diff --git a/0_Azure/2_AzureAnalytics/3_Databricks/1_demos/MedallionArch_Fabric+Databricks.md b/0_Azure/2_AzureAnalytics/3_Databricks/1_demos/MedallionArch_Fabric+Databricks.md
index 09364d39..defa8a80 100644
--- a/0_Azure/2_AzureAnalytics/3_Databricks/1_demos/MedallionArch_Fabric+Databricks.md
+++ b/0_Azure/2_AzureAnalytics/3_Databricks/1_demos/MedallionArch_Fabric+Databricks.md
@@ -14,9 +14,43 @@ Last updated: 2025-02-13
List of References (Click to expand)
+- [TechExcel: Microsoft Fabric with Azure Databricks for Data Analytics (lvl 300 / CSU) lab](https://microsoft.github.io/TechExcel-Fabric-with-Databricks-for-Data-Analytics/)
+- [Databricks Unity Catalog tables available in Microsoft Fabric](https://blog.fabric.microsoft.com/en-us/blog/databricks-unity-catalog-tables-available-in-microsoft-fabric/)
+- [Integrate OneLake with Azure Databricks](https://learn.microsoft.com/en-us/fabric/onelake/onelake-azure-databricks)
+- [Tutorial: Configure Microsoft Fabric mirrored databases from Azure Databricks (Preview)](https://learn.microsoft.com/en-us/fabric/database/mirrored-database/azure-databricks-tutorial)
+- [Integrating Microsoft Fabric with Azure Databricks Delta Tables](https://techcommunity.microsoft.com/blog/fasttrackforazureblog/integrating-microsoft-fabric-with-azure-databricks-delta-tables/3916332)
+- [Data Intelligence End-to-End with Azure Databricks and Microsoft Fabric](https://techcommunity.microsoft.com/blog/azurearchitectureblog/data-intelligence-end-to-end-with-azure-databricks-and-microsoft-fabric/4232621)
- Data Ingestion | ETL Tasks: Databricks efficiently handles Extract, Transform, Load (ETL) tasks. It manages the bronze, silver, and gold layers of the medallion architecture:
- **Bronze Layer**: Raw data ingestion from various sources.
- **Silver Layer**: Data cleaning and transformation.
- **Gold Layer**: Aggregated and refined data ready for analysis.
Data Ingestion: Supports batch and streaming data ingestion, ensuring real-time data processing capabilities.
- **Data Cleaning**: Utilizes Apache Spark's powerful processing engine to clean and transform data at scale.
- **Aggregation**: Performs complex aggregations and computations, making data ready for downstream analytics. |
+| Fabric | - Data Integration
- Orchestration
- Monitoring and Management | Fabric seamlessly integrates with Databricks, providing a unified interface for managing data workflows.
- **Data Integration**: Facilitates the orchestration of data pipelines, ensuring smooth data flow between different stages of processing.
- **Monitoring and Management**: Offers robust monitoring and management tools to track data pipeline performance and troubleshoot issues. |
+
+> Here is a [reference of a medallion architecture using only Fabric](https://github.com/MicrosoftCloudEssentials-LearningHub/MS-Fabric-Essentials-Workshop/tree/main/AzurePortal/1_MedallionArch):
+
+
+
+
+
+