This repository has been archived by the owner on Dec 28, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathKruskal's Algorithm.cpp
114 lines (101 loc) · 2.72 KB
/
Kruskal's Algorithm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#include <bits/stdc++.h>
using namespace std;
class DisjointSet {
vector<int> rank, parent, size;
public:
DisjointSet(int n) {
rank.resize(n + 1, 0);
parent.resize(n + 1);
size.resize(n + 1);
for (int i = 0; i <= n; i++) {
parent[i] = i;
size[i] = 1;
}
}
int findUPar(int node) {
if (node == parent[node])
return node;
return parent[node] = findUPar(parent[node]);
}
void unionByRank(int u, int v) {
int ulp_u = findUPar(u);
int ulp_v = findUPar(v);
if (ulp_u == ulp_v) return;
if (rank[ulp_u] < rank[ulp_v]) {
parent[ulp_u] = ulp_v;
}
else if (rank[ulp_v] < rank[ulp_u]) {
parent[ulp_v] = ulp_u;
}
else {
parent[ulp_v] = ulp_u;
rank[ulp_u]++;
}
}
void unionBySize(int u, int v) {
int ulp_u = findUPar(u);
int ulp_v = findUPar(v);
if (ulp_u == ulp_v) return;
if (size[ulp_u] < size[ulp_v]) {
parent[ulp_u] = ulp_v;
size[ulp_v] += size[ulp_u];
}
else {
parent[ulp_v] = ulp_u;
size[ulp_u] += size[ulp_v];
}
}
};
class Solution
{
public:
//Function to find sum of weights of edges of the Minimum Spanning Tree.
int spanningTree(int V, vector<vector<int>> adj[])
{
// 1 - 2 wt = 5
/// 1 - > (2, 5)
// 2 -> (1, 5)
// 5, 1, 2
// 5, 2, 1
vector<pair<int, pair<int, int>>> edges;
for (int i = 0; i < V; i++) {
for (auto it : adj[i]) {
int adjNode = it[0];
int wt = it[1];
int node = i;
edges.push_back({wt, {node, adjNode}});
}
}
DisjointSet ds(V);
sort(edges.begin(), edges.end());
int mstWt = 0;
for (auto it : edges) {
int wt = it.first;
int u = it.second.first;
int v = it.second.second;
if (ds.findUPar(u) != ds.findUPar(v)) {
mstWt += wt;
ds.unionBySize(u, v);
}
}
return mstWt;
}
};
int main() {
int V = 5;
vector<vector<int>> edges = {{0, 1, 2}, {0, 2, 1}, {1, 2, 1}, {2, 3, 2}, {3, 4, 1}, {4, 2, 2}};
vector<vector<int>> adj[V];
for (auto it : edges) {
vector<int> tmp(2);
tmp[0] = it[1];
tmp[1] = it[2];
adj[it[0]].push_back(tmp);
tmp[0] = it[0];
tmp[1] = it[2];
adj[it[1]].push_back(tmp);
}
Solution obj;
int mstWt = obj.spanningTree(V, adj);
cout << "The sum of all the edge weights: " << mstWt << endl;
return 0;
}