-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain1.py
499 lines (418 loc) · 22.3 KB
/
main1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import argparse
import datetime
import os.path
import time
import torch
import torch.backends.cudnn as cudnn
import json
from pathlib import Path
from timm.models import create_model
from timm.scheduler import create_scheduler
from timm.optim import create_optimizer
from timm.utils import NativeScaler
from datasets import build_dataset
from engine1 import train_one_epoch, evaluate, generate_attention_maps_ms
import models123
import utils
import random
import numpy as np
import mlflow
from evaluation import whole_eval
import yaml
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
def get_args_parser():
parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False)
parser.add_argument('--batch-size', default=64, type=int)
parser.add_argument('--epochs', default=60, type=int)
parser.add_argument('--seed', type=int, default=504)
parser.add_argument('--epoch-save-ckpt', action="store_true")
parser.add_argument('--deterministic', action="store_true", default=True)
parser.add_argument('--no-deterministic', action="store_false", dest="deterministic")
# distributed parameters
parser.add_argument('--rank', default=0, type=int)
parser.add_argument('--gpu', default=None)
parser.add_argument('--world_size', default=1, type=int)
parser.add_argument('--dist-url', default=None)
parser.add_argument('--dist-backend', default=None)
parser.add_argument('--local_rank', default=None, type=int)
parser.add_argument('--distributed', action="store_true")
# Model parameters
parser.add_argument('--model', default='deit_small_WeakTr_patch16_224', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
# AAF parameters
parser.add_argument("--reduction", type=float, default=8)
parser.add_argument("--pool-type", type=str, default="max")
parser.add_argument("--feat-reduction", default=8, type=int)
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.03,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=4e-4, metavar='LR',
help='learning rate (default: 4e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=0.0, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=0, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=True)
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Finetuning params
parser.add_argument('--finetune', default='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth', help='finetune from checkpoint')
parser.add_argument('--extra-token', action="store_true", default=True)
parser.add_argument('--no-extra-token', action="store_false", dest="extra-token")
# Dataset parameters
parser.add_argument('--data-path', default='data', type=str, help='dataset path')
parser.add_argument('--img-list', default='', type=str, help='image list path')
parser.add_argument('--data-set', default='', type=str, help='dataset')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# generating attention maps
parser.add_argument('--gen_attention_maps', action='store_true')
parser.add_argument('--patch-size', type=int, default=16)
parser.add_argument('--attention-dir', type=str, default=None)
parser.add_argument('--layer-index', type=int, default=12, help='extract attention maps from the last layers')
parser.add_argument('--img-ms-list', type=str, default=None)
parser.add_argument('--patch-attn-refine', action='store_true', default=True)
parser.add_argument('--no-patch-attn-refine', action='store_false', dest="patch_attn_refine")
parser.add_argument('--visualize-cls-attn', action='store_true', default=True)
parser.add_argument('--no-visualize-cls-attn', action='store_false', dest="visualize-cls-attn")
parser.add_argument('--gt-dir', type=str, default='SegmentationClass')
parser.add_argument('--cam-npy-dir', type=str, default=None)
parser.add_argument("--scales", nargs='+', type=float, default=[1.0])
parser.add_argument('--label-file-path', type=str, default=None)
parser.add_argument('--attention-type', type=str, default='fused')
parser.add_argument('--if_eval_miou', action='store_true', default=True)
parser.add_argument('--no-if_eval_miou', action='store_false', dest="if_eval_miou")
parser.add_argument('--eval_miou_threshold_start', type=int, default=40)
parser.add_argument('--eval_miou_threshold_end', type=int, default=60)
parser.add_argument("--hypers", nargs='+', type=float, default=[2.4])
return parser
def same_seeds(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def main(args):
print(args)
output_dir = Path(args.output_dir)
if not output_dir.exists():
output_dir.mkdir(parents=True)
# save config
variant_file = "variant_attn.yml" if args.gen_attention_maps else "variant.yml"
variant_str = yaml.dump(args.__dict__)
with open(output_dir / variant_file, "w") as f:
f.write(variant_str)
device = torch.device(args.device)
if args.local_rank is not None:
utils.init_distributed_mode(args)
args.batch_size = args.batch_size // args.world_size
if args.distributed:
device = torch.device(args.device, args.local_rank)
if_dataloader_reproduce = False
if args.seed != None:
if_dataloader_reproduce = True
g, worker_init_fn = utils.fix_random_seeds(args.seed)
else:
cudnn.benchmark = True
# Step0: Set our run name in mlflow
# run_name = args.output_dir.split("/")[-1]
# mlflow.start_run(run_name=run_name)
# Step1: Log our parameters into mlflow
# Log our parameters into mlflow
# for key, value in vars(args).items():
# mlflow.log_param(key, value)
dataset_train_, args.nb_classes = build_dataset(is_train=False,
data_set=args.data_set if 'MS' in args.data_set else args.data_set + 'MS',
gen_attn=True, args=args)
dataset_train, args.nb_classes = build_dataset(is_train=True, data_set=args.data_set, args=args)
# 256 resize
dataset_val, _ = build_dataset(is_train=False, data_set=args.data_set, args=args)
args.gt_dir = dataset_train_.gt_dir
if args.distributed:
sampler_train_ = DistributedSampler(dataset_train_, shuffle=False)
sampler_train = torch.utils.data.DistributedSampler(dataset_train, shuffle=True)
sampler_val = torch.utils.data.DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train_ = torch.utils.data.SequentialSampler(dataset_train_)
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True, # drop the last incomplete batch
# dataloader reproduce
# DataLoader will reseed workers following Randomness in multi-process data loading algorithm
worker_init_fn=worker_init_fn if if_dataloader_reproduce else None,
generator=g if if_dataloader_reproduce else None,
)
data_loader_train_ = torch.utils.data.DataLoader(
dataset_train_,
sampler=sampler_train_,
batch_size=1,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
# dataloader reproduce
worker_init_fn=worker_init_fn if if_dataloader_reproduce else None,
generator=g if if_dataloader_reproduce else None,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=int(1.5 * args.batch_size),
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
# dataloader reproduce
worker_init_fn=worker_init_fn if if_dataloader_reproduce else None,
generator=g if if_dataloader_reproduce else None,
)
print(f"Creating model: {args.model}")
model_params = dict(
model_name=args.model,
pretrained=False,
num_classes=args.nb_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=None,
reduction=args.reduction,
)
if "RandWeight" not in args.model:
model_params["pool"] = args.pool_type
model_params["feat_reduction"] = args.feat_reduction
model = create_model(**model_params)
if "RandWeight" in args.model and not args.gen_attention_maps:
np.save(os.path.join(args.output_dir, 'query.npy'), model.adaptive_attention_fusion.query.cpu().numpy())
if args.finetune and not args.gen_attention_maps:
if args.finetune.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.finetune, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.finetune, map_location='cpu')
try:
checkpoint_model = checkpoint['model']
except:
checkpoint_model = checkpoint
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias', 'head_dist.weight', 'head_dist.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
# interpolate position embedding
pos_embed_checkpoint = checkpoint_model['pos_embed']
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = model.patch_embed.num_patches
if args.extra_token:
num_extra_tokens = 1
else:
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
new_size = int(num_patches ** 0.5)
if args.extra_token:
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens].repeat(1, args.nb_classes, 1)
else:
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model['pos_embed'] = new_pos_embed
if args.extra_token:
cls_token_checkpoint = checkpoint_model['cls_token']
new_cls_token = cls_token_checkpoint.repeat(1, args.nb_classes, 1)
checkpoint_model['cls_token'] = new_cls_token
model.load_state_dict(checkpoint_model, strict=False)
model.to(device)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
# mlflow.log_param("n_parameters", n_parameters)
linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0
args.lr = linear_scaled_lr
optimizer = create_optimizer(args, model.parameters())
loss_scaler = NativeScaler()
lr_scheduler, _ = create_scheduler(args, optimizer)
if args.eval:
test_stats = evaluate(data_loader_val, model, device)
print(f"mAP of the network on the {len(dataset_val)} test images: {test_stats['mAP'] * 100:.1f}%")
return
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'], strict=False)
if args.gen_attention_maps:
if "RandWeight" in args.model:
model.adaptive_attention_fusion.query = torch.from_numpy(np.load(os.path.join(args.output_dir, 'query.npy'))).to(device)
if args.distributed:
model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True)
generate_attention_maps_ms(data_loader_train_, model, device, args)
return
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_accuracy = 0.0
max_max_mIoU = 0.0
max_epoch = 0
# CLIP
import clip
device = "cuda:0" if torch.cuda.is_available() else "cpu"
clip_model, preprocess = clip.load('ViT-B/32', device=device)
# for p in clip_model.parameters():
# p.requires_grad = False
clip_model.eval()
writer = SummaryWriter(args.output_dir)
for epoch in range(args.start_epoch, args.epochs):
if args.epoch_save_ckpt and os.path.exists(output_dir / f'checkpoint{epoch}.pth'):
checkpoint = torch.load(output_dir / f'checkpoint{epoch}.pth', map_location='cpu')
model.load_state_dict(checkpoint['model'], strict=False)
optimizer.load_state_dict(checkpoint['optimizer'])
train_stats = checkpoint["train_stats"]
else:
train_stats = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad, clip_model=clip_model, writer=writer, hypers=args.hypers
)
lr_scheduler.step(epoch)
test_stats = evaluate(data_loader_val, model, device)
print(f"mAP of the network on the {len(dataset_val)} test images: {test_stats['mAP'] * 100:.1f}%")
if test_stats["mAP"] > max_accuracy and args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint_best.pth']
for checkpoint_path in checkpoint_paths:
torch.save({
'model': model.state_dict(),
'epoch': epoch,
}, checkpoint_path)
max_accuracy = max(max_accuracy, test_stats["mAP"])
print(f'Max mAP: {max_accuracy * 100:.2f}%')
max_miou = 0
t = 0
if args.if_eval_miou:
model.eval()
generate_attention_maps_ms(data_loader_train_, model, device, args, epoch)
model.train()
max_miou, t = whole_eval(list=args.img_ms_list,
gt_dir=args.gt_dir,
predict_dir=args.cam_npy_dir,
num_classes=args.nb_classes + 1,
logfile=args.cam_npy_dir + '/evallog.txt',
comment=args.model,
start=args.eval_miou_threshold_start,
end=args.eval_miou_threshold_end)
print(f'Max mIoU: {max_miou :.2f}%')
if max_miou > max_max_mIoU and args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint_best_mIoU.pth']
for checkpoint_path in checkpoint_paths:
torch.save({
'model': model.state_dict(),
'epoch': epoch,
'miou': max_miou
}, checkpoint_path)
max_epoch = epoch
max_max_mIoU = max(max_miou, max_max_mIoU)
print(f'Max max mIoU: {max_max_mIoU :.2f}%')
print(f'max_epoch: {max_epoch}')
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'max_miou': max_miou,
'threshold': t,
'max_max_mIoU': max_max_mIoU,
'max_epoch': max_epoch}
# step2: log metric
for key, value in log_stats.items():
writer.add_scalar(key, value, log_stats['epoch'])
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
torch.save({'model': model.state_dict(), 'epoch': epoch}, output_dir / 'checkpoint.pth')
if args.epoch_save_ckpt:
torch.save({'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'train_stats': train_stats,
'epoch': epoch}, output_dir / f'checkpoint{epoch}.pth')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)