-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrack.py
287 lines (240 loc) · 11 KB
/
track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import sys
sys.path.insert(0, './yolov5')
from yolov5.utils.google_utils import attempt_download
from yolov5.models.experimental import attempt_load
from yolov5.utils.datasets import LoadImages, LoadWebcam
from yolov5.utils.general import check_img_size, non_max_suppression, scale_coords, \
check_imshow
from yolov5.utils.torch_utils import select_device, time_synchronized
from deep_sort_pytorch.utils.parser import get_config
from deep_sort_pytorch.deep_sort import DeepSort
import argparse
import os
import platform
import shutil
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from arguments import *
palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
def xyxy_to_xywh(*xyxy):
"""" Calculates the relative bounding box from absolute pixel values. """
bbox_left = min([xyxy[0].item(), xyxy[2].item()])
bbox_top = min([xyxy[1].item(), xyxy[3].item()])
bbox_w = abs(xyxy[0].item() - xyxy[2].item())
bbox_h = abs(xyxy[1].item() - xyxy[3].item())
x_c = (bbox_left + bbox_w / 2)
y_c = (bbox_top + bbox_h / 2)
w = bbox_w
h = bbox_h
return x_c, y_c, w, h
def xyxy_to_tlwh(bbox_xyxy):
tlwh_bboxs = []
for i, box in enumerate(bbox_xyxy):
x1, y1, x2, y2 = [int(i) for i in box]
top = x1
left = y1
w = int(x2 - x1)
h = int(y2 - y1)
tlwh_obj = [top, left, w, h]
tlwh_bboxs.append(tlwh_obj)
return tlwh_bboxs
def compute_color_for_labels(label):
"""
Simple function that adds fixed color depending on the class
"""
color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette]
return tuple(color)
def draw_boxes(img, bbox, identities=None, offset=(0, 0)):
for i, box in enumerate(bbox):
x1, y1, x2, y2 = [int(i) for i in box]
x1 += offset[0]
x2 += offset[0]
y1 += offset[1]
y2 += offset[1]
# box text and bar
id = int(identities[i]) if identities is not None else 0
color = compute_color_for_labels(id)
label = '{}{:d}'.format("", id)
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 0, 1)[0] #修改字符,原设置: 2,2
cv2.rectangle(img, (x1, y1), (x2, y2), color, 5) # 修改线框为1, 原设置:3
cv2.rectangle(img, (x1, y1), (x1 + t_size[0] + 3, y1 + t_size[1] + 4), color, -1)
cv2.putText(img, label, (x1, y1 +
t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 5, [255, 255, 255], 3) #修改 2,.,2
return img
def draw_armor(img, bboxs):
for box in bboxs:
x1, y1, x2, y2 = box
cv2.rectangle(img, (x1, y1), (x2, y2), (255, 255, 255), 5)
class YOLO_DEEPSORT:
def __init__(self, source = 'yolov5/0000-0170.mp4') -> None:
self.out = 'output'
self.source = source
self.yolo_weights = 'yolov5/weights/' + Yolo_Weight
self.deep_sort_weights = 'deep_sort_pytorch/deep_sort/deep/checkpoint/ckpt.t7'
self.show_vid = False
self.save_vid = False
self.save_txt = False
self.img_size = Input_Size
self.device = '0'
self.fourcc = 'mp4v'
self.classes = [0, 1]
self.conf_thres = 0.4
self.iou_thres = 0.5
self.evaluate = False
self.augment = True
self.agnostic_nms = True
self.config_deepsort = "deep_sort_pytorch/configs/deep_sort.yaml"
self.armor_bboxs = []
self.car_bboxs = []
self.src_img = []
self.out_img = []
def detect(self, ctd):
out = self.out
source = self.source
yolo_weights = self.yolo_weights
deep_sort_weights = self.deep_sort_weights
show_vid = self.show_vid
save_vid = self.save_vid
save_txt = self.save_txt
imgsz = self.img_size
evaluate = self.evaluate
webcam = source.isnumeric() or source.startswith(
'rtsp') or source.startswith('http') or source.endswith('.txt')
# initialize deepsort
cfg = get_config()
cfg.merge_from_file(self.config_deepsort)
attempt_download(deep_sort_weights, repo='mikel-brostrom/Yolov5_DeepSort_Pytorch')
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
use_cuda=True)
# Initialize
device = select_device(self.device)
# The MOT16 evaluation runs multiple inference streams in parallel, each one writing to
# its own .txt file. Hence, in that case, the output folder is not restored
if not evaluate:
if os.path.exists(out):
pass
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(yolo_weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
names = model.module.names if hasattr(model, 'module') else model.names # get class names
if half:
model.half() # to FP16
# Set Dataloader
vid_path, vid_writer = None, None
# Check if environment supports image displays
if show_vid:
show_vid = check_imshow()
if webcam:
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadWebcam(ctd, source, img_size=imgsz, stride=stride)
else:
dataset = LoadImages(source, img_size=imgsz)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
save_path = str(Path(out))
# extract what is in between the last '/' and last '.'
txt_file_name = source.split('/')[-1].split('.')[0]
txt_path = str(Path(out)) + '/' + txt_file_name + '.txt'
for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset):
t0 = time.time()
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=self.augment)[0]
# Apply NMS
pred = non_max_suppression(
pred, self.conf_thres, self.iou_thres, classes=self.classes, agnostic=self.agnostic_nms)
# Process detections
for i, det in enumerate(pred): # detections per image
im0, frame = im0s, getattr(dataset, 'frame', 0)
# if webcam: # batch_size >= 1
# p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
# else:
# p, s, im0 = path, '', im0s
self.src_img = im0.copy()
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(
img.shape[2:], det[:, :4], im0.shape).round()
xywh_bboxs = []
self.armor_bboxs = []
confs = []
clses = []
# Adapt detections to deep sort input format
for *xyxy, conf, cls in det:
# to deep sort format
x_c, y_c, bbox_w, bbox_h = xyxy_to_xywh(*xyxy)
xywh_obj = [x_c, y_c, bbox_w, bbox_h]
if cls == 0:
xywh_bboxs.append(xywh_obj)
confs.append([conf.item()])
clses.append(cls)
else:
self.armor_bboxs.append([int(i) for i in xyxy])
xywhs = torch.Tensor(xywh_bboxs)
confss = torch.Tensor(confs)
# pass detections to deepsort
outputs = deepsort.update(xywhs, confss, im0)
# draw boxes for visualization
if len(outputs) > 0:
bbox_xyxy = outputs[:, :4]
identities = outputs[:, -1]
draw_boxes(im0, bbox_xyxy, identities)
draw_armor(im0, self.armor_bboxs)
self.out_img = im0
# to MOT format
tlwh_bboxs = xyxy_to_tlwh(bbox_xyxy)
self.car_bboxs = []
for j, (tlwh_bbox, output) in enumerate(zip(tlwh_bboxs, outputs)):
bbox_top = tlwh_bbox[0]
bbox_left = tlwh_bbox[1]
bbox_w = tlwh_bbox[2]
bbox_h = tlwh_bbox[3]
identity = output[-1]
car_bbox = [identity, bbox_xyxy[j]]
self.car_bboxs.append(car_bbox)
# Write MOT compliant results to file
if save_txt:
with open(txt_path, 'a') as f:
f.write(('%g ' * 6 + '\n') % (frame_idx, identity, bbox_top,
bbox_left, bbox_w, bbox_h)) # label format
else:
deepsort.increment_ages()
# # Save results (image with detections)
# if save_vid:
# if vid_path != save_path: # new video
# vid_path = save_path
# if isinstance(vid_writer, cv2.VideoWriter):
# vid_writer.release() # release previous video writer
# if vid_cap: # video
# fps = vid_cap.get(cv2.CAP_PROP_FPS)
# w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
# h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# else: # stream
# fps, w, h = 30, im0.shape[1], im0.shape[0]
# save_path += '.mp4'
# vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
# vid_writer.write(im0)
# print('Done. (%.3fs)' % (time.time() - t0))
if __name__ == '__main__':
yolo_deepsort = YOLO_DEEPSORT()
with torch.no_grad():
yolo_deepsort.detect()