-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathresnet_group_norm.py
223 lines (181 loc) · 7.7 KB
/
resnet_group_norm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import chainer
import chainer.functions as F
import chainer.links as L
class ResNet(chainer.Chain):
def __init__(self, n_layers, class_labels=None):
super(ResNet, self).__init__()
w = chainer.initializers.HeNormal()
# expected insize = 224
if n_layers == 18:
block = [2, 2, 2, 2]
elif n_layers == 19:
block = [2, 2, 2, 2]
elif n_layers == 20:
block = [2, 2, 2, 2, 2]
elif n_layers == 21:
block = [2, 2, 2, 2, 2, 2]
elif n_layers == 34:
block = [3, 4, 6, 3]
elif n_layers == 50:
block = [3, 4, 6, 3]
elif n_layers == 101:
block = [3, 4, 23, 3]
elif n_layers == 152:
block = [3, 4, 36, 3]
# expected insize = 32
elif n_layers == 32:
block = [5, 5, 5]
elif n_layers == 44:
block = [7, 7, 7]
elif n_layers == 56:
block = [9, 9, 9]
elif n_layers == 110:
block = [18, 18, 18]
else:
raise ValueError("You tried to create a ResNet variant that does not exist")
with self.init_scope():
if n_layers == 16:
self.conv1 = L.Convolution2D(3, 64, 7, 2, 3, initialW=w, nobias=True)
self.bn1 = L.GroupNormalization(32)
self.res2 = BasicBlock(block[0], 128, 1)
self.res3 = BasicBlock(block[1], 256)
self.res4 = BasicBlock(block[2], 512)
elif n_layers in [18, 20, 21, 34]:
self.conv1 = L.Convolution2D(3, 64, 7, 2, 3, initialW=w, nobias=True)
self.bn1 = L.GroupNormalization(16)
self.res2 = BasicBlock(block[0], 64, 1, num_groups=16)
self.res3 = BasicBlock(block[1], 128)
self.res4 = BasicBlock(block[2], 256)
self.res5 = BasicBlock(block[3], 512)
elif n_layers in [32, 44, 56, 110]:
self.conv1 = L.Convolution2D(3, 16, 7, 2, 3, initialW=w, nobias=True)
self.bn1 = L.GroupNormalization(8)
self.res2 = BasicBlock(block[0], 16, 1)
self.res3 = BasicBlock(block[1], 32)
self.res4 = BasicBlock(block[2], 64)
elif n_layers in [19, 50, 101, 152]:
self.conv1 = L.Convolution2D(3, 64, 7, 2, 3, initialW=w, nobias=True)
self.bn1 = L.GroupNormalization(32)
self.res2 = BottleNeckBlock(block[0], 64, 64, 256, 1)
self.res3 = BottleNeckBlock(block[1], 256, 128, 512)
self.res4 = BottleNeckBlock(block[2], 512, 256, 1024)
self.res5 = BottleNeckBlock(block[3], 1024, 512, 2048)
if n_layers in [20, 21]:
self.res6 = BasicBlock(block[4], 512)
if n_layers in [21]:
self.res7 = BasicBlock(block[5], 512)
if class_labels is not None:
self.fc = L.Linear(None, class_labels)
self.n_layers = n_layers
self.class_labels = class_labels
def __call__(self, x):
h = self.bn1(self.conv1(x))
h = F.max_pooling_2d(F.relu(h), 3, stride=2)
h = self.res2(h)
h = self.res3(h)
h = self.res4(h)
if hasattr(self, 'res5'):
h = self.res5(h)
if hasattr(self, 'res6'):
h = self.res6(h)
if hasattr(self, 'res7'):
h = self.res7(h)
if self.class_labels is not None:
_, _, height, width = h.shape
h = F.average_pooling_2d(h, (height, width), stride=1)
if self.class_labels is not None:
h = self.fc(h)
return h
class BasicBlock(chainer.ChainList):
def __init__(self, layer, ch, stride=2, num_groups=32):
super(BasicBlock, self).__init__()
with self.init_scope():
self.add_link(BasicA(ch, stride, num_groups))
for i in range(layer - 1):
self.add_link(BasicB(ch, num_groups))
def __call__(self, x):
for f in self.children():
x = f(x)
return x
class BottleNeckBlock(chainer.ChainList):
def __init__(self, layer, in_size, ch, out_size, stride=2):
super(BottleNeckBlock, self).__init__()
self.add_link(BottleNeckA(in_size, ch, out_size, stride))
for i in range(layer - 1):
self.add_link(BottleNeckB(out_size, ch))
def __call__(self, x):
for f in self.children():
x = f(x)
return x
class BasicA(chainer.Chain):
def __init__(self, ch, stride, num_groups):
super(BasicA, self).__init__()
w = chainer.initializers.HeNormal()
with self.init_scope():
self.conv1 = L.Convolution2D(None, ch, 3, stride, 1, initialW=w, nobias=True)
self.bn1 = L.GroupNormalization(num_groups)
self.conv2 = L.Convolution2D(None, ch, 3, 1, 1, initialW=w, nobias=True)
self.bn2 = L.GroupNormalization(num_groups)
self.conv3 = L.Convolution2D(None, ch, 3, stride, 1, initialW=w, nobias=True)
self.bn3 = L.GroupNormalization(num_groups)
def __call__(self, x):
h1 = F.relu(self.bn1(self.conv1(x)))
h1 = self.bn2(self.conv2(h1))
h2 = self.bn3(self.conv3(x))
return F.relu(h1 + h2)
class BasicB(chainer.Chain):
def __init__(self, ch, num_groups):
super(BasicB, self).__init__()
w = chainer.initializers.HeNormal()
with self.init_scope():
self.conv1 = L.Convolution2D(None, ch, 3, 1, 1, initialW=w, nobias=True)
self.bn1 = L.GroupNormalization(num_groups)
self.conv2 = L.Convolution2D(None, ch, 3, 1, 1, initialW=w, nobias=True)
self.bn2 = L.GroupNormalization(num_groups)
def __call__(self, x):
h = F.relu(self.bn1(self.conv1(x)))
h = self.bn2(self.conv2(h))
return F.relu(h + x)
class BottleNeckA(chainer.Chain):
def __init__(self, in_size, ch, out_size, stride=2):
super(BottleNeckA, self).__init__()
w = chainer.initializers.HeNormal()
with self.init_scope():
self.conv1 = L.Convolution2D(
in_size, ch, 1, stride, 0, initialW=w, nobias=True)
self.bn1 = L.GroupNormalization(32)
self.conv2 = L.Convolution2D(
ch, ch, 3, 1, 1, initialW=w, nobias=True)
self.bn2 = L.GroupNormalization(32)
self.conv3 = L.Convolution2D(
ch, out_size, 1, 1, 0, initialW=w, nobias=True)
self.bn3 = L.GroupNormalization(32)
self.conv4 = L.Convolution2D(
in_size, out_size, 1, stride, 0,
initialW=w, nobias=True)
self.bn4 = L.GroupNormalization(32)
def __call__(self, x):
h1 = F.relu(self.bn1(self.conv1(x)))
h1 = F.relu(self.bn2(self.conv2(h1)))
h1 = self.bn3(self.conv3(h1))
h2 = self.bn4(self.conv4(x))
return F.relu(h1 + h2)
class BottleNeckB(chainer.Chain):
def __init__(self, in_size, ch):
super(BottleNeckB, self).__init__()
w = chainer.initializers.HeNormal()
with self.init_scope():
self.conv1 = L.Convolution2D(
in_size, ch, 1, 1, 0, initialW=w, nobias=True)
self.bn1 = L.GroupNormalization(32)
self.conv2 = L.Convolution2D(
ch, ch, 3, 1, 1, initialW=w, nobias=True)
self.bn2 = L.GroupNormalization(32)
self.conv3 = L.Convolution2D(
ch, in_size, 1, 1, 0, initialW=w, nobias=True)
self.bn3 = L.GroupNormalization(32)
def __call__(self, x):
h = F.relu(self.bn1(self.conv1(x)))
h = F.relu(self.bn2(self.conv2(h)))
h = self.bn3(self.conv3(h))
return F.relu(h + x)