diff --git a/README.md b/README.md index 03c73d8..fe28142 100644 --- a/README.md +++ b/README.md @@ -14,10 +14,14 @@ This repository is made so that we can pull the changes made to the [BirdNET](ht # Clone this repository: git clone https://github.com/NINAnor/birdnetfs.git cd birdnetfs +python -m venv .venv +source .venv/bin/activate pip install requirements.txt ``` 2- Clone the BirdNET repository: + +`birdnetfs` attempts to reuse `BirdNET` functions as much as possible. ```bash git clone https://github.com/kahst/BirdNET-Analyzer.git @@ -26,12 +30,14 @@ mv BirdNET-Analyzer birdnetsrc 3- Analyze +First, you need to change the **BirdNET config_file** (**NOT** the config_connection.yaml) located in `src/config.py`. More particularly you may want to change the `OUTPUT_PATH` parameter which is the path where the output files will be created. + There is two options. - First you can analyze a file of your chosing using: ```bash -export PYTHONPATH="${PYTHONPATH}:./birdnetsrc" +export PYTHONPATH="${PYTHONPATH}:./src/birdnetsrc:src:birdnetsrc" python analyse.py filecache::ssh://$USER:$PASSWORD@HOST:/PATH/TO/AUDIO/FILE1.mp3 ``` @@ -63,7 +69,7 @@ python3 src/parse_results.py 3- Extract the detections! ```bash -python3 src/extract.py +./extract.sh ``` diff --git a/src/analysefs.py b/src/analysefs.py index 3df12f1..eaf7be6 100644 --- a/src/analysefs.py +++ b/src/analysefs.py @@ -13,7 +13,7 @@ ) from birdnetsrc.audio import splitSignal from birdnetsrc.utils import readLines, save_result_file -from utils import clean_tmp, read_audio_data +from utils import read_audio_data RAVEN_TABLE_HEADER = "Selection\tView\tChannel\tBegin Time (s)\tEnd Time (s)\tLow Freq (Hz)\tHigh Freq (Hz)\tCommon Name\tSpecies Code\tConfidence\tBegin Path\tFile Offset (s)\n" @@ -60,6 +60,7 @@ def generate_raven_table( selection_id += 1 out_string += f"{selection_id}\tSpectrogram 1\t1\t0\t3\t{low_freq}\t{high_freq}\tnocall\tnocall\t1.0\t{afile_path}\t0\n" + print(f"FILE SAVED IN {result_path}") save_result_file(result_path, out_string) @@ -94,7 +95,7 @@ def analyzeFile(fpath: pathlib.Path): item: Tuple containing (file path, config) Returns: - The `True` if the file was analyzed successfully. + The True if the file was analyzed successfully. """ # Start time @@ -106,7 +107,7 @@ def analyzeFile(fpath: pathlib.Path): result_file_name = get_result_file_names(fpath) # Open file and split into chunks: - wave, sr, fileLengthSeconds, tmpdir = read_audio_data(fpath, sr=cfg.SAMPLE_RATE) + wave, sr, fileLengthSeconds = read_audio_data(fpath, sr=cfg.SAMPLE_RATE) # Status print(f"Analyzing {fpath}", flush=True) @@ -158,7 +159,8 @@ def analyzeFile(fpath: pathlib.Path): saveResultFiles(results, result_file_name, fpath, cfg.SAMPLE_RATE) delta_time = (datetime.datetime.now() - start_time).total_seconds() print(f"Finished {fpath} in {delta_time:.2f} seconds", flush=True) - clean_tmp(tmpdir) + print(f"OUTPUT file saved in {result_file_name}") + return True diff --git a/src/config.py b/src/config.py index f301f70..41e1c7f 100644 --- a/src/config.py +++ b/src/config.py @@ -13,13 +13,13 @@ ########################## MODEL_VERSION: str = "V2.4" -PB_MODEL: str = "/home/benjamin.cretois/Code/birdnetfs/src/birdnetsrc/checkpoints/V2.4/BirdNET_GLOBAL_6K_V2.4_Model" +PB_MODEL: str = "./checkpoints/V2.4/BirdNET_GLOBAL_6K_V2.4_Model" # MODEL_PATH = PB_MODEL # This will load the protobuf model -MODEL_PATH: str = "/home/benjamin.cretois/Code/birdnetfs/src/birdnetsrc/checkpoints/V2.4/BirdNET_GLOBAL_6K_V2.4_Model_FP32.tflite" -MDATA_MODEL_PATH: str = "/home/benjamin.cretois/Code/birdnetfs/src/birdnetsrc/checkpoints/V2.4/BirdNET_GLOBAL_6K_V2.4_MData_Model_V2_FP16.tflite" -LABELS_FILE: str = "/home/benjamin.cretois/Code/birdnetfs/src/birdnetsrc/checkpoints/V2.4/BirdNET_GLOBAL_6K_V2.4_Labels.txt" +MODEL_PATH: str = "./checkpoints/V2.4/BirdNET_GLOBAL_6K_V2.4_Model_FP32.tflite" +MDATA_MODEL_PATH: str = "./checkpoints/V2.4/BirdNET_GLOBAL_6K_V2.4_MData_Model_V2_FP16.tflite" +LABELS_FILE: str = "./checkpoints/V2.4/BirdNET_GLOBAL_6K_V2.4_Labels.txt" TRANSLATED_LABELS_PATH: str = ( - "/home/benjamin.cretois/Code/birdnetfs/birdnetfs/src/birdnetsrc/labels/V2.4" + "./labels/V2.4" ) # Path to custom trained classifier @@ -71,15 +71,15 @@ # Note: Entries in this list have to match entries from the LABELS_FILE # We use the 2021 eBird taxonomy for species names (Clements list) CODES_FILE: str = ( - "/home/benjamin.cretois/Code/birdnetfs/src/birdnetsrc/eBird_taxonomy_codes_2021E.json" + "./eBird_taxonomy_codes_2021E.json" ) SPECIES_LIST_FILE: str = ( - "/home/benjamin.cretois/Code/birdnetfs/src/birdnetsrc/example/species_list.txt" + "./example/species_list.txt" ) # File input path and output path for selection tables INPUT_PATH: str = "example/" -OUTPUT_PATH: str = "results/" +OUTPUT_PATH: str = "/data/Prosjekter3/824001_05_metodesats_gis_24_41_flittie_kleiven/birdnetResults" # Supported file types ALLOWED_FILETYPES: list[str] = [ diff --git a/src/extract.py b/src/extract.py index c2e4dfd..1c37816 100644 --- a/src/extract.py +++ b/src/extract.py @@ -1,14 +1,12 @@ import argparse -import glob import logging import os -import traceback import fs -import numpy as np import pyarrow.parquet as pq import yaml from tenacity import retry, wait_exponential + from utils import openAudioFile, openCachedFile, saveSignal @@ -28,16 +26,19 @@ def do_connection(connection_string): if connection_string: return fs.open_fs(connection_string) return False - except Exception as e: - #logging.error(f"Attempt failed to connect to filesystem: {e}") - #logging.info("Retrying connection...") + except Exception: + # logging.error(f"Attempt failed to connect to filesystem: {e}") + # logging.info("Retrying connection...") raise + # @retry(wait=wait_exponential(multiplier=5, min=60, max=600)) -def extract_segments(item, sample_rate, out_path, filesystem, seg_length=3): +def extract_segments( + item, sample_rate, out_path, filesystem, connection_string, seg_length=3 +): """Extract segments from the audio file and save them.""" segments = item - audio_file = item["audio"] + audio_file = os.path.join(connection_string, item["audio"]) signal, rate = ( openAudioFile(audio_file, sample_rate) @@ -46,7 +47,7 @@ def extract_segments(item, sample_rate, out_path, filesystem, seg_length=3): ) save_extracted_segments(signal, rate, segments, out_path, seg_length) - #logging.info(f"Segments extracted from {audio_file}") + # logging.info(f"Segments extracted from {audio_file}") def save_extracted_segments(signal, rate, segment, out_path, seg_length): @@ -62,7 +63,6 @@ def save_extracted_segments(signal, rate, segment, out_path, seg_length): save_segment(segment_signal, segment, out_path) - def save_segment(segment_signal, segment, out_path): """Save an individual segment.""" species_path = os.path.join(out_path, segment["species"]) @@ -75,7 +75,6 @@ def save_segment(segment_signal, segment, out_path): if __name__ == "__main__": - parser = argparse.ArgumentParser() parser.add_argument( "--config", @@ -96,5 +95,10 @@ def save_segment(segment_signal, segment, out_path): for item in items.to_pylist(): print(f"Extracting segments from {item}") extract_segments( - item, config["SAMPLE_RATE"], config["OUT_PATH_SEGMENTS"], myfs, seg_length=3 + item, + config["SAMPLE_RATE"], + config["OUT_PATH_SEGMENTS"], + myfs, + config["CONNECTION_STRING"], + seg_length=3, ) diff --git a/src/utils.py b/src/utils.py index f836d3b..55fc533 100644 --- a/src/utils.py +++ b/src/utils.py @@ -10,15 +10,20 @@ def read_file(filepath, sr): # Step 1: Create a temporary directory for this process - temp_dir = tempfile.mkdtemp(prefix="tmp_", dir="/tmp") - print(f"Created temp directory: {temp_dir}") + # temp_dir = tempfile.mkdtemp(prefix="tmp_", dir="/tmp") + # print(f"Created temp directory: {temp_dir}") # Step 2: Use fsspec and configure it to use the temp_dir for caching - with fsspec.open(filepath, block_cache_dir=temp_dir) as f: + with fsspec.open( + filepath + ) as f: # with fsspec.open(filepath, block_cache_dir=temp_dir) as f: wave, fs = librosa.load(f, sr=sr, mono=True, res_type="kaiser_fast") # Return the data and the temp directory path (for later cleanup) - return wave, fs, temp_dir + return ( + wave, + fs, + ) # temp_dir def clean_tmp(temp_dir): @@ -32,16 +37,15 @@ def clean_tmp(temp_dir): def read_audio_data(path, sr): try: - ndarray, rate, tmpdir = read_file(path, sr) + ndarray, rate = read_file(path, sr) # , tmpdir duration = librosa.get_duration(y=ndarray, sr=sr) except audioread.exceptions.NoBackendError as e: print(e) - return ndarray, rate, duration, tmpdir + return ndarray, rate, duration # , tmpdir def openCachedFile(filesystem, path, sample_rate=48000, offset=0.0, duration=None): import shutil - import tempfile bin = filesystem.openbin(path)