-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdynamic_function.py
289 lines (267 loc) · 14.6 KB
/
dynamic_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from gurobipy import Model, GRB, quicksum
import numpy as np
import pandas as pd
# Constants
B_TO_T = 10 # Bin to Truck
B_TO_B = 100 # Bin to Bin
def dyn_opt(df1, df2, df3, distances, visit1, visit2, visit3, folder_path, w1 = 0.5, w2 = 0.5, m = 0, n1_done = 0, n2_done = 0, n3_done = 0, obj_value = []):
SPEED = 13.88
# Model
mdl = Model('CVRP')
visit1.Node = visit1.Node.astype('int')
visit2.Node = visit2.Node.astype('int')
visit3.Node = visit3.Node.astype('int')
# Initalization
obj1, obj2, obj3 = 0, 0, 0
f_prev = 'fill_ratio_' + str(m-1)
fpm = 'fill_per_m_' + str(m)
f_new = 'fill_ratio_' + str(m)
start_node = [
visit1.iloc[-1,0],
visit2.iloc[-1,0],
visit3.iloc[-1,0]
]
if n1_done != 1:
if m == 0:
fill1 = df1.fill_ratio
else:
fill1 = df1.loc[:, f_prev]
df1.insert(df1.shape[1], f_new, fill1)
if m != 0:
for i in df1.index.tolist():
if i not in visit1.Node.to_list() and np.random.rand() < 0.80:
df1.loc[i, f_new] = df1.loc[i, f_new] + np.random.uniform(0, 1 - df1.loc[i, f_new])/10
dist = distances.iloc[start_node[0], df1.index.to_list()].tolist()
dist_name = 'distance_from_' + str(start_node[0])
if dist_name in df1.columns:
dist_name = dist_name + '_' + str(np.random.rand())
df1.insert(df1.shape[1], dist_name, dist)
# df1.insert(df1.shape[1], fpm, B_TO_B*df1.loc[:,f_new]/df1.loc[:,dist_name])
df1.insert(df1.shape[1], fpm, df1.loc[:,f_new]/df1.loc[:,dist_name])
df1 = df1.sort_values(by = f_new, ascending = False)
fill_1 = pd.DataFrame({'fill' : df1.loc[:, f_new].to_list() + [0]}, index = df1.index.tolist() + [0])
N1 = []
for i in df1.index.tolist():
if i not in visit1.Node.to_list() and (df1.loc[i, f_new] + sum(df1.loc[N1, f_new]))*B_TO_T <= 100 - sum(visit1.iloc[:,1])*B_TO_T:
N1.append(i)
if m == 0:
V1 = N1 + [0]
else:
V1 = [start_node[0]] + N1 + [0]
A1 = [(i,j) for i in V1 for j in V1 if i != j]
c1 = {(i,j) : distances.iloc[i, j] for i,j in A1}
# c1 = {(i,j) : distances.iloc[i, j]/dis_conv for i,j in A1}
x1 = mdl.addVars(A1, vtype = GRB.BINARY)
y1 = mdl.addVars(V1, vtype = GRB.BINARY)
u1 = mdl.addVars(N1, vtype = GRB.CONTINUOUS)
obj1 = quicksum( (w1*x1[i, j]*c1[(i, j)]) - w2*y1[i]*fill_1.loc[i, 'fill']*B_TO_T for i,j in A1)
if n2_done != 1:
if m == 0:
fill2 = df2.fill_ratio
else:
fill2 = df2.loc[:, f_prev]
df2.insert(df2.shape[1], f_new, fill2)
if m != 0:
for i in df2.index.tolist():
if i not in visit2.Node.to_list() and np.random.rand() < 0.80:
df2.loc[i, f_new] = df2.loc[i, f_new] + np.random.uniform(0, 1 - df2.loc[i, f_new])/10
dist = distances.iloc[start_node[1], df2.index.to_list()].tolist()
dist_name = 'distance_from_' + str(start_node[1])
if dist_name in df2.columns:
dist_name = dist_name + '_' + str(np.random.rand())
df2.insert(df2.shape[1], dist_name, dist)
df2.insert(df2.shape[1], fpm, df2.loc[:,f_new]/df2.loc[:,dist_name])
df2 = df2.sort_values(by = f_new, ascending = False)
fill_2 = pd.DataFrame({'fill' : df2.loc[:, f_new].to_list() + [0]}, index = df2.index.tolist() + [0])
N2 = []
for i in df2.index.tolist():
if i not in visit2.Node.to_list() and (df2.loc[i, f_new] + sum(df2.loc[N2, f_new]))*B_TO_T <= 100 - sum(visit2.iloc[:,1])*B_TO_T:
N2.append(i)
if m == 0:
V2 = N2 + [0]
else:
V2 = [start_node[1]] + N2 + [0]
A2 = [(i,j) for i in V2 for j in V2 if i != j]
c2 = {(i,j) : distances.iloc[i, j] for i,j in A2}
# c2 = {(i,j) : distances.iloc[i, j]/dis_conv for i,j in A2}
x2 = mdl.addVars(A2, vtype = GRB.BINARY)
y2 = mdl.addVars(V2, vtype = GRB.BINARY)
u2 = mdl.addVars(N2, vtype = GRB.CONTINUOUS)
obj2 = quicksum( (w1*x2[i, j]*c2[(i, j)]) - w2*y2[i]*fill_2.loc[i, 'fill']*B_TO_T for i,j in A2)
if n3_done != 1:
if m == 0:
fill3 = df3.fill_ratio
else:
fill3 = df3.loc[:, f_prev]
df3.insert(df3.shape[1], f_new, fill3)
if m != 0:
for i in df3.index.tolist():
if i not in visit3.Node.to_list() and np.random.rand() < 0.80:
df3.loc[i, f_new] = df3.loc[i, f_new] + np.random.uniform(0, 1 - df3.loc[i, f_new])/10
dist = distances.iloc[start_node[2], df3.index.to_list()].tolist()
dist_name = 'distance_from_' + str(start_node[2])
if dist_name in df3.columns:
dist_name = dist_name + '_' + str(np.random.rand())
df3.insert(df3.shape[1], dist_name, dist)
df3.insert(df3.shape[1], fpm, df3.loc[:,f_new]/df3.loc[:,dist_name])
df3 = df3.sort_values(by = f_new, ascending = False)
fill_3 = pd.DataFrame({'fill' : df3.loc[:, f_new].to_list() + [0]}, index = df3.index.tolist() + [0])
N3 = []
for i in df3.index.tolist():
if i not in visit3.Node.to_list() and (df3.loc[i, f_new] + sum(df3.loc[N3, f_new]))*B_TO_T <= 100 - sum(visit3.iloc[:,1])*B_TO_T:
N3.append(i)
if m == 0:
V3 = N3 + [0]
else:
V3 = [start_node[2]] + N3 + [0]
A3 = [(i,j) for i in V3 for j in V3 if i != j]
c3 = {(i,j) : distances.iloc[i, j] for i,j in A3}
# c3 = {(i,j) : distances.iloc[i, j]/dis_conv for i,j in A3}
x3 = mdl.addVars(A3, vtype = GRB.BINARY)
y3 = mdl.addVars(V3, vtype = GRB.BINARY)
u3 = mdl.addVars(N3, vtype = GRB.CONTINUOUS)
obj3 = quicksum( (w1*x3[i, j]*c3[(i, j)]) - w2*y3[i]*fill_3.loc[i, 'fill']*B_TO_T for i,j in A3)
# Model
mdl.modelSense = GRB.MINIMIZE
mdl.setObjective(obj1 + obj2 + obj3)
# Constraints
if n1_done == 0:
mdl.addConstrs( quicksum( x1[i,j] for j in V1 if j != i) == 1 for i in N1 )
mdl.addConstrs( quicksum( x1[i,j] for i in V1 if i != j) == 1 for j in N1 )
mdl.addConstr( quicksum( y1[i]*fill_1.loc[i, 'fill']*B_TO_T for i in N1 ) <= (100 - sum(visit1.iloc[:, 1])*B_TO_T) )
mdl.addConstr( quicksum( x1[start_node[0], j] for j in N1) == 1)
if start_node[0] != 0:
mdl.addConstr( quicksum( x1[j, start_node[0]] for j in N1) == 0)
mdl.addConstr( quicksum( x1[j, 0] for j in N1) == 1)
if start_node[0] != 0:
mdl.addConstr( quicksum( x1[0, j] for j in N1) == 0)
mdl.addConstrs(
(x1[i,j] == 1) >> (u1[i] + fill_1.loc[j, 'fill']*B_TO_T == u1[j]) for i,j in A1 if i != 0 and j != 0 and i != int(visit1.iloc[-1,0]) and j != int(visit1.iloc[-1,0])
)
mdl.addConstrs( u1[i] >= fill_1.loc[i, 'fill']*B_TO_T for i in N1 )
mdl.addConstrs( u1[i] <= 100 - sum(visit1.iloc[:, 1])*B_TO_T for i in N1 )
if n2_done == 0:
mdl.addConstrs( quicksum( x2[i,j] for j in V2 if j != i) == 1 for i in N2 )
mdl.addConstrs( quicksum( x2[i,j] for i in V2 if i != j) == 1 for j in N2 )
mdl.addConstr( quicksum( y2[i]*fill_2.loc[i, 'fill']*B_TO_T for i in N2 ) <= (100 - sum(visit2.iloc[:, 1])*B_TO_T) )
mdl.addConstr( quicksum( x2[start_node[1], j] for j in N2) == 1)
if start_node[1] != 0:
mdl.addConstr( quicksum( x2[j, start_node[1]] for j in N2) == 0)
mdl.addConstr( quicksum( x2[j, 0] for j in N2) == 1)
if start_node[1] != 0:
mdl.addConstr( quicksum( x2[0, j] for j in N2) == 0)
mdl.addConstrs(
(x2[i,j] == 1) >> (u2[i] + fill_2.loc[j, 'fill']*B_TO_T == u2[j]) for i,j in A2 if i != 0 and j != 0 and i != int(visit2.iloc[-1,0]) and j != int(visit2.iloc[-1,0])
)
mdl.addConstrs( u2[i] >= fill_2.loc[i, 'fill']*B_TO_T for i in N2 )
mdl.addConstrs( u2[i] <= 100 - sum(visit2.iloc[:, 1])*B_TO_T for i in N2 )
if n3_done == 0:
mdl.addConstrs( quicksum( x3[i,j] for j in V3 if j != i) == 1 for i in N3 )
mdl.addConstrs( quicksum( x3[i,j] for i in V3 if i != j) == 1 for j in N3 )
mdl.addConstr( quicksum( y3[i]*fill_3.loc[i, 'fill']*B_TO_T for i in N3 ) <= (100 - sum(visit3.iloc[:, 1])*B_TO_T) )
mdl.addConstr( quicksum( x3[start_node[2], j] for j in N3) == 1)
if start_node[2] != 0:
mdl.addConstr( quicksum( x3[j, start_node[2]] for j in N3) == 0)
mdl.addConstr( quicksum( x3[j, 0] for j in N3) == 1)
if start_node[2] != 0:
mdl.addConstr( quicksum( x3[0, j] for j in N3) == 0)
mdl.addConstrs(
(x3[i,j] == 1) >> (u3[i] + fill_3.loc[j, 'fill']*B_TO_T == u3[j]) for i,j in A3 if i != 0 and j != 0 and i != int(visit3.iloc[-1,0]) and j != int(visit3.iloc[-1,0])
)
mdl.addConstrs( u3[i] >= fill_3.loc[i, 'fill']*B_TO_T for i in N3 )
mdl.addConstrs( u3[i] <= 100 - sum(visit3.iloc[:, 1])*B_TO_T for i in N3 )
# Model time Restrictions
mdl.Params.MIPGap = 0.1
mdl.Params.TimeLimit = 900
# Optimize model
mdl.optimize()
q = mdl.getObjective()
obj_value.append(q.getValue())
# TODO : Time simulation
if n1_done == 0:
active_arcs1 = [a for a in A1 if x1[a].x > 0.99]
TIME = 900 # 15 minutes
visited1 = 0
next_element = next( y for x, y in active_arcs1 if x == visit1.iloc[-1, 0] )
temp = np.max(pd.read_csv('Data/distance.csv').drop('Unnamed: 0', axis = 1).iloc[start_node[0], :])
while (TIME - temp * c1[visit1.iloc[-1, 0], next_element]/(SPEED) >= 0) and next_element != 0:
TIME = TIME - temp * c1[visit1.iloc[-1, 0], next_element]/(SPEED)
visit1.loc[len(visit1.index)] = [next_element, df1.loc[next_element, f_new]]
df1.loc[next_element, [f_new, fpm]] = [0.0, 0.0]
next_element = next( y for x, y in active_arcs1 if x == visit1.iloc[-1, 0] )
visited1 = visited1 + 1
if visited1 == 0:
print('Forecully entered the value 1.')
visit1.loc[len(visit1.index)] = [next_element, df1.loc[next_element, f_new]]
df1.loc[next_element, [f_new, fpm]] = [0.0, 0.0]
next_element = next( y for x, y in active_arcs1 if x == visit1.iloc[-1, 0] )
if next_element == 0:
visit1.loc[len(visit1.index)] = [next_element, sum(visit1.iloc[:, 1])]
print(f'\nOptimization done for Truck 1')
file_name = folder_path + 'Truck 1 Data/truck1_' + str(w1) + '_' + str(w2) + '.csv'
df1.to_csv(file_name, index = False)
file_name = folder_path + 'Visited Truck 1/visited_truck1_' + str(w1) + '_' + str(w2) + '.csv'
visit1.to_csv(file_name, index = False)
n1_done = 1
print(f'Active arcs | Truck 1 | Start Node : {start_node[0]} :\n{active_arcs1}')
if n2_done == 0:
active_arcs2 = [a for a in A2 if x2[a].x > 0.99]
TIME = 900 # 15 minutes
visited2 = 0
next_element = next( y for x, y in active_arcs2 if x == visit2.iloc[-1, 0] )
temp = np.max(pd.read_csv('Data/distance.csv').drop('Unnamed: 0', axis = 1).iloc[start_node[1], :])
while (TIME - temp * c2[visit2.iloc[-1, 0], next_element]/(SPEED) >= 0) and next_element != 0:
TIME = TIME - temp * c2[visit2.iloc[-1, 0], next_element]/(SPEED)
visit2.loc[len(visit2.index)] = [next_element, df2.loc[next_element, f_new]]
df2.loc[next_element, [f_new, fpm]] = [0.0, 0.0]
next_element = next( y for x, y in active_arcs2 if x == visit2.iloc[-1, 0] )
visited2 = visited2 + 1
if visited2 == 0:
print('Forecully entered the value 2.')
visit2.loc[len(visit2.index)] = [next_element, df2.loc[next_element, f_new]]
df2.loc[next_element, [f_new, fpm]] = [0.0, 0.0]
next_element = next( y for x, y in active_arcs2 if x == visit2.iloc[-1, 0] )
if next_element == 0:
visit2.loc[len(visit2.index)] = [next_element, sum(visit2.iloc[:, 1])]
print(f'\nOptimization done for truck 2')
file_name = folder_path + 'Truck 2 Data/truck2_' + str(w1) + '_' + str(w2) + '.csv'
df2.to_csv(file_name, index = False)
file_name = folder_path + 'Visited Truck 2/visited_truck2_' + str(w1) + '_' + str(w2) + '.csv'
visit2.to_csv(file_name, index = False)
n2_done = 1
print(f'Active arcs | Truck 2 | Start Node : {start_node[1]} :\n{active_arcs2}')
if n3_done == 0:
active_arcs3 = [a for a in A3 if x3[a].x > 0.99]
TIME = 900 # 15 minutes
visited3 = 0
next_element = next( y for x, y in active_arcs3 if x == visit3.iloc[-1, 0] )
temp = np.max(pd.read_csv('Data/distance.csv').drop('Unnamed: 0', axis = 1).iloc[start_node[2], :])
while (TIME - temp * c3[visit3.iloc[-1, 0], next_element]/(SPEED) >= 0) and next_element != 0:
TIME = TIME - temp * c3[visit3.iloc[-1, 0], next_element]/(SPEED)
visit3.loc[len(visit3.index)] = [next_element, df3.loc[next_element, f_new]]
df3.loc[next_element, [f_new, fpm]] = [0.0, 0.0]
next_element = next( y for x, y in active_arcs3 if x == visit3.iloc[-1, 0] )
visited3 = visited3 + 1
if visited3 == 0:
print('Forecully entered the value 3.')
visit3.loc[len(visit3.index)] = [next_element, df3.loc[next_element, f_new]]
df3.loc[next_element, [f_new, fpm]] = [0.0, 0.0]
next_element = next( y for x, y in active_arcs3 if x == visit3.iloc[-1, 0] )
if next_element == 0:
visit3.loc[len(visit3.index)] = [next_element, sum(visit3.iloc[:, 1])]
print(f'\nOptimization done for truck 3')
file_name = folder_path + 'Truck 3 Data/truck3_' + str(w1) + '_' + str(w2) + '.csv'
df3.to_csv(file_name, index = False)
file_name = folder_path + 'Visited Truck 3/visited_truck3_' + str(w1) + '_' + str(w2) + '.csv'
visit3.to_csv(file_name, index = False)
n3_done = 1
print(f'Active arcs | Truck 3 | Start Node : {start_node[2]} :\n{active_arcs3}')
print(f'\n{n1_done, n2_done, n3_done}')
m = m + 1
# df4 = pd.concat([df1, df2, df3])
# df4.loc[0, :] = df.loc[0]
if n1_done == 1 and n2_done == 1 and n3_done == 1:
print('\nDone computation')
return obj_value
dyn_opt(df1 = df1, df2 = df2, df3 = df3, distances= distances, folder_path= folder_path, visit1 = visit1, visit2 = visit2, visit3 = visit3, m = m, w1 = w1, w2 = w2, n1_done = n1_done, n2_done = n2_done, n3_done = n3_done, obj_value = obj_value)
return obj_value