXh8 z2jK$uqm1AI+N-VfJOG(*+$XkOSok~=(}9Nck_8-Cl)4NkZL23~S8 zc~-1wXRUKACZ*uqSaGGE<-rNt$F;|y{xE1jB zNQ$K}n?ls47-+gx_O#jHJQ{Q9?lT&(mR#B%*h8Qfg7~#F+vchg`EQ6G{3s`V{Wx%i z%QT-7?%Nx4I(+}t-yyXA7*Ek6+x7lzc?{aLa@C%#Lp!2_FaKU4OP8_Befa7{v*8jU*({ z`z!LlTc||be{z_}sbQ8ORLW({79S_Ag{j}Ks1pBjn1?W6gSoG<)1PgAk1q)l|I1-^ zivf`To5PHu($X*N4J7=BtW#7-8jgV2r!MN>jyTWzy+AIVxHWUJw-`}QRQ~{3s%N*| zNdNdzwZ>I_GQwFt?pD$!{}AMe>i+Uvv2|qD`|ka9X*@%_<<}a*xOt~EM0^Quq_ZdK zm~=CW{of$G2e-_t#T*pHgG2tK3nSpr3gI_r|A7%5@}Dsj+|6sCwBNL3&hy{HBhkvZ z3iwzYau@G)wZ z{;aMG6Gy13%4t@wd#sIe5C$*VWP4ctUfxv8tQD|P|C}1+1RfCm?|zY)N1Wqp>S2WQcUZT>=l8YuuwP}Q~A3x_v1!vW1LH5{$D-AMl!6I z$vbZ;z=-R4`+ugH_Mg%ZlHNGTjU4UoHtq0zuP~t6P~@)V5m~@72FL--G0A632~&`f zAgWYD@RWa(8RdV$2}q|MGETRQ{E=$<~FcS5UZeKI9^I5*N~KBN;Rx9ky4y-!5{RJ?$odBKtKy3-+p8sHlatUScsXj&YxL^ zOQ>uw|0a|hRFRpe^V|Wj6d)t2m-W~2xMciSI3SRkh2Y*jMZS3LVH1|)RB?s?ZKHZR zZvD`D;GE5Skzkk5el3t-M-7q5BKw0&ufbHD(F3;!G@V9Xb&ou&jZhgEXt?NKXA6{=rV zkUDuI3?a@@MFF7utArb`6~|5HLq495sEB~}P0^1M=o3qpF#(LoS082QF)0Q|oR%go zz{4hNfHmWB-0Sfeu3Wm%7?ijY)A}lm*$OE56^%NopeGY({wg@tPD2ieF5_vgRjW30AE%>4^&s}ewve7%Yg59OG(=utVy@@i5-0ltgUkox$ z%WYHGu%jjhHU*?6MRo!lWO1C)cHZMSj5`OLRkwC45d=+TJS_Pf@N=H@OTh_BLh)=6 z7A#7B-F?GCo>zy z5haVs+A1pu zIfQduo@S?W*ypZh=`zji;N4}@ETErziLhizk@QJT2c!EB)KwTP2ED!#ykFCBjtI@Q z6@*XcHjdtO;Sl2GNRBE5sEF6yCvnZ`Fy(UrOvXl1uZ*44d}=2;babMX!r9AfVFet< z$0gT}o-O|>Z&f{Z=+KMjj@%MRn^K$~GQ}T_3z28d1{j+4G5;uvN+s!AlsPjU$^LvfOFwDOEY{5TntQcds z<$YBVj6i9c5Ef26{@m=Krw3(xih+3Ss+l1C4j4o&epfYBL2qr6dHn0@KL#uspim%^ z<$MHe60bQ%YtM+0bqgLCPY&csn*l-th<{elHv(o$i}FHLTl0U%Q`mS?EC(|7`Dtxy ztxt>biqL(Z_dqGjeZ5$`(ep)N-bTrGztTqPg4Z9BW-lUaBK?w_bj9zaUeShnl=WPBGwH(tq$5um-k^1y2)KTUSuCvH*5bI&{|LZF3o zvHQ!vcA-crq*bkAHr!-KroFNXz|Vt@(1B}1&ATSQFj=osLT|kLM%2I>;PVU&N=K)L;Wm(3fC# zF!{xv0PINL?Pp}UH>0MQeo67boOMUY+sk8>4xo?= zNluSD{07icQbVhwF^h+wKIl883(!WYGW~E$g0qZYaJz$M{(EOqJKy{E53{d@s`Y6< z2SMbKLJ{(h3%fIzG=yq3818;9d(Ty~D9;VQsb(2Sh1qh7UDgZH@XHm?!C48DGTG4*aCIAAjT|^vA z{=}2tktAh{e(Q<()t#-G3{Hv4^I`RCK_Kl^U(HXY=7A@-i1KU73OVQK*U|Tk;@5-l z1UY#`9y;azyv_&GJWPCFabF+x0lw)HB$YIrNr)N~1Z@Ka&AEyr3Fc7)?%vYhc47#@ zK!95=7#0rW)(|7*oaRY^$Jp~P|GDY1q@b0Wyv(*;D3`oL)bjz6Sz$ydQ(Xef0;v8?0!j-iZi<9$hc9PS{RC81fL&Vs#35NE&_0@65q9D zSvU;iJQeXYp!v#Q-(@%pKS3b~@o^W)NPyd9B%YM^N+{>~cdE}{2eKy-Yus85Ubw&p z0l1CuK&o_Q(fJm&il8O-{%hqr%auAXGMO<>jz5Lte@~QE`r6+1&!D0Hj@t#6D%{_ZAAz z1kDpni&QYU*Q9Hnm|~+em|Vzud;wOv=#;1aCI@uxNc~6!OeR`;k$&}#AjK0_g zyeg~S(#8A)BC!nHzV>m!sedii(ViU6@$$C0{<&|{yJ@&Md-w{DnMk8nwiU!)y|kE{ zXn9HHtNGO-0rgq+yu&bktnl>#3K~;jeS^5zw(028y1P2F^xhzGj|UPd9}8gHcQUuW zCwbAKc!b{VIYPB9DZHWo{rYU)mW{vX;)qy0XCS|J3uD&ZI)i3INv@p?9SwBa_5n8KhS7> zvH5;=a0+_2@uv6Hm^J<2P*YuX4yXI|0H;_?yT0i@p6m6w&UkH~w&Ab=zvu~vlxV5%H_BY_2(KnX}Ac=?pg~iA_TAv6#Wie9L9JK^Qa>rH2BV%YGjiqBXGD^`YkHNc~GS78eCqYL3uL#$!|=A zG1jlClIbQav`}^5*Z??F8&ES{^+Y|@tcNqdV!pcamS&x395rYZuz*pn&du5|Pi4lQ zPe3cB{UfO*j!D2$Qd4KvC9P!k-=5aR{=k z1^&3>);!IgNztp6nkj+G+7ey9cUE}LZXZS(n%>}=3$a{m7!Tg!dbkaKwZr~~Hault z>t2GeqGsxSlLw^-A&{&-!Kqe$)!;_Ji1ROZApCV~MlFO_+F(9Mo@6A47J+WY*o5m= zK}{+L9(pKa5eon@v=|!@Bf2N?q5{WG1A^jgqn z2)O)QkC+`YMH;s{?h|~6-G>e=HwstU0uE<*O<#G2WJh11Woh6=gPlHfZXxg)1de=P zG+*l?{RCI554leCbAfSghH}yXVF+aRBmC>KTZN#3*pDv9S8i3;cV*H5Uw^pubNKE1 z;GfD?K#LzJ;UA%v{~f6RjBV6L)5QlcV75fTCiF(zwFxi~cE-f}YSc!VZ7xs{cDDZl z?AZSMvx8~%|CurW^aDk4HCnDul?a^-n~t;U07UQ(I-<=dt#I1rhAgpf-_QbDX_#)i zOui%048NS%*ANy~lGxz*T>CYf<2EOqpAl5?UDu3Q=ZRv>ZpTN7>#6!fImLOUuOQTcpp# z$K&i*o7s=JnN^qIX+@Sg>A7+2j>*;py|mvN-w!%IjWRbWV_D`=sCE2|AZ=DuV_tyo z5GHYK%Eai_OFnF*^E2LT!*5?k^M9CJ7c}WSdE^)qCizu2s5Da*C@3&`o(Qm5g7hhez&hWJ7f&ajji9 z3|0+ZXr-dZ{<)$`xZW+~h({ka--y|gy#~8b7BbuomD z;1~8|k`qjt0r!Bd@i*FYx!jj59rVPI|JWgW@RXS*U*hW~)O<=H6Vzks_tlvBuQamq z{JyE7?#M&ka8tp{FAwrT|Q;BnO5%+9)OpuU19- zKr;{Y**5huy1rp95StS>E&UKJETbPLEiJs_dhr*TC*L2-QydQCcLhM{Wf!fkJUh96 zn$cS9vd}XFGpLYTxy^ z=MKWYsMukWCfoGKW|N4BaO|+RbN+o)g{iwGH$np+;|$2youUS1H6YTlV%{9mgvmYu z2hWE@rHO{7qVejT6GAxaa@_=Pchu(~Ge#d9q|own;0?Xrn-N>Lb`bUb094apUDKoe z_5Ri5_<=A7?k#^qV8_*CG!~Ix=V$T>aYYns@ju5tRf7>21DT7B<^MJOn2ER;S(sDr zSwOLXIaBX}L8t)WDoNV7^izulo0=;*ei zSuy#(f9|t>YFuwKn$665XFs~?UmtI7jf+%OPvclaGXjtDkgy=*61BmIs!1zBk02bJ zADx_>AM;q4t^5sJ@_yFlv6}^Bt)9`!yCm7$cBuk25M8*do?2wd>AUPtxh$vjdEz7z)N!Au%UgAy#0Kijbv_N@v zbwnQw+=2@TM^Nl60YFJI25Ll|p;2b!EkLei*jQlBKN3(U6l#oV-B6gRm6bH5;n}DZ zOY=%mfA9f&Fd>@2OM-Gl5}0vZd*+isrl>q~w=10U*uXey2Bp3Ko&Y|zJcJD9!MGMU zEr?VK8No7ycLe1zhM=IX09LjZLrrMO=jdasA`* zZEgx2lBWG>Gq|;$BaI5;<^Vx8_W9z;nEzwj2-Xkuxi!EW2m%5W2MTm#W;XoH5)jhK zcLur>)%`?utKc!umC-RZvo=_%=6|>Z}SIYlrWELJcg{v08I;| z?MHg*Efh!-!T?kg&g>#zLCl@{#StR)eLX(z0zwdBSVDzuwtw7yT!(ZboTy6<{#|ipYkVwI_as6^#`o^ z_vAjn0hOn&`olgJ@|=5+U_=o5oe?e$&}kL)ouNw>$F;V8vs(r-b!3P~`YWa72e2(! zmx#9pZ&CvjlCJqxoYs4lAz(g@0S8ogt2(*sDSB!=9Khz4tI=hKkf1|Wn{m&@O4xC7`1WS{MF?h>{&e)W!h{s8@m`Ocl| zpUEentv&QY?e+pq3UK!A&eduF68yJ%Y3hOdzwwdArhoLW0O24&^dF&_NDuZH46_0O z0+hl4q7ncxh!21mz%lts0c!T+PTIfw@%hc>d=n_&YuKhj5M%0R9>DC;=`k z04!0~-iSSgcV%L4eelikq|lVun7v&ay4x$XH+a+Lzh!_J;R5o5@+p5rxWVe|<|7I9 z;R@hw`!fH!3ok5zHC=kk4Dk@IWZkGKU*9e+7@Z&Nl?{Q zu}H$hLAlgxMbOjwW)E|{qnpLv<>7=itTaQ_X>*(CRCPt4_JdE?@oxWC+yftxou`y& zGD`{o^m7`gSiXZ%ZIfU@qEpj+=i|=&U4O&!JDKB~eq6OV+v%JKbb01@N%JzLq7pok z;qb~;o4}cP6{&=o|J9cu@cwN}&PS2{Ks%*9hFuz6U)P(8xhk-F7rM?_%5;xfX;1;; zKMMMuWvZlKgyLSDw*?KVq2HWW7Wz=|%{5w+&Vy!7w($FeL4gukgaG%<%44B3$za_V zn3X@_7_%z%RdZ?pU;?|hd^-W_M}alGnJh>9u%^j1sbGbE%>{)>;(j-C+>wp_lBKJ&>uMy1J{7E^!JiXFJKwcVVUkF-oHBL! zZ?4rA>=bHUrz^<1qfQ&Ly2y+sj_C$Uw8xGQO(sZ4(P}>cHnkt?+q`Bln@CuF&(9Nx zN?kI1_r34GP<1Qh$03|PTP}H06K?qq^W8=JGO{~o@WDAbWjar}*^eyPC7FUzwRJxQ ziPNLb>cAK5zWi*hhuSkEO-47hvHnCEJfZsF8|H#6p@bEqb8LG_O*B=3lzXI5 zUv@f=W@)Q5xOpSO-ghBE>@|~W0lB9tr>@^L8dN(QDwOtu!|of9ZY31WFEMXMs9jm+ z@gwtR`h~R-*+7A$P8L#g z7EWSgHRUM>C)GAhM5z0cgMzH-8-_@5udw)9j(w;f1p+DO{l9Kk35`Qeh57L$gTI&a z^3Jj~F9kKfyB$`RY=2*kawW60xGU?dAJWD5XP35wpe}XVOXLyf@~ej0olf+G(}K@p zT%C^se&dkAZ|4~Qc|N0X-me<3fDd~iD7O`hBsW-eg=KX2E%OrkMK8-kL~dm{yucek zWv}G!PY&n#7GT!%EaeY2{%$DA%>q1~Xn$uoUyi0{^NV%|wPO1#KbSXGKqXC?f@>{( zn|7g=(m-2v#m=p2JUa-jhHGG{GOmo-j4{XpKvapV-_83tWiddzrCadUHd(Xj4yUUk zJREyM@_ZLM@R4+m{xX@i2OoT@)2rhSR+;i^V>D;$*D9_(M}V|@e44uFdvg5v9v|&P zL#%+f6#Gl}3MSy%d)@su`-+FWjCXQj7?{U+oQ*m~)qp)CQhi}m6D*3|cW1tia>;%N zV3~jRnzsAkBM`bDM#DF*yi(w8^rG8A(+bH|TN&Jew!dI>opQ8LOsG^*Z(sh)l*`ye zk+4WOtx`7-Icjt2!)V8;5a!CKjq3}7RNT?8Tn7`6BiSQBKSBO+FdvDtdS+c9eHvqP zY#aCH!{kjO!0=ih4zKm}n`n zuIPUuEmmdui1<;qP%0GS15)ukJiIr;54fYM)P zT9j12#<>)4nZOROGr#jNy{*LV+rwFos>V4ngrNe-PpH`cs>%%HH)LSz2=+_}A6x2y z3M+vT^MtdjGk*ssmp4%*N;k;Pw1N_lHe`VQeZ8*$Mwj{7HDvb|6~BdvtPB1Z2|_ zIf1$9lVJqG`|t*GZz@rpnrm7zP&;@xS#Pf8E|rDHHc^ZBJn>lE*5jljua(41Q+JN* z?n;s1UYaP{sfh79qYNozsCBrN*iVEkww22$-4vv~T>u}0Kx<7>IUnf)@L`@pHr*aC zHqFB43TwIe;_LPa40;uG6Re9AAn&4mfa8UYpRHV+uz6J4tc!sGCx;IpC}a5KQC^rbh}9>Pa%VEB zDx$%fkSTS+#AGrZh3F;#@N%ZcBdP+H-VzL#W(jf%EQrg%#rDR(M#S0?Cw^s5sYM=( zLc}?QV{yj}4U@Ylo%GVOmuBvu`3u%0j;OJ-cIoPQ@#Ada?QD@72`NdLJEPEVp}Fsg0?bd`?|GSHS+##o1&ezV0~w4M&_zM_*0}D4aeqz{l_vT;fU9 zP6F+=~i@Y$+3nD=({zsDPW}=N@@{@;!An@E#Q9A=q z7IEm3+xs2Zw6w0v4>RTJdwRuGZ+xd^NScL=i~ZFzTCh*E-4M@eCzAS@ks9Ivu0_>f zQNlG$z(R%8@*W(RQ=5&r%sC-j@==FMKuyd8omu>%0)vtVz=W1Xpz=09>!^=&OrfUJ zOo|^fu}yn^dVdGk$9kYz?x`{vUEGQgiuWT+c1*lcWT(q!c&B+Qxq4J_BWI~{MJ~Dr z1sNFkLOu@hZHJFG4A3KtF8>G_f(|D!q?d5YT(4OSis7Z*9#mo7UrN-e#G?tLrbqt_ z)Ag`Lx#=MU5Q7E-hde(GzTPR5bf;3>+429%ae!>H_~Iha&pGSQ7Bc2EEa6l7M~n(( zuuk=1e&1-E#Fmg=8t8&!Ebe2_NXAC=bt|ij6Erl+$9OF% zeXMxE^%^Ryio!4i;)dXpojUDM9yQdy#uqpk@v^l8Fdu0v_C8!jQQw=-Pmt#Frh2`s zAXif|ccLepp4s*^S-@b-G5#F2dw^#p;fP9|n zfxW|pidEHsC+L5#V--U~Z#MfIc7bc@iOW;4HI5knV6M4%pV-o&;UqP?!K*S&^JagC~w2mr~MpB;(QvonZdKZ;*=I_<$ad!`?~*Hvh7nTq@%B1 ztP>PMjjNBw5|D5D!)|9jcXO0vjBeZh<7;FAU>&9ox3PHkP$_rV`bSojzDdTi^09ZT zvFQkgxo$VqUKF3&lJS9MW6po#|HWKQ=|~Ju2C6u%ZfhMe-lN-zwGuLyZXjK8B{wSZ zAyQb?u7^n%y<%}oi^}*V#?o&yb%P-d_Mzs*?2zUVdh+cm^}H48;(ZC9Hp6v(a#foR zQ0Yb2s?)fU4u&8atL(btloox}*0rw|QJ!Vzmf^&WHZN7otP9($?oPDjkfiIJ1sP0T zZ1^poBRl#5+(9V+p=&7D=n;R zhj;0HUzZfrk#gDS%odpLj`97~K909E;*3`{=iA9X6WS9PT`#eMvzmpPQ53cTGT1?J zEog=vW4J0^WU99z!Jq@fys1DHn&lcK`e3Mq5c)WulGt%h9L~dX_e64|H#dzCdx2I~ zBO^Jo;iIm$`|5>cR^$cmNE`OP$?$nY>pIgE2ekF~*NPs>EhZ!8ZzfKa0Vb|$R-NBU z_M>^=LJ?sdoN2q%MBDZ3V4*Sq_ETS^_;zHWRBJ_VumQNXlSF(XZM5Sk$iyVME^FNF zxxcF5_mF%*R1tC1Y+d~;d*#-@aUumw^B4>7ym=E6RUV04fp;C5vn?EN<0xB_;f5JH z{>+9(ZISt>`ev@N`s16?$WQ-%$TUE;7_c2y2X@bx&&(9_0ovs3F78}27YOn3+@L(kUgJCRxLaV-zl z^=O2N32D!wJ9jjKCA6P#XrXX-K&j*;2au*Zi^O}$L7qE`RlTmxRf01;Xn|WfP`avX zhej{yl;Ksj4#ihWB{7f#n#Iw@&3OIU-t5HBD-yJWP+ueY$u2Rm85S(#vJLMqUTdSD zK~j&FqsrM(=sewXoA2pL<(Z=W^~wyfF{j@)iyD2Y^@z0f`i2`{v}#bZg6P?JmDPNY z{0Rv{U$>n8BJY;n?yM-qoRaA-K?E{iAWwWg2H7uWX-iOyg_TMJ23a2zzMS1bQX^Kg zV9qb1Z5;Uq+C*1^GL|DwYz*1#X|qsqJ|4M!uk_4RH5A-A#|f$6GY}eWD$gHi-6N9Q zAJakw#NP2ZC0Fvo6Fq{Hz&AG2d$?+XP+{T?dpuQFLNx*tk6XYc)4_V zK}i2z?5#T1-IPfK4BGWIYtWRdS01xzP;ddA@Lx~KGpXnO%ONND66WONV&3LRz}f=s z_4E;GB2a=K8WKHm5qA(|+mU3FMt^3A=cySre%G0Gmp3DfB=nM~-hlJ*wu=ctn z@SH^m6THZpU`swxL)vPrwg*SHydAIb%-Y=|W}hc!8ocQA5h`jME8$_Dk_$~{4eFT% zCj|crj+L(fSrg)p!53GV$M*OiGLs2V%*>YD$$N1YYC=O|KyGaD=~M2{#6&4BDvoXb1e1F?DcM=yHEnnW<^M(>l)Pt@GC)?T70WNC=HqhN#nc z-T+^II7H5eP;uyMv|1GXfVm8#QIe;u71co3MOUhBcr0k`(am+|$fMcl`ky9}RksA| zS@)xhkR#?V<((#{uBqf@JG_+m>L;vy_lZ2f>5>O2=#c6mLPjiQIa0e>+N&9?i^(?i zvfSOYB%j2KHsvC#trQDm5}k{q@cjjndQ*Vf$w*n!am;Rj_ff$h$rcJ^+MfYF|H)L* zlK^~m;TlSdtn;JLl7ATY<0uA&=)TW>`~lkqJps7#9Q!KbxI5GJ!KzMTZary=qNfl5 z`CkcyJol7@*vUnI_QBP*GoU5O@2AmVi%66va?#(cze+|M(6=OtZOfqwDKicT;ejSg zI@*n8dGZC&K%B4N6J|N@y`#3rV%AHbL3Zvq&%%i`YgLZy`GJeMhBS$XXIui)1i2B#K#vJ-SVuhEe+Yb)isoS zshUJC+&i2iDcO6DU`Mj{NZ6W1tVbuCLG?dsx-YE>_Ep$wmQDz;3=g=V_w{nKf^c2h z-I|YC!NfLt@Dc8|3p=t(FAC@uW#wKZvx_c!;ghtR6mdPYd6?Qp^xkLI%+i?v%wqlP zOGgk!4y7-2OX*8lHo(}{f?(_v-{n5)9Qu4G7u=E3+M_8NrZgCxQ+3mgbKD5s%>%?- zOjoLH-Rc7yFUow$O9UsNEd|<#+2$5!&z~Cnw+rHBBH+{23f{6RxbQ{D|{w z6bvs9u2FNLzID98!g<%#lSXIM`=A)cnf?MKb`K%Q7cyTc(rp>u^zywjs%UmfRbzRx$L)y$a}Gy>{7 z8ic&3c$ZDP&@7uG>DX6*foyB|?Pb}QJcxeN9c1h5d>BV1cz3hmu(dn*e4tzDDT`hP zGcv6G*Q11QAHUpi=?7c+zA$+R%?N+4s0|jvq6qHRAGNFaZ(3KO`oO(c;KJIkw&i z9@o!g2(}3)$^wq{EU~+04Zc@6a_*Z9FQwnuGprF<94WZN`4_b1_U7Eh*c4-0!Z_ll z9~>usqj!w&Jv$3CuFsXJYCvmrkMIcVtB6ltszVfZcP>MtT6AeBu2)CX5ZAK)4FUej zLNH1ndJRR=WO_Hi+X%bi%jdwm9HabD>}sqme>v8EGO|vLLUo5w;V@A9AD;?*N5dng zxq!SXk{aixV%2605Q|$_Ku8mqjOgeso(dS3j}irGY?~)O@)0 zwKhV@rk0y2ReZ7X_cSYLRUS3tNZ4sTJiY~f(F}>h=^88`iARLZb1AVA|aR*1%0 zZb^>N)VXujL$-&!p{HAUTh3L=V7ie>^jIJ?u^mGr7K6c2`&9QK%k-1=Q}Ly!4x-9+ z_x*dP!@KIvSXU^}N{*Zce&hNklM>O$uPA`MJoRfMgXmIEJyAl z`fH5A!$%3=vx4Ki<|^x4w*DyvJ~kq#@FwI~)J*FY8S%|dEDO4*$xkv(p`waxlzee} z^$ag>xSPd$q&xIOLsSkfx_ajq3$u^VG=-arUBE>7hoEv5qvwGn(5SfmSNd}FbI*+x zvDv_*1G=n}rx z;QC--6dr9rDnI3~iqKqa1~UO2*uk2xw`f(tVqCFo5mI9!5+M(7Uws(qb?78Ov(5Tda;$a-%gy4SRo5c7vsTuKlr1ew$@(h3&@jeieF4;WN0a2^$u{?X?9u}2|ZtY}S_t8azJ zFb>c%=4LxY@x(%8n8wlN+z60@zy)o`UW&=+T+2kBZe%#F;*!dJ4+u$#dT0blto~JC zf<}6N-HSdnUyLjAqnwJoA)MXItgL;NBVqqei_1P`MN_Y2H;PHltjGL60DC}$zunx` zV6-2hNV3#jOWb@^qAF7Zl!c$*(?{xfg;l;2v}ilaL{h{I0FqhsqJ*9p6=&j)?mYJ` z?Q&vf)k}AyFl>w)J!nR1kfNor8#BjN`+w9fQKFzR#~YIikHre)z)A@pb zs%&9vMyIVpIBv3_LS^ufCDx$Na}>bZ9re9wXM9B4w9Tby?uDB7 zjpJFR=aJ4GUGQcih|$U&qkqGvR<8N;?Q>??a5pA;q6@v4uSl{^=G6q_d?(ZQpntja z+J;4&R|#M1dFX=!$UE=Q5^{KZ<1PfR%$`{i(B`_1WGfs;e??`hINPjMCSQoAMS4j{ z$2)^ZKT~j8rD?`;r0(*$ELJ+_WDUg~u!QdK9-l(^RHx}Hs*&}noaK&1zV6grLP@59 z(CVgt6PumjOlLl@j6S-p{r!o0UVjJAFxd>LG0$kc_fl24bupvMQbMGNd8?RMF+(<^ zho`c%pxw;GuDtZ@m||qeRPewt=BmX;W%}#A!Td-QOqofF8x9IMDQ(&xWPho!2!`&p z67I*W3-nm=&cWD$pOd-ji|Mc6ygZDWT&eUw9+P*DGZxqP7!oV*lyQ9QCfows1**Z= zAi=joHRXkUTi3Spca=K(RHj=Z3D09a+U^yo8#>ksA?1=4-U@4-72nammCnc3``9<# zCw5zA76#k6eZ(FT=)iF)-GA9HcPeff6G$7$gZ1EiC9t_wvS9n^T=5LG_E)dTkCz!;I;}RiGGDpy>9*NE^F414VOMRwWGu*H* z|0ac8>#gY^o^P3k)fEaHfd};mJZG*u35!KuFw}m4K8_eO9L#gb0(2+a2#J!Ds$sP8^uO4i70b8I%$jJ+LjUbp|nj_+u(<6$I39>2|ovzuLrDhD+ zU-a0;*gJbFdWvbYmwzt6x}2zxgOwy$S%KIpYP#L)ihdxZ;U|^3(ON9T(aey=jCy-* zu_De2fzvxBR2lZv{5-cmm3=qLAz7HM{G}|U-1W&V$;oqtV$wM)&cbrU$ggfOJs{*M zNQulFfFgLMK5)QbazN~8?+cX;g6|L2av^{Uy|=|hDly6>r+=Z>8v{Xx-6EH9*=Qyk zB16@oY~u8fJ!0Cg--mHWYejB+Z&pO$#STg&<0{X(tD!#L7Ct+OSeT=VnJWr<(Hqt~ zypq81w5pTUf>I>O)^bV6528scy~BZ#m`d(CmS~&3gh;z0kxrAIAMe-wfs75iQ-~@7r=Qz%*py~nnRz0nNRo@H!B)UywHSzj1IKO zh|raSbdvO5j}5^}8L8?r?Fq89lc5=J{vA}g$h^eB?qEv`@+U&@UFQ3=4Algj&WPo6 zyJ;+MkML9AnT~YRIJuWz^`&+8Z0-rm#5B-hn?p?Mb*4c9cvN35rx31Y!6hC_EY+a){8!WH`6-} zCv89mibf@kZoC42B3ar*_jswPrb!o6@Mo;w@ws;glpN~i)cGrSgk%fTtmQ<%f1EpF z3xD6(TMhyO!RTF|8PMEr%Id`|KL{@JAW%Z1X6IOK`K`&2zbM@W8#OlJaDkM^Km=bPsHvi$^>l%T>Jhm|0+uvE-^U~;eyR}bY-ZXJ_2Grb@e>6XDWera-+$g)>s!ulJ4VAmyh-IOw!|~;P`{oiDIZcM zcdU*m#sgF@Qk)#_&r;pOOJH8PY_8`+uPWG@$d#O0%c?pxN-^EOsF=M8h`+BLpNU-;=OV+PFPovr&alN6N4D}QxCq`Lth z<7jQ%ejs4ikup%C;kG?qV=oqEcAKChz}D%Z-rS${Fbs?*ihn1{yOYysIv06rV;WVR z@jb9*`cBEWnAqAzyx#00WeTzc_nJStiU&6`THun9y&N3+m+^%*N=Uj%mnk^mek z3x$9bon^}`gN!6u2&r-(d|4q}JLZR2%Y{DEAAUw^Y*geqYaar?N8DW5r2FdRaVfQ6 zc;9_z*7Zt=c6cBW+DB`;E@lGIr!gcB#Km#VXEg=e{W{iyVQ zEhq@I6}&d2^!8a=!U6L>cZ0w9Ks@>m|C*f*g@|5%A5=_e>dPEf0fGWd?_3MqI(W*#eRHbRJAdHkWAuI6GtNCMFdJx>G{o#4gMk&})$W%}NM1B3P9aZz5Gr-i zWCS6zND*e@dWU=P@cxP4&9&BOsB#}SG#*sec=Z_=7p%OWL#4mfWS`kKBbWI)vqmgu zt@az+=whC10bV8lo5*3j)pr+7&MrRK(Tzyep6r{&mw#a~wa-U6BvKQ^>)IS* zE2r?;1SjXR@Q3?Yi)_-Z^qG-g=kL-~bv~NCKH=GX8W$$TC$(p4Ga1~>UZmW-Oy0v| zLQrJqkobN$l^-#wyT&;A20bJ!uwPd2h-dWj$X5Avyy%ALR|!u%GbSOq$G=dcek`i4luw_Gt7)MNP~1pcXvvQ zgrri^(jXxvC>;Xd_{94>@B9C2eczh3X6|$CYwxr7KG#0$9_Gi-bh%`#VU`d@m@|rt zhZ`gckkimm;Q;|aAUAh7bkFgI%H401a+{D$E&zBxII@!95UATRRkb zpT8dgtX6CQ9uW~C&Oh7%GENW#)C%kj&;XUVg7WyU5Uk>MC=^^2 z2y}CE;|4n+xnX|@TS+!ffEyHL2hf2aAqZE9HQ;y208OwH23?p9 z$_d_Xep|5quf!P0I;+5Zz6x#5eY;4gI&Q;N3bQD@JH%k zfTD~x0F18iulkTy2q+wd7sUfDpMt!;jnVf_*g)OUuuyo9L8|HVN=g#Tc+5EMWFBrL=yEC7JG03hyG zcEH~o=y`v@A%7Toe#7V*e7xW=IKT#72E+$y13~`~dLhBC5C97C65`|aZ^M7D2zht_ z)=(=Hz!G8$bte2LIvR%9{JBP-KLY9wFb1LJ#{&TU{`}|36s<68n6snDKlDG282DUM zM&9TJ$6qD?$0#cca|d{F@$mwR;Pc;co`Io%px020SSPt&|f_N&wBsE<^NCSzoYzLmHxjO zDZX@c{KL-rC*l8N2RlI>J^o^#rTY?v9s>;+dKjGlmud+4b9OZ#*3g$u|7%r2fzjh2 z<7|J6mNXX+KR1Z~PaKL=gt|klpFvSpc7Mv|Ph9`^z&S#lApC&L8J#wf&4)XUJf*z{>&O^c33TFL#`gjEd0bm3I>_Lb=eDq2H;KhR; zQ)`I(AL<4Gxt(DsvO@OJMeG#PlOi$w1lAk0R%(I||J8p* ztCt7_y3K#cAKl`=*MD4S5Qsa(ig0!sW+fJ6Ul-JNUL!;6#k^fm;Jsh?(lb&3gGi!^ziteM8BCf0RsI@@2N9^E%B#yY+v=UDL;` zZ#sqSEZ*2e^6YtD(38OzC}mR+Ir*F6*7I4R3|LM5k_l%>gYHzQ@`t6$uk;S8p}}e% zbCca;E5BZZ_64zWYQ#(2RIKm$G%&x9a|T zxp2xFJZZ>lESzH3rYBjnAQFGn>i3+CkMFK4G^I-a9PuR($3d~q*j1tY9^2=j?s^LCZ8wP(Lp=*hM<7$1T|rY!kJ#li!Kk zN+kU8xkXC9W$YgF+0uW~9A!w{V=!(vXSlVzg_+;~AxmdauzcAUFo@T9XvoO${UPRh zV`ln?74YFU?1dsyD~>JbO#$hLFd(Eg?mU-9z1` z;5-(bS3czM8?Nykn`tuu_-fjmu$R`6-_v0GXvp0H(Gber zBr?Pn-JhB+8=@P%jN}`QiE+r`G>f#1Py69H*n$rx8Vu$)m&IM%p}-+uxau3ZCN zn?kmHJIeVu9t zkd{Ka=qSAI`FtTBUU!_Go~iuU;B3L)y76(NpO`g&UcO!-$*h1V=h~$!NLhlVAfKns;v~X$Y+4${ zf7q-2ik@I{Xm&hZVm3c^VlpL76KuAKzsO>+B@_^gL5!?Niap<=KA2vZRzh#oT(mUe1>R z*uIWi+QfgVC}HTMbV$nqA@Gpkb?X*AT^BW#$JO`ddpv`=HwanU916xU%JBefTGh2gKyd)>1fH@V_ zrE*TNw7&|J7B1_(U{qabVq{} zKAafJCq`H2FWcK9Ll3#Sdenb>LX0)WSgB^Uy=hKJcr5wr<1anfm_z|P9YyoU!Ap+< zzu6~n3S6dC{Si8Fkzbu(rhqo@3qDcm%qH3aaU-QMFP`&TD+85>HCTeI<_HbO^Vg_g zYd?R#z{N7n-4I?=D=2vNl>g{f;(&e_k^0WnW4_wXjJ-=)ZMN3iocsj^y z>sX@1-uB)YFz;9JMeIe9)ChGH0wer;N?WV>aaAxL*|>j= z7QW%qXUw&d?2?xkpvAMeCs8*m=K@ksB1==b&A{z3-J zU@v5Z!-Dx3M!ZcK0M(|c>zlNmE&hLtnpG@`G;frq^m(KkLb!nf-S_g1&jxm+z!jMf$tsi;vjE#Q^`=YVU zLkUa`aw@(FHs-dUrB$Q}E@f4XTC6x7CR{HbM?QR%wX51qsLV!(&_0cApw|{S&3~mw zZK>`9lpGOoAm5`tlhAg{)4CC&68IJNgjO_hhBHs!oJ#$fR9r*`G#hDPCY@) z{1u_Kc9NUdw9X;Lf^&ZKg|w_hKa^IYan___gz z-tCss>2l&o@x(|4;u9TB%S`qzdpNQNtf}8=8AZLzVZb`jk0syV+aiDHd|2)zJ~&&Wy>{}G~E?RQlq>L-=w|=R>pnAh;QOqaQ%T4I6m(mq&b9C;hrw)ZlS)Fz}~Rjs&qsEtXF`v-(6jP zxI-o-yz$j_uVxYbXB~Widc^k(n?CnVUU}A}fFb9cy1D6$dFX#aRN3fQX(aM)_iS5K z;MYrT#1eiD)}tc@<5DiHitDDmlY3i%CH|i8lQv=yRX8L&E8|RsvSmc-n85JZZ=%hz zR40Jxr5P4KCEBd<5uTTVAXB7;KVkfFqIX(r0&6W5fA(@Q>-G=Xx@#^nhqiYuS$#3q>T(MgWa$)p1zaGI1i#;T0!jDq_P{;2x#nh5v# zLW0b-u#=4E?8&zbZ0mMSF~;>&UuxX3_>y+`a@%S0{pN>qN=5hl5;Q+&*F^U$dy4_o z@b(2sJ7t#7Ci^Wc*4ynxfkc=OFkZZk@w>gzFJflD6r_JO`Et}KySbV$7bpH{XX9BU z6CBIF(yy~`+pQZF%mFP~f>sr%mQ7|g{h9>4*DvfH{DIsuYR$9{_Q@kO`G8WE+rc~d zbnz$^NGQL$0eJU`zzYiLStCxxsu0hurfuIDz4rdV?Uig*6Y6*lip~#XEvA}#C5NBF zu|G`LOgDe~qWK2S1Yr3|3N9w8XHqDOS5%I2!eCo|uvEZ@Q-NC6*?^`yGJ%-g9UfoH zrHcBAY=1K!;dpajB}6LII#NV5m$?n<}Z zaUu95yVP1|A!#on_U)_J6e;x<+CJaqWC9-q(&&H8*IXiP-qhz8d@*tIvvS~p)pBgU z!VewVT*mh6QrHQ#Jc!_wt8zK&W(m1|PO+oLe2SGST8qTYHEEHE$0;xqY4rrKUb3kUifE6- zv!nVc4SUy_zE}vC!Whj)a02X|p5@oY4uOC5>ZXog?|I*}OP24cxx4Un7p{CXM-|go zrf$giQ@VG2Ks}+PCEMthl#7qFq9lJ8vJxUp zCwM>mcd41u*_#C8PA&)R5F{s$0|^))6=GY1_x#2Ud$~)jeb1C`Knf|VBLo-)OVT{+ zjfGL}(3)_AG8f{wq2}uHH8P5Qd!(z3e_4fPsO}W zPV`#%14u(Uvp>WXYvvtHlCFQ?wma;u^jNRBcd6JZNc0C5hZUN}n<4;u@tr<*TlZB0 zuD+-9EgBaZi@uJ(!wOa``i-RF(`(xDVgHVhAn&&4 z&n9yW-uJR@doGRbIC;6gkM7n)v1bqcOtT`zkWZ~0qKPLm7ehHrE^&XQXYTORGZz;( z;wY9}9Hc%ZK41J^M{@^DMk|}ODg^n_rk0s?;R-$?Kd;Ql%Yu`_1rH}uJMgV}ZMk;L z_gLbk!jbm&n`C^}U3qb_xArwXpPDY0XH_;Xc#)L!d5z0gGWE70N(sZ7y8Yo+eY}&u zT4xaC+#!o=LQ`_lW^#YBIja#{HIx#Ih}bcUq(jOKN0&-gUem>nR80tNrrOpU&|CUF zsp4@sPtw^>BD1KJ!+VtX$t<4v>fSO)s4d<~DO_x-(Wa-fyyZB0osTeK;w4}*o{0py zPs91zF?PQi>E~9s1mZNXV_M`O0HtR#M3o8p!hQX{uvm6Dl9+$);;usBsiQ-&rL?m) z$I+0OPF$pOR{U#TkI|57s-W3MpGWVu)V9B<8R!K*DHo<$jm%1fD~Ptceag%lqf)RU zCrZffuIQFfIoW<)tlDq!Y&z}-OYz&WSUv6p0%P2Bb|p{nTjiA>?qtt`1~9D} ze7jnxR11mMLYjXM{0l{0u&Me6>^#&K>u(gr#EovVKL`Kv?e;z_Z(1gpB%?Ui10p)E zix{d8WO^)j+WPbBuhtzam>oTjL1|!L^j0NeyFFGm!KTHf^x=Fn?y4^(FV5ySm~?+&T9AHSu%GzuM|{QCrER6p z{bXGUI2cW7dQ4j?8mFrs5g2L0RQx~m(X+TmnW3`~?+sCc^A{U zoGYk>A8IcBrBJ(HlmJ#6FByTr1G8Kyz zlFDu<80-!1L%!$YR?XCdGx80{NV9BuNWcG1^>rcuh>IJH*_i|bp2ncYXo%d25|2(e zhN#$u8V{65&Cj*PkEwZFky?H&fqHk|&O1yABwIg6UM49=*9KZU7{Y}%Ts(Bf#rq$v zx)Xm%9CKy3hGG9w8m089F>2ZOv`U>kt{&xLgJS-4GMHXwtx!)(S~IkbD7|xo7?A+h zl60`}DC+qrnEq_z%Uv$kWu{}%X!eN8H^*?4GA@H4 zUqNu4-q8>dDvry4bFT5poW@iyEY}n1c+2oh9B^iG%cz3O* z-}R@{kEgy`);+u0+(llJKbiq$`UKq;Ud!Vh117 z+h*=L+_=M~lfx=m$UbsOFkZ4Zz$*}D*S2-g>aD^p@UqK7`&s_kbO4*h&(dUV?f%AX z)?avM{0RcoiEqt{1DApVC^dhUt6^dE_yS7o7E;4HiW((%SGxUfriN_SqIck(Hgn6E z&R91X?E-x~B-RxLEpgw~dUnZ;)d@YCT?p!BI~$q0rJp_w`y{yi*l>4+a3uCp;eKPE zO3Q)ZIp>v%UKdkn)Xj)T`fTWa!X4!#IJ9N+*1*ax%aq!YWqvtVv3q|}wB-Y-R>3yY zlYwyj$MT{j7!hO`!OU!!c$8r3wR8>lgzJHRMsxM#ODVb!*5vG$qM_5E171@hch
    1Gr4xdlH?0h=WIik@ozl*FLrXazzku;-{du&5nJpB zL#I`qIaPM&fwSkv{wzhkETNsZo0Gp>xT_*Qozr(Lel84s&@)oF+wb_sz@6_zFSCsJ zlv&-&HEX*#?)2BeK{I%WjcS$FtlN2ye`xgPt(h5 zmwArMIC3qED}^Jwg`68EO*cF1StP}#VG;iHP?9mSAt7$t&NI*QQ*KwmQCay%E6f@h zt6x^4H7T`$M2hceqbRwJi!J*x&Y!2g3=n~oX~dqnR;FGw7C9a|;r|#+^Uq~k>>b4Y)zmZCCbC)a#rR1`Oglq* zz1<3YHRirLjrWsN5L81j*~QJww4*)$nGjs{o4Xs8&!kaV#`z;JOX|8xO$rv3S!{T| z$o*RiohSI~v-cWEy1>68(lmRgWY_n0W$yM{#RZfQ^67t#Doh^^zvJZ0Phc?Wn%XSW zm)k_WyK}~16B5op+9c5g-!Xb1PAMFh@}-J3R?X|X*qvIISpTDw+7J;zES=7lx!9Rv z=Kf1LTIMbsx9GMV3PRZWw(QRw+5KG@~W%>9j;0MGG;BO zOt1i3?y!GF`Zx<7`;`5QY8c&XH&I?&|jt?`LS^)@3*=ibQK?!cGeYH|8UYtOM1 z-VxH~R85Ip_^6MklEkEy3UDLDbH!yt^<}{E9?GLR%%%|+*UIgi_7)PEzvNHNHs^sO zWV1yJep{^vI_2jq)LdlV&*dWM_vRF5UgT=09;koTLrR~)+pGD z_laS#Pn=hiw{ovcQKch7yr*Z*UfX#Y^v&?Y%+_oGMJhwDc|+AvPo24F9g+C$ti}v? z4*_Y)Q0?Bu(ixxS`EK`wP1bnH>5N%>*T5UwzKZiFk}`U(vF0Fe#I6yEn1Sj=ondUu zY#V=^&8gX^asg4pXhX~IEW7 zE%3WLEVb7L^i-oxA>FV&Ufyno=CO)pc+x@b@xw2w&Fd2leaqQ&LxX+C0<@U1A2Qik znBgdip-Fz@cYf2VFNnEAX!t`YR_JU+V*vk2hBneqjk_=bcUMfh>tpKJGhZF}xu2yyO?JPCcltM`WdzBQAe1 z{nnP0XnkE7y3`%E-}QWOeI>|E>2<*K$+SPn3^rW5Z}@ieSu}H^FZ;>oDDrNd@#h;X zIN4&R=`KvAoD(m@`_vQCuIY~O{0e%w)j|X>0(R{0g964)-bTy4Zi(9v?+HuNsGyF+ z#S2*1evsll^z>Gq!Rv07lHY)nES7)2E<-$3j`X$(Wi|eAWj~iNJ#)`|=E(Q2jpau< ztirBTt{IjAjea$<$6h1CPH8j&B+nYv1;K zGgW+x{fu#|)R9yjnUz}HGNnTp9n?iyE`s)4&3&oOdRNJYbj6zH`BR00iQD*2ngG4i+h7Zd)$94 zq37Jr%Z^?J9EJ#f!mcEyw2$uHcwB3-?{N=yK!dTt6co8%DGuJ1aVAPWJhW?v>^6$i z3>{y*iVckRsbeX1$w@la3BJhX*Jw6$u$UV*+J6bP^TAQKG8C>^i?)CA6bobL6p2}S zylQ8%tFZ}h9eOE-t%wqPz*s0G)J3B5WY>nq_0mqJN7qgh2M*U=#cb1b^u-Z(JG!RQF@=q($TPXYRtc)8S>Ukc zF$4I+uNo!^qi-z*8B>2>$;k$Lj1BIG=D8JTw3pQ_>o8B7eIPuTmeQAgJaXKHWVxpJ zK4;HCRP%8I>>SE)F>@n6|7|UyzcM`S)SZBiYS{Q`HX<%l$@53jWr8g+fLb*ztn{vM z`^zqD2}4DE8pR!7tMaz_j}uKxQU~GKc>N&q$I+)$FpIM?hkAdUInpo@O~KnC0dV9@ z{@zHhw@Nx0j<@@6935xZOdme3KfRuwZW3{_&E=;lLg5wLXYn=XlQeZx_I%!L)_p`2 z=cmyqeDl8Z3xbn$nhCnY3t-`%cx`^|EK+bkU7tmvSt3f9Epcvm(Ag5#mH5>yS>&VS zeS7)nNJM6cfB1j5`F_8N2UYGocS0b-30OpYucv%MM(0!y;`2wjTD6EbQyS|K{F;$f z!CwNC)7m_JglgTHO<)UbEw2j+Ilt8IKjtRt(ebh_A?yemLIoucNL`S=xVcKNtKfE1BU~hsO*27Rv{dVGk$Mm3M@PQlVa6# zfluR7c-2Z>j&gVQ9OGW(aUlB}x2rfC#4 zl{(S%p~ZhI;*Eic^3mZU&i=|c3XoJ&PWj4Ze9wJNDx?cVDe|_cI_21Sv!{%xc}yd8 zT{m-QJI^CMu^M0qukOm7KP7+CRG22nLDppj*Y@g4V7`_QkPmkqiJqIm0LVrrGM^Pr zNP{n9qP_Tw9x56N;P`lSa6N5xCsqITWL%TC|CxVQQpeyf<42v{&pJKd&EtklVlrG` zHKj*GxsTGPbTHCfl0+8QMuMjLMNTs58PvzL@7~mO&5{x3E@>1dRN&Q+G{g&iV|N6O z*&9cN`iTUzJfG4Iv%~C>$p7UkrZ*4+t2E!W6+s6j1{X1E_ks z06>BOkcb3GR00SD2mpcNe-q&z5&%W87t{`*!3R)RHb9jN(6=d4hGxW z!d>0KFkdLl0bmbxfdI6W)%lPh1|qQT)R}L3sbc93V)5Fc1h70}28l?f{67tt0=h1N42} zAisZ|pkFYmhX6k}xEsJ8)dnO0Y7aqu;rSuJUJwA%!xIwV_ur0xTX-N4zz%AQ1lT|v zpfJ4uWJkde`@d||{d+)t0A@gx{6GNUug^cfEKmxwgTq{W|3m+M#r&FTa_V{}+<#jB z$0;ul_W}6vihuyT0>VImxVSh#R9GAk@b7;#+FJ?e=Ab07kiRxp17ZjDbp2ni3KEQ320566%RhsJB9woj zJ`g)?DALyPFTMPQ8~oZd7bpy(4M#wKy)6J<5D@r3KGb^II-}kX1WJ^@T@cjv{QF2H zm@VAy*P00kivYkL9$;TQAWBOD!omPQ5NaRoAU?lk4B+R3!I7vC0IIzJfIZv;@7JAz z0Q`y&7bN%>`Wp}f@M}9l|1rf;CgOj;OcdY718nOIK|PuF$p7Gi|KNXJ`9BUJ0KYBN z!`9Q)-UU_3-|(+i`R)G8MCFD2V~YH;+&xip_!|*K!sFcXxn}C11g1_zG zFB=5n1F^-Mnt7@Z>5dXcvVF_*b5y^Z`Dnyl-rBB$ zvM)`0vMgeF!k>m~_k6&|y!~bHTYbD4G_%d~YvF zhmP3V4AYD~*=XWAT(m=Qt#W_0@TLW^W-7h~a0L{fk}#&yAmik6TDH(*Oc+@fkzY*A zN#aR8%+fveRSX7i&|{$SXY$RlR2RO>X7L$czJLGxvZp&u@UTFwvr42Q;yxAG6II5X zzUQB)9wfa~Z9t&0$qSzv`YTeP{p?y&1SZ#tFjFNF`4zF>C^mkt(s|NC{#=^>Vn5px5eVa~Sx{K+%n6Y6BkmzR%wpT-JA+xU=I*Y$3_dT6!$F#UfCu0uHaT*#Eg+z}R# zjfY^^=FV)hZsjafCSc(sxH+i%?9z;hyS0sTqqMq)^>h)y7A4kn-yb(}Mo5eO>#Nr# zM3d>%-_h!ZBdh8-cWG|LS(dVXIBe!eHv|_rK#y}_&R)+CbZvQ?9h~qg3+8>=g=|ST z44;lgVFkGD%B6pBvRZQoe}+hcyorr*8rNL5>{C8A+0Lpn_KK_TXc1v9gj&&*;@Iv$ zTHGAd_UX(O)IWW8(wh3&#ku;`(f6)L2zPd~d;WLc_exNr)oQ8tZ`1lVCY%P9!{ySs zFWmYKC%N`&+pRz9h0FLW+HRYWZ*F-Jeno$_%*);4y)=I{z3y52pxe%jF<>EB2c~gw zk(|7p=qcVTiB?>P))e}>A<9X$^xeAi&TFnByI=_+J!h9X#7Is+kPvQh+a)dyEaWKe zX9$hgmlIV;+`kovM0^2Hh}?q9YM3ltVoK~Sxo)pu;5$POvyAi0UbFb zwJ>+lQxSi%cTTzXRMWDGFYj_yi#$o_fYcwmX6}Z`;7BG{Mx?LM6skL^Y@J%zS9IL# zv$iZvmCz{}qsd^~A(1)O)C;4Dr$B#JJ7S*m$iy(6=lE5g7&w%L?x_oK7EgWPX!z!p zAI8g~NHGUvGY_OR%?jN^e?+erZH+k?o#1qz`o({b=G;@8Ix3?a4MV;81Fs{P_Q%-t%*N*DGr(o@tM=z6fK)bL+i$}<5n4wSBxC_`jWOSEHLQAaPl)%Ph(s7GcTV)~tU+&xaJJR6MCpdPiN~PpLlO;mN z5}D}@IVIieH$RB6KDp6`&%K#Pb5`x$w51>!3EX?3_h7l;1^K`L`RiJ_6sr=lEIvl} zl-JG@0@~NOZ4O0!mn}5xc-D{)RUayWmf zoNdKvlS-z8Q*tHq)ZFQl(~rd+c7F<2;>gH$ji!bSAT1qE-iiwNWOxwDF2e+*ggF{E ztX|<-c=M^&=N%((Qy|iddX8Od)d^4)*f+im z*d}-Mex7Yg@H2zQ4x+YJC&bu~q&}|5Pyrj29n_*vYWh_v`~}D(UC=i}u(q$E4l)dR zOGFaZS;1?8ZuE1tGRI`a?ya2)zIU)(-ic=RSwG3C?bf`1JaxJkXmNZI6!Cxch$6tH za7jOjuC1D}PG!$LUg>np9dG4F=%>3hGr(C!c~10X`SAHlGPn<8M+|p4PZjF`HvZ;@ zYfmbZrU?lo(@`WVh&;k_mhZ5?G&v@4lept7UJgItEnez0K>Fjd z!`q{?xjgX^7<2gtn%DX0)TV#KBAoej_q!g9DaJ@u@J(N=lX_n3l7wnrjd8<^uEVv` zlJ05xR(&}X%Azzf6X}Sgzke56fw{fEnSgk7cK>He`17Qq2Ohog@`hg_&s?oNWQtD2 zXbkoGpB{<%iPF9q2*5Dh=IzhJwLClb3eNW!q)Xh+XAz6vr8M(R6h?pOX+JdF>Io`P zF>~e8-CbA@&6u|{r@ynb(;;gdhqbpB7nO*hF;z5qP55q9u6m=7rMu=!;qGM21Yz4; zgBU=Xt8@9BH{uOvvX$ogr_T#o>`qFFt@gy4FE_C>ip>j_k^=<$D~mplm2~R2Cslff zPFdT{o=|z#_@R}1R2hGzjaq`Z<+wP8NccGyjPPOI#=|y~>M}b7u;1As-{Y% zo&92ihAnWDoe1jAcn})4bGvaxApXuJyFzVpg~;&}pW2hKBT_ftVdd|3x1zb>aSpwX zeNXV%W=B`m-yFUQV?MZd)pdu9M?{UJ+sz?Sc2u)pB0ih6A&-AV9x|sqipS=geClbO zDBPrN%l?3Jqlg$5JuuhgS7GUr=FmWd`Pd7OsWIHx#h!enN^Xi`KuH+7ebl=__3>@f zHl9@h4C{UWepY<#b`9&B2{cH6Mz09nXo{dodX*R5Gs&y24_Rl-?Gy>|M$N``k%x~% z%5qgkdGaS@IJSRn&IBmf(YrF`>Q9imEE(6-b7ioFRm#izsepZM@uV#U@wi zvo&>!9>=dcmIXIIuML5`bPf&A;@K!4w-j*E^Bslc@%474wr`Xi;&&aq{5-a5qWiU9 zu}}zpDlzeX*_i0{gP`~JktQ4NP6J960g`yuRo(KUWd48t@HygEnm3AU6ZjBjEK%t% zXzw*1^alhysIJf)OcpsP2yk`^y~S)9n`v60^fXumgpgH+ozm4Ki}By_w0!QPFn%$l z^P)gyI@|iCQ#}QFp>}TVlY2*HLEo#<$r=k4*3X|_ukUI@=T8}CSY~sj^te-hKsMch zb@~#JbfACG-B%j??A7Jw7wtoY_P4F`p2(*&JoVQK;DYShpu_`2Pe9hN63JdiQ<<%w z*6XaZI~*#8P^NRoOo@r?k#L#wf%ClVeJPp0cn0szIehbx{qD z3Lo!~)#)GOBNekl^<{6Slo+k0EF3?~W4Eo`#e9FKn@L>gJGOHt%m?eFk2${ilYP#P z$wKHutK4fxHuKIimU#!Gj7qC)v>)zyLXv}qJJVT|W7WeVAAV-ksG+^@?v;EmOc6=M z{56dX&nZKEnfJ}gfjCA*s=(pd=x1+1oqMk*2+Pikv*Q&H^!95BsryTEJ2Pz@Y$*%7 z)JA{W{743sxgoSPWkO%CrjTo!z9fB@0dwYhUA~EpfC&&c14{^)6K}jw)8dG+y8LI4 z4rQyHX|Q8+p$r@wld3dOt1)$VE14fajVpHBR4NwUAbcl~D zQ0T27&f;R+LA@pNR9$M~3lo;R+rEGCNG%!t>)MZT*k(iZ5^}OC?Qn|})sasr8aCb4BM&{TYv&O9SPZ<*tOUr+aI6Fi zil>1S&}G|-^YC{+Gv3ktzOk7aNR=9zlxG8WY2E&S!8o8Q=3G*&GQ?v2nGchqelK{0 z=}~{|WKgsj(G(w}Owyr(OSW37ym_;*B#Y>j>Ew|+CD5ogkH}Q2GJwo-h6I0ygz(yN zC*PSr9EpQ=A09+?UXh=vSWYQHp15+|Vqd%ol?hHzuH~iPK?|l1_Sc#muwIyFUNGaf zu)!W*@gI_D+gpu@du&s_#Q^uOf2orBT`047eJ$d?B*-kO5}~MWQOuZpEBK?eV~K8N zf7nca1*lidh549sV1#GKHzI!r8dIry=u$aKirg2Tdipq;M8S|an(;Yx$`~PE{UsQ& z0C_-$zXA=2zndwG+Tn2Cp9XJsW8=d-{hqr!P=T~zlv7d8vc=gl3F_3|H4@)n$L2ZWnA79N3t4#7F1B>qU+n)2;6kq0lJlXMf zBMoW70&iYz;?JQSD(rdeOQl*QiLVmuYX_|3sYmYSVORs+3!Ub4kL9KuxN#A=cE<+# z@G0Hz%saEt7`V#z){*1-fum}(6ZzpTXUbrz4nfG^%a?QKX-(oIvdOQgh+F(*Me$jM zNU|=OmfsfL)88!l@u=yI#I93+3L0$kwmDg$EuKn!GAKeFnqK=ZhWDgoE?cs@oX?H% zZQhDNX42kql+1&1Y3_4ibFYfllOgmTq)86-x8%p;n0yv_2Bg#si-nDyDoviLYQb+M z=YUQ}b22TWO$L+tt*p*3zSV_<6q6mBx>)&fP#RSqghKO;`Uzwg8);2{O;*x-m1N`< z$1P-gx5TqT1m@HoYSXOZN$(Rbxhqr3j+pCrFLiR_0IDs(rf`O5PXh!vfl8qU>+EMN7ew`%%8rJZTI`V-&RAXXmJ zF|Z6{+Jb>05}txXm-j>&v$xmWjA09R00PVz$IX3^#cIspR1^CQ-p5NDaYUaXco^%R6U|gjmoq9V;~6OL zrsS@lqsqZ)L^t(Kd=C(7;75(e^Pne0$BjM>d<$EYhf$;@>L< zwT&p2C;L2Gxyu1oBzOAcs5O6>3hd2D8y7d8UY3i0X8n1*UaQGkTF}H)S0Ng6hy4h5 zl~;#z{Ay-lezFV%E}ePtK}OM|6qK||>Z%&4!F+@Ud>azWaXGBm&ASd7q5!tiZ*SG= zovw}FE&546{+L}|RZWH_brJbaiHVcCsb;fYYI@}!vvb={FgOtJZ(xp&IsC! zMQ4U=R^e@(6Bm-!nfJu4gf%9DpD7xw-oxBKe#+BKd3=rD)==`3L0+&LLD^5NgnpLQ znQ)3BR#;-=$ir=woiEV3iqD%3?r*i8% zKx%QVCWr>#By}ai1$!wT#-LCiNE8wnaMHyd|<~TJ0K3 z@vjl4UV@T(9vsKLk(1JFEi5b<9XfV@FWs*SU$!t4QP)i7?f!s&s4h+7Ojc#nnPjEZ zw~7|}+Dos?^mu{7guraLK59a*Oyp+TGOpmjdQ%}_o0qxP1>_LdUy7aMELc4yfh)## z$wqtrs=#1JU2O0B7Uz|ca9)(Iw)}Q3*6Qdn>OX9YOjEk#DF+vyC!KP!HB&Z!+l$n7 zWt&RJ*#mF@rIA38gk2+a6}+81@!seu*Wf(6cG8oWnVRk@D~;}(skccJ*xxqG5AJSK z^b}cm*z?FJ@cT1vJYvi$uoorufVq9)qD{p5!ioap96F1&D z-j^^CywPBlx;U3lkK}D#TJE{T{~BQ$)~0V^ZsVb_a=y4Y>?6p!C3EV33cKQ^kb6o= z`|}yi&1Y4YGIT`gt59XodrjGN07a*ok3SZU!>Tm7gI<5wTcHfA^oRUG3Hg3xj^5#0p zq70-%%Qz$Wab8G@!Vp#$*hj4*@riPb^Wms-%_k8ioe+}pHJ&nmjA#u0RY$(JP9RX0 zj-QT0ngPi!;76nZ+@k7jI1*2zWOdVPilL)>s_G){8p8iNPi6OL(B)h??RNJ7&Xm{+ zOwmh!lU6Q3qxV^dK;9PXko8lDU5X;ZrNn}y5~KL>+VD#Hjotk(bf&ECJu+#HAQ z+Tdod@>crV|Jw29@K~gpayxQ9ZmgO~?#+?f=xT-<8Ctv@1D!Q09tz(F(BhuapN$e_wl+(p76Zxz8~d8UYDy63!{=nHZym!{v}Y?oH9j!cTq?5Vy`@88hZ zT(W$OOQNQGiv&@d6amqgUjZA;6#Hq1TvyP^I`X1_L!%}36N!_rjWX#Kp8H!eF%>pB zSQ0AOU&_+Y9uIj)-o}BG4Uad+la9T76gwL2IG?>YY1zuHyc7F~ELhNS9GP(n0K;DXjR%c`jz;~KoL5Or)Raa-;80QVchL0d;Yvc+HIr!YO`L#C<*G5S0xXl!r$j+% z^ngtLpD*mI(40NJgo5!;a`I_wnhe{M>vW(Ss}Dkstuu{Y6q^?fHr3g*qzo$*@!d6l zK4{9}H8m|v*S1W0A!UEwo{xE@K;PNj!d`6kqDPJY$KGC60wvAaEbESrXFLw=6QUo_ zW9=b|kTx;N0uAo!$jFfgIkfuuSjwV4WtY!HmATW`R2_u&thA-sR7=+%|C~_TQMXgg zifH(B89eOA5lT~Yu0^1BBju~obm|;`;VX;(R^wn;_h@n0xo*xL`jWx`@U!Vu$DrTq zxFWZ)_BFdz4p{GQPIecF;27)SxYqPD>Drkp{T-r+i8JAdl6OPk1wZ7@=$EU65B2-! zG!}K;`qGU=zBjJ#f-^AtYI(XW#_n;2f!xZ*8O@w~n$3P{6-+Co_O=YPUODEz2s4Af-S35jD%~fOoRN85R!}&F`neh)H=%i)A<$x z^ad8$;3|(YjwM>l#$CEDFvmcl=dxk~>?!f3mZCsz>+=>wIxn8PY-!m(9PqPwpohWb z!PLNF^NTLu)ztoO->6Z$mq3Ysg4RtqH9K|i&=7fzyrN0p)h(^uaG0B`W%5ezTMOZ& zMeIX^9j}L9O$;jeplq7HRF&KtnNM(xzl{uNs}q+a{rcEu<`a!YWU;{} zFYX|hI1b+4ucv+g#dF$?JRGQ{!*-+7D!W5Tnj*1Bu1rD_P~Erx#Op`d-E`-Dh;FDv-q_l`Y5(qp$WtB8+OLysmyy_ zwKefG1@6lMk;eJ(j$m<>o721Ri3ar24;6g2fs`FH`myaL?3y!_bA z%m!ct1oStK&1?j6gM(pE@qhnfD7b;F5lBqY8i6Eg!k~aB?hpW<0Dwy6!61b9ze2D{Iv@}(;ygT_o}S#+&VO)jn47&c`(uD7 z7~ufW1HnOV9w1x5uaW^;*3O_mrEz030}LF%@V^ZDFgt{&wHpY41R!7_2nt8KxI=A0 zZUE%&0DUzLfVK+=`WIQ_FT!KMpThz0ar6BX?vMAcKw#)^XKNr3=Imk(^#()j0d`;r z2%xR3!Hw`jJO)@pZGV3ets!t2(%;&{8Vs?vK@xtaZVgbD(*;-~EBsR*9OwpiLBP4; zV92i;d47dK9_G^C5U-f9un->r(@b`6r zxd7~tWq|y_b|B;nwlCb;0|Y?0xr6+D|J(5I6*eCqz!nTd0Bk_^U?}!~q9b9D-Ct{D z|J}e|0CQfX{P+O8zaIa*vp_1$76yfQ|A+p&#XK6O8pdWioPSFG$0#ok^8)yC@rwbt z#DsYPe0+Su0Dln?A%OqC@d zDi;J``;X9{@(S?+kxzX8&vO6m^8csuUs3+ALjT{4l-(ha-*&dY2>&0uwKEvv{fB{6 zt~&xb1)4DAEI|L4Y7F{obTvV?V0Y*LwW=Ykk<%atwSPw{nu|}6n^*8J91K?mdx30q zzzCqjU#j^FH~ckk5HJ*^1A~Kq-7rWmUf%z)A%_g;guF%INNN5yfsixw?|qe^K$z{X zVdEDP23WhfS$kt6dyQNP0etz8Q)vtG`YmPv4>uHsK)L{sHTnbWU~bsI8q0^wlgAor zZ{ubSbbkUNZ$mr8FTx+2(0|+hYUtla{$Dm17dMy}$kiR$y}xk*0VM9`2J`$kosU-- zz++?W_Fn)$5YAT8OhDs_P3V*362Z|2O}l+r}BUG4(RUYhK%xi$dHZwd;R;?1cAIjKN>j~4peXgO$scj$5BxlNZx5ogg;Cj$ilj%a5gsP$(&9feM>l6pHlDtI zF48Tq^=7m1rUSlZCbkD~1{9wWFr-l_E2A#GBB+m22Gz5#1XlfXSf@v8IInd zz5vIa%eTc){`6imkINifT>O~R*PAYITz{b6Q!QK-PE1MS^MoOHD5;;4G%@GNJ2(o9 zywI6KS!x0!Ws!3@%M#i%k)^B2g1*+oegXFedo6|FhuQ(djqY_Yp=qhy?xkZItMzPy zpFFq}O-WG>k89GI(fPYW{ z%gr&0i)XP}iG2JPsZtQp{;#j)g>@iwE<<+4U#=xn0mM|y#5!tdS`3aW?n93rbN_hV z3$8GsPllduH+^gy?2b5sF@2*Yod`}aY0ujGu$%Z!P3Y`1p%I6YFrrp{2G(iC9-kXO z8K{?+i>}k!p(0@>D>ggE7;hwipMP&aIAfr(g_5E5z*PLXT+k!|9Id#Ky}^S)(*joT3qKbEC>UWb{(vl1=VCkVj=aN}OW z^|rj}MDUTw^irPutzn=QacRKQJiFMdxF1`m4TpIqa&?hrkf@Z-iNH0h*MGyb?Ph&( zG#OoE`#tTfsasyE4VP!=N5nRRD&qZ&VMUON#(1F?g~dM7C`0o;YmK(kCM>t^VY|lD zpE!Kx=MsYJ!7i5D4O)jTSLLqqiU1;f*4gJ`0&7*8K`dgv=s1x^fr_|4M2T>%#~MQT zr=i>^4t9;$>kt|BFJuLK=6_5tnxYBoE>&EP&U$DTiCb!Ec%Jn80MF5iLX<_XJahyW zzVeu83xD*MgLT$^3)tJTFm|O@4AE@Hh%^;kE;$KrA}lbCpBgSO(NQ|mxZz*3;%|Of z)m#QsP4&g*Blnu1BpKLc?QCN)Vep;OMa`CeQ#>dzSg!Bx1h02CL^ce7!I(RkQR!9qFhMk#VM_YUam z{LdjWG(e7}NXBnfmVtVen-=BH;p+sS!6jkp<=O)iaSUn?W8O}_z1pJqp+|UYg_ty! z$m|^cp3(0v%l4=o!GAGaLOl7<@Kuhl-`bBKy8hMz8_J~+wA79hQ7`mLYRtk3M3Snp zTxoaJsze>b7o(-ITU>>fL6T4-SY7(OM@#O0l1z793cW;1POa3?g7o9CzO|Byj;D+j zKO0lC$j9{#?tADdq|O$h=jbXrU{m5v%33|n?I#<`!EbjWB7cjuv4d>Msa@z;qL$ZX zdd_7L7u%{0sQNgu0nY_Oy{;1Iq6dQa^#=`g)avYf)kn%c!Kt3(eEVct-IjmAv+waf ze$+g_`D&J~NrPECUv@83H8eb#NODPsHSWplq4_|M#Hq)9O!bToh9#OZr*(TWE6FY# z(_tbWcr)Zu^M5*gaQ`(G{AAfett27KBZ1T?gN-^-yOwYOmA7tjL};@%dssbgC9lZj z<^(g|^9NxnIE9x@NYoSykuB@SyoA=ZsuLYg7rGLl|ZYyM`4FO4|3y{Z)IxwXd zOXQnQsGl=A@Ix4Y8bIddCv8adK=yC<;l9Uw;R0W(f;> z&y%paYRR6(V6gEa$Qt(qb*1v#+*sWTS#Y~PW4=WEcIvgeC5nC&ww%y$rm(ye;e3Gy zbUxEy4S%aDGro4Tjq&;Tc^R<<55_01K!4xJ@xB4syva1q7c^O5yn8ogK4 zC&PAa+9%=Ip&~thvS#_ICRo53L}|At&GmrP%Zl0qP}o?(wNJh z@dMK}mvd$wXzHEX`>C}kFZ&)gv6bd<%*`_{**Z*KA|s3&YSz=7(b}=IGK7BVKq0=Z z%wnwxDLOG*sA=f)59dx=#to)j2gN4 zemjSjq}jJO!&7xeOSXrYeU5gm3d#zf(^073@zDCV#i%0ek5jyl`wcTM*P?+hUw@7~ zp(`eZ({HPWZN1rO>icrEN@*oTBt+eg+L**=$t}<7KFeS{$nZ$C01nJ#}&%i zCb{*L=J)LgNJs66>P@~mib1d!e1AlznQ*5 z=~^;uuP{iNc#?QH+treFPt50j>xMz3!crj52Sh+iVsA$H{Sp{0$3ePSOn;x-=#<)v ze3)ak;eq-Yv6o|h3-^P^7@saUZTM=Y-+ssGQOkxXY8>jCp$P<^H|lUfVW(}!?W~ex zrtQlZAg+Bro(sH~JdxlS4ke*S>9!Hy3t@3-z7`7Q(oDB#$`5?(8O9)f?S+V46Uxb(gNQ-Z;8JOiXwZs*pFgNoYJ8&BUiS?B6$O z3JmfOP>RoN`PB0YoGL1Yqa7CmD+;ivp}aoibN%yy9iF15f(xA0N{S-^uBbLNso#ZINN$X46${X>3 zee8=|l6_B&I>&CXiGO-G>by}StIwR-$*>&l7xo9xZ)c+q>!u9aQV4r86XrEWmhqnK z9UkvkDuPRI%!`l2;gT;Gn)tgJzLP8&MqK)3qoh5;_$g!*wr4kP7`^MN6YPI}J>e&H z7n6njKGQ9v?Wfa&u?^1>`(8p9=fA#@%z;hIY40Kz^tk5ndw(fE#|nNSLWO}4k?bE+ zI7x?T)eY&hGz5X%J3Pvz)YJpbL%aoP2)&$@mS|LNMjB5Ljsq2CC!S8wE71D1v&-?f zClRoE*_ztbwBS3dqg}a)K!K7~UDBOSc{-!h0Hz}`rGgf+1V<_C7Zx&ritU%ap7*P* z@P!1orgo1%H*|n&sVqpXBmLZ(;g*2i-W;K@HK}?p!%%3J|X1A1;|`xDzbq!eG^bTB6(b<;OZ}u~xQ9{o%^}3~4;n-qKH9ju!Pq&=Ua@=_mO< zGINRtK~h>5&+oO{KyhhfeO<|IOxdIv=R`TSUw?EAd~z!F7Px?|Mqi*T0D?}URM)z3 z;}tzun=dR1gK*lZ6G-=LU->E}kq#F1yzmU3qg=@(uzR7q1&vKlJdBm+-o>_MPrcc z+JB)uE{bk-J0(Y$)Ct`q*8PlmSKzE3=gZUq;2!iCAxS+I<8;h}B~!-lOv#=*G-`L+Tz!zbvRZKA{fKR?`Wf>V-*Re#5{5Qi zx*Q%}7WlGP^QqmIdPNr>x;4alFY>CZr|d*_WL$@hW6`OntzUGQQ|$ue#N9*`Z-NiaqifNO2*|F(|bIl$h(_ zd(Q-spUO&n(@$92ZdMkVp84xNz`zf|{1W)IG>C9ji{Htv!1@H{{zOFJWq%;SZvC;x z%5LXrp!&SAZ;s~Vl7P%id~BKKvBghuV@e4ULJ#_c=L8w|O;#oDhso0?J%}nXA&%$P zSy7Xa$zw1mj0A8$d{jLSbr0mBsFdlef#hxNvOUnI>;?Z6Cv#_RUOW;7Hp${ z))8Qd+m7g^mUFAkhp;wY^nVtoUZ321dU`&aH$bBijJg+^uanFofWGNZ5|cMY%f76$4m=YqQK zWEd|c>ySo~_@ z8#<%00#X-M%GYN_bJKTm^Q$p5JvNrv9LW(Sp=-+k-0!0W(C-J?79$qDx~Rj(6wkG1 z6R9Gd@wj7N$5kCY(0?=UARo(sX-PUh+QhnL4cYq8##co=i`OOLPmh1}{HbQ(OW-t{ z_$(;CR_5$^_!_ZUrXZbqqS?_jXci9#`v209^L1hYHiq-mzk-1OZ@0qT;|JQ<# zYsc=2;W^1sc>X6WK{p>n#kg;#OIo*Vs66C>oPkQ6oH95ALVv}PED*6%lV%<1F{u6N z12yF>ahYyJ%4`CLzM=LAun*6XU%}bD=xc?xh;*=%@ugEyL0LQMkV!Rb=-Y3!#bi17 zq}`H+C2wc6=0!DNwvO}g89V`k2x*+mN7Pi`)5a03CaJchVw_4MwMSa(7+9IMF`~Y` z7RNEp%`bT(D1RUJeJ99morxnYvZeB%d|`?jj$xX1c1!OGb0I$6$z;e>`k?btL|Fz# zG5Wz#2VZRUxQa3Ry?wHL^vjr$-Z`Cbai)2;uLLyG2%eTpom;*6Ylb)hH zuJju5JB3%ny$*_0b0wA43D?#mX77JGa431$Y$iNL@f^kZ@zS`1K9{i>Q9K^n$P)_I zcQxmOQl;w)o?06(>#QN=;!#W&+Cs}Z>tUWfR)1qrO1#kw>PrGqV?&IV8{#Dsf55@NHTyRTCyxNK?O2 zK;!YOdFf1oS+Ovv|C#BH?iJm*g2rjVNn#V3SBB?CyH>7fmU9P|g^Nv13cz8{TyW8p} zlDV6CTammquw_gxe{I9L^E^_5lF^LS0zFftz<|9NKINY~be8yX0v?qQ`hQoovppuNX&U+OdEj9CTy7XNEnN=r&MlJI zJUYw1XP)ijJ(@Jdgbw1XoOhZMO1IUM+keK^`&`yHLF&G@v2^EA}Ky> zv*F4m*6+U*dQ>I)fxc-+lHT$*B4rQ;7O(i0qx-UD5uXoJvAAsW(dXOU*LR^%b{P*V9|dQhSeECsCwFmn^D`#jYm z$&U`(x?VdcQ`*IRyaqDjpCFXdB!>~RlW+w;0rnexEfk-iGMwWdZ;~G1i+`N?n9PXZ zscYQwDpdRC$9SS3hqljE3pcRo#1WWMVajs7yf8aEN*uqxE43#=lwwMeS$}r%@o4w4 zoDg(SZCN=wl_y8$dN?|B1=qqF&Rws?bE`1bii(FIU${|yt|G+i_(|XCi_}{8_I-4P2DPI$oc0~p&I+hdjbaVUP zb6MC^R;)8E43c2eA zK5a~E*AxYTsy(VKd2t%3gxz0-SpXXKc*&RdCUv@+TYnf>?^>%`wbil2{jf+1WoxD1 z)y8SvgQ7^x^$7G6lvj|LI&J1R(Z6&s2Wshk;`)L~93CP1l&V3+m(FZM`eBwcvnYw8jG)h~xxW{fta;p$xvO$J^q7+OWYh`w-JGYPe9SkWoqC8H`i zz}|Zwr+)xb)K)?J`84aIkv?}6cLYlK(~ znp>0QW|z^2@6kL7*pjgCJPl&EpNX3J=%{*Z8-K9!af?d5oFPhhS^r~z-m~GVG&vN~ z1&0)WX_Mjjz0zec^~b9fKvuX+`jy&H`b1EtFAp(xG#1`Pi-uYT-Upv_dhuQMmo5*C zoduS--{3{_=N#Y@j9;u=@sSLM*8u|#E!NhE_j$noDnXGzauB`|4rPp(M zs?58TvBrtlXhA!p>z|_vA)V@S>v8&xEncOuT!iO~uIBcYJNTXte;ORUYc=?ThjBCMHm(#N9uvmXw$>tic5oE- zQNBZJi*H=YHu9+XD`Fs;sq3YtwPPyt)>y2!qsS6Q1tYMzrm3=D!_wh#k5S^QIHK%( zilBzxxUydNB+YqNYChZR?*w&A48HQ-Va9awqboIOAEYz3p^Fhq%e-wi`fHLwOI+)-n#_BJ-#!Cj5@=bxLu93{3?&f1yAP{L%fV z%wZ=f8eP3CUJuN<`Y~%)=bE_h&3}Dm=BEl5S}reP`Z8B)Ln|C#&IGTB^@Zn!%gy6S zy!g8RO{_PDzG-TuQ+mEz0B?xD=*@hR#4ER8A#+IKnaj)}808H6Svpfa$)G2Kn2%7H zEUe9+p`_ByNY9%@`QfAK8O);_Oev44>axUHEBDLg!Qgv67qly&9D1SK`Ef9On zjn0yCg7|J-95evLT~{;l+>5F0xFYfwJ-PY!4pHni7c7T-lrR-}^(a@r5l>AE1D~E@ zY~H%bwsv@EIeg;N+uxYhg{Ww6^E|U{8m^vui*U{Ke@Z%BVwmxohiDCy;BWgw(3asX z1q(md6(2oHDd8LZkMz$|M}OAqPVtbxpZiICQ~0xN4z7s3N_kx9j@D>!F0o8vrL_}M zb-H3xapZJvWN^n*ZTAUFKcG(n4((oj6#ZOm4Op_ts%-$yqQMFx>BO%VKM7{zKiYQq z&PKUv=fUIS0fneXl}~<2!UozgmZcd)t_T|Mf7f(|BuFU4Yocxm`hT67am1*aRKIcc z7!<|9I@ayoe}}TWyGdb}^{5IK#vBkwg!SQ?a&BN{kj3P>d(TuHK5?D#ao?20~4oC7Zm*X%eR-C6wzHvkslmyuGo$Pv?x64Z$Y3^=-Qy zNSU;Z;qNzB4I(hvp?`!82^M<_LDLtH4a3)lH|*{-3S3gW6sI8rYv<@hx^8Sr%d^aEoWBG z9l}wxkB$?+1zcb5?{=d-v^kLQ6d5@PhH2!~>}G`tKi--UXZ4NFQmVtc*es}^&e#LS z0IXN~vk5LIq<>IT@p#m5^*Kf48%QcNEZZdg7Q|Sxb$@zM+;zOHz7)U0|0IqW8^e{9 zE$VAp1{Pov>V@zliVfQnx3`FYNT}A`g}85qbd$blu-+|y;UBLP=WU!os=owzix1kb zeL)l1_b}_gAdkA)fX(N@&iVVjIxZCMvMVX>2`@0)Hr`$P zalHP%s(**tUqcwT_Exa^ycHrb;kxIKt>F5oOR%?8=s+Z3fe3}B`jRMN^*tKt$WMEO zLY&uE>IJhfu@DkomSx>X^4-G$>hJ^M9Q*I>xn1sb8N7ELN$j0aiL>;Ic1HO9rO#+T zgJNrKcC&4Voo(*u;I_@lomZ}98bmY*N89B3?G*e$o3)}=^$*a$%tg!9#FSq4c zW-NbC#>WwOx){&WTkMjsXmRs@0Da^U{8v`;pGnY?~0w@hL z3NK7$ZfA68AT%;GlVLe2f9+h|a~ro2f9GF;$96jA9ln8?OlSO=xV0TON}D(yKhV-e zW=lydNu^5v`tENRN8&_LAuX$Qrg_kE4_GXK{lYHpY?F*?m5E6?r%dvM(qoFsW=p@+ zY$N?T<&st=w<@;uoQ+DB=!hmojLRzPG%`6Tt-&ZKrA+{3R@!O|fAxfTuWYN8_8}8u zl@7$owod7210gLTsU?K?>AOn|s5=L3y$TDd@bvNX~KN9-N(Ns(F{ z@yQv)LHX9vF6hs+Rk!7vhn;od4AutE~LPb6CFiBEDEMSK$J z*7~eM8v-_`f=+p4gHgd?gCxFSFr20d%$ewd_cWaJ8ax&jf2<0D7Da=>*WibCKtD`I z%u_Za8(}qAf7FWfOlu>RL{El9vQ$Zvby>2aIfq)K9WQ&nGR_iv%%H_`wDD4c;e;Q$P)~Jl&oV* z9^z=@WbY(kM;q2L+Bo{+i&67Ly*0G4R(+$I@8A4DmOF;(O|)ZLx;np{&EAdv_(#yH z=JCbsVsSK|9Csvd9`bs!T6K$aW#sYc)#}Tm)nwI?e|FF?YMx!3uhbV`sOA}Mo*aV7 zo{_ccGU+qg1Wj1lo$|5Zq&IQ}!D-8`Zzm+%zMV|c_w8hiJs%ivKNnfF7kb)8^LlY{ zeAKPfTUz^*XR7(OyIQG!ht0P?&pT}Dv>VZ8&sW{~YDqrKY)8#E-SXmcaojCAHgVI- z?qoW7e{^xB-eRd_$m3)Y&J3jYZbTdxlk+7D;7B!P36ll!RVMK6`l+FaV6^JA5k^|sRT-IbQzb*1HYf2Hk7dtaWmj}mrxPreHFDY?SCO8)=JnF z9&0bUv**}0ZY#v!i$cNy3i+RUjz@OBx95DU;PtjA=zH-5eSjxu{W)fIbvPP?tjZI1 zdC?|(eYB#sJw)G&hv)-5M2FuLbzMxwc5c$E2U&X&QUzDMmeP|lqX ze}0p;l@snoIq?AH#9vbZTPslGnqYlOeOgsnx1}m;?n719?yssnY5&{F^sc1&#(eFg z6_U3V67NMJ=>UbK&;10d74^%3ZCH|8+%?`wX>Qw#+`V{_JHU&a{TxrDU#@gMS_#{p zj*Z4dFEz(Zsgf3?8<0UqN2&pf1DCJ&U5?nMdt043zlvHssE zs~_&aNO#RBM$PMOd?oDRn$Ub6Yn_lni#KpqfP~5NUNa&2XgVOrpS8` zD4ZEa3sV#bIi?;a9=io2MY8%&w+@0VKQTkq0_#zMj4|H;6PwUB)P@&Ye}0nIw7LTM z^*9-22sFp-FeRR24_N36@AVu!qrk+n)S4e$G^`q4sx)aYKes)#JRq~AgoSY31+^2| ziWG*^-SU%f7}es-5@EO9B5Ns|s%@ZxwOnQFbx_#WKQUe(>U>-O!DTd@S)jLw9m&8I zO!kOh9D4+p-n&5IQ#e~Ve~`@OIYJ3Ugt7w|BBEyu5pmPPX+j&ZJE8GyzdjjH6ch;~ zqFW}>X>pb0AOqnfc#0IDeCBXxJVu%fhh(n!%!9fI%Ww#w_zp-mv&Kk>nT~uL5!Zl; zZw;|sf7%$Ry>`mm$Zug$er|59`44-lVZ)Xf5+uNI=MYMN#*qXde-2aZP2864tq4#U za_=@?0+ob7hKZ~(7if6RhPin%^y`1cuEmiOPS|<|P^7?K88@xM)9TE&*A{o*V9{gM z;=q;zlt54v4${ZeWDSFxZU#Aem9zSO(3P@hRchbFM~^Wk!V0df@+^b7Mp?N%~|0S2ZDS+3qJH(c*f6IMi_pu~Jzou9^I3kcR z!+??PmD91pt-;jgc;R;AF^{1H-IG)4@|+y!iIOu`)B>Rvd?gn-r?cQFb8wa_n-RP~ zGBgM^B+mRY8;-+h7h9wzv~idKR>lWw1_#RqMrk+pPHQ7Wu$fPLw17HjjP_)#npJ`@ zpxOKas|tllfABDFxHX)!#mX|fE0qisG?Q6#kZ={U;nXm|DsTK5Nc+ym`?dzl@xDnb za8y+3#a90S-v^eB)C<^u@LsIT&+eXj?i;0i(;)Exfwv4oY&CsT?Li33zChH-;(Wyg znL-vMt}d|Ng3O#8tQ8i8plOi*8&1UnYB4zm$@Wxkf4K%s9;-00)YLLx3oFznU>PaE z=@Qq_(Qz6b5P@?WV2sp4>P?7^p~S+#d-GgOd#oz9p2L&fgrps?mS25r4sz*AF?E`| zZSTUTw%?RI*Hc)J;LcrNRV~kIUPOoAj_v)A?S2Nv1Gl?!oX6bLiv_9;gYcOEDb>XGhMI_&7`| zCz*kNLFU&;85e+zK-Pi9w}>u>N^3pq{01tiseO0WVA z@>;{j?={jx!KFQBq-I8fe&&>rk2&YVH5~uoN5)I5p^$9(rakios3|S*15;>fdV%<- zGd5$4jcku-g%w&Ptbyy`SfHb|^_8pOuvtC8acmp5=*U)|3KSZ+f9QMH^=r@hE>QRg zf0S8jh{H{81^f`&#Pxz4j+zfgTl#SH^*br!v*QFFsd0*Y?aDOK`f|S!d)y)M_Hx^v zT844W8ONg;u0zY=*vm<9wAK=H%n8=zIm*}pj^ojn@zRdtF!2Ey_<&5MCFW{uMK93G zdx*r>??Lx;L5@em82$AJB>iej8JfqPf3rdOwOo7(?o-_RuZ(7xIajKo_k71pbw=cu zABM|6hoX=ZKb!?oqa57O@xM$neB>-fGM)AcyN5Ab~A(RgWv(%}GKK%l>F zEq_;HFgj_;O83Y$0WJn3 z*PFewMVC1o_Ll&GF9C461;Xtp`B60)_J62co^b`>3q?&WP;O=%7v1o=(9e-FZ^Ex} zhKS5DZ!Qz0=Hv?mf$}cUYR~1r+;XQ1i{7wl1%8R-3Y7jBjl7J)mw+7m`geyf2;oOyp>XW{(yRG&VqALf0)>x2nWct!YZR>Ku;Gf8Kp(8FBrj?C z#*okFLP@m?{-v;UnF|wW%5$cYxPLFUY;P@xYr!>NM;I=WUF6$Uwhf*$adx(uAD@_u zta7yrzS-yYT2{_WrlVm|#`4*_!A;g{ZAiN@Y=NFFC_t~$g3F5a*ot1DHGV8_Ml3!V z~FNaQS*HnK}JmsK1>$)4C8mr`^DtA`>>kMPcHs-KI?v5 z4O)O@B`Z59Nue`o4d3tD2M^*WGh`IMa9557pEA;nQk^ujYae z+4WELL;K&tD(D{L^0^vwYGmjso#$-F_ZsB88pXuea>l_J5EqKl<|PZ(n`KTizKo za_l!9<6W%efi~-Hw>!7}uzB1(ZJsq>HLsf2%~A8$=5GyoNpnp0@MH6#nKplK{?W{u zv*x^+H~(xF&9YfFm(5Sj)ld!x#m<*sefRaNha!g^x~GDrj}F$~MftTH@-1?J44xM$ z^b+W9mBCf>bAR*ip%e~^kT2f6`0j_-kiwgtxkOeEIF-}R;u^ry+JJ3sFD*bzo& z({qX_Yohb+luv6ueM(Tqp1MVM(kvz?(_IXRa> z-T@Q@H#spmm!S;-DSvebR8w2mEz-mY(gdU^q4yAa@1RsE(gSEn0)&!4Lhro`h;$I8 zC`j*!^bUelrAUz`MM03>{iELd-T!{?jq%<%W8|DYSJ`XsHP;RYi{1kPB{F4(a2O(89T9)Q01jgW28%?aq<{aHg9-)#b;V(-P*i2#MfrG+Gxu zx6R+5KyDZhP)JHjg8z3oP{|2_LBgOYpbpg44&j8`5e9VxK0w2e2v@IvrQnveb9Hr= z78LaG@Bl%buzw&l##Ww(ALxN}wF4R;un3Gh0uKB|7j{EhBi>w8G-uato_GpP2LQ(Kvj(<=`EE*RNb%!Dyq1HHu-<3mw zca`*kP#nR(=wV?Pq_Zm)ghe|3qA2()4epfHP;eErlM@2viUs_tPZfzlz;MUzCHSYa z4k)w-%IB|z4H5;n`9%Wm<}7H0Lb|viG*tg`!9jq3Fk6HxPz)?3E-oqsM7RJEo-jMX zU+E3KoPQC&jY7X*90NZeXS6fW21f$nhqOW9UH~5~)ExnI#ke8-eEzrL-z$KS5D<=p zxdN>bwn!ATe@p#$$p1~@zq0(lME>6e-F0(x z{B7p`ZT~;aP$#6L*Iy1e(Ym?f20#am8w1pTyP6>W46P0Vj&yVSZ>xqY6gLP;C|jJE z1%HG@L1588I1+mo>4|{rAzfj1eIDGf3BzTnG@y z(GO^Y#sGe`RRkyq#o{<4u@1N{*!?p8#(#x`g@A%^sI4vTIR3_j!9YPrTrmh2H(ay+ zMsc7M66J>d47%R>y8w2<(z!sW2b#J8*iOy{XsXqZ7W2yx)(9JT2O@g631ypS$9zbuTOL2;}si?6un>?!eIuw!;#sQOlIu zPxNn-KY|cKxSpC!oQFwth^&>Z=3lg6*UY890iA%a4k=ht7+oJLWw(68k1=CmUvzzE zWF?&|`m%buQ$==jwK~hiOT($@Z+dI8 zWDg|v($hT2(yYhgaVm=)s=Q84V5NWQ6wWzM0PXIahDbHEZMZ_|v#vhgezJeJ{w@ol zA|s?_YD`lA?q|KzT{WkB%^`?NsA(%Q2bOp`x2?IsT}%8$5zrzY=i4u;lYbxAw6`E? zW6bnKzE_2uge-?a=F?z!AJW^4BEucucxW9BZE;EYBTdDKN-Lvw5n7o2I zJVwF56k!-%o=eHe*!U4TnOZX4YF{}>Pkh5m=D-|uf8VpVm@>sULR;3^#fj+v<`KKz ziO?tXVqJ>rJna|xHp7g!8h=Nq>nDa{dk|>RAw(Ou^V(6>etk(WWXEm?k$xRl!Or^c^sfoa^lg{e>Lb5=B z!dLH+&Z+C6Pj@li<=?hlt~?YJgw4p3HB27!&A*H#fB(=OdZ}m@vw!eOn193QO(0Qc zrB{G$hZ0pmO9Zzvan^lT@5lI6PYMq6d%&YW@1@XO^$xrD9AeCz-+%N3l>|f+1=}SE zcgxF4eiy_q6+Rey_g4MIp2|Sw=l+Mx)khnQ)!|@uftw$owwC@zV*M6FC#_ac??BuS#T16G4KVSghod zV&%WVYN7$G!E&tEKYeuW2`rmhQ@?Y5p@2~UTKOl$BtL|d(>J$LriZ9{XSTZoGMgW4 z88KVd1fwX8`MGWyL;G{UAwTRA^SebXWg6|OJq|A8nc?frkAF{`GQ^_13nCr#hA0^F zMWq*$=qL{*hQq}VKqSH2%Hqv5`X3_cht8)7gJjQK7Ma>9qPgOZs280AssbG)yuh~X z)n9{T)Q$Q;CyxD;yc{WD(J{VEAqbbUhZ(-4tq7^5)uRujL#dR3?-)p&)fL#iLaGn+ z^#Z#@m~GGDn1Afh%>=zW(&8C9KQmgdN`-w?=`v;xQ2A^g5C;a?VQ$%Lh*6^*l>?ur z^wALc0Lc%7pLRKY$XM~sr7MY)*ywYC`gp++<0DpfM>=9hsC!sg4Vz&>9q1|jE8jf` zeTv@PUdURb@xA4qD^$U`nx7~uWj)q{exRhXcK&!H-re#TO`=3KlMs#8QPX7t{TA5T6C*?9$G8)T$tHz8pyhcNeqd_=Ua2;H#`XOoSoZz# z+SoNR^Pqh15mF(@k&Ng{kh9f#?fq@%vmzH|RevBAIoDLw@eB>uo; z9cp~@SMT8w>L>T;)dX&Qx~S+ES>B})^KF;$fS{~LJmG7IT zx!%n4(9t7;9m4!&JIDBmA!Yfo`0Yp=YQURrx!LE>2+s+YmwDrtzK|lFOSRQ7fGz`t z;C~gDBzM>5k)6j$*D()n9Ay~pv4u2FQk9%EgIAIV87^$|YjiBXaQNJ|rEV!qGkZ?| zF}w&WvP6(cZIbn7p!f5x>WkNt{G3&GEIrd9ucKn8Mi{nSep&%5i2#hXT4!WR%P)!i zC5#6?eCSS5PWC(^2_EYw)KL`{A7wgQ$$w|?sz9f|k&4H>CmV;VlVyiz;8#aeqm^bqo>Q^+O!d!{Wq)v$WqqM0{$8BzjYmhJZIl0THoM=9__+p_ zv5?HEThg#iE3}K9m?v>ztRsZ`^19g$k%!_^XN!m(q{}F&r=j^8TX^e!=pku>H7vaz zz|+D4TDaZFu>Nt>B&`0?Vl+8yh<~_0RcXE>n4Q3*K;hQ+iYQtoCO{th>Fbg>%2M49 z;#$QunEY6Rn(&R835`t4I)jzoR=&Q3PVF=s>1(+{*lUcsEn-L$p!Qrp!NpA*S#$EF z(~P@GgorHlaC)voeTrN5QWhN^E|brn&rv=fIb1n(L3kvFF|9(=w_}w-(|=TVmRU)8 z3_96`+On5L7o(n+g}p3GmF_TgyBJ$3u2^k*<6V1~m1(AtmG&jqsIiE^S7+pdqgDa_ z^pQ*cAJvwj!Hg-9@41%=<%Qh!?r;h_<}*d_I@1bk(B9U%$Wi8+@wgY#!w~VP9+RYz zyt;ogegty%y=YI{{v-GLcYiN@Vrv>iS&ClAs8bL3c2#4l45I0orK@DtDvJ?GO0 z6sxjCJGoarO#M+vH!svvR}EE5uexbHdA$EMZgD`cjmMYRi_CtDMb2Zut5P!vS#i+xCh@E zCX@?%rrc$$MPSU5Nn%*qvFaGo6=qiVib4aQ@+>COvF@uEZ7usO_JQmT7SQ4sLQ@R(-(2n7uiocqsUtiX{@?zsJR&tn=pPz{9QGS~~d{3jpR+b~lknTTh(vGQV zZKFQ6b)$7tQG<65mwh+n9+6i|I|Yfae6zb6M>{VvSE7w(gK#z6TyD31951(i<$-*W z^Hi|fa(?t3N`KMBPam2dvhhM>o-M8IsJ|DVJGU)8e`R=@f5&fSbSuJZFwt>=2_5q? zF+p}IroI_ZVlX1->-!AZ}!(cA`o^bxtDpWb8eD<+K*p4VJGHkAHRpTTgUSBP`bH^CZz5p^q5^ z+b^4J?j6`oF1JJ`RA%c3=ERXv#S_w8&U)v|pAXaxg{rqEX5=42P{G7c8wpIRdkJSs z^Zc#%x5AjJ{NjdSfTNU>%~T8 zjaruIMt@63W$%y~Smhew{_rjakb9+MTK7(BlivBHMzU@|M$`^6ldSCU`M1tB5P7kj zR4gbu_MnSBV|h!DotCRstfkAGow=&sxzSUOMH3h7VQ?6G7Z;-Eb3kBF3G|+qnUb7K zWSoh4YH+|}E;m@c)Myy|FadR)mruY<5V~?0qV#=n?Oncg2 z^W9qw#LKg#v{OwT;;5}wx{H_iRG9T6AAk6E?ai#~EhnM!>G_k#BnE3Mvg96PP0xK< z-Fxv2E)2JZ0hd2hshutxuhQMUn);4y4jyhRZVp`S>?}(nd?`TlD$PkS#}kG71qXAI#N9UhyRhU(k%qT~^cR zt%c&x+cpq{jY4@^DXBQV3GS_aQGdPhQo(Q7oakE3p?r6WTh7DaCh<46{MVKn8gz`D zy9XEqDnXwL!kqFXo${(Kg{7p=px=GQD@y|QJ%+c<)N?8p!fFzO=TmYLMA*a{wL{T2 z9gNsa;)Y?=Ni@yDin>qO@iEVdXDgqTxAqILIdAt2ZkDBL7Tp9=t*Nn)RDYlGP5l%# zOZzm;B_L{HrEq1=CM9-*?8u&k?MYIjqlZuOYrSD=6LhV2R!#`PGX&>>Vh?{F8EePk zMHDFo)i7oYzyN=X(ZFamexXn5`5_{BHuR(r!nxcmA_+<(;8g2Lsc7;yzYKg32nwc(u`*`|>n8^y1J0Ya(hDV)RaW@K{Qz zJ=e(P5eT!eZ&~4FKJ6U3#%f2);R)-`2mEMSlz8NTe9Mg;3O^#kVj8PGmljHAU zI`$G;Jxu57!1iOGf`4OA%t=`XesgF#`7~atL>$JIYP=yM@U!$oZ}N!%l2+ELW6hdE zSG~6)c$py~?+v7P_`zzS`BLOJ21S%Z5j^kZ-Cc#Qb4F3TmgLE7Y1 zjO9^$3@==*XdyDVuO?B1QZP%!_RxnRUctfjxa7%PV$3%27uWXvr%j*O#ov57GT)9- zZk94bewf@7x~@HR1Isxv-d2CnvLX}V_2FHtB@=y{8FM(-HHm{h0jf54XWgs%N2~w~ zs8{i)p{-ua^?#?zrGu$5ccU)om6s1ITHZc1`52umYQ_F-{?=>O%B{>&NTvG6%gWf_e2%>qGaK|{&F)Qt%JpJxbpZwQOU(?@B`k`9I{uMz_{t^8kt zx|*tU4u3a~3NWAwSOoiea@4X$4oBblvx!3c3#HE345OXoM)o`wMSed6)*$jSpVm1V zAAX0PFzrs^#+q%-Lt`BiVIs0Cnk!22Homu|UukqvDboz{-kKu1*NG*{p;sN7<0oLY z@CWS%NlmK0D2H@W)2G1d*xQ(h_;^qDI46Mq9)E+pBo9H_Zsu*}SH?8P`E$lpdufYk zvNoF{LuKayA(NT49YooK$T8DbIU}nPnK@ z$8D{&cXn-b$NZ-aAG8g>k&0indav@ff1i5|5!Rb-&E}d+@NQ@0wE~w@ZV(s3)saX| z#G|`aJ1s^+Bm}PAs^!4tmasR0zeMByqklo1q;UUK+ww{cL6U=%zXGdY69;331mH^f zp_CF-6pw!Nm>_Q|*w0Ju%tWqa!Hxdsms8?9xs#M9gKV~ISu=E;t!~e-g=QMq$oP(c z$6^@n2jAHQVTN~zRhCO<>X?W7kN)6H8(*Al**`xG6;no_}x1 z4;FTpK`}^LsFn7-dG7sv4T@U%0;`^qz>PG%NQz66@JiAHej?xeVtF2t)%GE4ojlkmK2zc*>`$X${|fA>ft4b+?4-neS5)U;Py zK#Z4uT`|P8nHB9*SyR<^)+6#j&wpfL>OjiazGIF8vY@ullvYh%766rOGdt~k`grvE zt6P#c3F`wiWqR849DA+EMySZF9qgEL-=Yc4kud;ir$hbARr2@S3gF zci-Rl=5GWo^?r|{=VccHOAy@mQ+srxjHk#hK4Ee={wB0;Y4r!@u8jE?X#+LN(mU>O zq2gRWjW>GXB%Z!~xwa>+PE{Qn4c)y4Mzcn3wQcSoZIV~zM>HRD#LShS-m<|z*d=T3 zkC;M#ttDe;)0%@{Q^t3WjemPpUHc@+mAYl_Mkx03Mz+iGB#aD6c9niUEmzq|hE{A6 zB~edddfed45S4=Nnp;kHINgW6a#N+C(RaLZ`=FWIIAk}lb~u1*R_`fk&`IdsQFU!v zzq3ILB?fZ0;++H%Ss9D49f8bqZytDQr1w|_N$EW*9#79t*-v7PAb*|wG+r@5BcWxC zT#)9o6{qfjhM5Y2O5e|>dTJ3q)&*#NPmz$e#NIixLzUadxof+myK>@&PG1I{t;bV! z)Pr+8!zz4tHB0Rq9*?i@UTMuPTO%S{hm@a`kh<*^Gx=MM<+H4jM|Uod_pUCJ03Qa< ztEr{5zFv$aNb4DuG0AN*U*EP_5gASrf*>(I>O9VX zcd;4$Mgggwx-EEmyEJ;_+{`l}n?bjx@b;<-YQGXJIsi4Sn}6)e1XcX?%VZuk{~(Z+ z&f)f0LUv6L{!Z|C``E)LyCDeUgQ`qz5S?$g@q6rN3lT{L5 zll66o7j0f-+kY6nb*;lTK|L zl$%KP^L+Wery2W8*V+DltJY6Xn9a>7=}(u}u0b*fGpWc5CGX?A4O5V&@|BsI8-{;K zPBJ&$+q!B&Cu`58oAa6hIA%ay01>yR;`I_@4f`hf=6_h^YtK3aTJgrW-S;R?ii5c5 zNXM$~P1uspwvGa4%)0_qM`5_D>Hqk2bF57&Y*kO-+XawgnN$cpGBRCovgk|eX;E=so7pN@Pc3? z5Wiyk1a^=l+uQ+orrQYGE)H7;Gx+W4GMYV{-5WZjWX{?j z@P8TN^)3UplHR<3?fwAsbGI7jA;YCO%SE~2gq-$$b(@d0Jw4sDppI|k?D}o*#B7OsYd*_7|a@<$z__KIx48VC5!p_f} z1q;O=c=sEduSJbPDo7u|8NaV5mwGwZZhyJ!-3{<#;o1KfL}0`4ik|t<0cB_?qjWQ@ z(04ZfYRPB{pQ?)cK)L){)YFx0UGWj9XXm4z%s&_IP1dcD;SneeeZtQ(5&4Pl)5po1 zU=?OTG^g{J`19z7e?sV1woLbn=gs)*RxyGfrfKnaF`+sq{2hv$w}AV)_fNzuzJD1e zj627Q9Pnj;thP9x-@S6;)Fiy(!dK++rLBUaI=#TL0q|lqYKc>1&D&lqyN6-q(dO$; zKAw2z^popV#<6Jy_j&5+8sp7(^4xtp=-|aJ;|9l*h1^%$%n#U>)VoH49?J~whqG%2 z^dPjS#5Xv$&DbX!Sru0p$x5Mx3V+MDe7dV&{3Ia@W%AeOEe<2`h0d?(qxisqudbdH z(!U$qLG1uy!E^LpiBIxqMzhS;cPD-%r`4bgLF)#^{>6adkfW-Q>E^72J}EM3dd~C9 zJK>3UXNg((JMBSbA;m4_-VlCI0}p!0ZTy*eee+r^&4DfYda?O02WSvKiz;~WKKODE zKGD*xJiC|wu=85b3Ae|B9O6!taL>eUwBue?X3_ru)Ma1Em!Y)*69O?ald$C!w_iL0 zR~?spzycPx%vl0}HJ63y0vER=paNJRmv|flA-A2t0_iB1%QFKax2Wj?&oY<(TLU7u znH&Q%7neSp10lEVGXoMRm#oDD7MG430}BN)HZV9bm!ZG{6$CamH#n2Q7$<*hxMOgy zUlJ`GJ2|oOi*4JsZQHhO+c>dp+vbVwoEYzaX70?bTlLoSrF-@2+N;;@dOmDYLNR+g z7ZpzjQ$|`wItDI)vY4_mBLgQZfPsz~hLlv;$<)xr(%w$Q(8ZJspl)gcP&Rb{Ffsv{ z7#J8~NCCq34xUby<`ymh3S)oDe}e!u8$%OITT3T^n!Sy^o29V@fXB_vO~B3BmCnhP zkM5r)Wm8jti-jq`%+kgbAS|z-DJdropb(c+1&Ev4nK~KT02Ew}Y%GldGM2`scFv}h z05f|hfX#mrfU&)uiRHgEIn(`HfSsGElgmHC%$)3P0kWbhf@1P=Dgb{`VR{u|fT5iU zKt|%9b~_hmu7B93#?H?FnvMqG^1sN&@PCof|Dyj@ojm>%(ZMh>0!%E8T>wU==9YFa z^#Afr($35t!1f>5#MR-yrGErD|Dz8;@sEd;025QQf7q@zHgblxrT_|Ids_!r7gHyI zti6e;lN~_W(9ZcEN1T5w&HhU@w6(PH{Qo8YABLoh;Xh^w+L`}jAH#njOJ^}l4^tBb zOP7EAHZ!#O$ESbe>Zbp>99dHnOIO?f^qc-;%0Jg?VsB^T`G1c5XO@2-NH4FhA}KFT z{l6{vcUjcV*xtm_&K#iZ@{gg0PA2~Y{#{luwEWKs{a4I?R|Bi;YY5)!ia@TO(@2d8CbVgxX^3q{<(kJlYD3)GK@EcJDHk}A&k&n#eOX%t~B?n-Fa6md~1l%y8%F{tPq07u+SSYLXw6Q|TAN6ymvhBG~&u0fo) z2rarX;(y)W00}P${sVVQiluK+^gGbuC|vWAm7<+<-SvM&QXGOl2w$+VYB%Hf< z6aqsbE;aqzr}5m|-n(EgYDGBI(xFqcu?* zX*RJ1W^8}TQT#4Mhnqe)M6o6og9GSCvWreD*wwS35T7M#BfSVmd!}NjX`O#V+zd%n zmSi-Fh$S8uF8?RtaExg|5X9fj6Wl1>xtU?IyJL$dMritC%|onaH*mhbgBOGh-vk2s z!Ax%gXED5`=$hn+zQb%k{4A?}!}>N5dZR|r$Uc9H2B&T5a=7X?H(Qz<^3*oVGPIdQ zAT=c)nh8cqL&SU<>3&4zsdLU|xvQZ0$JVPxPUmWQ*42Nn zd-b!!R?s#)q!o8+1CqTR)af^BHM$L2&aGo^L|Ztcw%ro@K10PFDl6<51TLJ-E{!4@ z9Rpb(587UF$hK(-^^Tv=(5B$Ay_~b$*tL|xY&uFTSqt`yc9szN&Yc_9ky(wK3qeQu zVB|`p&K5KH0?-+0hkIgVG1?iG8nAzD86r7PCAlnS@Tb3F;BFY6iIlsso;0C#e-%?? z{K?o(<-HvwvzneshEitI$pqm8o&C6(Nw1esSyhfV0>Q5Q>*1YY%^-zH{$1eIff-^p zio=7@4D%H=gbG%h$<|!CiltNy`(W=8BJxs5;w4^2;2=}Uol!&j3o{P3978PqGQ2@c>SQLFy7bKH%E9x`Im0IcxHgmI{L6oU_Pu{jLox% z9^wgCi<%LZOdSq=q^JE-+qScmP{+wJ!O}5P97Qbqu)#E{bo2czG`tz7SC zkWeJsB~)u><;&_omg(SeyLA5hBL}*3*5!ne`(oN*Y%Q8I<7-T$&WF<-J-npbyYYiw zfcv_N=6L7v?~y8zGZGQtl>rp~W|b3tpcTQCc%@qPfzEXO0QQMw^>8zZ>-7d}>Urm$z z>u|tO0ixDO=er|XEFM!ZNPTT%eAlmeMdZi)jl_`J#@>CE9daT| zMk6SSj(m3pZLUg%S^r@S?=rE9;jOxQb<{zd_rzWmf5v~|WZ+GiCCXSNvM}!82zw+w z_3oD}Mt~r8sH1H6;}0WMj`mzhY9iCd=r&b2l^3T2pk@s)mv*%7166?NTHXxC~~D918v3%qDvtmczai754iRM@Xd_o=IQw)S2qx+HppS8qF#@ zKKst8@{()!8$47`m6toCELsY#-|17IT}N6n;#7ZQahATXoJ5!TFW_1saVxR+f-U1u zu0dX;H0{WSnDfRbVssDo^LE5P!4@N|dt%uah87~4CSxTxUi_Q2b740Qxxd*aR&0nc z6`WpNg7^cDIQk}!3(391^(EiG3kcXqEABu@`~<6E}+u0UK$O4XfH>1FPS zee8dS=K|($FKo2C-^8&s&Ji6BPjG$g%2fn^U-X~a;`FOTpSZ2HortNx_pIN~m?}_p|^j3erz$?z$A+}2Y`r@tDGM&iJsdHAev4OVD zlJi;CvpD_zn+RBi@(s88Q$uGu^gC*iRqKAHbCEdEr2c-1%|3X`5seksv^C_#Y_Uc)47kTP+Jraq1Zn^&D&1rrvRIcb>$L+l)-BbQhO!#b~hhj~NI#BYCv z5r16QvqcaGf>Oq8dw795*xWzDOr$P>{!pEl1YJOcqC>m2@C_ecHJITp*a`bM-%adS zSj@UsdQOot1_D1KjPwyKbt>)*oybn|Yv5q2jgZ3MhagCEJg*-Y`T$d8Q_W_H--<~u z4iYsIhZ|@odHjjU0A#mK_|+l>`D1?;j^plDLP&@}pS)?whoQi~s3UHf1N&uR=EK9Z z+xbqi)i;*1IAedElBx;~UueRWw|aGc+-N{E=Cl?C8RbjqL3MWSQkOm%f?j8F$~w^7 zLkgKOwju07(Oh?mO5^#02gs&Yb%tLtIS6^=qKi+>{#K<3w zYsL)`Dx;_OU26i*KOvukHntVAe|Qc82!0S3LLOs0>=h%g4Vz~j+?yY0Y;uFfsfZ?O z6Ti)gxaN%%p4Ng~ourWz!n(SzFU-^D~#?oJoxcpx}t)Qi#9*- z!6pOZAHm5E(ZTL_#8w^cUms3&=M*VwC6-SUM{~?3?`ua@RudbKt|QGWfGSZw@3@$B z<4;(a?}ym>>T`c82z17z+6TRXz-@jqsL5gG-P5`tcBUvy+`nO+5AA=E^=Y1s+1SL< zptaEs$Sq$%NNc!^p!At=JX`gg)CLh*!|;fh7kwwG2}*C0>~u`pt&LH>gtzfu<4ft9 zsm_h$9DwTvfb^=!krDKNtHZj4 zl5i{E*noxOJi2qc<8$1FvQSz_Yzu8L{9SB2x>)@6dNHvOXC)(##2kphNpiByIXvlU zlFGEZhi}M2-?rj)gGOvkF{{7hBddK!OL(bGXVbU`x(Qi3%S41-oeuL7}Ce4~~p{ymQ&_Xp-=}mTV#``p*XE0r+aN*`?hkKCe zG{cb<5b2G}*HECqG=tC_(HL^*j`+K1sv^%dmd6 z&wezyL4p*ht@HHSZ-02&AM{|-FKgkX%6lZ?4KsG6_|ft*6-Ro^aTrbmo#cT7(l+A= z-aBWET2wiyS5jRb?f^I*{}LoIaK=rW$kTuaGpQc)|$c@Fq6bbnMy_8 z)lpN)oB?vQ6nJ0xOjmsI-Xb2>F?bC*?wUrzuQ)?cy`ma*(R|46zer4v(ahiOdgUrm z$&!eOI@5z~YDfrv3f0XSJVBCyIE_6k0ZjHTjQzn}RW8EfB<>$;>3YIaAsq zMC>;pNn4qVc?J9B5V}r@wL+^z5lt{4fx^cP?-{nT=^GLpiLSHD zhF_YwGHMwI2$s@(mv;~|L$4e?e`)~Mv9{%i`GhN6kMOMgWvfFXWXO=GxG^xEWR+^d z<#&IH1rW=*Vf>UQBo9@0D(yqs?Y>0~D2fLDIZA%^wbshMLgjWjI%?WMtE4?6$L5l` zd{-NT5zhIVUsS%DY%-Ril5!dg%A#{x21}L~MYoqcg!r!_feBIySZ^V&yB#J5x)DfW zp0g)!BRMmpq_99YIEA0BXC?0mJ$eaDeXD=qEWKkT3%Hp_tUd$?S5#d6c;$GPWruwp z+JT=cWl>~Hwwd{3SYjVVJW_QCXNG!&4zHJfUQ*<#s%m3M1fD*sf#z`#u95CvW4IB@S4*h2en+#OU=Cq=d6yL&<+_ z=gI27w~kSRT?Yc=t?&=uz^Np)kTftkzo5v%i6w|osVQ1`15E^ZiRiPm)gIa&q<9nl zv@heFbK*X=i<0U6Wt((7ETuVvCu}w;)+vE@$S%d zAjmqcvIUtK96hx)ycQ+~pG~~wz9Qx;gAk@WKz{XlA-T9~LW|S=^vj-5C^CO1cW+Kd zedWy$2iaQBXn3CFiHb`>$>Qnd+cACx?Gl9RF^XT%@`S!a^L7JC4Mw@UQPd!d1nZG} zPIL-pL)z~lH1{RTyDrgypgPNh8N~<$}V~2#%wz~W=b5WRp@WZrX6Txyk!-B6vEa1%rReHHTy;B=0NnlbU13s$!R`5>BHq5^79kv1VYWMG_{nt zC#Omp8^lKNZq-=6%8>2CvY_S##d&rMVVlNX~?b{C%9Jj}a zJ;z^86O#uu=s>jsLc9B5b|HE?@etp}L9$`{$tEwQ1UZs>y^S&{6I|P=(%Bp}>Fq^c zv@?K1^Fp46N#cKE_WlhVWy<9H1R&wE)r|(Eufj^+i==J=H=krovO@2pYtKXRf|IBk zEg0iUWG|TsgO5_xk7*bLsKe+$vC`AFPI;HD3#QD=M5Nm0{IOLS_C!`wxXc5jU|AoJ zLeOrHUO6zd+=J9wb=g0-ajsYsk zC3jy8m`dVYHTGc8K4=m{v>ZD!y&CLn4OV*n-Lrd+9B#NoZE;o!e0mJ&X0&kcjVU3( zkNG88jp1tMJ{B@ORjTXrYlE=0X*(?MmnM0kd(?$QYO^>yeaUM8?wyN?Y!lQYB7Uw$j(rwn08Dr^CML9rOvA zriQCW_QZz+Hm^9as$mOEdWeWO8;2u0xks|Gv*nmmzLreq`dTztMYhL2^@ZFuSW{+p zpsa#v{4ioPz$u5rTcV7*eih;+#z%AK{$2?2L^*$c&f6spe$v0|nm9+W(JrrN8t>ZK z+f=zwXVNBxNyyEg#9%lje(DmMxDVCIq3gm1tr!imp8~0a53Gx7EwQ}M?(PU@TQfP# z=>W3ug-U_u3~|I3K6*0ML%r*j6d53D&PjFE1Dgpil@j4Q@Xm@<=BlRicWrzH6o!>1~D+2;j^o@yQ2AUyS9`NU)0qx z=BX)kn|EW*`w67N=#xZUsF^Ra8#R(B!y-o@zwct}WcsjFs*N=koC z?U*XhVqib7;%Cf0`(JUO#rh=XdoUDRCsd(=#^s%`)fEat7i87XHB(`3^!QKuCo>s6 zHg&lHdfA)M9O_kUP^?6T0MaS?5^D14hKSU=kg4c3<$f%RlSnYvo9-UkQ+GY`i}YA! zCz4f2@+r6}>?>8;JFl}|%eX;(%`Yp|XN+=x>4~ac*P9y5Mod8zy4VhX>Ag z=cI$;N4sWORL$zn(qArN!M)|cLTTfN%G<&bU+s4cM?X*awVd!DGHgSWh19rz&-kx} zBsBl^7AE7zC_V5fGIisbRwIqjtZwRrR3t=|s!()Ef(YI_54)~d)*zHrwc>v(Z!UPR zU}hpyH7sBc`<}6g`^(B~Ob*0Xfs}95``d{xVc)HQ7pW8zvzjD17%7H4D)yMque{sz zR!WdHSat7VdGo4-tw*p+-SfAh8*e>U&xPP4HLkyq%(rt&2*nK<_$9l)Uk~Z=21SW7 z+JK4GCn{+p2&kllMd*rAstSL3qbd_BbL`IC(gmqV4f~Dkv)y1gCmQMvlTKT51VjT0 zthVVHhsjcQF!sfbb%~bEPMfjqT60i;{MXE&o5q;?cdglO$WwI(U>{vj$Cc^l+Ma*0 zhRkotR6aiWbS1VD9q}GH8a$L&q}zUg`9M#VN0c0ZHjdwc?^U42Nrr!z7{``pI#BwC zSY}nfVJF(b=KjZaq>v+1Dj<_qPiiJEWv;mb34DeJdrb+E^R1FoT&j*a;qYS$wom7y z6BMp*SU{ zGNBE#5u6|18b|yG2MoGTbZ=nf5gRQsR0gDlCGxbg5pwGS(Pg93qEn!uR`t=N=N-WrlBBrYs-%=Fjn-Q^!0fb* zCFFYjR+QIcpK^L-yr0H@8lAhCB$s>IW+3O?7;JL;Y73)hM&31l|EL#0+#gEoI6QO` zklcY1C%I)(Ca_lcp@+-2k!O{3SHlf=9ROQ7cS65OU1^zZQ<7+c_P)9@stvI$|M3(1 z2}(Im1ufHAfMN0LSMSVXY2n<^x44idH9mp_u8hi!UWPY3vO?qGA)O!FMpk=n5I1Y% zzwPd=Jr5dthYqKI2)O=#-;&JDyW0>Y{FAYDr)eS8>&4e`sP9;EoR=fg;LO1FX#5g3 zz6u_7O{e-&@^NfIBaGxekC=^FG$1!D+NJy(fW%@%DGm9gPj@FA3r7(X(J|C86WCHk ze+{%bvTk&Hd23qJmmT_j-=Tzr8ei01on*O5cO2;WymKResw9}khL*wQCx>=bzEwcI z!AtR?BYH(^dBmhlo78NNkZ-%Pjs%P(=nAJ+Pw@>44}W!w&g)Oen~QwnjQ?R0-vkjg z098aVq=xQG&848lEZP)&8#-Ux&T(|5*Rn@ZeNko@Xvd648V2JmXCtdwd1XrN3328m ztW^@|Rc)Jmk zzT!V0xaVqZ7G?>v0xnxnjsMRuUq_d!ZayHzrmcbTZAH;EAF+-F?uJSsT zRLm9-&QkoCRK3yeu=403NrV4QL)XEHi^G4+QBuuPG zt+JD6y0Ww?#Q3<1(g}aG5*TPb@*ihTjykZBc=Pol;R^a;dBe```o-ooGR6!rMt#vS z22tmKYCX!Zw$a*RoIAp+0k&MsFdkDiAL!_jm(dy(_^Ziap3>F}qfcmuZM+DvO-t#d z+P@FIZ^V5%Q2j|-scTzNN5$GrKRvd-c2_u6qkwn7vdJ5Q1ILOr67xDr@r-EfCT4Oq z%EoFzd~)iCgU5Jw3jV+iri_cLvExbtmHWwmGM)8wCTh@O!~R5f{OTtGD1iKlkQwLv zW{W@bArgsXk&nXTLSPU(RFIw4<)}NoqN+O{JHzpR z3tXZDmtmP-qAOQ2bv=XSlj+*{kP?`@rx|Sd}|7kHfnq znD={h7Q|Po6T9b3o;TZ;p11XNRH}s%`F9VeCiG0N{Y6+`j^7IH?oqF_j6!j zdOn&N87+cab~^}2I06;8C_!0;U2kE3ZyeaW?JR>>l3y{TB-~aMMoe3;eH(t$gW^R$ zm}MS_y#_iz5X`3! z*4g|Pf_M49KQgs?yKoh6CA01nN+n&kp0<_qf`a$VS4^RRA85l7pK5n(i3`~-RDjzp zEJ*$FX+OYX>0MP!4Tq9ud-CCby|$8fgnhI8kMM|>lc^*UkE;w(K_vaE4lIp$3H+i* zX2|oAWJ$tM{@z^4Wr#kJHk^WQLOML#>{4J%um z469-}7ss<_VS*^lRh+%oHw4r9MI0puTD6X7V)n8m~<^ zWk)~Y7_Ns7XxV5M)+#fXcyuj!x4}G&#(D~WYIvsE20^YY=)7liiVXdg6ZxWD+^lDu z`}-(+q{?V14w1!-A&cU`pP@*7YhW8v1P^~$qgrGAil_D|;j$LdG?jy&<=i~HMbKS& zCT+5<9LxnNcX6XPT^T8VC#Be9;(@Z!^RNx^C!D^^(Ze1!;#2d zr=DzL!>0R_m%~O973etr8eHQ;+O6nw;T3tO>&``2&7jQ%LCZB|0)HMz2%}N1zl*l6 zTbF!V)Bk~oiukNLFy{z5BzC!itlW2;es(W*$U8WR|BRJ9UQ`=@aYRyK7<$R$aOtW0 zM@AAwYF5gLjrQnml4#96r)Z89NI^nFG6%jAod3wh#1+D=TP(F)wF4-lvh zUmuhl&|SzoHa(TcN*&3eiG$HT{#t!Qr5LNXpwSR?YXyhMQ)l+pugxPkDkDze2RM@N zZ>Rzwj#itAJz(p-XH&*l!Ujdxn!Tc%1`0uVsBxpDtUKk{F2&i*_7 zyQH~N{19U>n1XZuxIxeY;Pi2cSLCa~*4b_h3>7-DOas&lPMLhW)-axi_-kS<3>n2R zUED8}jt`+!Nz8yB&y{NXaMsX{6Kac{5$qvzY7@+PAuH&)8%D9J;>AV~kXv-V=-wNg z2S`VM6q?oCHMasAN@U~r;aXWvV}bL|J0q0{7QRvguOCg1%u&BY*pDAtjvSQ5TK(Ks zR<*j7FRy)|*J)-@$sIc@q#l zsmDZxlVlGwR0Z}Dq0lL;g;;>|fe(kdeBuWCcog03OWtB4PQ{nyoSA8i9jhKz46eI> z)46p%pWVP)7kh=jX+(3iDH(QQ_W1Si8z_CD7K%~ag1il!%zUaxFW7YPpkBM>v}re- zrVoGGdQPuz7dRwL`0G0tBu)_jY6?B!ba=Vd<|(Bf`h@(5Bg`Z#@1ciiEYWhlBH^aO z`uX2{g%72unk};P_!s*hH3_VmB=LZ0IaqpR+LTq5P9jM1me#b$|x> z$ul~*(jUBcHr~4WoX%a%!umYYJDo{J+h|)&{^+%zh{+V>SdppzLXQfo?!giMCk644x67WtE8`L zbPj5iD|$n1=lO_=@N(^V+ZlgpYJvpFY6vrCd%JX0oqvJT~^$$3=Un1mEjPN`1 zJ);c0Fa%w+`qG&%rKh#@ao(TiVNUYbY(??lDxfxdQ$t|C$miB~>dF#-*1+Jua!DJT z5>je#%&!Sz@DN~>vQU9)Fcc1iLU%$~RT)bDcy@_-kPN?s_a>r52->ZATgXa^ZyJDe z*?hGcL7+U#ijmM5eWV?I4pK8Z4d`uuY?CtlUd8Rb;>VhunF{-fJ|+=mvLtb-iQ@r< z29*ZO#g{pDdxgz};tpMZFpq9gWkAImDn~^M16iXT+JuUuwu2x!A~}r%fD_{s0H99# zzaU)&wgi3amNX%IgPiMIJeI6WO;rk0i)qY}6?`-Y0q1F#_uG5p>K+G`U2b!PeJca= zJ1g`Dv7sHX)}~`#27yejk3XA(?h3jhhPi8ecrui&Wjkx%EZ4+;s-xfDU~=bg9CkyF zdX3_1Yom0^XM5F7$Fjfu(iX_5a#*gZ;?Qfujp2FhS-o+QbU6+1lbCk zIoJ2H9+op9aBASNCFG>AFX=~>C=D!S@lZ92F@zug5gzLFkX8X6D#L-fb^>|WA$EPD z@-|-&)rY4h(AceiUe*f+dO0vgfGMjlY_Pv5$Gpm)q8YmDYEhWA8(w?j2p}3(cA^D) z;#kMGAkDa#3~??;ZVG0&j~`IbhTwJ1A}}@{Ed7E5_q`umD^A$3d}h}QLoF8DQRG+) z$%i+f)Fgge@fCw%sB#*2wv3R_HXL<}8-$J+%Lq_X=xZ;3Cmd3tgqj?$;Wjm$%;OqH z40NhwAUsd#U7}=FYXqZLM&9p*L1n>5_c_Onz%k zL!S~c8YGaFHf2DgL+~Z>53}(r8B3$^!1#$o`$Elc!9r1PnP;NL$nPMAkN%}*(Mc|~ zS)KK)8&(c~xfa&8^t#`Zj&IG_RTV(>*}no>`#2UAj_IV34hzyt#L6aQFJ^FLDosqu8_IW-UB7D zcq4J!&}a9~PBWhykT%&7q3!kQJuc=MBXesurvxT{n06Hme8=cI{^R#T|J{SKL<`IK zGS5)C@Rxl=Iax7ekF)4Ta&x^hQ^V)L)Y@b?Q?BT$FFK>l6UR1iRMBe$so1mSw>!1a zYUY8SX8JZT@t6{!{1x}6UcDHG(Do>M+smrqvdd564n%S!c9g`xk%v)O~$2w1*NH}ko*A!+0X z&8#EKu2^>Sui(gUo=lVbW+WsOu@m=|2QMe7T#fN^=5bW)PU>?79|i$$0^YrM^IR`A zb}@73tcjcIYla)k73t6NnSLlymrbz@UAn%1`6`(>H5p9!HmQ8<;+@sjHxzj=wfWR~ z^zc3sCe7`E8L;Q^1-oAeWKAWJqLm$T&q9Ug@Ox=+8Jy1sg9;h64dED0mH>iHXKAWp z_z<{|L+o~;!Icd=v>tY;s)KbM%91w&MlOFD^%O9zELwnI`jmDhg%Xd+C@RBHj>=+x zK)c1=DBbGb())t&^~}QQ6cb_k&sX$AQ@%1WuM)QDTC--@={ytdzIojF0MG0$76fEV zf8wB<%&xPhJfrA3FJ#a95UL>`L7eVw*{Zpx1?kNZD`+71VpvQJvuavMO^U*pg~M06 z1X``=5Itn=y6uQU;0w2pA!~MxMea#(t z$(nkQI1iVAnB@_WM)iiMD+s+sOx-2-O$W3o?enHbnC^LZN&v1?rVlhTpSs_FXjfv7 z=85%>+@ncNMO)>3?j&KcXHWld#0+(stVx6Ys4FDA&$0Y@-+UlJbPpJ}w_oyMwl8S9 zX2menp)tcy0T|nC@Na`FP#_pJ9#$>ymRaWY=jOO769vC8p22Iog4o)M3Jjc%*k5PH z1m(6>wN_cAnE|lcQ;^x<^fPCFdP)hqCO1H4{>y6y9vOJ@ps3sas19hi!LlU?1FOMK zmE#{{rYG5LFCQ6pNHql$<4A!q`@}vMzgq-e+FtK|MRm%;8RV0>*zxqYUaYoqSEfAEt>pcb1J~tE!Uos)+@pu&Ih^=45$dW!3Rq`8VDgiCt- zXhZAqIl&6lsjIO20<1}0+`spoh#&WRm7bn$;Mv6SdzqiuXX$We12icM3P&@ojy?gf(MLHT|!s@W(l|DZM4cM?D+J&#l6F45@(PQ(e^bCOVC90vA2U|7x-Mkk4Fe$pU?)RdZTJj z_WhIi1T^y*EtN)pJZ4a7Mo7<`5$6-R34O3oGxt#mZf|{s}VrcQBgYhj00}kE#~URujUYh|!}m z_sIBKkOo8iqa?#QZ97&}lMX>Ud|(vR)6W}GtG8mr=|~}eRfA>RXe5cmLp)*#e?B^9 zJR1rX(LnCiQ9*<!>ZXPYQ2#$RJJ-*LOp=^WHr8u{a~cKlS$C+t)EY`TB^sK820RoUL$|$)ON)6h6c3= z{oV(E{>!hMsTIqZKJMgs?vFVvt47)GtM#GmkZjNQwhiZ7sDE!TwW z2+j{zvH++iNz|{mD!Nd2tkp8!IGZHUQF3Y~UDDy#P~{%498u@rsn?G@=OQXW9v zK^9J_94=N;wU?Y`QwoF^rZ9L$#GEg`Ni%hSkI>C%-W`^XG`9+~EF2c4a{c6=L;F0^$)~NXUidz=Ic>{b@y_=6EWqCrG7ibD^F~p#;u^mL^DTX<}I?yfux3zE2^r; zqH1_UBLghi5-Ag8Mihv2$21*NXQf8h_FO`4Er?A}vKvLSM{o8hFQdaxg~c3&6Qyf^ zFG6gOm|KqY1P-fZCQH;SOrCvft$JRLiB8)aF;eLc(>|SL+hGX$KR9$p(w0rLAPqDx z2Zih^T);N$=Cjy?UKf$5c?>4ihA4pbv`I0_zt6O_jj^_lyhbK+4M800qXT5&*awxG zlhUi4c4w2^tkz!nVQ$Pq4JiYsva9EBeYJ zmjYR5A2Q^?s5hx}O4{bKW59|Gn&fieRF+h4=b$JmNEX%tM36+~SnLtLqVG800`0rt z@myIm68JQ09o1S$ku9*$1E;@cT=dCdh5e8;_6@jLIAdod~Kc`6y!&F@NpC(qaOK zPIoeuR9sa9JHmZ>bww$F>SYtetLd5~Hqs4L(JkX~TBN6ZT-I}Kf8=K%K{5R$2COB8 zJpe(p$?2+Ny4sGE2=0I*>B>CH{G!OzW~`Oc5{P=mKn~;dO<#1Wssl!UUW(NaKhJqX z8Xr|wmu8g3O7B3kissY^8dG_H*r7=z2V*FpOtYIsnB}v^SnO_Xw$gW_VDftMY;vylAoIihZQ4X{|p&y(lD;?o+XbU%g+(e$lFAA6nF!*|<%3L%^@hCg&0IHH7X@onD7Iu4@2vf2H zj{DYU>E9`1*U#h=0NMy0l!ClIpBWk2k_fscM7WHXathMVLhEFs3KZN{iwTB1$`F4>E-KrQn}*q;qU}(q%lC4f?W}VrGt~%1mQJMxc$dOb@D&&4WLl znry+nq>9EEFU#U@3YTo``$6qLTdUZ8gG@)!XluCgzUV1`4a2c$PRbZq#SF@*vJZ5a zjwE<2rJwE!mp*}iRHu{r)*cg{aaYuq-e(aO%=Hai+jAC>BKV>?#Lh^`=w>CMcmK5q zr`#sC>IC$=aN|{gU40i~@A#NN43c-M2%r$Kz7lYwg-*f?$9S1%(=ht*@Kb( zd+h)qEjfi^*s5!`zYTa}ogfQ#ILA%V;=^>dnON?~<%_|83)?bD`}VxUF6NxmBAV3y zUE>c<=(v7f0qTz@yB7UvUlt~n7EXg$y-RfW+1pnqiM?NI4|*H~9)2d>!AA;#4NGe* zRN*KO69r0tJLKXp>>YsN7n!US214;i_y{=DXTSEfc?OfP;jF@j6nP`Z2!a>!@}^e@ z1)Ay&{2`eNXS|vEFZl_mpo3^*{<@!YSd`j#CbYGFI!k-fle=C;QiEXNebUqmazfh} z;RzH-bMb{&FA$*H;Y$q;43Y`X)~FCM#jWu&9~!QIy9!;b+WOMCvbSFHMV$)G*JYzj zmTcd~t3S}G^#H%!E%$4nxYW3)L)J`7jkrL;Zx*vaWp&*0`=;I`R0w><9mkxWGWRa} zjo5?r6pJCPiL%q0+FPuTr6reIiD~!;G8UbXsxJdy?u2teR&iaIzHO;-b3c=J_;rwr zrq9EFNGzCUMa5&;TlOIpRz36z=WLBYXrT;g-Ug$mtzfg*^AV!LdQ?Ivn9Xg?e!{Cw zV*Zf2h2eFX=!_d$l7t(#5UHuji=7-CAj+0QF+p@^3!<}eC2b7r);q~HAN0QWR2 z1W2F~_l+EXP>KBDO_-WfVYG6lR@`^@%)2;$*dmE^`l9;-j!($z2SM4H4b^fScfo2U z7DY(QXaQR#si9Y0i(0Qf zrfvgTi8fMh4gKAXF`wBQR8JHwnWA)tn$sRf(CR&ai+(SG!pX@wbiu;a+|Z`={)5vF zX}uyX!;Z;8XINJ91o@PCKY?*S{-{6|^SV>;n;F~M`h;O*KyH%-Kf31<%27U)opLN& zN4)TRoA-LXHczdOhr?kIM4jtS*^nQ9F>6CHU?D1m4Z7IEwD>Tw_&(WjiXZz-#;hLOt#{VhPJIo&mSx$R znMWQyB-L3gVKlW~K^aumD^^T@$|cLIN{Kpi*EF1ErNolie&F)DK0a*3Zh1e*ctv4*?6WdwmXS{)AX56T2Xq$rB#?kMbs_3V#I1QqE8h!7GGCCWuU- zx?-;sThX9BdR7P|4R0k1j7k(_V}7Yfl5BAPMUyceOQTNCfX?~Lc>Aw^Df3ACi@)q6 zcj_1{aJ(E8c8t2rkdfB>@mSqSIj7z%Ky#Fy)$P~Sd5;2Z;av68kn8q4fp~gU!mIB! zeeD68GHEAr)7 z5dbFpy4|wX${5(yo6uqJC^#QX^hK6gAIo>_tEO=9OmwR7>b1EU1=HF}dD623`SciV zMKEFYb+zC1)q$PBieW5aWZBWcz~9Yw``4Haa;vu`hj|+e1fjHlN4C>~=n{vg8UB(y zwGHASoUa=)x9hM<5j>oh7_lF{=(l@De-`@S>cx}E&8kS}>omd{5FbIBSdNBv1lSj=I&S!=SA{= z`eNp8QNW7;9;^+2RMV9c3|Dh)w4PxMRPYf;wuefolY$3fn7T3CZ?U-xIM0j8juN@6 zpnu7RTudCOZ%>E@L%u3&MA0;X)S4nAg=`q)=+w-92Dn=FyhoN~VfzN%nDBzlNi^2` z3HafoYYUK4z`Q3~K&a*BAkcW)#&;)6yW)5}r!Y>A-sn?*SVNuL=cp$5PcT~x2znlj z|Mc)3i)XxX5yWhuRXvlZf70V|nA|spw-jrsTCfr<=)L?{;P0L7p2NXRw{ov;+KqVp z5w8U%I*JQYoF;XV&i5iq%2Id-YtWJ8Q0Y8o)Il{6K0DWJ_i3G5s*U5)O5)~5q{3+m z>$Q%;(^s*70f_D`VMD4UDp0Qg9Rw1NvnTaoYXry7gjhR&=$v07X1t%Ih7oJg8wv)t zyDE4e&5_p{2h4`yReD^H|4r1lp}%6CZZNWYwTq%`4Fp#~7bwrURMJhMA)Wa-mj~q9 zRXBaA79j8o8W3HU8*jV>m($|VHPSu#Mox<_&w?CuaneGwv&rqA4 z6J~!5f!;zI>g_zxlgVjc!QR^}=Sdd95+zRcx&)FN!GS7@IE|k(F7*+ua6aSBt-xr_ z;9|9yx#8L$+&4aSUw=U#k-Uq=cClp?RZddA_%~}Lzgee(x~coVq_4qC9qPA?rKfQP zAi9Tt{aidH8n{FMhJ7zs17Rv$-a8o1Z~1D|%9|j<@|-33HIvrtoU%&1I{OjIP?YR6 zrxM|rc_a||Uj8dz1%Vx|Z}6;0q<|J(UkzVS_ z948eOmRBbi<;z!6M!46kA$pN4N>U%DUR}Ei&oBoSr`9 zdmKo$kBL8dP?LcS;Z7vd0qB4nhv@HjsIR%POUJyfc}NTL_cIJ6h)@3nVfrbt5Q!u9|Mq-zx%`?o@yf~YfhysdYaO18wj!Ea_Wlpr+ zyw9@I{>EqaSR>Pyu|EVRmr$Dn4+J?lG&z@{zycNnG&M4pK~@APe{^L~9Ne-k?!jFL z2=4Cg?hxE&&|z?Q_h5nGF2OapLvRT0P6+N2oSXBVd(N#_^=kj=UcI{Z>b1Kz4W+Cj z#7*1V3BToVh#qVyIX*5Edk25mLP~Lhyh^b z=mG%$I{{caLV&ja(&Wnej{t}V$i?liFe?{F2Y`xMv6^a3SbTa0+i+d zwnN-p1^==^maeY{@=*rztMlIE?)nRSW!4Q06<$yH-H7m+7^Ps_AlQQ zAXbh5-habDcc=f9{t9yas}Df`*Fy#X5M=e2?G6U3nmd31^iqxvPVR0X7l4W*5aa>@ zXqiJ?|2pDge{1z0s=0$L*!%xW{$GZIoB3ZeBp}v*?PLEpWa}zx>jeU;+q(Vr+sYjL z*QbAQJz3e`THkLi;^F5l0ziyh!{|LS11UP_yx*QSewFWpWOuOXOgw3U?8G<(9F!5~9vH z!JUF9GjVzD79z)BOoyFm@P-E3Wva%Uwh1phw-9^SS%Hbn z58Xz)pdm7~DJ&0m`W0zV+6D@p)a46#_095Ff1{m0=Hw_vGbUEI9A;!_J1?3-2rTEi z%4BP#hIgP&f{M5DjkRP6cuKeelC`g7J70WOdw_NaVP5{Zs;kVoiit|OcFd=~6wnQB zl&v_*vc9XT5Dli{5Le>vvI_j*yCe}se(#jboy+!I+#zMD8mL7 zf3X0%@0mErkxZm3XX=M-(Xex6VfY!)M91Mils_vX#Ei8m51In1Ta(svhNthgR(~5o zo_U2d0-m$R^W2cR6A$|AKNF6ekWy7(bN}XwuB*esBc*aX_;3UJMTb9vtUmkZexjBr zglP2>!jdA>^E^))6bFJ9X^m{z^HL+bfAc(_!-d;E8Wb;DgH>4Ec|`D8bt7Nagsjx; z`f4X2=mNPn7nxCYTqsEHQ3l6BjJ*y2=j65rY~HV!k^3FfjK2_z&=?z zX;BrH(7LkgP8N81YhSw&Z>Y}vB6PYD0f3iY$5dOUAVVNCC zdF(7EMLM%p|96nP0%L3`j6}xcBzcu-`tNUtA9E+;XzTOF+68vQ5m#4WoWt?7KDATE zSPwD|Y4!2(S+2A(D0xQhBN{LXa1xUqsK(oa-fi=?ldN7m3{_;?K7W|m7AR1J$n}1- z&*yBUo231SB6LR~fA-kI`tu}6E-_#m$HLHDX6Fk+O;^nt2U|529HX+&8fmU<6m(O| z?OvujR`kimB$nT3i<|||y1u)eecY;wG_-;Hi1I)IO2}&p4#|~bFQrE0zBLXIsO2+e-a1EJZFcu;JFn2)xsk2 zo=)KXUQ05E^xh?P=i&x3?djO!w2Yi4!Z>~Ow~Iz%+2hsX5NESiD85hf-afS$23kO4 z&kx2nX6^#4WgX7((nre>$5=yHgdj{#@Bn=m9&_`VjwA+ZyexAATB_bpb^d1lwSlCNz1V)hKNTxMx*^GOBrMsN0kq!#OOICT0i)-9%IH zWvVla?Z?dvKMC7mMnE6OX$H*6qI{c4Cl}poPR)CphD@+1r|EYjg$${$cdD;H29RID zmhOr5bxe~K5QTzjxyQE34fQmKUz4y=L#aoYU1OT!f9}7=MaX>SMxu)Bv{yD|SGd5+ z4}^zik6*s%NF|mr1oU7~B16zo4Jed2YAD4AmklCQ_A!dar%1BR?v?1yVf%sL!_a_p z-s2pir!GC>>{oJ2)EUaI-+8C)EYBNjz85!UO9m$(~$(w2zZVjX)=%9lVGYdkB0DWSU3o+K`w9jwcX@6X^{7Q|BAAIDwkg@P) zHYE4l1g*<%3TDg6w@uTwq1@yzqI;Rlw#4isKkA0dyEnPRElDQAt#+07**@wV-TE81w6{=+?IA>xOE^GdP&rJ7b(x!^1f3gr~ z7n16H8pNawMa7O1c*t4LtoD<=9jnYhmSWeM#Q@SrOiHLaL*zV z`Rd9D(|jA2>9-w>WFeLggx9EgbF1a4Cn_bem&Es}KX5dqc&1*e-4-cG#QxgOEZ@aQ zlFDb2%>d|*dQcEc{oa@Dfs#K>e@MsmMaYqI8ew#$?Lx8ag*&bUF8&vcUAoP(7aCQD zU|mDHV%<1i-(D&4i~GvFZ!hlY<}8zD6vFL%e)*q8uBB`AV;eqiJhAvcA|4^IT~q64 zpMlTG#;Q@aE1iP78=Z7<;yDJS0#c{W1jn5t!8@0w$jnLpi-G41iwXvBe+TjwGqCZk zuc@dk{i4eSh1XSvse~=F>UqwHTBB7s_t;Z=41)?Py;}_2%=AyxtcpjDntnkJN2112 zt2@}^39(iY7hU^P_P$QUY_;OfMx^srxCYvbJawqClGD;@S)RN$Fc*}~1kwwQC=<5Z zubiJ@u)jQCi4J}jxwUW+kLq)j(%^|Hq1TT%XK%@%n%Q~t%4KhSYk0HH;sjhvflSBTDDvc z87g^;Q82>7odyY`%P@^Tvj3Q?wE@&qz(rjhM!?edEjO0y0&;;iqTw+IDPrE{HE- z@UyKObC9`Dho0UO)DqnF`~d2rsDBREa>U5?MPGnBP&6$!BwO1oUCTw@Sur`GBaz?f z&g1j_oyq%4h&G^Se+n|D3XRIl-v1!#b3l&=)8E}c?KALMhpkiy}L!=oR+)N-ht2 znyT;80I5KM?1ZkL*OL`YoDJ+u$B#g%8V`ZodP|=`H`qVne=g(p0+euU(sX9~xy`M! zN<%oBGo+ASi z1<#tfJ2dn?`TEDCCIK^;UnLITytCg4Cy~@5k+lLdHbRlz<{+1d$RV02zi?+gp{EaM z^Q7W<%!MmsWgg&ZP zhDX9;xlQmj!Yc3sCkG`!~!@F;gm_MykQD1e>keQ8a<+x2cLO~Gr}B_%EH2sFRt z9zEkNx@qbaD$AYc`QvdOGNdbw*!-K6w$pl2tZmK)f6qQ_s_{99eURcwoQ<~r@LL7S zAF0u6=42|&#j#tqKG0vtYU^{OGw$n$8?z$6BocFn!!)d>(3?tWl`N^Ra=%-k{wGY~^-XyJFS->Z zhI3?We{k<~N6ug5cY%h2Q8f8*MdTVIQe~2i?D8tbA~+Laj?{>zQ8o@XkJ4?5#_iY( zw}~A$?DADHN=*jQ67rAVx7piHT(>7)B_l>kEiPeG#+Vc)<8JE>uB# z8|(dgRz3x&K#{q-Z|3+qr0})7|HjJ}tGG64zNz#7af*O%m z;hbK<p1udiy~HGG8R$P-6OKD|J8d92|deBOtf*2 ze-L6`#w)z|#CgD{papq56gvV19c!@eM|Rd<%gXX&7pio0m4Lpi+JvT`eZSW`>$KrI zT~DXPgd&1Rn;pgDh~(_J+NAa}^@b|C)-BC>Dp6;wz$mPRHPwmvVw)scAsdDt7?7ek z2%(Ll<9h6kKwuqkVIzcZ{DpTU`GaCvf0Y1^D}7n6jbkO;PY8E%`+~eatz8HUA~YR` zdApwNHv>&)R#Ed~9nX^{O{*_`0dlw0hgNj?;?K17DO6DPiGEMI$VfV5z*f1V;e`~5 zYJC-L))?H^<(0|3$UmjLv+~UOW>=#&n#kT9iW=-Kn!_2B2fv*W&U8wQx#D{D z@hp89Vi{qLM9$z)O%gh?c4kCyb}1fq$Qk)@G5;E!)?;iC2qU=O_*DCqS_SYZR2uP9 zJgU>z#VANQh@S(!+EmiUOi^VB$AVU8d9KcKg6t!sItfYFPx@EeBYw5y8KdWP4$6KU z6~r-ZEL?fiRp<=!ofC9Hw;w!5f9Yj_t>w=HAtUu^o4Mw_uRf|nd@gDyFU*Pj*t~-Q z;tNBbZ#WHl#ox7+H{RyhV%+uYJB#XqMlBYWy7tV~k4_qO8RstI%Q2gB3g5MPK0;b- zq!Lg^34~_BLy7OYKjsmQ0CPjGzXB-uF7}D!Oj1<`-~uwLZ>AC;5du`Yk#~pdO39Kxc{Pd|>-k}B_;f$V!3+;n zu8n^tc0g~tc~(f@?D$CvehH z3oJZ*SMr+j{e-t1Bdb>KyyVq$FKezy_2ryI5>}Ba7#PK2B|4Y}KNRl^t;fg%X4ulL z;Uv8>k&Dhu;wAu1c~iODz48$W4|X5FCE1%YQr6^;=QI>MT$R5Fe+e|>D?9|)Z0De= z^1A*R#X@d@c6w*`C$9R`O`sW>aUFJv$R=+js?BHUho3l&7LTjFXFs?gRqdv$V2xA| zBNC5B#6C#dLS26wvUea<_rZ^3w%ILshUnf#LEuyF50q6pBw9fd``p zzw%fRn=()4#X*>6s)GnJef|DMaV5eM0B!UV*HLg@3EaSx+xM4z%59cysfTZYlPBua zb9x;4ic!5!)$xX%vXEY$!AJ@%67R9&5NSCn%F)+QP+uEHe;Ab-)at+-Y8!FOR+e2^ zj;tHPE+HCa?i#aqP2$@Ar4r;^D<_B{-gHG=SbLb;+(1(B<(Jv?6g+ zZ}HnV{Gm)ITIdg)qF=mi8l?qgo9dSW^C76>1|5u0x^hgehrS=p{T^4!n=!Od0!Tl< z?x+QEj$mcff2{9F(>C#WQych6Yv)dm{-U0sr7_@EcA6YDLzl%ITZJhX)^nEZ*v&x0 z=1666n*1f>SB-n5j^AjDR2xN|C{^_>#8c(d$Ay86>C8Q*KjLi3igNBZYpKD!B@-jK ztzkpZleE|AeQ()J?UCFutc3)tTR)C95eS=zHA*Pnf6U|LXb6nFt9`VzQB+>FNwW{s%RkRaxFDDH>;4Pv%dJ-# zW-Z5+N^HmxK*YAYkZV>%Lt@nr%Jzs09KQIuy{S zf9>_k$WcZD1$Q95^Ixqda=E$K?(=!O%i-i8^{LlHG`U8F>H57FcaT`2i!6wpO1y6#=rD&3u!h0Dcx$%s2k;Q zevRrGQ%|WI&aK6T5aNE2Fw+)WYS1`;f6SZw?9(A2N6hA?p7=8#@F_SJU(hs33u+h| zKT-s>wD-qjB(4-Qe{r=Un~zbXJ5yqROvLC`xiEk8<;3E!H3kL-g;Qa4PSMg!26VV9 zs#7*TH3TE0P1auD$Bta88t1XdNK^tQfTZ_gqan(h)gnnu#SiJB@)!@je{cZw z}}9%5!g@4pZmzvJzE-*DXqlrWr+Ipz#V}{Sd8-2 zg~UrRf3a5V#i8KKv}X@Mck|zFu=&#W)GQX0FInAUe=_{sh6T4kS1bASu^&i!ItP_42V?d3jFyn~;=#42fVm zPmp6LTz;5&!z+}u1&tBZ+azB`*!(?TB;Ykx9cZbY{ zsqn*%#NQ}FmrX0MgU0s#?UQvYgouR^v568ZO2XV}isu4zm?5m`0L&Zt%K;N-P$~=E z1WH=E9d%MZkK@x@bbU9ie{uO5q}{^!yJ)gSOrRIDXEaGa$iXojS15VjUe}s$+vDU* zvVtfXQ@#CngF5e2oV?yxf*~%`OFax|0o40cVQ5#9DWh7c^hJ8cq2F<{pMfC+Q9l?k z63xtxCV&(9_BM|4pJy&@eq2;fTFY}^3kY0dN@gSY05w3$zsB+y!~IF{wtw0BC61Ui zuKsevjq0<4b{7L1O$c58(S#bvhWDcH&%*n@FS8rX7z5<5Ai=7W5d6YDc=v3{)dXKj z&gx+E#|cIz?IjFOj>akjo}aeRnakE5`ZV;7lbOkHoj!VP(l3g56Gk@8W>g7_cHfcKb z?I$4w;A(&AjvYEDMT6sVWVb3IIp2{5g2*qirPD6g5o>5x{<*d6bV9ARDg?zFI5K5G z36ZBKajb(tyOv>yAy7ne%MIg-LS%s2r<-Shk{IrQ93(h6^c8w&Wqu772 zJTzLR#e$tAoPB~vYJrMk(^ahYb#bLc5@d)Oza5j9eGabaL8+bo*WB>Ur!*@ zqFr22?Z~$j@`=KMMSpNpxieCJ>Z`bm{R|1C@l5_RfNDu;C=l@hSq`7NL-4{Kh(Q@$H5P{pBZJlXual(2?x5uwJVh!}vZuW&p)pX~Fu zS20dahC=;SO-=hh&9U4I9=q9~xU5yA+e6`}m%N)&ju48_6n}+8F>_wKTQHd#-h!6G zL1E%mjhj-YBhy^=-CEaFvW~)ArSAlS#etKjjd5(zHp5gC^%cny|C7A@uyz~db%&JB zW&a%2@|wU#3AT#zN(sxGT!@T6R3V09b?lopGx_O4k#2%`1Lg)##d^3C=~H=1Nn)MO~r&fyI*#(CJ~DZ|s>wi-YZLD#eM{ zajpx|qIOR{K(R~LlmcXe(+(UO#}srJB_*q3qfRg`)lhcOcc*b@N3y=lWTAEr4{PS! z=tqe+bt;Jkr0buSxsbi$s*zz@Lek7eK0AP-^b~9zg&=;~B?J?Kfm5sWbZy$$Q z6qFA2A$La61*JWyHWmI)GOFB-Dm=q2G8^bwThkY$#&YS(w54KEEXELv8m8(kJF7z@ zUoL#|I)6`%$>jR;dJ@s1pBr}gFOByDiRJwr$K-&8dSYx4iAn@GDfw5y^$>XNh{#xQ z2dbg;$SXpy(TV@fJhNrXab6hO*U9f%{eb%;+m<)f~y8=bB_F4L_=JvONfTw*bl1TjHx{f#9$kM&|l#BOz{-YFfKS z8_K6qiBp81&b90qvRn+Md|#~xJ@Vp%*c#y)hwg3`eyV%F%Ekr-R!~W@C8v@gzD?0> z=6{)_NKcxEVl=wvnye8>B`L}(DDt0kM9@^x+3Dv0nU)PO*16huZ7Jg4o%fg7u{P@A z!Eq;DQ=x6>h+=L~0RAq$nZfEACExo|{lSV47L?uinWv&tpF6b%%E4Oz1jA*`(kzbR zzPWUwc=;ztaZZ{q0-jv>u|;05q-BR+LVrav%M?dsobz4Gpm4-dhls?+^tCHkEF=dz za~JzQ|M+;p(>pham7|5RsvHT=DfUUUI6X64MuGrYRo-q{mA~&jXolc%omk+xzfMOF zpPtOP+l0s%KRuZ8J&Y!7mUCo_zTva(q#EKN;Wi5_)DF3I6&IN1L{cnv;^{orLw_xy z>7Zrp9a^AA-T&9G)jEaA!z!);Tfx?|7*dP6eFXW%wR8~~R3o$pN)5S zK%SYF=R(RW# z@nVXsnr@}e2fP1yyLG5uC5Mh!Z#XrEfR1b`3L9oHT#?d}1%CEo)9YoCJca#Om<3Hj z?uI`J1zlP(a!WDY>Atd@bB;ZwP>Rd0nTkQsdg06ic`Ai;*bmkG^v3BCp?`1+)eBQ% z#^8c&hLv6BGOBSo!bzUqL@?QacWxR6h@6}sWFt;DKOiMBmWT#;leKwy5n59sep?(j z!6?cywW03eXN{WewZ>Cq^PnXBy@$L&p2ofgb*(b&JCtCd`CT(NFV`D+f74!76x;g+ z-oR*l2u>$jw8$OK2O64|TDJR^}AeKWSu49Ci z=w!rSM02@(+fZL6d#M-H9r6xDEj5%5t}v6tr` zU~Dp>S^&GSsd;zz#N+uZH`g?J{1~B*Dsx@Nv4K!i$U9a0Jt-?A(0}r*BN!E_g;xJ| z3w;oC2)Uwuol?2ojoDd>-0*1)4<#0-8BTq|=A3Q)n(0KMDXwqAQ!){E1x~ zdORN5TTIkjP${>QcIoG=qLBM;q68yvRRn($1vABCfcIJ8hW~7L-qfX}5MNwH^W@&; zNXxaQ(HMVudRov%Vt<2bXl;($t|fwWzuy+ED#_1{S6!h=mQ2o28^(WuSiXXRC$w&^ zz_@minaFEupo(Y_5=?uB!+tmw=w9(N*ngxa;=2Wb3_{G?ZII|kZUvRTal4wG3TR2y z`}3nT45Ltly45j5RC;=3tia=sh{$nAUHh5Gh?N%0@B0bhM1L1zi*x?-vREy+spGks znS5mUCY|HksiMtv`XjSG4y250TQ)=4DV&Y|l0aN$PI8twCq+`kpfsH=xXV(Ooatiq&oGiw(xN%%z1S=SBE%dDw| zdj&^b)urQodVi&NS5!^_hgHe-{eFl%sqolm|Dl%u*y}ief;%|HN^O7eZO}eXdEgaY z8pOQVYtH%A(`?Z4xl{s+7{f#-5)&|1)n!Zi)s~2}xxXuqJ3UuB)%7uOFt`E~FS1)< zJaO?G{TdK zn3Ra52<$o?!Q@I_swWy^pr~m$k;z^vby34k5I3v(LlQgC6dv#q5ql z>>6D>a(^li+{{PYwx+~l3${>lIN(=yi;S_NdUD%fhui;r$VsZ#vsICHc;?uT(nUW0 zqZ}@OYxs4|&gKzv+n@Oi0pVR8LqA3QG82|R_s!c47Scw!25+FgjD;H34=@^tY7!}Q zW%x#|6$8eSMAw-noU{oU=9Rkr02!@Ws|3$#Jbw;zbYp>07`4$2!?$UHD0n4II{BKL zPh3dTB%6A?#owo)6gqR02l=a}{|q01m$=6B`sel5a>nRfT*Pt)Qf}&C)yZ1w@ao#( zoI_&1{{i3%##0}+$QYTRXl1@IY@{5T_XZ8-si)mx61_d*nJi1!%^{S3AP^N8U%&BQ z)qgOk8O*4mxsjNIsV>LSy@11N@Zaq@F<&_^-&DJy*5Q~fTZ;^%BjARiIsfSg3W`E1 z-1PCVn3=(8blpf~Nw6t2b9gxyXRc0k@VV?lx5VH*NTM>?+{i%w&BR!*Uuf=N%}R&% zNYl>fclXHenZN6ZPavj{%@l#P#sX6~vVX0StAnj%#zY_HzGwLg%BAsR_zoNAYh@Iq z4TM~x>w#|@H7wYt1u&qxG(WUqDeCy-M*N9==`9!}8vw zc|#MLn5d;rh@Wg3E<~A>k6j6!4w;~(I_N?1b~LsH<8(zCKDqd0Kj``;->k%M^M7A= ztgQcJ<9#JvyU!*~SAL^N5$3G1(axtA!oZ`Fsw%moBH2SeHZ(+UeLl-D{MPelGmPhS zp@1Ui-IG_E{L4uv4?K85x_m;{9q8xs2*QemnKe1oDS$_iyhM%Imc@Kp*4xlwPk@~Y zpX61`V~R$Ob1*&Z(wh|@C2p$;`G0ut1VR_C=pQ5U*MsVaduzW$y61p%^?kYv#S~3? zO1a7&1qC3ine+n3sRyS!`2Dk@MJ2U*qeHy6_m{Krt}5CruTJmR%zVlyEei4LY^}lu zob)k;?*lkCTZ)(AqC$(2)D^#Ufb;9Cuyx{Or9dnA5_L0{fKwxV!pcy$6n`UiQ>#Sa z8k1(d6`>1;gU=w*&+_a*{fe9ZrBOtk?+Em9KR4LxX=Foh4{qhTfMQ(8L zNKT|x*3IX(M2%6T!BZJ5BT8BOg5`UM>AD-6Sa$Ai_3E!YV+guYdH=ESAb(eIlfq zxhZnfR%R>D`$ax#N2*SRM(dbX zn1yJ5W3WS#H(aJ}jwK-Cfs%;|uf2|6jLUQJnSC#pC(-W8(3AN_ZA2DsP%cme+ra2R zsx@8W6{dtHVL%e`{(pUMu8`JvPw_nz&$%bJx*^;q=(6TOxBsCEuj*`ycq3;|Gp8y} zna||7ivIXT+vj1)9{~r{kt8bhNzm1s1oh}D&pT^F-I1NUibkY_DI3a^cS{@q&x3(F7Mg}))kF|a7C z2(W)Y4AXjGr)uL~zx;zSF91PBG4kxR=Fc30khZjZySAGM4#yM*u z!4mANZh`GqVX6>+Xh1kC9y4n3gC4wf0;^7Xo1!d_3frpK5xo-B;eF$LXA4h>4}lgf zQawYrQBc|a1Nm4s6_#Vn$7}*Qr3;2;-g|%2sXm?^q<6hA&ts>HiCu;gyHV>|ixu%t zW7~m|c^(I~Co;>AnEJH5fOrIYVNlnKsn9dRNB@i8 zaP+cqcPpoeHjGqMj(B_%dHey=q@0^Q`V_w!8r5z@ae)d^|$RPUl)OOX!4nrVM< zfGFaeZlm6UWcYr_{JD7nf5ylTF{YR|mRkii7gwlWpl&kz5|+%FI)i6yCe+tp7-aFZ zRj(OmuqHw$(8S;{YaUXkoBWF29^Sj1$3>mY3uA;%%`Iu;TX1z3IjT+z9LgOC-TMZ- zY_lqMR*Bb1$H$l_Em=0gHP5_D*_D5;S!et&M6!~#^Ws*t*FI(*=V`RCb~FIhf6{j^ zC*6v%oCepr+ke$If_*_iM^hdR8153u-dDzSF1Vvc4ng>{jrSJQ-d*U!uJtI{7eKB+ zMEDX%!7ZmtIe3^R;lXIU5t!R+xML@u#v}M`V@L$ahJm5BmG9#fIe&L{r44^9w_2Pk z*~-n9mQ6aAT|)CB^|2Oop7+g-m$)Bu>pRIyXZHTE8D8!?`f$KjPw8{*g74$P-I3fY zI`rFgq9-5LKy_evl2Bk08`)HrZa^RRwdoR673eHI2|&Io;1F7_*$?9C4DuqEnm zTk2X^QPjS5O_KclCdL<|H=uuHSXC8G#5S=8&0jY$z?uXH+bm8T30s;?vXJs8P6LC@ zK>zz#@j6s_0U6l!(@2p-(SS)&;29INH9}8fY3p+YkJ!b#U|?LpnYCSr^;2t=i_Xy@ z-ki$L&c2%-cfj275c1VWDqj@)J`JXaHgpnTC!p3AU|b_dc^3ie3^jlJhhw-`%nA3{ zP;Ld$_qYk*_dZ8<;hEqct9XyhCI4Xr{8IynzR#@dB|k}WQ+-cR zx3(_TkI}9V)Gzc#z94_ufQa#*vq8h{zndP>KFp}EiCG|<8w?3OIUvooq7<~bDGS;kH|9_ z^LJ;nB!Wm^-MVITSnxIC?>BlZVyy^)SSwS4qjFOyfsaPFx7$|?YQ!C%nurS)jx2RMGxui(2ag*@Rn8;d z^wWfRA33QGSf;gOW{O7KL1^bJxnSSR&kI7LE3+0pMXq3+@GDOH5Bx(f?sLMi1SmZX zU>q`ku#bBk;fWGBABdf7%RY^+5mMu_BtPiuevW?~!O2dU`tQA*tECe+(0sYA2%^uA z)>{awAxI0iC2nDYg;H%{JHmA0u&9=`et;3x0j0-d{efLE)R}uk_wV3RmzBONY_5Y2AT8Q;?e`iff1JwK*dot}muY@Qw21{G~#S7K>Y;D$M2p zyX8S@NOF)b7A%#QNH$+o)AVXaLYbEN*-U>qYbJM1ER~&|1H>fh5EUtuWZEF}dGQqa zL1Kf5IGh8I6X-%C0zjpqhS}gaH^RcY5Pmj?oSuPb(QDF-?4;$%!2`1LgMRwJiz}!O zZvnB!#SqjEGu|YHu2vPIcwa~NPiXsHcG3-!9%`bjd~ENRSTd`($d#kH^`XK(b^L$m z&^_uLCOeX~p4!qpkfXFBRzkJ$0;?d(K)yXQ&L1&?$lCCHZ*nyF;MXP0!QSVk=R{4O z1qSLeHd$9Dx8;e^@KAv%nqBxtIb#_@C}yeqmuSbZD#wSCaGs_5e<)x)kh(yTnsJp^ z^hLTBA8(j-gF~bVTe%spK`dWyf$@LzXC2RXi{S-9PL`&!&*@o+XLkG=e|H?$e;2p~ z66Bd|zjxc}V_OY}GAb}8C=d{#4AMS{r`j`AdeIXR+3km(gfiO32w)=!v)G-3v>czR z-K$WhHZ#Ob_{~6Mxwh@uhlqulxFK#ViL0~0w`q<1fT?(i73*Px3F%Lt0F-)QV?_!F@%kJ~8W@9_sqv#?HQ0Zn@@` zS&2tihpAp_NhvccWei)qeKUWBAgQAJ zj`ONr?beJ?`@7h8iy$|;8N#-94d|1*dvDByO=PV9>Y}H`qDQ|yEYy1wFXFeMb zvQ0W~G(rni;gz zZyfe?id{j1GcaPG8&pR%9eW6h#LeQE)T1)w8n?9~(B?$4N$&;Uj|fl?G<{#>VUfOq zQVFUA>lP^|ax>Ci*!6#oAbpp9ov}j^Jl!f%G+rP!f-hUmo&Vl9UY)G~A(6)^wy*RE z5!`8WpTxUEjmORZ1-PwFe^)kKv>{O!c%!Mn;rf|6?F)iq5E08?F-wyo!Cz)$;RWV} z>L>+6wbS67+gV`&V@D)$SFR(2qQDpT?&i<;>5{nqkP%*M6&!znZG6V=zb)2`lC|}V z`u$~B4Vc$Q`^L?W%a3z2*Q{-w4MoYxo+6enyyxzSh~57sAxQ$pHZc9DMsj^oE5xu zRnB59#u+^cs|i$=TgE>3}fTZGRr?gH;;qrr>auPLjDBI2SJN zMwiYC$V~Zv;`m~I)xQnF2C_I^@_M8^^O7-I^=R+@9fPy{+0o=2F1lM19Wi`!+@;QR>=Kd_u_+q)L9rg=Oq{t zLHU0orQ9tj%fB?G+gLFf-ZE9g=MvxBW_(6PzyzqIBC@4k@-6r)I8K_olg$`p=t zN(mfGtYgWj7xDNABidp2g}&*Ja32>^n-||Yu2+tIzqL7m_H_(Rn<^y!_+;xIKtbMINzejk6v;jvpIHa$@ca=+T|%zPrxf}bIjRdp>{T&KZ|>Q0Kg{B-C*^pNj2F-979}joOiX%IE4ZU^odO=5 zviA(K@(k`$6TZT;XM=*y5Mo=bEu-h6Yl+!&6Kn{PukadABYr77mW z;+FR9z}eqigatS7z!bInT1h#;NIQQEvjGQzboF~FrB-S^6=Q?&a;Ns@iBReva)J_{ z1IZ%Maw7OEoR+};TPoY){dEN95|1BDR40)oOMPtSzeEsM8IbHG`b(^@xQ~c5E#upj zf@BNfd;-$TDuj9)Z;pM!wXRnsy;k8xMH?3-%LQ-sN~oxFUdpo-I((R1Xdr*z(0hQ5 zZF)l!o^_f(+9^qVl`igI)?O%Vi6a6@FH;sue(|%h5$nYqx7lh#-Hsv8S0QIbGa-J| z!3A(=_Ih8r^|I%WPH(W!T8{VGOQKCTQLll9{JL`p7wj=EP1Vr0?Fjg{1<;N0unHj(_PWHGpF>Ug5 z;cr$u=(e`xdOAPEi7_RW}6=GF;feTbrIU9d1imj$~GSNr6pal z=|XY^OwsojL?eBCEDmD*Fuhd9)bb}s!tlYRAe-z#r`d+{6XVhPYLWP|ctUk_gpImJ zZN&s!-)bv_EAhq1juK96pjKg`p7e8@C+)$px}m$>h;+Je8%s}449aNok>2&Md^$+f zZ&h5(_wAkjT1SY_?zewy(aok(v!Sfr5C<~(ab>e2_B3OPLdx;ao2tITpHT#M>cZ+g z_o|(#RKoGenP4b`{D-?MgkJa<*53@`GZ2gVvQKd!WU^ z%8!iHy7Cp1EIZwbBD))f^eGT;%ZVej9&))~`tXS8s=)4mX9<6jpzUNe3+ZOJgxH~x zzBh9>+hcjGk_qeA9y&RQLDgbRL+lCNA_cl<3(4@j2cC5dPpIGJIw}l%`Q2oSmHP~k z92mFbRw@==Fo2kQ?-Z%)zv1hFF1kK5Cv}HFdzoPxe-oSB3-7x#Udfpw%@6=Z%_5bE zt}_sd3Q)SRwC#k^#^RG%+byB$MUbJWwW!#<|y%%mF!9T%QS zy|zj)efbdnyjBR>vcI{0G;GSRo!T@ixc}&+OsB@$(L=1-0X1X&QH3;^?_|t^)Osw& zv|X@41!z70@QBAx|C++olzyV1Xl20@!u_2q{6|wg|CWE-!3Y9KiDB(kC7+f8Qy!V) z!Oxt0K1BvFxu~(Wg>+3A3u0F(VF{o<$xSJ}j^xnMuTBin-=-Xix@Bkkdze}QT6!i` zAm0j;x>=#Q+VSve!yQ`1o86aY zU-qU{ciex(a3qaLSgq?V<(tjaA%haDA&4K#Ux(_}zSATHaeUF0EcTn~FSv$A?v~Yg z>}AG2jLgm{zVGOy+PH(x=|$&;-#B)$w^r$~RuSdGdFV#8}XQo0jP(FBe#Gki2- zw~!*(<_m0j>W;vWfXc)|ayZ{iFs8oRe>yPUg4) zE}toPhR^gXlt+x6<$fG@Xk^k+SHs4kVwLyzHBx`nviBw5vAEjJVx57|M`*1D4v}i z=a4OZQmU|YH|!HaknoJXQ1}7G>l|8tlBCy9Qe^ACP$YrC6ROFPM)#1Xy0LcJ$K^V; zB?->HE-t9WON?y3raw^?T9u>`PM_Pfb{9B=1f{ihrrZ!(td@-Q9 zHCI8soFrLlf+tZbb`9&tzc@nbAaj3~VMvTf_w|8bzwI<_yGd^oz3V}GwttW*{4_T0y}Dy&wKSi<_&t{Wa+@O;LXUj`D%R3Zx~p!>Z`6Gy<40m{R?r;i(ZE(U}4ZQYx4% zHmBg%wG1&6m;7~IP47=b zR|$(xVXKhgYxF!E{Bn>R6O{#9ED=Nha_cfh4?#1WJP{^V9lIU(m2Yb!+^j4!bm0+#vv{itS)y2fBP`%&ZLZd};A#}Ve z^0-3EqDoKZix8ET?5id?M7+r>aS{`RPBKDGvJ1!06Pb#j85kJ?67r2HA z6s3qFY{9FxG*AO|5lks9l9`bFjei|DdVD#Rfp2(W{mw+MO#FX6@}_Mx$?DijD2r(w z&{xj-e!82Zd2Y0q7@HT5-RWo@X#dRI2&EsXi3s6Mw`exwKtdzV^T_}G1S6z&BK(wI zZ#epW$YTyA_aaOmQ>z`S2A@zTZ@`kVbv!E3Frw4L4LFt9MBNMP>c|jLiaU98(c(@S z*@BKRhsh(+fd+raIvzHU3YCWnEmi6GyGr)Zr%suypnm_$N^=^^yTk_6AW0O;ly^+qa^u$%m&dw$)+Q`%GE*{397thH({HfLca~cm5>3o zJSOR2@5lsI|=h!4j4qFQZqmC!5=;JQbVP{_k9oX3X8%PO&^}JDI@i^omZ*6pXuh` zOS~fQX{9^R&QepO*Ad7aeU*f;GwQKJQ6bj&mlcUimiHldJG+PV+i|3p*}_?qZvp9J z8jOFJR^YK{(7a6V5GRRg$}n7z2eEV!zuKZ;Lr_z32?fjD8TE5%ouHuplsOrlgSG19 zYFKYmr@z%4Om%M0&h$)oKj3179kofh4~O4r-MEG$@2^1OOBd@g!hK{--mw_sOdL(v z@8t|Q*}^mU501~LCgqJEJdB-0TcJ%m*d%`di+F>lttA^SX(L3b-aKz0O!$w`7PceE zBn*<5^omtyFT#R^ZKj_$A4yh78C;OuuA`7@LqK+3hXFj}U!Gu;mM5-`5AOb%PAj1p zOH7;SJ{E&@mNj6sYc=ESyl=d{YJBwjGuv4WQIN%=<@1|;Ke2zNIfQMtv0kJ4qV0d& z_1Fn`J6+%L#SL-PH9Q|-&^8YAR+`tVXZ`a)xu6E{z@Y%1XIT;9w!__S$(wQbAD)OyFbNcuJZ>F@>=EU>1OqM^Db$VwZ&L`LdI6F*+CY(QG!HvkwLc6cCet$ zSJooN$c{x#9n*2rp7(bfO7MU0kk;CdkgpGb7wa8{yOp{>CDeDf`pOSA;iROxO(t`P zv|Cqfr#Lrx)S)V{M_W911kwW&1}5=)#oO?kjN820d{dMK=~(!#LOAw!q+u;6KzYU# z&VXQZ`O9>(O!ysbYU6pj4iyOxV^0 z*Lp6+FOxCA(S@PQv4&btZ%!=gTFO*;Zi#_II04uh-4}eF8G8C+66J74bG{=E6}V(XnLmfXAP1?@$4LVPysKvfH#yY_rcjiU zL7=}d)tYz%sh9>E_i&9R2WF27Mcf5eMf25~O2=V&9Ch@w;4FXpw6zX?jJ?U5FIhv= zk30K&s~mIwf+57Lnh71b>aXN+F(DzgAU_`l6ISr83Tn}|cQD^;RR5c_Z+aOOb4ViM zZ7BjJSB-mMiiScp9=&p~tvCmp9_Sw3-0^q(`otXt3z-N4;Wp6z!w`*3{o&~)!6?7% z&%O(4yG8ZLk4}Fi4LB!NGeshVki2l*>s`=;_~)c$dMiuN@_fbsRY|H^5#ID@n?sG{y=q=#nPyr^56 z);D2>joRm#mO!nEYxOp81qneH454cG_Ogi0n!2g-w;CiBha#1wokhb6lP2FYo!gQR z<1YvV=52o-vZHU4m|=_$t(=_vX*sdVJ<-H#cBJgFpY784MQ|2UGuZ%+{~-T!0{Z62 zpN-?EthTkDZA6r%%2`Dz^!+s`w&~77i1R z2qiAmK*XT!L1y8q+MXc}{&nh&fbGn5)tpr?2%=eV-E*X+p&H2`n@5^#_2KC7S!9{Q)k}_9V@L4^UNL(hwoq?C zSi67gm`e)`^+Kw3I!h?rTs)kGAKPqjLIOfMqcvROtReU2vHO^__Akfs1BDx(UH!%c z(5x7tKaOeMPbZapI5ONFQb2GW6wS%ZoMrQPdQioSv!9x4UehrJVlwkbctn?`U-p8? zLiBg|X*k{YzcVfMBbw&BMhn4<3v-~e(I|gwD6M@vUAh7qNA@U43Z5|6tq?&WZS+7Q z4Ifmw&;otcE$oXB8b~WWkk8nhN5$ka*TcZrO9vN*v3<<1O$;ZaG=+kdFj43R^OGU13&Wk8363o>!|4hmcxq$Ow&M{SzwMY|p62}Fvk08FP8T9IO;)*CW4ZgwmSjulu?IPPPsm&Sii;NzLi-Xb~X`mxX_+3DcmaFn#Z$WKu2EJz#_f+CExmzQ8>Zk=^mdS;nJ)P(xP;&UJ9kXR9y&9w8;<;Y}c# z{1Emr2EllqD-0*GeL;3Znoc`t)7FzTTjwe7Z*30aaYI5hO8s}Z*i_1RG-B7L?>jrb z)b{o|+jrdd9t8>#U%D@FPDg(+2dm76SxuFJbX4zTAJ4YY(9vpje3rd;RQzplKoVDPzkplK5DB+2mA~F|(GZM|*_|YR% zQ}o(MjZ;(6;Ir2y5!Iy^e*LF{8YKmB`>9a`{gHqv@`blQGt2ymd`5qMG)G;mrs?Wf zkkUOe1QgYT5Fb%NP}h~A*|%1+Br-K+&|+(|)GjuGB}d*(SI>9O zle_|QnpFWN&8niRMWZL$sHFjAjT>55G zmmEbhMk(#AqljCvtWAFbzWqQkXuo)oab~sJ(=8x37tLZ950jnjhCptM&)TPa)ec zT2h<`b^-Pu^{7@a1fP*Thx+>@L}1%OP~e&8r=-Qr;2Ntov)+Gx`)=V?$ZbR?2tR*H z6e^U}3+aImmA3%-()D-V+!<~?6^Z@~|ItC(HT}7WCaA@lp}RAB*&hD;oU1;b*0XHL zR-O9;k%{%9P65{}(GS+VQ}u4{^2gqUBd{u=G80CP4kv?2=G&Sig^%G&dsN!GTau+; z9sYo>_VO9}3w?j1p1=V67rkQI7B1$>&r7jlaLJFDf)1jll``W7;i>on25ZxVmZ4Hv z)-z8{;9Jq3@iUQ$HF))4&WB8@+nM<-`0aq$vsbw>dBOLZ!ayK$?o90uA}Szi^9X!! zpj>9dc<7hImlTY`$|xw4r*qn+i-9DilOcF1z_elhQNLk$mzIfaBOKj?)G)_ zS6u<6-$(QK(^f`gVu!=?-NY@ueHODp{U7WbD&>W~Y{}y3^CNH$GuBn6B}Vi(U_yND z&?+X<(x-o9!(@~OfeCT{4-mnpS)eJo-9B9prq~@)I^te~iq(A853YEldL-q}>4aC z49jIb%^P?8+-x7z#%HhFV}5`WHUpQE^fZ~Cz%HsGK4fLj>; zh`E2n-ZIb^i$`Y703)l89K6V!NMJ;*7blf|V-iO6ZciE2a~{_!-+q{5(J~oof(QgsW|84Ny#%5%9sm*jb&UH{&_#uAmq{C z91>R=p9ORLt$Cut1h0T-RJf$|@iDvI?NWbae+*0xy|dJN{RXpv_|haahEa&l4Ah@d zqW}{Roy13@byYAN{JSzJbpYCF?C0+-F8;2e>u%gVi7D;)M;4>W#q3&(xEhm5@fFHa z!;UWvWp@b;w65$pO<=voi?-0@B)y7Y4-Jk;8!%^O1>kWG^qKpBBK@o6h^8tZov(kd zDG#Gr?c{@x=J+>~1wM|g9LgNFu+ZK+=gY&kFB%7PiGc~Ln?MSQfx)1qEe2VL8L4pW zpa1@DMix;>ngYmmf%jtte|ns%>Qzy(_hFLZWZdPKjbvGz-Y=#`wzWm1#YSwF{Q)f0 z>3e9O8bv9QM0~?E!&0I(1EhT?crbry_Fa5wR33nUCcr*I?>wg=860t2>hQq(y_*_I z?Jj$NJDmUWXO%zdeTAmFy2D=ZUoZJXxsiOpw%X9cCps~;t&}=`mlvw?;SzZmurn*= zFwiq?W2^&<|LLE_FvLvs!CYz$Oj`x}&^pcn;T=z6?dH%(L{OgfHRDWui==;hIAP?z z`xUnuuCQ8SB>jSvp(;{oGD!cvS}#I8@OdJ?wuJU(jtr8`Y@zu_*IL==h0OSs{2lA* z3637>Lt}*rYj`9W3;c3b=L4Nb)7g3X>ApVwg1J>>KtZzYe9Yg8`U!>Y!=JC}?de7a ze~%>oT&*Xu8I$79O(daiyQF^wq>}J7GqRw*Fna04J{y@MlJQozOJ- z`}J@oWROC&?Lt*Tjwqp#!%J8_l*2&^`M#n$_YKp92{Z(50XIs1!GC}K_itU{f$OPf zj!}dgBZBLbqgk!3!1h?lns%H zx#P5tOEU^>S|tn>SqEWA=m4xR|M|y^5zq&@yJ2zquab26x*UepAbYODI@qDx@#g?; z3!9Ah#_`}fS-d`dq+EX<4!z!<6u)Q)ZDe7&o*26uM^3svrHc8tC25+aMnLB;!(==A zmzLlJF1$s?T@p;WY=}(>lUX?++ouencmi`00&@4!7)JP0Wd~+@4TH|TnoS-5GhGih zSK5MB%^|y1?#6}B5pTYnGHR^9Nsf>L4mW;e5BhbeF@L4Y3tE45<*wapI3qnyC0{!(YoS&f^L7h9*Bc?@(D%F)RYzO8End||&9 z1(69VlBGb^tWVv|T$^ZUI*U*79(~ad!`~}UpI5U6sL(@Ed`e0_TYl3A`I-ox? zw_d`znRX=}iQwsem90;{X>=KsM+t>HRM5;qN%UNXA(v+j^Ug*K2k9wv1%?HN4WDcx z^nTCBY8YR0Pa9Qu%ZyknqEyimvEQFws5+?oAsO)Tah5-#L;X%}hv2z3L<)WVW{yjJ zC8hmP7i53vcqKt_EA4ON9#z{%R=`%e!@3s6nkP18F1YcMOK;muk&x1sckLXTV_qg(|(3XI#1&CRSJeq#M$S{vqiJ;LR37D{~nER1BmZoP?tX#a}9v5G6v136E^00KZ9&}=u)nRMaUwqzJhMo9D=tjTq5MNL0sB_w%gDGRv% zarA#4&IdBT?1G2~^%t(^(0OJ{$L5%c{cgX-sqL(o!t?2HF^U?cW%o+-!(8e6w?(Pr zCesSGI$Blguit(e&3n+Yr1Bgz3Ga`9%YaEyd`D)R>3S9;M-FK?=bwdrRa6{J7cDY4 z1P$&I90qrX;O;I7?(PguAV|=`-JKwVyF;+xZh_#=pvfioyZ`fj=~erjeX6RvU%F~l z?+qgonacdOazZ}`E`8EE3Ag}Y$SN0wS}2W1Nrq+F> zxig)>&0p=KPXu3HcS=nJq9d7UMbK1iEtlM&?b{wVw$Crj)h9tKtJ2{^clp5%|la63>_JbgbW83%Ern9R_f1zKs5jgZY3K)6L3U6OaXR0W!-b?&kc|kYw zl(^0AM-^N~5CZApxo3qh1?a|ZQm;TmDqQ9dUZ#)j5?4%B2nRkIBBiBKT?n1@zJj8^Gtln!4*#RsG#)>s6R5dj%2u;e255-p_@V) z3DYdI$XE|wxkqj2=ssr6K8t9b&OkYxsap!SOpbK(Xu#B<=Lcb(ygD{-)sBI--_SC$ zZ;z38`32r{xq__lm@V#~(T(*BqXHvqy8~Vx{RHPKjVM{0V7ypY@UB;c;*#y%tI3n* zg{lYImp~Q)JAz%*Di?OT;#=63s||){z1cc@-MiMXCVC@l?qs=7wCPjV2dgB?V|u@y zFPaQ0e#A;LHIw)&p%i}Zr)p_c%F?c+_)e@+&Z-N0K9>%n0N@GzARkKdqVD`^2Cl-y z5R3MD{_%oD4n4x5F27eYg^5`q>zYMH###ls=YS3ab($Fw6P4UvTf85Ot#&L8(j{00 z4Z9fVt@{-*?*pr}inSKl>&dgvCvaxuiUeR`SEo5zTZyOV3b9k2UQyn$ihuwm1_ah+ zd!Uo6cxf4=tVK>)(!lv`@+VE$9}iD&LiME=(kx`qao&B3(ReD;Q z45V{BORKaDhP^qAwUKS!rf z4L#YXbH zv5M{f`fHvh9ZShCX_tigKrs_y2N@s*Qwh3G5`db!Azbu?)Ed_hq+y#S8g- zHW=}@6gA*PJ@Hr2h`x{|$%f((7tV}}x8~`yiXF^dE`AFOLIlaO(!!riMl1;KJ-|_H zKWnIirq?qWm*R6|CDqGhA_Yj!qJb$2CB3(7VRmou5?4K8uMusa}w)iLt6VORjqB8JvjR<@0 z6}h|AAn@p!5oMfD=eK-R{8^ocgt{~165v&cE@y`}IDOJs-|mW?W@HfSMjqxew03Ck z*pbWh6OD;IB-bR-?-<0K+h#cK-Eq{gQgmE*9saS(+`DgaZ_fZ4j5RZ@hkw@&_eo_^U${9x#P=liLMZ(Ti8+X#mmUZRgG->-bM*SY+) z!NFI?<)tH@ml6mv$wsbaqW?|^4Q1t#A`pDOf3um)it9%lWswk%SqCFM67jRyvhVZuoPghs2CbD7(BJHa)pQvrtoMhD+DqRzJyV3Ch^}`%=@@-V`4K9}lluWWtLyKF3fa zR2yUZYZsI?Qym~GNLm1V>a`-Pv&8(P1i{~$=5Ke?$HvBf8o>i=rjol)zx2b&;%W0& zPNb*oSUQ5zDr#HXj$tRD5TQAKcaD+O^Io?(Ey-xtKFqk&iJV`va^I6Z3u~1xM#;p_ zM{J$Rh>&ulakFk+kvrWtDK-#%x^ zxx7++D&&u&3SWsIaz*ojpp+NdOL?15ylASL*otnaYm(<{OT&y+z5V4c*b$0Yoj*Tzt59u5oi`;h40?PehfA3cUGQ`uh zjfs6Mqj|&W=Dc(sU?*&gaj97;^lLskZ_y*UG!u|aH;$5 zu$q>%kgo`GrJ%gUaB&dQ3Q5^M`{O{)kjy>4;PehP1zC{|!~$60R?3y5ZcpvwQc@iA zDEsoK`;lyEfml|1);?1G_csPupj+hmY8Qh3grFH=^sQsa9oS9M_1IOy+YEZP zn7(^PadVh)=vJgo@5(1biRbHDg4!kB0JN5+%xp~iVc+zYX;m~F#V67pKVLRahNyjI z6Af0Bv!k_dY?eH~XU=dtMX|evcla9GzshV^#R^58}LAC9tYIWYcW~RzL=EK8Sm_T$q7d z(P_u(RCqZ%`MRZ&zpp2)hESlBPofYZj|GU0{#DQovnpp&BIw-4^*9jmb3z6ge$eU{ z;HuI${_s8dXz|P7w9ikg2+@}}f6r5`@-jq8AlAKz2Z67DcUzZYPzz_cM2g{8!2$}y zLn~>dFfJ_;yU^mEm!y@%`tHni_@eFkoYl=s8pp?Tz!K5^{gv0@Y|-GoO;R$u_g&&= zbb;}ZqD#V6AqFzn$)C5AKEED7blcxWHq&mN_Or4^O_7>dL_Y@JPLAkkS10a&O@IBm zqJu*fPCi2Kq5WEhaJ#XxM}=y zP*;jXkU%m~PCt@-fc__ir<(om&Oc@ec`uc;)SAVUE6vSKYmbaW8UZMECev(aI*K)= zyKGP19_%AH5}m4&NKGz}DTnUlfJGioJkC8IeY?a$1DUn%aB@6m1wsz4hN2&vM|2X* zi8+PH?m~|A!&JH!ATbE5n%Ip3iCfJ3E7FpiNUmu*7U^8kP0@h(o$i9Mlm3CVLQ(igF`0jw_=k&S{X@3OcK6+eH@Y5hrT( zf6zdY!qrY9nrH6|{lU<6c(U|iYb;241(q8AJFBg)_x>qAB8Uu9ayp$0t2=LezMx!( zc%pNqpA)luXM#E8?~E*bY$o&vXQI{sy(BcDJ6g%^eRq*Qqh@-j>wG8+1p_t!T)c z#QQx-kWfTf1uAl$Z|o+7v-M>EW3V(Bnf?;A@%@D7IbW~l7ZV$@g`eR_gfuVTtjWSN zV#>_e`>RZR2IQ!Cvwn2j!YkFW1i{b7x6}3ZWu8(4&_u5zmMnT2WU0P*rT2 zUj??GYt}n?{n_GSU$UF~>o4FNtn(jGwok7ESDZ5IhVC~dxK~5{sQ2TSMa%3-_jrjf z4rIFc^Fs|#UUF1v?u6dUaUeK8kN>p-ilb_bBK;M!%iKbW9X74(*S1s^=r{nN-DL6s z3^HKoS528`=FI14^Q{;8G)UnP;VAjOmZ*Y?_o``P`MO^nc~y(;q)`mUz{cmuiYiyO z6z?mRc*mlH8edR`!l+SayMUJ`KStUMs`&?KTl5k}?8_e#UOW@@lkF<3?OzQ>m+i-5uw=fm_=&i$Lr_I{#tbjbI!irWo7PJDDS zD8OV|l2smxMXQKaYh~I(OMB+rksel7T{WE|Ty~=-(p;L`r8_ue=IoI)*EgF%+}ir{6iFddFUDv>sJ#(*XbFNryGD4t6$FPyku19_X|-5Jy~PXwmhz-*q*qlJ$?7|xWgh6D|!&uPdVS! zJQI;Sw6tr@<3>gqgrHXQb?8PM=aPXvg`T(L3dPJa;iOD}?A~i(nm6q2LDqDlU1T|^whnrqenOmtok;i`ItU0@noTM!jqBi+n*aXD z_@bHX4c@Q-Si{*1L8|QlnXoj%=zlWvv%X9PW#tWE&GD z;V=ta&F~;Nb)~z=F|$D`pM>PEKxKZUJT>Cp{2I&xp#d?EG2U+{2QRL0XU# z$jJ>9_#XwV69Y(qyI115w#O+Pb-WQ1Wqb|4+w-l8cW6m<%h$2r^uAA`!p| zT++Sd817x`OzuL4%)k#cIib-KX2}9sKI%neb zJ+9XicCe)V6pk}SyEERejcdzq#5#*#o1K&ylIPyfk3bI&XVe*p`!Feoz?bHN3X+#V zi2@60xb!Py#6{4CDky}vfTWRaztj_xH&HiJ_V=186vg4vMHkOwS(-TveHrFxKzpE} zJEP>ae6J37rB6ug#6tN#6k7(tESR|r3o+s&;xL{xBkYFMVIYA zM(%KCv(TVuon-^;8fE4DPx<25$i_=ER0M-SbL3WZBzpKL>~$=}2T42SlEF2nA z_{TkrL38xY{E7a!U~=U+KCH?T7n-X`^$=JbG_AKe^Whs^w!g>fo{!awz=i#!9~Re4 zxhPqup{Sv`L}>F1(V4rVWSB(CE>25wou?C%kHD_Hz(U*gSTCQFphLDT)-#bgp8~KVc5cDZd1BE z`d$m1KsfJQKcSI@UmxCpF@}g#DXAYEJG3ti@i%0+h;7zGbAL}0cICkSgDJO z)Iu8Q`&>t48n+rX<}&X(P2c5z86fy_8}#=9vaxqwg5cld4HEh=$LI6v_mKS3fFa*$ z%p8lC->YUSv@rGNg`;FZRot)aiF7k5RD#~SOC6H&jX>L3*!JVu!^QLFer@~t#wKr3v-I=;`^Z*ZPKlRg+u@ z-CDX4x-R~HjE{x*lCYIH6_qBU4Y6nrf+_)`7*Vr`gRtabD=6n9-D31Hls&JVVj6Tp z9uQt`r=4qnc+|+6FA7BQtV$D(nOrVzHZ5+@qa7lwHgj1WX& zsY6}lrPX+;sMF~g0tXjeTVl8kIU+4r#=mmNXAFC2^DH2AY z2MND~b9hyh{&HA9&=8M>QxwIEHApWbOh(on9pdJGAJw9HrsG@*S#b5#2n-kh8>&_p z358-^gD!W#6Enxep*=*R@s%CN=Su^|Trkvs;I-D_iNd^QU}&Tso?&tPd@%N7LvqIw z%=|B7`M^9#3`DQta_-3qYMR}~X%~_<_^@gmS93sZd zE_*HWj0<)&-^skw8t({W?+7|q`@_BrnpQ6Nfs@W}b~WHiJU_Gxdo`ML#_}I(d)_|Y zT;XyDvj_KBD{jLQCNP^xe;(g4=olW_eC+7L9Njsjdz@}~=&Oh#5*7s#fg}C&|9sWv z*YX@UXHV(rD2EZ2NpPJWVOeB)pn!UdAax zRaQ!WwuiM7@#By56t`zc$I-AojQ|RC@QByH`pf)APhghAWNd1GQyL_!4ILe)GE>)P z`@A!X%hbtGb2dW^SO_cfWf7zV3A_r1fATVCY}Y_t=xnELMoD=#9_4z;+ui+|wy~7D z{HZ-CDa!PQG~(9h#eSE37P;-VozH1Ts#&}-BqUHQYC%GXSQVIs zY}Z<}c?#?HT-cSn9v2;~*NG+Wy z8|?8;t`75ez~RGLlrhpM{$={Y)iP;U6Al^e3VKq@vB%4GFS}($_~-| z9B=1ow)Lf0CzWr-4&<0l#a!ZgQ`SDx@nt3y)3d*3hrrPD6NL~;`9`856p7hb{WRDl zk1(QVm!=-j4$Ki;t{)LO$d)GP^Sh`TOzZQLpQNP2X>$Ym;bl`-mv>kDrpgCYN4|2+ z`d=7(^A;7LvwTvFi?SIYlnhy0UD=8gZME?`^@AbuJNkj{$@-cS6N zm=sr&n<0nTxieQ_E$CCnJ#m6H8*B96Yw6BidJ}qV(_%Bkt835X&8`o$CKWh61aG@W zLlim#3r_1|p9>2w5=++$2{~|Zy3}0S@z5qeuRFjb$X9vO!g16YM zJ0T?J3Gm_1rcc}L0=mL3gYdF%mo9}Ud!PF|j|C0~&Pde2-@$w?LsHZ(xVcMvOk^}J zL-4x&c{|(0x%xi$Z4I-8p;4lxC;cEc>i#_OXk=fy{l*(A{P+S%ig9=9fFRa0W<(?U z;)iayu2@i1Ny$L-yW1P_7FjNKx*~)&^q%Sq=yMoL1mI)yJrN#cg-m)q^m~SG?k9BZ8=L@%g{v+ots?fv; zOfJZm!L@BA8FPawhOB24@Sx{W!rxA#0HbNFFL@ofd;4a zCKHBV6Gp;p)}MSPBk>=IA<;*uP$*&T@T>eBXDj_&lL3s%Cl^klrM^@SdE&B|F@Qo~ z+*%;|kQ%p4#?`$A=P|}G-@t6w1lzj14>n^VL$^BI28oiv3)QXb?rLmi_g~qp))7&4 z!QQh*Oc@WvQ_-vN=U9js=04Qn#XTEgUNUTYYrh3@Q~&aEsRWh_Fpp#2Rf`N52KK$f>+p|Q*@ z!@G81VuwcRi!7oDO;}7~qzFwnmp&FE@`+q#FmJ$O(vD_6`mqWzsPVJmbmeT*&0BCV zai^mYeFTdLKf_2ZbjV_EpmU6};WL)bTqXkTG_-LkwvW|u2hzN;S-eEC>GeX8SC;Tm zbZ!3@s(MR~S(kMju%0cd@^qF@B($e~QCBJ!^!Q!Sx0B+p#LmI%SFwoM%e=>Ajqw(f zE{lxRuvBXuSe-FX9R0d&nP*7-uOR$iLBU&r z%02N4p%NUhi)7HPW~ zlb)kB7{c5bLQ8(=*gBE16ER1DaQH~dqXb5!sEnE7Lx>46ip;2$EEI`S24EOGCv;Dk z-m8su8;s@?4|6c|Qs5XKJXkWvl(5J1d@kj$J(URnIVR~8Ef@kh&$TtH&Us- znyUOLIyF?wPR#Cd@#=!#Esy?=REugT+(a75LgYV#ovF&HP|>*YG}61Clu^R*BKzMg z?dL<#& z_qGb2<{aLYYxzC(^JgnnnMo!#=9S*kR#bQ1FXg4TZ~dwn+qer|WgvPGubPupdkL+S z!(t;+qkqO1+yI#bxK!MUgF+@HA!`%?h{r{0fcK#WdFz zZHW8nsqST5`q~l^YbC~+ZeCXK!F$a9qi1eaZz#3KoQY%BJ@y9RptF*dcr^ zb&c2sXhj-G6y>XP=H=Oem_1Hp?LTau5$D-)-;S8_w#T<<)sTta?8K*HJARd?Y*ERq z8kMq_fW(u7njOC4ASbYSyd-|1v1A`C2+4CNo*y8!32k%oHkl1h2HJd}!C$>V4n0(CT0IGBm#h+n z)~VPuPrpw48{GNVKJ^_!w%pI2tO|X1mXa$#gJCiv9@AtXjjHTJHXYkk=z82IgZILD z{wh^C(|lwLmGd__Pt_I~hY2rb+HHsIfSQ=xo{D0N2m(88|LR-G7ly8L5)i$L{;rbm zu7msT20hM&C#`6?ywL;e)z#4;y-4)L`{-$Qx^Cf=2S1D5wF{gj6FDPi`IlZUCtg~k zAd87J)w?85aqdJLYM!CC{GRMv92CYWB#mf=h{!?}Hn?a24kP_>XJK49@0SnPJzD#q zie_OrbMm6KjQy28z#`aolE@xK+|6_F-`@7!K%3cGIUN}PF`MAIyxEE HkEs6#XM6=- diff --git a/doc/src/week38/week38.do.txt b/doc/src/week38/week38.do.txt index 1b6337f2..6320016d 100644 --- a/doc/src/week38/week38.do.txt +++ b/doc/src/week38/week38.do.txt @@ -596,173 +596,10 @@ identity matrix on all qubits other than $i$ and $j$, ${\bf 1}\otimes being the identity matrices of appropriate dimension. -!split -===== Full configuration interaction theory ===== - -We start with a reminder on determinants in the number representation. - -!split -===== Slater determinants as basis states, Repetition ===== -!bblock -The simplest possible choice for many-body wavefunctions are _product_ wavefunctions. -That is -!bt -\[ -\Psi(x_1, x_2, x_3, \ldots, x_N) \approx \phi_1(x_1) \phi_2(x_2) \phi_3(x_3) \ldots -\] -!et -because we are really only good at thinking about one particle at a time. Such -product wavefunctions, without correlations, are easy to -work with; for example, if the single-particle states $\phi_i(x)$ are orthonormal, then -the product wavefunctions are easy to orthonormalize. - -Similarly, computing matrix elements of operators are relatively easy, because the -integrals factorize. - - -The price we pay is the lack of correlations, which we must build up by using many, many product -wavefunctions. (Thus we have a trade-off: compact representation of correlations but -difficult integrals versus easy integrals but many states required.) -!eblock - -!split -===== Slater determinants as basis states, repetition ===== -!bblock -Because we have fermions, we are required to have antisymmetric wavefunctions, e.g. -!bt -\[ -\Psi(x_1, x_2, x_3, \ldots, x_N) = - \Psi(x_2, x_1, x_3, \ldots, x_N) -\] -!et -etc. This is accomplished formally by using the determinantal formalism -!bt -\[ -\Psi(x_1, x_2, \ldots, x_N) -= \frac{1}{\sqrt{N!}} -\det \left | -\begin{array}{cccc} -\phi_1(x_1) & \phi_1(x_2) & \ldots & \phi_1(x_N) \\ -\phi_2(x_1) & \phi_2(x_2) & \ldots & \phi_2(x_N) \\ - \vdots & & & \\ -\phi_N(x_1) & \phi_N(x_2) & \ldots & \phi_N(x_N) -\end{array} -\right | -\] -!et -Product wavefunction + antisymmetry = Slater determinant. -!eblock - -!split -===== Slater determinants as basis states ===== -!bblock -!bt -\[ -\Psi(x_1, x_2, \ldots, x_N) -= \frac{1}{\sqrt{N!}} -\det \left | -\begin{array}{cccc} -\phi_1(x_1) & \phi_1(x_2) & \ldots & \phi_1(x_N) \\ -\phi_2(x_1) & \phi_2(x_2) & \ldots & \phi_2(x_N) \\ - \vdots & & & \\ -\phi_N(x_1) & \phi_N(x_2) & \ldots & \phi_N(x_N) -\end{array} -\right | -\] -!et -Properties of the determinant (interchange of any two rows or -any two columns yields a change in sign; thus no two rows and no -two columns can be the same) lead to the Pauli principle: - -* No two particles can be at the same place (two columns the same); and -* No two particles can be in the same state (two rows the same). - -!eblock - - -!split -===== Slater determinants as basis states ===== -!bblock -As a practical matter, however, Slater determinants beyond $N=4$ quickly become -unwieldy. Thus we turn to the _occupation representation_ or _second quantization_ to simplify calculations. - -The occupation representation or number representation, using fermion _creation_ and _annihilation_ -operators, is compact and efficient. It is also abstract and, at first encounter, not easy to -internalize. It is inspired by other operator formalism, such as the ladder operators for -the harmonic oscillator or for angular momentum, but unlike those cases, the operators _do not have coordinate space representations_. - -Instead, one can think of fermion creation/annihilation operators as a game of symbols that -compactly reproduces what one would do, albeit clumsily, with full coordinate-space Slater -determinants. -!eblock - -!split -===== Quick repetition of the occupation representation ===== -!bblock -We start with a set of orthonormal single-particle states $\{ \phi_i(x) \}$. -(Note: this requirement, and others, can be relaxed, but leads to a -more involved formalism.) _Any_ orthonormal set will do. - -To each single-particle state $\phi_i(x)$ we associate a creation operator -$\hat{a}^\dagger_i$ and an annihilation operator $\hat{a}_i$. - -When acting on the vacuum state $| 0 \rangle$, the creation operator $\hat{a}^\dagger_i$ causes -a particle to occupy the single-particle state $\phi_i(x)$: -!bt -\[ -\phi_i(x) \rightarrow \hat{a}^\dagger_i |0 \rangle -\] -!et -!eblock - -!split -===== Quick repetition of the occupation representation ===== -!bblock -But with multiple creation operators we can occupy multiple states: -!bt -\[ -\phi_i(x) \phi_j(x^\prime) \phi_k(x^{\prime \prime}) -\rightarrow \hat{a}^\dagger_i \hat{a}^\dagger_j \hat{a}^\dagger_k |0 \rangle. -\] -!et - -Now we impose antisymmetry, by having the fermion operators satisfy _anticommutation relations_: -!bt -\[ -\hat{a}^\dagger_i \hat{a}^\dagger_j + \hat{a}^\dagger_j \hat{a}^\dagger_i -= [ \hat{a}^\dagger_i ,\hat{a}^\dagger_j ]_+ -= \{ \hat{a}^\dagger_i ,\hat{a}^\dagger_j \} = 0 -\] -!et -so that -!bt -\[ -\hat{a}^\dagger_i \hat{a}^\dagger_j = - \hat{a}^\dagger_j \hat{a}^\dagger_i -\] -!et -!eblock - - -!split -===== Quick repetition of the occupation representation ===== -!bblock -Because of this property, automatically $\hat{a}^\dagger_i \hat{a}^\dagger_i = 0$, -enforcing the Pauli exclusion principle. Thus when writing a Slater determinant -using creation operators, -!bt -\[ -\hat{a}^\dagger_i \hat{a}^\dagger_j \hat{a}^\dagger_k \ldots |0 \rangle -\] -!et -each index $i,j,k, \ldots$ must be unique. - -For some relevant exercises with solutions see chapter 8 of "Lecture Notes in Physics, volume 936":"http://www.springer.com/us/book/9783319533353". - -!eblock - !split ===== Full Configuration Interaction Theory ===== -!bblock + We have defined the ansatz for the ground state as !bt \[ @@ -770,6 +607,10 @@ We have defined the ansatz for the ground state as \] !et where the index $i$ defines different single-particle states up to the Fermi level. We have assumed that we have $N$ fermions. + +!split +===== One-particle-one-hole state ===== + A given one-particle-one-hole ($1p1h$) state can be written as !bt \[ @@ -788,11 +629,11 @@ and a general $NpNh$ state as |\Phi_{ijk\dots}^{abc\dots}\rangle = \hat{a}_{a}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_{c}^{\dagger}\dots\hat{a}_k\hat{a}_j\hat{a}_i|\Phi_0\rangle. \] !et -!eblock + !split ===== Full Configuration Interaction Theory ===== -!bblock + We can then expand our exact state function for the ground state as !bt @@ -807,6 +648,9 @@ where we have introduced the so-called correlation operator \hat{C}=\sum_{ai}C_i^a\hat{a}_{a}^{\dagger}\hat{a}_i +\sum_{abij}C_{ij}^{ab}\hat{a}_{a}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_j\hat{a}_i+\dots \] !et + +!split +===== Intermediate normalization ===== Since the normalization of $\Psi_0$ is at our disposal and since $C_0$ is by hypothesis non-zero, we may arbitrarily set $C_0=1$ with corresponding proportional changes in all other coefficients. Using this so-called intermediate normalization we have !bt @@ -820,11 +664,11 @@ resulting in |\Psi_0\rangle=(1+\hat{C})|\Phi_0\rangle. \] !et -!eblock + !split ===== Full Configuration Interaction Theory ===== -!bblock + We rewrite !bt \[ @@ -838,6 +682,10 @@ in a more compact form as \] !et where $H$ stands for $0,1,\dots,n$ hole states and $P$ for $0,1,\dots,n$ particle states. + +!split +===== Compact expression of correlated part ===== + We have introduced the operator $\hat{A}_H^P$ which contains an equal number of creation and annihilation operators. Our requirement of unit normalization gives @@ -852,11 +700,11 @@ and the energy can be written as E= \langle \Psi_0 | \hat{H} |\Psi_0 \rangle= \sum_{PP'HH'}C_H^{*P}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}. \] !et -!eblock + !split ===== Full Configuration Interaction Theory ===== -!bblock + Normally !bt \[ @@ -872,6 +720,10 @@ is equivalent to finding the variational minimum of \] !et where $\lambda$ is a variational multiplier to be identified with the energy of the system. + +!split +===== Minimization ===== + The minimization process results in !bt \[ @@ -885,14 +737,12 @@ and since the coefficients $\delta[C_H^{*P}]$ and $\delta[C_{H'}^{P'}]$ are comp \lambda( \delta[C_H^{*P}]C_{H'}^{P'}]\right\} = 0. \] !et -!eblock + !split ===== Full Configuration Interaction Theory ===== -!bblock - This leads to !bt \[ @@ -909,13 +759,10 @@ If we then multiply by the corresponding $C_H^{*P}$ and sum over $PH$ we obtain !et leading to the identification $\lambda = E$. -!eblock - - !split ===== Full Configuration Interaction Theory ===== -!bblock + An alternative way to derive the last equation is to start from !bt \[ @@ -927,13 +774,13 @@ results. As stated previously, one solves this equation normally by diagonaliz numerically exactly) in a large Hilbert space (it will be truncated in terms of the number of single-particle states included in the definition of Slater determinants), it can then serve as a benchmark for other many-body methods which approximate the correlation operator $\hat{C}$. -!eblock + !split ===== FCI and the exponential growth ===== -!bblock + Full configuration interaction theory calculations provide in principle, if we can diagonalize numerically, all states of interest. The dimensionality of the problem explodes however quickly. The total number of Slater determinants which can be built with say $N$ neutrons distributed among $n$ single particle states is @@ -943,6 +790,7 @@ The total number of Slater determinants which can be built with say $N$ neutrons \] !et + For a model space which comprises the first for major shells only $0s$, $0p$, $1s0d$ and $1p0f$ we have $40$ single particle states for neutrons and protons. For the eight neutrons of oxygen-16 we would then have !bt \[ @@ -950,7 +798,7 @@ For a model space which comprises the first for major shells only $0s$, $0p$, $1 \] !et and multiplying this with the number of proton Slater determinants we end up with approximately with a dimensionality $d$ of $d\sim 10^{18}$. -!eblock + !split @@ -965,7 +813,7 @@ This number can be reduced if we look at specific symmetries only. However, the !split ===== A non-practical way of solving the eigenvalue problem ===== -!bblock + To see this, we look at the contributions arising from !bt \[ @@ -979,7 +827,10 @@ from the left in (\hat{H} -E)\sum_{P'H'}C_{H'}^{P'}|\Phi_{H'}^{P'} \rangle=0. \] !et -If we assume that we have a two-body operator at most, Slater's rule gives then an equation for the + +!split +===== Using the Condon-Slater rule ===== +If we assume that we have a two-body operator at most, using the Condon-Slater rule gives then an equation for the correlation energy in terms of $C_i^a$ and $C_{ij}^{ab}$ only. We get then !bt \[ @@ -996,12 +847,12 @@ E-E_0 =\Delta E=\sum_{ai}\langle \Phi_0 | \hat{H}|\Phi_{i}^{a} \rangle C_{i}^{a} !et where the energy $E_0$ is the reference energy and $\Delta E$ defines the so-called correlation energy. The single-particle basis functions could be the results of a Hartree-Fock calculation or just the eigenstates of the non-interacting part of the Hamiltonian. -!eblock + !split ===== A non-practical way of solving the eigenvalue problem ===== -!bblock + To see this, we look at the contributions arising from !bt \[ @@ -1015,21 +866,25 @@ from the left in (\hat{H} -E)\sum_{P'H'}C_{H'}^{P'}|\Phi_{H'}^{P'} \rangle=0. \] !et -!eblock + !split ===== A non-practical way of solving the eigenvalue problem ===== -!bblock + If we assume that we have a two-body operator at most, Slater's rule gives then an equation for the correlation energy in terms of $C_i^a$ and $C_{ij}^{ab}$ only. We get then !bt \[ \langle \Phi_0 | \hat{H} -E| \Phi_0\rangle + \sum_{ai}\langle \Phi_0 | \hat{H} -E|\Phi_{i}^{a} \rangle C_{i}^{a}+ -\sum_{abij}\langle \Phi_0 | \hat{H} -E|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}=0, +\sum_{abij}\langle \Phi_0 | \hat{H} -E|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}=0. \] !et -or + +!split +===== Slight rewrite ===== + +Which we can rewrite !bt \[ E-E_0 =\Delta E=\sum_{ai}\langle \Phi_0 | \hat{H}|\Phi_{i}^{a} \rangle C_{i}^{a}+ @@ -1038,15 +893,15 @@ E-E_0 =\Delta E=\sum_{ai}\langle \Phi_0 | \hat{H}|\Phi_{i}^{a} \rangle C_{i}^{a} !et where the energy $E_0$ is the reference energy and $\Delta E$ defines the so-called correlation energy. The single-particle basis functions could be the results of a Hartree-Fock calculation or just the eigenstates of the non-interacting part of the Hamiltonian. -!eblock + !split ===== Rewriting the FCI equation ===== !bblock -In our notes on Hartree-Fock calculations, -we have already computed the matrix $\langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle $ and $\langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab}\rangle$. If we are using a Hartree-Fock basis, then the matrix elements +In our discussions of the Hartree-Fock method planned for week 39, +we are going to compute the elements $\langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle $ and $\langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab}\rangle$. If we are using a Hartree-Fock basis, then these quantities result in $\langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle=0$ and we are left with a *correlation energy* given by !bt \[ @@ -1070,16 +925,19 @@ This equation determines the correlation energy but not the coefficients $C$. !split ===== Rewriting the FCI equation, does not stop here ===== -!bblock + We need more equations. Our next step is to set up !bt \[ \langle \Phi_i^a | \hat{H} -E| \Phi_0\rangle + \sum_{bj}\langle \Phi_i^a | \hat{H} -E|\Phi_{j}^{b} \rangle C_{j}^{b}+ \sum_{bcjk}\langle \Phi_i^a | \hat{H} -E|\Phi_{jk}^{bc} \rangle C_{jk}^{bc}+ -\sum_{bcdjkl}\langle \Phi_i^a | \hat{H} -E|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=0, +\sum_{bcdjkl}\langle \Phi_i^a | \hat{H} -E|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=0. \] !et -as this equation will allow us to find an expression for the coefficents $C_i^a$ since we can rewrite this equation as + +!split +===== Finding the coefficients ===== +This equation will allow us to find an expression for the coefficents $C_i^a$ since we can rewrite this equation as !bt \[ \langle i | \hat{f}| a\rangle +\langle \Phi_i^a | \hat{H}|\Phi_{i}^{a} \rangle C_{i}^{a}+ \sum_{bj\ne ai}\langle \Phi_i^a | \hat{H}|\Phi_{j}^{b} \rangle C_{j}^{b}+ @@ -1087,10 +945,10 @@ as this equation will allow us to find an expression for the coefficents $C_i^a$ \sum_{bcdjkl}\langle \Phi_i^a | \hat{H}|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=EC_i^a. \] !et -!eblock + !split -===== Rewriting the FCI equation, please stop here ===== +===== Rewriting the FCI equation ===== !bblock We see that on the right-hand side we have the energy $E$. This leads to a non-linear equation in the unknown coefficients. These equations are normally solved iteratively ( that is we can start with a guess for the coefficients $C_i^a$). A common choice is to use perturbation theory for the first guess, setting thereby @@ -1155,7 +1013,7 @@ If we can diagonalize large matrices, FCI is the method of choice since: !split ===== Definition of the correlation energy ===== -!bblock + The correlation energy is defined as, with a two-body Hamiltonian, !bt \[ @@ -1164,6 +1022,9 @@ The correlation energy is defined as, with a two-body Hamiltonian, \] !et The coefficients $C$ result from the solution of the eigenvalue problem. + +!split +===== Ground state energy ===== The energy of say the ground state is then !bt \[ @@ -1177,9 +1038,6 @@ E_{ref}=\langle \Phi_0 \vert \hat{H} \vert \Phi_0 \rangle. \] !et -!eblock - -