-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathcreate_net.py
executable file
·353 lines (268 loc) · 15.7 KB
/
create_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#!/usr/bin/env python
"""
Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
Author: Varun Jampani
"""
from init_caffe import *
from caffe import layers as L, params as P, to_proto
from caffe.proto import caffe_pb2
import tempfile
from loss_functions import *
trans_dim = 15
def normalize(bottom, dim):
bottom_relu = L.ReLU(bottom)
sum = L.Convolution(bottom_relu,
convolution_param = dict(num_output = 1, kernel_size = 1, stride = 1,
weight_filler = dict(type = 'constant', value = 1),
bias_filler = dict(type = 'constant', value = 0)),
param=[{'lr_mult':0, 'decay_mult':0}, {'lr_mult':0, 'decay_mult':0}])
denom = L.Power(sum, power=(-1.0), shift=1e-12)
denom = L.Tile(denom, axis=1, tiles=dim)
return L.Eltwise(bottom_relu, denom, operation=P.Eltwise.PROD)
def conv_bn_relu_layer(bottom, num_out):
conv1 = L.Convolution(bottom,
convolution_param = dict(num_output = num_out, kernel_size = 3, stride = 1, pad = 1,
weight_filler = dict(type = 'gaussian', std = 0.001),
bias_filler = dict(type = 'constant', value = 0)),
# engine = P.Convolution.CUDNN),
param=[{'lr_mult':1, 'decay_mult':1}, {'lr_mult':2, 'decay_mult':0}])
bn1 = L.BatchNorm(conv1)
bn1 = L.ReLU(bn1, in_place = True)
return bn1
def conv_relu_layer(bottom, num_out):
conv1 = L.Convolution(bottom,
convolution_param = dict(num_output = num_out, kernel_size = 3, stride = 1, pad = 1,
weight_filler = dict(type = 'gaussian', std = 0.001),
bias_filler = dict(type = 'constant', value = 0)),
# engine = P.Convolution.CUDNN),
param=[{'lr_mult':1, 'decay_mult':1}, {'lr_mult':2, 'decay_mult':0}])
conv1 = L.ReLU(conv1, in_place = True)
return conv1
def cnn_module(bottom, num_out):
conv1 = conv_bn_relu_layer(bottom, 64)
conv2 = conv_bn_relu_layer(conv1, 64)
pool1 = L.Pooling(conv2, pooling_param = dict(kernel_size = 3, stride = 2, pad = 1, pool = P.Pooling.MAX))
conv3 = conv_bn_relu_layer(pool1, 64)
conv4 = conv_bn_relu_layer(conv3, 64)
pool2 = L.Pooling(conv4, pooling_param = dict(kernel_size = 3, stride = 2, pad = 1, pool = P.Pooling.MAX))
conv5 = conv_bn_relu_layer(pool2, 64)
conv6 = conv_bn_relu_layer(conv5, 64)
conv6_upsample = L.Interp(conv6, interp_param = dict(zoom_factor = 4))
conv6_upsample_crop = L.Crop(conv6_upsample, conv2)
conv4_upsample = L.Interp(conv4, interp_param = dict(zoom_factor = 2))
conv4_upsample_crop = L.Crop(conv4_upsample, conv2)
conv_concat = L.Concat(bottom, conv2, conv4_upsample_crop, conv6_upsample_crop)
conv7 = conv_relu_layer(conv_concat, num_out)
conv_comb = L.Concat(bottom, conv7)
return conv_comb
def compute_assignments(spixel_feat, pixel_features,
spixel_init, num_spixels_h,
num_spixels_w, num_spixels, num_channels):
num_channels = int(num_channels)
pixel_spixel_neg_dist = L.Passoc(pixel_features, spixel_feat, spixel_init,
spixel_feature2_param =\
dict(num_spixels_h = num_spixels_h, num_spixels_w = num_spixels_w, scale_value = -1.0))
# Softmax to get pixel-superpixel relative soft-associations
pixel_spixel_assoc = L.Softmax(pixel_spixel_neg_dist)
return pixel_spixel_assoc
def compute_final_spixel_labels(pixel_spixel_assoc,
spixel_init,
num_spixels_h, num_spixels_w):
# Compute new spixel indices
rel_label = L.ArgMax(pixel_spixel_assoc, argmax_param = dict(axis = 1),
propagate_down = False)
new_spix_indices = L.RelToAbsIndex(rel_label, spixel_init,
rel_to_abs_index_param = dict(num_spixels_h = int(num_spixels_h),
num_spixels_w = int(num_spixels_w)),
propagate_down = [False, False])
return new_spix_indices
def decode_features(pixel_spixel_assoc, spixel_feat, spixel_init,
num_spixels_h, num_spixels_w, num_spixels, num_channels):
num_channels = int(num_channels)
# Reshape superpixel features to k_h x k_w
spixel_feat_reshaped = L.Reshape(spixel_feat,
reshape_param = dict(shape = {'dim':[0,0,num_spixels_h,num_spixels_w]}))
# Concatenate neighboring superixel features
concat_spixel_feat = L.Convolution(spixel_feat_reshaped,
name = 'concat_spixel_feat_' + str(num_channels),
convolution_param = dict(num_output = num_channels * 9,
kernel_size = 3,
stride = 1,
pad = 1,
group = num_channels,
bias_term = False),
param=[{'name': 'concat_spixel_feat_' + str(num_channels),
'lr_mult':0, 'decay_mult':0}])
# Spread features to pixels
flat_concat_label = L.Reshape(concat_spixel_feat,
reshape_param = dict(shape = {'dim':[0, 0, 1, num_spixels]}))
img_concat_spixel_feat = L.Smear(flat_concat_label, spixel_init)
tiled_assoc = L.Tile(pixel_spixel_assoc,
tile_param = dict(tiles = num_channels))
weighted_spixel_feat = L.Eltwise(img_concat_spixel_feat, tiled_assoc,
eltwise_param = dict(operation = P.Eltwise.PROD))
recon_feat = L.Convolution(weighted_spixel_feat,
name = 'recon_feat_' + str(num_channels),
convolution_param = dict(num_output = num_channels,
kernel_size = 1,
stride = 1,
pad = 0,
group = num_channels,
bias_term = False,
weight_filler = dict(type = 'constant', value = 1.0)),
param=[{'name': 'recon_feat_' + str(num_channels),
'lr_mult':0, 'decay_mult':0}])
return recon_feat
def exec_iter(spixel_feat, trans_features, spixel_init,
num_spixels_h, num_spixels_w, num_spixels,
trans_dim):
# Compute pixel-superpixel assignments
pixel_assoc = \
compute_assignments(spixel_feat, trans_features,
spixel_init, num_spixels_h,
num_spixels_w, num_spixels, trans_dim)
# Compute superpixel features from pixel assignments
spixel_feat1 = L.SpixelFeature2(trans_features,
pixel_assoc,
spixel_init,
spixel_feature2_param =\
dict(num_spixels_h = num_spixels_h, num_spixels_w = num_spixels_w))
return spixel_feat1
def create_ssn_net(img_height, img_width,
num_spixels, pos_scale, color_scale,
num_spixels_h, num_spixels_w, num_steps,
phase = None):
n = caffe.NetSpec()
if phase == 'TRAIN':
n.img, n.spixel_init, n.feat_spixel_init, n.label, n.problabel = \
L.Python(python_param = dict(module = "input_patch_data_layer", layer = "InputRead", param_str = "TRAIN_1000000_" + str(num_spixels)),
include = dict(phase = 0),
ntop = 5)
elif phase == 'TEST':
n.img, n.spixel_init, n.feat_spixel_init, n.label, n.problabel = \
L.Python(python_param = dict(module = "input_patch_data_layer", layer = "InputRead", param_str = "VAL_10_" + str(num_spixels)),
include = dict(phase = 1),
ntop = 5)
else:
n.img = L.Input(shape=[dict(dim=[1, 3, img_height, img_width])])
n.spixel_init = L.Input(shape=[dict(dim=[1, 1, img_height, img_width])])
n.feat_spixel_init = L.Input(shape=[dict(dim=[1, 1, img_height, img_width])])
n.pixel_features = L.PixelFeature(n.img,
pixel_feature_param = dict(type = P.PixelFeature.POSITION_AND_RGB,
pos_scale = float(pos_scale),
color_scale = float(color_scale)))
### Transform Pixel features
n.trans_features = cnn_module(n.pixel_features, trans_dim)
# Initial Superpixels
n.init_spixel_feat = L.SpixelFeature(n.trans_features, n.feat_spixel_init,
spixel_feature_param =\
dict(type = P.SpixelFeature.AVGRGB, rgb_scale = 1.0, ignore_idx_value = -10,
ignore_feature_value = 255, max_spixels = int(num_spixels)))
### Iteration-1
n.spixel_feat1 = exec_iter(n.init_spixel_feat, n.trans_features,
n.spixel_init, num_spixels_h,
num_spixels_w, num_spixels, trans_dim)
### Iteration-2
n.spixel_feat2 = exec_iter(n.spixel_feat1, n.trans_features,
n.spixel_init, num_spixels_h,
num_spixels_w, num_spixels, trans_dim)
### Iteration-3
n.spixel_feat3 = exec_iter(n.spixel_feat2, n.trans_features,
n.spixel_init, num_spixels_h,
num_spixels_w, num_spixels, trans_dim)
### Iteration-4
n.spixel_feat4 = exec_iter(n.spixel_feat3, n.trans_features,
n.spixel_init, num_spixels_h,
num_spixels_w, num_spixels, trans_dim)
if num_steps == 5:
### Iteration-5
n.final_pixel_assoc = \
compute_assignments(n.spixel_feat4, n.trans_features,
n.spixel_init, num_spixels_h,
num_spixels_w, num_spixels, trans_dim)
elif num_steps == 10:
### Iteration-5
n.spixel_feat5 = exec_iter(n.spixel_feat4, n.trans_features,
n.spixel_init, num_spixels_h,
num_spixels_w, num_spixels, trans_dim)
### Iteration-6
n.spixel_feat6 = exec_iter(n.spixel_feat5, n.trans_features,
n.spixel_init, num_spixels_h,
num_spixels_w, num_spixels, trans_dim)
### Iteration-7
n.spixel_feat7 = exec_iter(n.spixel_feat6, n.trans_features,
n.spixel_init, num_spixels_h,
num_spixels_w, num_spixels, trans_dim)
### Iteration-8
n.spixel_feat8 = exec_iter(n.spixel_feat7, n.trans_features,
n.spixel_init, num_spixels_h,
num_spixels_w, num_spixels, trans_dim)
### Iteration-9
n.spixel_feat9 = exec_iter(n.spixel_feat8, n.trans_features,
n.spixel_init, num_spixels_h,
num_spixels_w, num_spixels, trans_dim)
### Iteration-10
n.final_pixel_assoc = \
compute_assignments(n.spixel_feat9, n.trans_features,
n.spixel_init, num_spixels_h,
num_spixels_w, num_spixels, trans_dim)
if phase == 'TRAIN' or phase == 'TEST':
# Compute final spixel features
n.new_spixel_feat = L.SpixelFeature2(n.pixel_features,
n.final_pixel_assoc,
n.spixel_init,
spixel_feature2_param =\
dict(num_spixels_h = num_spixels_h, num_spixels_w = num_spixels_w))
n.new_spix_indices = compute_final_spixel_labels(n.final_pixel_assoc,
n.spixel_init,
num_spixels_h, num_spixels_w)
n.recon_feat2 = L.Smear(n.new_spixel_feat, n.new_spix_indices,
propagate_down = [True, False])
n.loss1, n.loss2 = position_color_loss(n.recon_feat2, n.pixel_features,
pos_weight = 0.00001,
col_weight = 0.0)
# Convert pixel labels to spixel labels
n.spixel_label = L.SpixelFeature2(n.problabel,
n.final_pixel_assoc,
n.spixel_init,
spixel_feature2_param =\
dict(num_spixels_h = num_spixels_h, num_spixels_w = num_spixels_w))
# Convert spixel labels back to pixel labels
n.recon_label = decode_features(n.final_pixel_assoc, n.spixel_label, n.spixel_init,
num_spixels_h, num_spixels_w, num_spixels, num_channels = 50)
n.recon_label = L.ReLU(n.recon_label, in_place = True)
n.recon_label2 = L.Power(n.recon_label, power_param = dict(shift = 1e-10))
n.recon_label3 = normalize(n.recon_label2, 50)
n.loss3 = L.LossWithoutSoftmax(n.recon_label3, n.label,
loss_param = dict(ignore_label = 255),
loss_weight = 1.0)
else:
n.new_spix_indices = compute_final_spixel_labels(n.final_pixel_assoc,
n.spixel_init,
num_spixels_h, num_spixels_w)
return n.to_proto()
def load_ssn_net(img_height, img_width,
num_spixels, pos_scale, color_scale,
num_spixels_h, num_spixels_w, num_steps):
net_proto = create_ssn_net(img_height, img_width,
num_spixels, pos_scale, color_scale,
num_spixels_h, num_spixels_w, int(num_steps))
# Save to temporary file and load
f = tempfile.NamedTemporaryFile(mode='w+', delete=False)
f.write(str(net_proto))
f.close()
return caffe.Net(f.name, caffe.TEST)
def get_ssn_net(img_height, img_width,
num_spixels, pos_scale, color_scale,
num_spixels_h, num_spixels_w, num_steps,
phase):
# Create the prototxt
net_proto = create_ssn_net(img_height, img_width,
num_spixels, pos_scale, color_scale,
num_spixels_h, num_spixels_w, int(num_steps), phase)
# Save to temporary file and load
f = tempfile.NamedTemporaryFile(mode='w+', delete=False)
f.write(str(net_proto))
f.close()
return f.name