-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcustom_budget.py
81 lines (72 loc) · 3.54 KB
/
custom_budget.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
python
class SmartSpendingGuidance:
def __init__(self, user_data):
self.user_data = user_data
self.insights = []
def analyze_investments(self):
# Analyze user's investment portfolio
# This is a simplified example
portfolio_performance = self.user_data.get('portfolio_performance')
market_trends = self.user_data.get('market_trends')
if portfolio_performance and market_trends:
# Calculate customized portfolio recommendations
self.insights.append("Customized Portfolio Recommendations based on your current performance and market trends.")
else:
self.insights.append("Insufficient data to analyze investments.")
def generate_market_notifications(self):
# Generate timely market notifications
market_updates = self.user_data.get('market_updates')
if market_updates:
self.insights.append("Timely Market Notifications: " + ", ".join(market_updates))
else:
self.insights.append("No current market updates available.")
def analyze_spending_pattern(self):
# Analyze user's spending pattern
spending_data = self.user_data.get('spending_data')
if spending_data:
# Example analysis
high_expenditure = max(spending_data, key=spending_data.get)
self.insights.append(f"Your highest expenditure category is {high_expenditure}. Consider reviewing your expenses in this category.")
else:
self.insights.append("No spending data available for analysis.")
def provide_fund_manager_reviews(self):
# Provide fund manager reviews and ratings
fund_manager_reviews = self.user_data.get('fund_manager_reviews')
if fund_manager_reviews:
self.insights.append("Fund Manager Reviews: " + ", ".join(fund_manager_reviews))
else:
self.insights.append("No fund manager reviews available.")
def compare_peer_investments(self):
# Compare with peer investments
peer_comparisons = self.user_data.get('peer_comparisons')
if peer_comparisons:
self.insights.append("Peer Investment Comparison: " + ", ".join(peer_comparisons))
else:
self.insights.append("No peer comparison data available.")
def recommend_eco_friendly_spending(self):
# Recommend eco-friendly spending options
eco_friendly_options = self.user_data.get('eco_friendly_options')
if eco_friendly_options:
self.insights.append("Eco-friendly Spending Options: " + ", ".join(eco_friendly_options))
else:
self.insights.append("No eco-friendly options available.")
def get_guidance(self):
self.analyze_investments()
self.generate_market_notifications()
self.analyze_spending_pattern()
self.provide_fund_manager_reviews()
self.compare_peer_investments()
self.recommend_eco_friendly_spending()
return self.insights
# Example usage
user_data = {
'portfolio_performance': {...},
'market_trends': {...},
'market_updates': ['Stock A is up 5%', 'Crypto B is down 10%'],
'spending_data': {'Food': 200, 'Transport': 100, 'Entertainment': 150},
'fund_manager_reviews': ['Fund Manager X has a 4.5-star rating', 'Fund Manager Y is highly recommended'],
'peer_comparisons': ['Your portfolio is outperforming 70% of peers'],
'eco_friendly_options': ['Invest in renewable energy', 'Support sustainable brands']
}
guidance = SmartSpendingGuidance(user_data)
print(guidance.get_guidance())