-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbasic_cnn.py
53 lines (46 loc) · 1.51 KB
/
basic_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from model_zoo import Model
import tensorflow as tf
class BasicCNNModel(Model):
"""
Basic CNN Model
"""
def inputs(self):
"""
Define inputs.
:return:
"""
return tf.keras.Input(shape=(28, 28, 1))
def outputs(self, inputs):
"""
Define outputs.
"""
x = tf.keras.layers.BatchNormalization()(inputs)
x = tf.keras.layers.Conv2D(32, (2, 2), padding='same', activation='relu',
kernel_initializer='random_uniform')(x)
x = tf.keras.layers.MaxPool2D(padding='same')(x)
x = tf.keras.layers.Dropout(0.5)(x)
x = tf.keras.layers.Conv2D(32, (2, 2), padding='same', activation='relu',
kernel_initializer='random_uniform')(x)
x = tf.keras.layers.MaxPool2D(padding='same')(x)
x = tf.keras.layers.Dropout(0.5)(x)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(128, activation='relu', kernel_initializer='random_uniform')(x)
return tf.keras.layers.Dense(10, activation='softmax')(x)
def optimizer(self):
"""
build optimizer.
:return:
"""
return tf.keras.optimizers.Adam(lr=self.config.get('learning_rate'))
def loss(self):
"""
define loss.
:return:
"""
return 'categorical_crossentropy'
def metrics(self):
"""
define metrics.
:return:
"""
return ['accuracy']