-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathUtils.py
135 lines (109 loc) · 3.94 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os, sys, time,torch,torchvision,pickle,trimesh,itertools,datetime,imageio,logging,joblib,importlib,argparse
import torch.nn.functional as F
import torch.nn as nn
from functools import partial
import pandas as pd
import open3d as o3d
import cv2
import numpy as np
from transformations import *
code_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(code_dir)
def set_logging_format(level=logging.INFO):
importlib.reload(logging)
FORMAT = '%(message)s'
logging.basicConfig(level=level, format=FORMAT, datefmt='%m-%d|%H:%M:%S')
set_logging_format()
def set_seed(random_seed):
import torch,random
np.random.seed(random_seed)
random.seed(random_seed)
torch.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def toOpen3dCloud(points,colors=None,normals=None):
cloud = o3d.geometry.PointCloud()
cloud.points = o3d.utility.Vector3dVector(points.astype(np.float64))
if colors is not None:
if colors.max()>1:
colors = colors/255.0
cloud.colors = o3d.utility.Vector3dVector(colors.astype(np.float64))
if normals is not None:
cloud.normals = o3d.utility.Vector3dVector(normals.astype(np.float64))
return cloud
def depth2xyzmap(depth:np.ndarray, K, uvs:np.ndarray=None, zmin=0.1):
invalid_mask = (depth<zmin)
H,W = depth.shape[:2]
if uvs is None:
vs,us = np.meshgrid(np.arange(0,H),np.arange(0,W), sparse=False, indexing='ij')
vs = vs.reshape(-1)
us = us.reshape(-1)
else:
uvs = uvs.round().astype(int)
us = uvs[:,0]
vs = uvs[:,1]
zs = depth[vs,us]
xs = (us-K[0,2])*zs/K[0,0]
ys = (vs-K[1,2])*zs/K[1,1]
pts = np.stack((xs.reshape(-1),ys.reshape(-1),zs.reshape(-1)), 1) #(N,3)
xyz_map = np.zeros((H,W,3), dtype=np.float32)
xyz_map[vs,us] = pts
if invalid_mask.any():
xyz_map[invalid_mask] = 0
return xyz_map
def freeze_model(model):
model = model.eval()
for p in model.parameters():
p.requires_grad = False
for p in model.buffers():
p.requires_grad = False
return model
def get_resize_keep_aspect_ratio(H, W, divider=16, max_H=1232, max_W=1232):
assert max_H%divider==0
assert max_W%divider==0
def round_by_divider(x):
return int(np.ceil(x/divider)*divider)
H_resize = round_by_divider(H) #!NOTE KITTI width=1242
W_resize = round_by_divider(W)
if H_resize>max_H or W_resize>max_W:
if H_resize>W_resize:
W_resize = round_by_divider(W_resize*max_H/H_resize)
H_resize = max_H
else:
H_resize = round_by_divider(H_resize*max_W/W_resize)
W_resize = max_W
return int(H_resize), int(W_resize)
def vis_disparity(disp, min_val=None, max_val=None, invalid_thres=np.inf, color_map=cv2.COLORMAP_TURBO, cmap=None, other_output={}):
"""
@disp: np array (H,W)
@invalid_thres: > thres is invalid
"""
disp = disp.copy()
H,W = disp.shape[:2]
invalid_mask = disp>=invalid_thres
if (invalid_mask==0).sum()==0:
other_output['min_val'] = None
other_output['max_val'] = None
return np.zeros((H,W,3))
if min_val is None:
min_val = disp[invalid_mask==0].min()
if max_val is None:
max_val = disp[invalid_mask==0].max()
other_output['min_val'] = min_val
other_output['max_val'] = max_val
vis = ((disp-min_val)/(max_val-min_val)).clip(0,1) * 255
if cmap is None:
vis = cv2.applyColorMap(vis.clip(0, 255).astype(np.uint8), color_map)[...,::-1]
else:
vis = cmap(vis.astype(np.uint8))[...,:3]*255
if invalid_mask.any():
vis[invalid_mask] = 0
return vis.astype(np.uint8)