We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I am getting this error while running inference.py. I have tried reinstallt torch and torchvision for different versions but nothing seems to work
(dope_training) add@add-MS-7C84:~/kick_blenderproc/Deep_Object_Pose/train$ python ../inference/inference.py --weights output/weights/net_epoch_60.pth --data palletjack_data_test/ --object palletjack /home/add/kick_blenderproc/Deep_Object_Pose/train/output/dope_training/lib/python3.8/site-packages/albumentations/__init__.py:13: UserWarning: A new version of Albumentations is available: 2.0.2 (you have 1.4.18). Upgrade using: pip install -U albumentations. To disable automatic update checks, set the environment variable NO_ALBUMENTATIONS_UPDATE to 1. check_for_updates() Found 1 weights. Loading DOPE model 'output/weights/net_epoch_60.pth'... /home/add/kick_blenderproc/Deep_Object_Pose/train/output/dope_training/lib/python3.8/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. warnings.warn( /home/add/kick_blenderproc/Deep_Object_Pose/train/output/dope_training/lib/python3.8/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or Nonefor 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passingweights=None. warnings.warn(msg) /home/add/kick_blenderproc/Deep_Object_Pose/train/../common/detector.py:274: FutureWarning: You are using torch.loadwithweights_only=False(the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value forweights_onlywill be flipped toTrue. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via torch.serialization.add_safe_globals. We recommend you start setting weights_only=Truefor any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. net.load_state_dict(torch.load(path, map_location=device)) Traceback (most recent call last): File "../inference/inference.py", line 258, in <module> dope_node = DopeNode(config, weight, opt.parallel, opt.object) File "../inference/inference.py", line 49, in __init__ self.model.load_net_model() File "/home/addb/kick_blenderproc/Deep_Object_Pose/train/../common/detector.py", line 253, in load_net_model self.net = self.load_net_model_path(self.net_path) File "/home/add/kick_blenderproc/Deep_Object_Pose/train/../common/detector.py", line 274, in load_net_model_path net.load_state_dict(torch.load(path, map_location=device)) File "/home/add/kick_blenderproc/Deep_Object_Pose/train/output/dope_training/lib/python3.8/site-packages/torch/nn/modules/module.py", line 2215, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for DopeNetwork: Missing key(s) in state_dict: "vgg.0.weight", "vgg.0.bias", "vgg.2.weight", "vgg.2.bias", "vgg.5.weight", "vgg.5.bias", "vgg.7.weight", "vgg.7.bias", "vgg.10.weight", "vgg.10.bias", "vgg.12.weight", "vgg.12.bias", "vgg.14.weight", "vgg.14.bias", "vgg.16.weight", "vgg.16.bias", "vgg.19.weight", "vgg.19.bias", "vgg.21.weight", "vgg.21.bias", "vgg.23.weight", "vgg.23.bias", "vgg.25.weight", "vgg.25.bias", "m1_2.0.weight", "m1_2.0.bias", "m1_2.2.weight", "m1_2.2.bias", "m1_2.4.weight", "m1_2.4.bias", "m1_2.6.weight", "m1_2.6.bias", "m1_2.8.weight", "m1_2.8.bias", "m2_2.0.weight", "m2_2.0.bias", "m2_2.2.weight", "m2_2.2.bias", "m2_2.4.weight", "m2_2.4.bias", "m2_2.6.weight", "m2_2.6.bias", "m2_2.8.weight", "m2_2.8.bias", "m2_2.10.weight", "m2_2.10.bias", "m2_2.12.weight", "m2_2.12.bias", "m3_2.0.weight", "m3_2.0.bias", "m3_2.2.weight", "m3_2.2.bias", "m3_2.4.weight", "m3_2.4.bias", "m3_2.6.weight", "m3_2.6.bias", "m3_2.8.weight", "m3_2.8.bias", "m3_2.10.weight", "m3_2.10.bias", "m3_2.12.weight", "m3_2.12.bias", "m4_2.0.weight", "m4_2.0.bias", "m4_2.2.weight", "m4_2.2.bias", "m4_2.4.weight", "m4_2.4.bias", "m4_2.6.weight", "m4_2.6.bias", "m4_2.8.weight", "m4_2.8.bias", "m4_2.10.weight", "m4_2.10.bias", "m4_2.12.weight", "m4_2.12.bias", "m5_2.0.weight", "m5_2.0.bias", "m5_2.2.weight", "m5_2.2.bias", "m5_2.4.weight", "m5_2.4.bias", "m5_2.6.weight", "m5_2.6.bias", "m5_2.8.weight", "m5_2.8.bias", "m5_2.10.weight", "m5_2.10.bias", "m5_2.12.weight", "m5_2.12.bias", "m6_2.0.weight", "m6_2.0.bias", "m6_2.2.weight", "m6_2.2.bias", "m6_2.4.weight", "m6_2.4.bias", "m6_2.6.weight", "m6_2.6.bias", "m6_2.8.weight", "m6_2.8.bias", "m6_2.10.weight", "m6_2.10.bias", "m6_2.12.weight", "m6_2.12.bias", "m1_1.0.weight", "m1_1.0.bias", "m1_1.2.weight", "m1_1.2.bias", "m1_1.4.weight", "m1_1.4.bias", "m1_1.6.weight", "m1_1.6.bias", "m1_1.8.weight", "m1_1.8.bias", "m2_1.0.weight", "m2_1.0.bias", "m2_1.2.weight", "m2_1.2.bias", "m2_1.4.weight", "m2_1.4.bias", "m2_1.6.weight", "m2_1.6.bias", "m2_1.8.weight", "m2_1.8.bias", "m2_1.10.weight", "m2_1.10.bias", "m2_1.12.weight", "m2_1.12.bias", "m3_1.0.weight", "m3_1.0.bias", "m3_1.2.weight", "m3_1.2.bias", "m3_1.4.weight", "m3_1.4.bias", "m3_1.6.weight", "m3_1.6.bias", "m3_1.8.weight", "m3_1.8.bias", "m3_1.10.weight", "m3_1.10.bias", "m3_1.12.weight", "m3_1.12.bias", "m4_1.0.weight", "m4_1.0.bias", "m4_1.2.weight", "m4_1.2.bias", "m4_1.4.weight", "m4_1.4.bias", "m4_1.6.weight", "m4_1.6.bias", "m4_1.8.weight", "m4_1.8.bias", "m4_1.10.weight", "m4_1.10.bias", "m4_1.12.weight", "m4_1.12.bias", "m5_1.0.weight", "m5_1.0.bias", "m5_1.2.weight", "m5_1.2.bias", "m5_1.4.weight", "m5_1.4.bias", "m5_1.6.weight", "m5_1.6.bias", "m5_1.8.weight", "m5_1.8.bias", "m5_1.10.weight", "m5_1.10.bias", "m5_1.12.weight", "m5_1.12.bias", "m6_1.0.weight", "m6_1.0.bias", "m6_1.2.weight", "m6_1.2.bias", "m6_1.4.weight", "m6_1.4.bias", "m6_1.6.weight", "m6_1.6.bias", "m6_1.8.weight", "m6_1.8.bias", "m6_1.10.weight", "m6_1.10.bias", "m6_1.12.weight", "m6_1.12.bias". Unexpected key(s) in state_dict: "module.vgg.0.weight", "module.vgg.0.bias", "module.vgg.2.weight", "module.vgg.2.bias", "module.vgg.5.weight", "module.vgg.5.bias", "module.vgg.7.weight", "module.vgg.7.bias", "module.vgg.10.weight", "module.vgg.10.bias", "module.vgg.12.weight", "module.vgg.12.bias", "module.vgg.14.weight", "module.vgg.14.bias", "module.vgg.16.weight", "module.vgg.16.bias", "module.vgg.19.weight", "module.vgg.19.bias", "module.vgg.21.weight", "module.vgg.21.bias", "module.vgg.23.weight", "module.vgg.23.bias", "module.vgg.25.weight", "module.vgg.25.bias", "module.m1_2.0.weight", "module.m1_2.0.bias", "module.m1_2.2.weight", "module.m1_2.2.bias", "module.m1_2.4.weight", "module.m1_2.4.bias", "module.m1_2.6.weight", "module.m1_2.6.bias", "module.m1_2.8.weight", "module.m1_2.8.bias", "module.m2_2.0.weight", "module.m2_2.0.bias", "module.m2_2.2.weight", "module.m2_2.2.bias", "module.m2_2.4.weight", "module.m2_2.4.bias", "module.m2_2.6.weight", "module.m2_2.6.bias", "module.m2_2.8.weight", "module.m2_2.8.bias", "module.m2_2.10.weight", "module.m2_2.10.bias", "module.m2_2.12.weight", "module.m2_2.12.bias", "module.m3_2.0.weight", "module.m3_2.0.bias", "module.m3_2.2.weight", "module.m3_2.2.bias", "module.m3_2.4.weight", "module.m3_2.4.bias", "module.m3_2.6.weight", "module.m3_2.6.bias", "module.m3_2.8.weight", "module.m3_2.8.bias", "module.m3_2.10.weight", "module.m3_2.10.bias", "module.m3_2.12.weight", "module.m3_2.12.bias", "module.m4_2.0.weight", "module.m4_2.0.bias", "module.m4_2.2.weight", "module.m4_2.2.bias", "module.m4_2.4.weight", "module.m4_2.4.bias", "module.m4_2.6.weight", "module.m4_2.6.bias", "module.m4_2.8.weight", "module.m4_2.8.bias", "module.m4_2.10.weight", "module.m4_2.10.bias", "module.m4_2.12.weight", "module.m4_2.12.bias", "module.m5_2.0.weight", "module.m5_2.0.bias", "module.m5_2.2.weight", "module.m5_2.2.bias", "module.m5_2.4.weight", "module.m5_2.4.bias", "module.m5_2.6.weight", "module.m5_2.6.bias", "module.m5_2.8.weight", "module.m5_2.8.bias", "module.m5_2.10.weight", "module.m5_2.10.bias", "module.m5_2.12.weight", "module.m5_2.12.bias", "module.m6_2.0.weight", "module.m6_2.0.bias", "module.m6_2.2.weight", "module.m6_2.2.bias", "module.m6_2.4.weight", "module.m6_2.4.bias", "module.m6_2.6.weight", "module.m6_2.6.bias", "module.m6_2.8.weight", "module.m6_2.8.bias", "module.m6_2.10.weight", "module.m6_2.10.bias", "module.m6_2.12.weight", "module.m6_2.12.bias", "module.m1_1.0.weight", "module.m1_1.0.bias", "module.m1_1.2.weight", "module.m1_1.2.bias", "module.m1_1.4.weight", "module.m1_1.4.bias", "module.m1_1.6.weight", "module.m1_1.6.bias", "module.m1_1.8.weight", "module.m1_1.8.bias", "module.m2_1.0.weight", "module.m2_1.0.bias", "module.m2_1.2.weight", "module.m2_1.2.bias", "module.m2_1.4.weight", "module.m2_1.4.bias", "module.m2_1.6.weight", "module.m2_1.6.bias", "module.m2_1.8.weight", "module.m2_1.8.bias", "module.m2_1.10.weight", "module.m2_1.10.bias", "module.m2_1.12.weight", "module.m2_1.12.bias", "module.m3_1.0.weight", "module.m3_1.0.bias", "module.m3_1.2.weight", "module.m3_1.2.bias", "module.m3_1.4.weight", "module.m3_1.4.bias", "module.m3_1.6.weight", "module.m3_1.6.bias", "module.m3_1.8.weight", "module.m3_1.8.bias", "module.m3_1.10.weight", "module.m3_1.10.bias", "module.m3_1.12.weight", "module.m3_1.12.bias", "module.m4_1.0.weight", "module.m4_1.0.bias", "module.m4_1.2.weight", "module.m4_1.2.bias", "module.m4_1.4.weight", "module.m4_1.4.bias", "module.m4_1.6.weight", "module.m4_1.6.bias", "module.m4_1.8.weight", "module.m4_1.8.bias", "module.m4_1.10.weight", "module.m4_1.10.bias", "module.m4_1.12.weight", "module.m4_1.12.bias", "module.m5_1.0.weight", "module.m5_1.0.bias", "module.m5_1.2.weight", "module.m5_1.2.bias", "module.m5_1.4.weight", "module.m5_1.4.bias", "module.m5_1.6.weight", "module.m5_1.6.bias", "module.m5_1.8.weight", "module.m5_1.8.bias", "module.m5_1.10.weight", "module.m5_1.10.bias", "module.m5_1.12.weight", "module.m5_1.12.bias", "module.m6_1.0.weight", "module.m6_1.0.bias", "module.m6_1.2.weight", "module.m6_1.2.bias", "module.m6_1.4.weight", "module.m6_1.4.bias", "module.m6_1.6.weight", "module.m6_1.6.bias", "module.m6_1.8.weight", "module.m6_1.8.bias", "module.m6_1.10.weight", "module.m6_1.10.bias", "module.m6_1.12.weight", "module.m6_1.12.bias".
(dope_training) add@add-MS-7C84:~/kick_blenderproc/Deep_Object_Pose/train$ python ../inference/inference.py --weights output/weights/net_epoch_60.pth --data palletjack_data_test/ --object palletjack /home/add/kick_blenderproc/Deep_Object_Pose/train/output/dope_training/lib/python3.8/site-packages/albumentations/__init__.py:13: UserWarning: A new version of Albumentations is available: 2.0.2 (you have 1.4.18). Upgrade using: pip install -U albumentations. To disable automatic update checks, set the environment variable NO_ALBUMENTATIONS_UPDATE to 1. check_for_updates() Found 1 weights. Loading DOPE model 'output/weights/net_epoch_60.pth'... /home/add/kick_blenderproc/Deep_Object_Pose/train/output/dope_training/lib/python3.8/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. warnings.warn( /home/add/kick_blenderproc/Deep_Object_Pose/train/output/dope_training/lib/python3.8/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or
for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing
. warnings.warn(msg) /home/add/kick_blenderproc/Deep_Object_Pose/train/../common/detector.py:274: FutureWarning: You are using
with
(the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for
will be flipped to
. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via
. We recommend you start setting
for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. net.load_state_dict(torch.load(path, map_location=device)) Traceback (most recent call last): File "../inference/inference.py", line 258, in <module> dope_node = DopeNode(config, weight, opt.parallel, opt.object) File "../inference/inference.py", line 49, in __init__ self.model.load_net_model() File "/home/addb/kick_blenderproc/Deep_Object_Pose/train/../common/detector.py", line 253, in load_net_model self.net = self.load_net_model_path(self.net_path) File "/home/add/kick_blenderproc/Deep_Object_Pose/train/../common/detector.py", line 274, in load_net_model_path net.load_state_dict(torch.load(path, map_location=device)) File "/home/add/kick_blenderproc/Deep_Object_Pose/train/output/dope_training/lib/python3.8/site-packages/torch/nn/modules/module.py", line 2215, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for DopeNetwork: Missing key(s) in state_dict: "vgg.0.weight", "vgg.0.bias", "vgg.2.weight", "vgg.2.bias", "vgg.5.weight", "vgg.5.bias", "vgg.7.weight", "vgg.7.bias", "vgg.10.weight", "vgg.10.bias", "vgg.12.weight", "vgg.12.bias", "vgg.14.weight", "vgg.14.bias", "vgg.16.weight", "vgg.16.bias", "vgg.19.weight", "vgg.19.bias", "vgg.21.weight", "vgg.21.bias", "vgg.23.weight", "vgg.23.bias", "vgg.25.weight", "vgg.25.bias", "m1_2.0.weight", "m1_2.0.bias", "m1_2.2.weight", "m1_2.2.bias", "m1_2.4.weight", "m1_2.4.bias", "m1_2.6.weight", "m1_2.6.bias", "m1_2.8.weight", "m1_2.8.bias", "m2_2.0.weight", "m2_2.0.bias", "m2_2.2.weight", "m2_2.2.bias", "m2_2.4.weight", "m2_2.4.bias", "m2_2.6.weight", "m2_2.6.bias", "m2_2.8.weight", "m2_2.8.bias", "m2_2.10.weight", "m2_2.10.bias", "m2_2.12.weight", "m2_2.12.bias", "m3_2.0.weight", "m3_2.0.bias", "m3_2.2.weight", "m3_2.2.bias", "m3_2.4.weight", "m3_2.4.bias", "m3_2.6.weight", "m3_2.6.bias", "m3_2.8.weight", "m3_2.8.bias", "m3_2.10.weight", "m3_2.10.bias", "m3_2.12.weight", "m3_2.12.bias", "m4_2.0.weight", "m4_2.0.bias", "m4_2.2.weight", "m4_2.2.bias", "m4_2.4.weight", "m4_2.4.bias", "m4_2.6.weight", "m4_2.6.bias", "m4_2.8.weight", "m4_2.8.bias", "m4_2.10.weight", "m4_2.10.bias", "m4_2.12.weight", "m4_2.12.bias", "m5_2.0.weight", "m5_2.0.bias", "m5_2.2.weight", "m5_2.2.bias", "m5_2.4.weight", "m5_2.4.bias", "m5_2.6.weight", "m5_2.6.bias", "m5_2.8.weight", "m5_2.8.bias", "m5_2.10.weight", "m5_2.10.bias", "m5_2.12.weight", "m5_2.12.bias", "m6_2.0.weight", "m6_2.0.bias", "m6_2.2.weight", "m6_2.2.bias", "m6_2.4.weight", "m6_2.4.bias", "m6_2.6.weight", "m6_2.6.bias", "m6_2.8.weight", "m6_2.8.bias", "m6_2.10.weight", "m6_2.10.bias", "m6_2.12.weight", "m6_2.12.bias", "m1_1.0.weight", "m1_1.0.bias", "m1_1.2.weight", "m1_1.2.bias", "m1_1.4.weight", "m1_1.4.bias", "m1_1.6.weight", "m1_1.6.bias", "m1_1.8.weight", "m1_1.8.bias", "m2_1.0.weight", "m2_1.0.bias", "m2_1.2.weight", "m2_1.2.bias", "m2_1.4.weight", "m2_1.4.bias", "m2_1.6.weight", "m2_1.6.bias", "m2_1.8.weight", "m2_1.8.bias", "m2_1.10.weight", "m2_1.10.bias", "m2_1.12.weight", "m2_1.12.bias", "m3_1.0.weight", "m3_1.0.bias", "m3_1.2.weight", "m3_1.2.bias", "m3_1.4.weight", "m3_1.4.bias", "m3_1.6.weight", "m3_1.6.bias", "m3_1.8.weight", "m3_1.8.bias", "m3_1.10.weight", "m3_1.10.bias", "m3_1.12.weight", "m3_1.12.bias", "m4_1.0.weight", "m4_1.0.bias", "m4_1.2.weight", "m4_1.2.bias", "m4_1.4.weight", "m4_1.4.bias", "m4_1.6.weight", "m4_1.6.bias", "m4_1.8.weight", "m4_1.8.bias", "m4_1.10.weight", "m4_1.10.bias", "m4_1.12.weight", "m4_1.12.bias", "m5_1.0.weight", "m5_1.0.bias", "m5_1.2.weight", "m5_1.2.bias", "m5_1.4.weight", "m5_1.4.bias", "m5_1.6.weight", "m5_1.6.bias", "m5_1.8.weight", "m5_1.8.bias", "m5_1.10.weight", "m5_1.10.bias", "m5_1.12.weight", "m5_1.12.bias", "m6_1.0.weight", "m6_1.0.bias", "m6_1.2.weight", "m6_1.2.bias", "m6_1.4.weight", "m6_1.4.bias", "m6_1.6.weight", "m6_1.6.bias", "m6_1.8.weight", "m6_1.8.bias", "m6_1.10.weight", "m6_1.10.bias", "m6_1.12.weight", "m6_1.12.bias". Unexpected key(s) in state_dict: "module.vgg.0.weight", "module.vgg.0.bias", "module.vgg.2.weight", "module.vgg.2.bias", "module.vgg.5.weight", "module.vgg.5.bias", "module.vgg.7.weight", "module.vgg.7.bias", "module.vgg.10.weight", "module.vgg.10.bias", "module.vgg.12.weight", "module.vgg.12.bias", "module.vgg.14.weight", "module.vgg.14.bias", "module.vgg.16.weight", "module.vgg.16.bias", "module.vgg.19.weight", "module.vgg.19.bias", "module.vgg.21.weight", "module.vgg.21.bias", "module.vgg.23.weight", "module.vgg.23.bias", "module.vgg.25.weight", "module.vgg.25.bias", "module.m1_2.0.weight", "module.m1_2.0.bias", "module.m1_2.2.weight", "module.m1_2.2.bias", "module.m1_2.4.weight", "module.m1_2.4.bias", "module.m1_2.6.weight", "module.m1_2.6.bias", "module.m1_2.8.weight", "module.m1_2.8.bias", "module.m2_2.0.weight", "module.m2_2.0.bias", "module.m2_2.2.weight", "module.m2_2.2.bias", "module.m2_2.4.weight", "module.m2_2.4.bias", "module.m2_2.6.weight", "module.m2_2.6.bias", "module.m2_2.8.weight", "module.m2_2.8.bias", "module.m2_2.10.weight", "module.m2_2.10.bias", "module.m2_2.12.weight", "module.m2_2.12.bias", "module.m3_2.0.weight", "module.m3_2.0.bias", "module.m3_2.2.weight", "module.m3_2.2.bias", "module.m3_2.4.weight", "module.m3_2.4.bias", "module.m3_2.6.weight", "module.m3_2.6.bias", "module.m3_2.8.weight", "module.m3_2.8.bias", "module.m3_2.10.weight", "module.m3_2.10.bias", "module.m3_2.12.weight", "module.m3_2.12.bias", "module.m4_2.0.weight", "module.m4_2.0.bias", "module.m4_2.2.weight", "module.m4_2.2.bias", "module.m4_2.4.weight", "module.m4_2.4.bias", "module.m4_2.6.weight", "module.m4_2.6.bias", "module.m4_2.8.weight", "module.m4_2.8.bias", "module.m4_2.10.weight", "module.m4_2.10.bias", "module.m4_2.12.weight", "module.m4_2.12.bias", "module.m5_2.0.weight", "module.m5_2.0.bias", "module.m5_2.2.weight", "module.m5_2.2.bias", "module.m5_2.4.weight", "module.m5_2.4.bias", "module.m5_2.6.weight", "module.m5_2.6.bias", "module.m5_2.8.weight", "module.m5_2.8.bias", "module.m5_2.10.weight", "module.m5_2.10.bias", "module.m5_2.12.weight", "module.m5_2.12.bias", "module.m6_2.0.weight", "module.m6_2.0.bias", "module.m6_2.2.weight", "module.m6_2.2.bias", "module.m6_2.4.weight", "module.m6_2.4.bias", "module.m6_2.6.weight", "module.m6_2.6.bias", "module.m6_2.8.weight", "module.m6_2.8.bias", "module.m6_2.10.weight", "module.m6_2.10.bias", "module.m6_2.12.weight", "module.m6_2.12.bias", "module.m1_1.0.weight", "module.m1_1.0.bias", "module.m1_1.2.weight", "module.m1_1.2.bias", "module.m1_1.4.weight", "module.m1_1.4.bias", "module.m1_1.6.weight", "module.m1_1.6.bias", "module.m1_1.8.weight", "module.m1_1.8.bias", "module.m2_1.0.weight", "module.m2_1.0.bias", "module.m2_1.2.weight", "module.m2_1.2.bias", "module.m2_1.4.weight", "module.m2_1.4.bias", "module.m2_1.6.weight", "module.m2_1.6.bias", "module.m2_1.8.weight", "module.m2_1.8.bias", "module.m2_1.10.weight", "module.m2_1.10.bias", "module.m2_1.12.weight", "module.m2_1.12.bias", "module.m3_1.0.weight", "module.m3_1.0.bias", "module.m3_1.2.weight", "module.m3_1.2.bias", "module.m3_1.4.weight", "module.m3_1.4.bias", "module.m3_1.6.weight", "module.m3_1.6.bias", "module.m3_1.8.weight", "module.m3_1.8.bias", "module.m3_1.10.weight", "module.m3_1.10.bias", "module.m3_1.12.weight", "module.m3_1.12.bias", "module.m4_1.0.weight", "module.m4_1.0.bias", "module.m4_1.2.weight", "module.m4_1.2.bias", "module.m4_1.4.weight", "module.m4_1.4.bias", "module.m4_1.6.weight", "module.m4_1.6.bias", "module.m4_1.8.weight", "module.m4_1.8.bias", "module.m4_1.10.weight", "module.m4_1.10.bias", "module.m4_1.12.weight", "module.m4_1.12.bias", "module.m5_1.0.weight", "module.m5_1.0.bias", "module.m5_1.2.weight", "module.m5_1.2.bias", "module.m5_1.4.weight", "module.m5_1.4.bias", "module.m5_1.6.weight", "module.m5_1.6.bias", "module.m5_1.8.weight", "module.m5_1.8.bias", "module.m5_1.10.weight", "module.m5_1.10.bias", "module.m5_1.12.weight", "module.m5_1.12.bias", "module.m6_1.0.weight", "module.m6_1.0.bias", "module.m6_1.2.weight", "module.m6_1.2.bias", "module.m6_1.4.weight", "module.m6_1.4.bias", "module.m6_1.6.weight", "module.m6_1.6.bias", "module.m6_1.8.weight", "module.m6_1.8.bias", "module.m6_1.10.weight", "module.m6_1.10.bias", "module.m6_1.12.weight", "module.m6_1.12.bias".
I also downgraded torchvision to 0.12.1 as per this but it said that my RTX 3090 doesnt support this version. Kindly help me in this matter
The text was updated successfully, but these errors were encountered:
No branches or pull requests
I am getting this error while running inference.py. I have tried reinstallt torch and torchvision for different versions but nothing seems to work
(dope_training) add@add-MS-7C84:~/kick_blenderproc/Deep_Object_Pose/train$ python ../inference/inference.py --weights output/weights/net_epoch_60.pth --data palletjack_data_test/ --object palletjack /home/add/kick_blenderproc/Deep_Object_Pose/train/output/dope_training/lib/python3.8/site-packages/albumentations/__init__.py:13: UserWarning: A new version of Albumentations is available: 2.0.2 (you have 1.4.18). Upgrade using: pip install -U albumentations. To disable automatic update checks, set the environment variable NO_ALBUMENTATIONS_UPDATE to 1. check_for_updates() Found 1 weights. Loading DOPE model 'output/weights/net_epoch_60.pth'... /home/add/kick_blenderproc/Deep_Object_Pose/train/output/dope_training/lib/python3.8/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. warnings.warn( /home/add/kick_blenderproc/Deep_Object_Pose/train/output/dope_training/lib/python3.8/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or
Nonefor 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing
weights=None. warnings.warn(msg) /home/add/kick_blenderproc/Deep_Object_Pose/train/../common/detector.py:274: FutureWarning: You are using
torch.loadwith
weights_only=False(the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for
weights_onlywill be flipped to
True. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via
torch.serialization.add_safe_globals. We recommend you start setting
weights_only=Truefor any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. net.load_state_dict(torch.load(path, map_location=device)) Traceback (most recent call last): File "../inference/inference.py", line 258, in <module> dope_node = DopeNode(config, weight, opt.parallel, opt.object) File "../inference/inference.py", line 49, in __init__ self.model.load_net_model() File "/home/addb/kick_blenderproc/Deep_Object_Pose/train/../common/detector.py", line 253, in load_net_model self.net = self.load_net_model_path(self.net_path) File "/home/add/kick_blenderproc/Deep_Object_Pose/train/../common/detector.py", line 274, in load_net_model_path net.load_state_dict(torch.load(path, map_location=device)) File "/home/add/kick_blenderproc/Deep_Object_Pose/train/output/dope_training/lib/python3.8/site-packages/torch/nn/modules/module.py", line 2215, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for DopeNetwork: Missing key(s) in state_dict: "vgg.0.weight", "vgg.0.bias", "vgg.2.weight", "vgg.2.bias", "vgg.5.weight", "vgg.5.bias", "vgg.7.weight", "vgg.7.bias", "vgg.10.weight", "vgg.10.bias", "vgg.12.weight", "vgg.12.bias", "vgg.14.weight", "vgg.14.bias", "vgg.16.weight", "vgg.16.bias", "vgg.19.weight", "vgg.19.bias", "vgg.21.weight", "vgg.21.bias", "vgg.23.weight", "vgg.23.bias", "vgg.25.weight", "vgg.25.bias", "m1_2.0.weight", "m1_2.0.bias", "m1_2.2.weight", "m1_2.2.bias", "m1_2.4.weight", "m1_2.4.bias", "m1_2.6.weight", "m1_2.6.bias", "m1_2.8.weight", "m1_2.8.bias", "m2_2.0.weight", "m2_2.0.bias", "m2_2.2.weight", "m2_2.2.bias", "m2_2.4.weight", "m2_2.4.bias", "m2_2.6.weight", "m2_2.6.bias", "m2_2.8.weight", "m2_2.8.bias", "m2_2.10.weight", "m2_2.10.bias", "m2_2.12.weight", "m2_2.12.bias", "m3_2.0.weight", "m3_2.0.bias", "m3_2.2.weight", "m3_2.2.bias", "m3_2.4.weight", "m3_2.4.bias", "m3_2.6.weight", "m3_2.6.bias", "m3_2.8.weight", "m3_2.8.bias", "m3_2.10.weight", "m3_2.10.bias", "m3_2.12.weight", "m3_2.12.bias", "m4_2.0.weight", "m4_2.0.bias", "m4_2.2.weight", "m4_2.2.bias", "m4_2.4.weight", "m4_2.4.bias", "m4_2.6.weight", "m4_2.6.bias", "m4_2.8.weight", "m4_2.8.bias", "m4_2.10.weight", "m4_2.10.bias", "m4_2.12.weight", "m4_2.12.bias", "m5_2.0.weight", "m5_2.0.bias", "m5_2.2.weight", "m5_2.2.bias", "m5_2.4.weight", "m5_2.4.bias", "m5_2.6.weight", "m5_2.6.bias", "m5_2.8.weight", "m5_2.8.bias", "m5_2.10.weight", "m5_2.10.bias", "m5_2.12.weight", "m5_2.12.bias", "m6_2.0.weight", "m6_2.0.bias", "m6_2.2.weight", "m6_2.2.bias", "m6_2.4.weight", "m6_2.4.bias", "m6_2.6.weight", "m6_2.6.bias", "m6_2.8.weight", "m6_2.8.bias", "m6_2.10.weight", "m6_2.10.bias", "m6_2.12.weight", "m6_2.12.bias", "m1_1.0.weight", "m1_1.0.bias", "m1_1.2.weight", "m1_1.2.bias", "m1_1.4.weight", "m1_1.4.bias", "m1_1.6.weight", "m1_1.6.bias", "m1_1.8.weight", "m1_1.8.bias", "m2_1.0.weight", "m2_1.0.bias", "m2_1.2.weight", "m2_1.2.bias", "m2_1.4.weight", "m2_1.4.bias", "m2_1.6.weight", "m2_1.6.bias", "m2_1.8.weight", "m2_1.8.bias", "m2_1.10.weight", "m2_1.10.bias", "m2_1.12.weight", "m2_1.12.bias", "m3_1.0.weight", "m3_1.0.bias", "m3_1.2.weight", "m3_1.2.bias", "m3_1.4.weight", "m3_1.4.bias", "m3_1.6.weight", "m3_1.6.bias", "m3_1.8.weight", "m3_1.8.bias", "m3_1.10.weight", "m3_1.10.bias", "m3_1.12.weight", "m3_1.12.bias", "m4_1.0.weight", "m4_1.0.bias", "m4_1.2.weight", "m4_1.2.bias", "m4_1.4.weight", "m4_1.4.bias", "m4_1.6.weight", "m4_1.6.bias", "m4_1.8.weight", "m4_1.8.bias", "m4_1.10.weight", "m4_1.10.bias", "m4_1.12.weight", "m4_1.12.bias", "m5_1.0.weight", "m5_1.0.bias", "m5_1.2.weight", "m5_1.2.bias", "m5_1.4.weight", "m5_1.4.bias", "m5_1.6.weight", "m5_1.6.bias", "m5_1.8.weight", "m5_1.8.bias", "m5_1.10.weight", "m5_1.10.bias", "m5_1.12.weight", "m5_1.12.bias", "m6_1.0.weight", "m6_1.0.bias", "m6_1.2.weight", "m6_1.2.bias", "m6_1.4.weight", "m6_1.4.bias", "m6_1.6.weight", "m6_1.6.bias", "m6_1.8.weight", "m6_1.8.bias", "m6_1.10.weight", "m6_1.10.bias", "m6_1.12.weight", "m6_1.12.bias". Unexpected key(s) in state_dict: "module.vgg.0.weight", "module.vgg.0.bias", "module.vgg.2.weight", "module.vgg.2.bias", "module.vgg.5.weight", "module.vgg.5.bias", "module.vgg.7.weight", "module.vgg.7.bias", "module.vgg.10.weight", "module.vgg.10.bias", "module.vgg.12.weight", "module.vgg.12.bias", "module.vgg.14.weight", "module.vgg.14.bias", "module.vgg.16.weight", "module.vgg.16.bias", "module.vgg.19.weight", "module.vgg.19.bias", "module.vgg.21.weight", "module.vgg.21.bias", "module.vgg.23.weight", "module.vgg.23.bias", "module.vgg.25.weight", "module.vgg.25.bias", "module.m1_2.0.weight", "module.m1_2.0.bias", "module.m1_2.2.weight", "module.m1_2.2.bias", "module.m1_2.4.weight", "module.m1_2.4.bias", "module.m1_2.6.weight", "module.m1_2.6.bias", "module.m1_2.8.weight", "module.m1_2.8.bias", "module.m2_2.0.weight", "module.m2_2.0.bias", "module.m2_2.2.weight", "module.m2_2.2.bias", "module.m2_2.4.weight", "module.m2_2.4.bias", "module.m2_2.6.weight", "module.m2_2.6.bias", "module.m2_2.8.weight", "module.m2_2.8.bias", "module.m2_2.10.weight", "module.m2_2.10.bias", "module.m2_2.12.weight", "module.m2_2.12.bias", "module.m3_2.0.weight", "module.m3_2.0.bias", "module.m3_2.2.weight", "module.m3_2.2.bias", "module.m3_2.4.weight", "module.m3_2.4.bias", "module.m3_2.6.weight", "module.m3_2.6.bias", "module.m3_2.8.weight", "module.m3_2.8.bias", "module.m3_2.10.weight", "module.m3_2.10.bias", "module.m3_2.12.weight", "module.m3_2.12.bias", "module.m4_2.0.weight", "module.m4_2.0.bias", "module.m4_2.2.weight", "module.m4_2.2.bias", "module.m4_2.4.weight", "module.m4_2.4.bias", "module.m4_2.6.weight", "module.m4_2.6.bias", "module.m4_2.8.weight", "module.m4_2.8.bias", "module.m4_2.10.weight", "module.m4_2.10.bias", "module.m4_2.12.weight", "module.m4_2.12.bias", "module.m5_2.0.weight", "module.m5_2.0.bias", "module.m5_2.2.weight", "module.m5_2.2.bias", "module.m5_2.4.weight", "module.m5_2.4.bias", "module.m5_2.6.weight", "module.m5_2.6.bias", "module.m5_2.8.weight", "module.m5_2.8.bias", "module.m5_2.10.weight", "module.m5_2.10.bias", "module.m5_2.12.weight", "module.m5_2.12.bias", "module.m6_2.0.weight", "module.m6_2.0.bias", "module.m6_2.2.weight", "module.m6_2.2.bias", "module.m6_2.4.weight", "module.m6_2.4.bias", "module.m6_2.6.weight", "module.m6_2.6.bias", "module.m6_2.8.weight", "module.m6_2.8.bias", "module.m6_2.10.weight", "module.m6_2.10.bias", "module.m6_2.12.weight", "module.m6_2.12.bias", "module.m1_1.0.weight", "module.m1_1.0.bias", "module.m1_1.2.weight", "module.m1_1.2.bias", "module.m1_1.4.weight", "module.m1_1.4.bias", "module.m1_1.6.weight", "module.m1_1.6.bias", "module.m1_1.8.weight", "module.m1_1.8.bias", "module.m2_1.0.weight", "module.m2_1.0.bias", "module.m2_1.2.weight", "module.m2_1.2.bias", "module.m2_1.4.weight", "module.m2_1.4.bias", "module.m2_1.6.weight", "module.m2_1.6.bias", "module.m2_1.8.weight", "module.m2_1.8.bias", "module.m2_1.10.weight", "module.m2_1.10.bias", "module.m2_1.12.weight", "module.m2_1.12.bias", "module.m3_1.0.weight", "module.m3_1.0.bias", "module.m3_1.2.weight", "module.m3_1.2.bias", "module.m3_1.4.weight", "module.m3_1.4.bias", "module.m3_1.6.weight", "module.m3_1.6.bias", "module.m3_1.8.weight", "module.m3_1.8.bias", "module.m3_1.10.weight", "module.m3_1.10.bias", "module.m3_1.12.weight", "module.m3_1.12.bias", "module.m4_1.0.weight", "module.m4_1.0.bias", "module.m4_1.2.weight", "module.m4_1.2.bias", "module.m4_1.4.weight", "module.m4_1.4.bias", "module.m4_1.6.weight", "module.m4_1.6.bias", "module.m4_1.8.weight", "module.m4_1.8.bias", "module.m4_1.10.weight", "module.m4_1.10.bias", "module.m4_1.12.weight", "module.m4_1.12.bias", "module.m5_1.0.weight", "module.m5_1.0.bias", "module.m5_1.2.weight", "module.m5_1.2.bias", "module.m5_1.4.weight", "module.m5_1.4.bias", "module.m5_1.6.weight", "module.m5_1.6.bias", "module.m5_1.8.weight", "module.m5_1.8.bias", "module.m5_1.10.weight", "module.m5_1.10.bias", "module.m5_1.12.weight", "module.m5_1.12.bias", "module.m6_1.0.weight", "module.m6_1.0.bias", "module.m6_1.2.weight", "module.m6_1.2.bias", "module.m6_1.4.weight", "module.m6_1.4.bias", "module.m6_1.6.weight", "module.m6_1.6.bias", "module.m6_1.8.weight", "module.m6_1.8.bias", "module.m6_1.10.weight", "module.m6_1.10.bias", "module.m6_1.12.weight", "module.m6_1.12.bias".
I also downgraded torchvision to 0.12.1 as per this but it said that my RTX 3090 doesnt support this version.
Kindly help me in this matter
The text was updated successfully, but these errors were encountered: