-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtest.py
56 lines (47 loc) · 1.56 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/usr/bin/env python3
from dataset import SIDDValData
from model import UNetD
import megengine.data as data
from utils import batch_PSNR
from tqdm import tqdm
import argparse
import pickle
import megengine
def test(args):
valid_dataset = SIDDValData(args.data)
valid_sampler = data.SequentialSampler(
valid_dataset, batch_size=1, drop_last=False
)
valid_dataloader = data.DataLoader(
valid_dataset,
sampler=valid_sampler,
num_workers=8,
)
model = UNetD(3)
with open(args.checkpoint, "rb") as f:
state = pickle.load(f)
model.load_state_dict(state["state_dict"])
model.eval()
def valid_step(image, label):
pred = model(image)
pred = image - pred
psnr_it = batch_PSNR(pred, label)
return psnr_it
def valid(func, data_queue):
psnr_v = 0.
for step, (image, label) in tqdm(enumerate(data_queue)):
image = megengine.tensor(image)
label = megengine.tensor(label)
psnr_it = func(image, label)
psnr_v += psnr_it
psnr_v /= step + 1
return psnr_v
psnr_v = valid(valid_step, valid_dataloader)
print("PSNR: {:.3f}".format(psnr_v.item()) )
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="MegEngine NBNet")
parser.add_argument("-d", "--data", default="/data/sidd", metavar="DIR", help="path to imagenet dataset")
parser.add_argument("-c", "--checkpoint", help="path to checkpoint")
args = parser.parse_args()
test(args)
# vim: ts=4 sw=4 sts=4 expandtab