-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathextract_mesh.py
480 lines (402 loc) · 19.2 KB
/
extract_mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import math
import time
import numpy as np
from tqdm import tqdm
import trimesh
import torch
import svraster_cuda
from src.config import cfg, update_argparser, update_config
from src.utils import octree_utils
from src.utils import activation_utils
from src.sparse_voxel_gears.adaptive import subdivide_by_interp, agg_voxel_into_grid_pts
from src.dataloader.data_pack import DataPack
from src.sparse_voxel_model import SparseVoxelModel
from src.utils.fuser_utils import Fuser
def tsdf_fusion(
cam_lst, depth_lst, alpha_lst,
grid_pts_xyz, trunc_dist, crop_border, alpha_thres):
assert len(cam_lst) == len(depth_lst)
assert len(cam_lst) == len(alpha_lst)
fuser = Fuser(
xyz=grid_pts_xyz,
bandwidth=trunc_dist,
use_trunc=True,
fuse_tsdf=True,
feat_dim=0,
alpha_thres=alpha_thres,
crop_border=crop_border,
normal_weight=False,
depth_weight=False,
border_weight=False,
use_half=False)
for cam, frame_depth, frame_alpha in zip(tqdm(cam_lst), depth_lst, alpha_lst):
frame_depth = frame_depth.cuda()
frame_alpha = frame_alpha.cuda()
fuser.integrate(cam, frame_depth, alpha=frame_alpha)
tsdf = fuser.tsdf.squeeze(1).contiguous()
return tsdf
def extract_mesh_progressive(args, data_pack, voxel_model, init_lv, final_lv, crop_bbox):
# Render depth and alphas
cam_lst = data_pack.get_train_cameras()
depth_lst = []
alpha_lst = []
for cam in tqdm(cam_lst, desc="Render training views"):
render_pkg = voxel_model.render(cam, output_depth=True, output_T=True)
if args.use_mean:
frame_depth = render_pkg['raw_depth'][[0]] # Use mean depth
else:
frame_depth = render_pkg['raw_depth'][[2]] # Use median depth
frame_alpha = 1 - render_pkg['raw_T']
if args.save_gpu:
frame_depth = frame_depth.cpu()
frame_alpha = frame_alpha.cpu()
depth_lst.append(frame_depth)
alpha_lst.append(frame_alpha)
# Determine bounding volume for marching cube
if crop_bbox is None:
inside_min = voxel_model.scene_center - 0.5 * voxel_model.inside_extent * args.bbox_scale
inside_max = voxel_model.scene_center + 0.5 * voxel_model.inside_extent * args.bbox_scale
else:
inside_min = torch.tensor(crop_bbox[0], dtype=torch.float32, device="cuda")
inside_max = torch.tensor(crop_bbox[1], dtype=torch.float32, device="cuda")
# Construct a initial dense grid
octpath, octlevel = octree_utils.gen_octpath_dense(
outside_level=voxel_model.outside_level,
n_level_inside=init_lv)
grid_pts_key, vox_key = octree_utils.build_grid_pts_link(octpath, octlevel)
grid_pts_xyz = octree_utils.compute_gridpoints_xyz(grid_pts_key, voxel_model.scene_center, voxel_model.scene_extent)
# Filter outside
grid_inside_mask = ((inside_min <= grid_pts_xyz) & (grid_pts_xyz <= inside_max)).all(-1)
vox_inside_mask = grid_inside_mask[vox_key].any(-1)
vox_inside_idx = torch.where(vox_inside_mask)[0]
octpath = octpath[vox_inside_idx]
octlevel = octlevel[vox_inside_idx]
grid_pts_key, vox_key = octree_utils.build_grid_pts_link(octpath, octlevel)
grid_pts_xyz = octree_utils.compute_gridpoints_xyz(grid_pts_key, voxel_model.scene_center, voxel_model.scene_extent)
# Run progressive TSDF fusion
print(f'TSDF levels from {init_lv} to {final_lv}')
for lv in range(init_lv, final_lv+1):
# Determine trunction
now_level = torch.tensor([voxel_model.outside_level + min(lv, args.trunc_lv)], device="cuda")
now_voxel_size = octree_utils.level_2_vox_size(voxel_model.scene_extent, now_level).item()
trunc_dist = args.trunc_vox * now_voxel_size
print(f"Running lv={lv:2d}: #voxels={len(octpath)}; vox_size={now_voxel_size}; trunc={trunc_dist}")
# Run tsdf fusion at current levels
grid_tsdf = tsdf_fusion(
cam_lst, depth_lst, alpha_lst,
grid_pts_xyz, trunc_dist, args.crop_border, args.alpha_thres)
# Merge from previous levels
if lv < final_lv:
# Remove some voxels
vox_tsdf = grid_tsdf[vox_key]
prune_mask = vox_tsdf.isnan().any(-1) | (vox_tsdf.amax(1) < -args.pg_prune) | (vox_tsdf.amin(1) > args.pg_prune)
filter_idx = torch.where(~prune_mask)[0]
octpath = octpath[filter_idx]
octlevel = octlevel[filter_idx]
# Subdivide voxels
octpath, octlevel = octree_utils.gen_children(octpath, octlevel)
grid_pts_key, vox_key = octree_utils.build_grid_pts_link(octpath, octlevel)
grid_pts_xyz = octree_utils.compute_gridpoints_xyz(grid_pts_key, voxel_model.scene_center, voxel_model.scene_extent)
del grid_tsdf, vox_tsdf
torch.cuda.empty_cache()
verts, faces = svraster_cuda.marching_cubes.torch_marching_cubes_grid(
grid_pts_val=grid_tsdf,
grid_pts_xyz=grid_pts_xyz,
vox_key=vox_key,
iso=0)
mesh = trimesh.Trimesh(verts.cpu().numpy(), faces.cpu().numpy())
return mesh
def extract_mesh(args, data_pack, voxel_model, final_lv, crop_bbox, use_lv_avg, iso=0):
# Render depth and alphas
cam_lst = data_pack.get_train_cameras()
depth_lst = []
alpha_lst = []
for cam in tqdm(cam_lst, desc="Render training views"):
render_pkg = voxel_model.render(cam, output_depth=True, output_T=True)
if args.use_mean:
frame_depth = render_pkg['raw_depth'][[0]] # Use mean depth
else:
frame_depth = render_pkg['raw_depth'][[2]] # Use median depth
frame_alpha = 1 - render_pkg['raw_T']
if args.save_gpu:
frame_depth = frame_depth.cpu()
frame_alpha = frame_alpha.cpu()
depth_lst.append(frame_depth)
alpha_lst.append(frame_alpha)
# Filter background voxels
if crop_bbox is None:
inside_min = voxel_model.scene_center - 0.5 * voxel_model.inside_extent * args.bbox_scale
inside_max = voxel_model.scene_center + 0.5 * voxel_model.inside_extent * args.bbox_scale
else:
inside_min = torch.tensor(crop_bbox[0], dtype=torch.float32, device="cuda")
inside_max = torch.tensor(crop_bbox[1], dtype=torch.float32, device="cuda")
inside_mask = ((inside_min <= voxel_model.grid_pts_xyz) & (voxel_model.grid_pts_xyz <= inside_max)).all(-1)
inside_mask = inside_mask[voxel_model.vox_key].any(-1)
inside_idx = torch.where(inside_mask)[0]
octpath = voxel_model.octpath[inside_idx]
octlevel = voxel_model.octlevel[inside_idx]
# Clamp levels
target_level = voxel_model.outside_level + final_lv
octpath, octlevel = octree_utils.clamp_level(octpath, octlevel, target_level)
print(f'Voxel levels from {octlevel.min()} to {octlevel.max()}')
# Construct grid points
grid_pts_key, vox_key = octree_utils.build_grid_pts_link(octpath, octlevel)
grid_pts_xyz = octree_utils.compute_gridpoints_xyz(grid_pts_key, voxel_model.scene_center, voxel_model.scene_extent)
# Run tsdf fusion
vox_level = torch.tensor([voxel_model.outside_level + args.trunc_lv], device="cuda")
vox_size = octree_utils.level_2_vox_size(voxel_model.scene_extent, vox_level).item()
trunc_dist = args.trunc_vox * vox_size
print(f"Running adaptive: #voxels={len(octpath)} / finest vox_size={voxel_model.vox_size.min().item()} / trunc={trunc_dist}")
grid_tsdf = tsdf_fusion(
cam_lst, depth_lst, alpha_lst,
grid_pts_xyz, trunc_dist, args.crop_border, args.alpha_thres)
if use_lv_avg:
while True:
n_ori = len(octlevel)
unit_val = grid_tsdf[vox_key]
# Filter
mask = (unit_val > iso).any(1) & (unit_val < iso).any(1) & ~unit_val.isnan().any(1)
filter_idx = torch.where(mask)[0]
octpath = octpath[filter_idx]
octlevel = octlevel[filter_idx]
unit_val = unit_val[filter_idx]
# Compute children
mask = (octlevel.squeeze() < target_level)
kept_idx = torch.where(~mask)[0]
subdiv_idx = torch.where(mask)[0]
if len(subdiv_idx) == 0:
break
child_octpath, child_octlevel = octree_utils.gen_children(octpath[subdiv_idx], octlevel[subdiv_idx])
child_unit_val = subdivide_by_interp(unit_val[subdiv_idx])
# Compute new voxels and tsdf grid points
octpath = torch.cat([octpath[kept_idx], child_octpath])
octlevel = torch.cat([octlevel[kept_idx], child_octlevel])
unit_val = torch.cat([unit_val[kept_idx], child_unit_val])
grid_pts_key, vox_key = octree_utils.build_grid_pts_link(octpath, octlevel)
grid_pts_xyz = octree_utils.compute_gridpoints_xyz(grid_pts_key, voxel_model.scene_center, voxel_model.scene_extent)
grid_tsdf = agg_voxel_into_grid_pts(len(grid_pts_xyz), vox_key, unit_val)
n_new = len(octlevel)
print(f"Subdiv {n_ori:10d} => {n_new:10d}")
del unit_val, grid_pts_key, filter_idx, kept_idx, subdiv_idx
del octpath, octlevel
torch.cuda.empty_cache()
verts, faces = svraster_cuda.marching_cubes.torch_marching_cubes_grid(
grid_pts_val=grid_tsdf,
grid_pts_xyz=grid_pts_xyz,
vox_key=vox_key,
iso=iso)
mesh = trimesh.Trimesh(verts.cpu().numpy(), faces.cpu().numpy())
return mesh
def direct_mc(args, voxel_model, final_lv, crop_bbox):
# Filter background voxels
if crop_bbox is None:
inside_min = voxel_model.scene_center - 0.5 * voxel_model.inside_extent * args.bbox_scale
inside_max = voxel_model.scene_center + 0.5 * voxel_model.inside_extent * args.bbox_scale
else:
inside_min = torch.tensor(crop_bbox[0], dtype=torch.float32, device="cuda")
inside_max = torch.tensor(crop_bbox[1], dtype=torch.float32, device="cuda")
inside_mask = ((inside_min <= voxel_model.grid_pts_xyz) & (voxel_model.grid_pts_xyz <= inside_max)).all(-1)
inside_mask = inside_mask[voxel_model.vox_key].any(-1)
inside_idx = torch.where(inside_mask)[0]
# Infer iso value for level set
vox_level = torch.tensor([voxel_model.outside_level + final_lv], device="cuda")
vox_size = octree_utils.level_2_vox_size(voxel_model.scene_extent, vox_level).item()
iso_alpha = torch.tensor(0.5, device="cuda")
iso_density = activation_utils.alpha2density(iso_alpha, vox_size)
iso = getattr(activation_utils, f"{voxel_model.density_mode}_inverse")(iso_density)
sign = -1
verts, faces = svraster_cuda.marching_cubes.torch_marching_cubes_grid(
grid_pts_val=sign * voxel_model._geo_grid_pts,
grid_pts_xyz=voxel_model.grid_pts_xyz,
vox_key=voxel_model.vox_key[inside_idx],
iso=sign * iso)
mesh = trimesh.Trimesh(verts.cpu().numpy(), faces.cpu().numpy())
return mesh
def colorize_pts(args, pts, data_pack):
cloest_color = torch.full([len(pts), 3], 0.5, dtype=torch.float32, device="cuda")
cloest_dist = torch.full([len(pts)], np.inf, dtype=torch.float32, device="cuda")
cam_lst = data_pack.get_train_cameras()
for cam in tqdm(cam_lst):
render_pkg = voxel_model.render(cam, color_mode="sh0", output_depth=True, output_T=True)
frame_color = render_pkg['color']
if args.use_mean:
frame_depth = render_pkg['raw_depth'][[0]] # Use mean depth
else:
frame_depth = render_pkg['raw_depth'][[2]] # Use median depth
frame_alpha = 1 - render_pkg['raw_T']
H, W = frame_depth.shape[-2:]
# Project grid points to image
pts_uv = cam.project(pts)
# Filter points projected outside
filter_idx = torch.where((pts_uv.abs() <= 1).all(-1))[0]
valid_pts_idx = filter_idx
valid_pts = pts[filter_idx]
pts_uv = pts_uv[filter_idx]
# Sample alpha and filter
pts_frame_alpha = torch.nn.functional.grid_sample(
frame_alpha.view(1,1,H,W),
pts_uv.view(1,1,-1,2),
mode='bilinear',
align_corners=False).flatten()
filter_idx = torch.where(pts_frame_alpha > args.alpha_thres)[0]
valid_pts_idx = valid_pts_idx[filter_idx]
valid_pts = valid_pts[filter_idx]
pts_uv = pts_uv[filter_idx]
# Compute projective sdf
pts_frame_depth = torch.nn.functional.grid_sample(
frame_depth.view(1,1,H,W),
pts_uv.view(1,1,-1,2),
mode='bilinear',
align_corners=False).flatten()
pts_depth = ((valid_pts - cam.position) @ cam.lookat)
pts_dist = (pts_frame_depth - pts_depth).abs()
filter_idx = torch.where(pts_dist < cloest_dist[valid_pts_idx])[0]
valid_pts_idx = valid_pts_idx[filter_idx]
pts_uv = pts_uv[filter_idx]
pts_dist = pts_dist[filter_idx]
pts_color = torch.nn.functional.grid_sample(
frame_color[None],
pts_uv.view(1,1,-1,2),
mode='bilinear',
align_corners=False).squeeze().T
cloest_dist[valid_pts_idx] = pts_dist
cloest_color[valid_pts_idx] = pts_color
return cloest_color
if __name__ == "__main__":
# Parse arguments
import argparse
parser = argparse.ArgumentParser(
description="Sparse voxels raster extract mesh.")
parser.add_argument('model_path')
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--save_gpu", action='store_true')
parser.add_argument("--overwrite_ss", default=None, type=float)
parser.add_argument("--overwrite_vox_geo_mode", default=None, type=str)
parser.add_argument("--bbox_path", default=None)
parser.add_argument("--bbox_scale", default=1.0, type=float)
parser.add_argument("--mesh_fname", default=None, type=str)
parser.add_argument("--direct", action='store_true')
parser.add_argument("--adaptive", action='store_true')
parser.add_argument("--init_lv", default=7, type=int)
parser.add_argument("--final_lv", default=9, type=int)
parser.add_argument("--trunc_lv", default=10, type=int)
parser.add_argument("--trunc_vox", default=5.0, type=float)
parser.add_argument("--crop_border", default=0.01, type=float)
parser.add_argument("--alpha_thres", default=0.5, type=float)
parser.add_argument("--pg_prune", default=0.6, type=float)
parser.add_argument("--use_mean", action='store_true')
parser.add_argument("--use_vert_color", action='store_true')
parser.add_argument("--use_clean", action='store_true')
parser.add_argument("--use_lv_avg", action='store_true')
parser.add_argument("--use_remesh", action='store_true')
parser.add_argument("--remesh_len", default=-1, type=float)
parser.add_argument("--voxel_size", default=0.004, type=float)
parser.add_argument("--sdf_trunc", default=0.016, type=float)
parser.add_argument("--depth_trunc", default=3.0, type=float)
args = parser.parse_args()
print("Rendering " + args.model_path)
# Load config
update_config(os.path.join(args.model_path, 'config.yaml'))
# Load data
data_pack = DataPack(cfg.data, cfg.model.white_background)
# Load model
voxel_model = SparseVoxelModel(cfg.model)
voxel_model.load_iteration(args.iteration)
voxel_model.freeze_vox_geo()
if args.overwrite_ss is not None:
voxel_model.ss = args.overwrite_ss
if args.overwrite_vox_geo_mode is not None:
voxel_model.vox_geo_mode = args.overwrite_vox_geo_mode
# Prepare output dir
outdir = os.path.join(
args.model_path, "mesh",
f"iter{voxel_model.loaded_iter:06d}" if voxel_model.loaded_iter > 0 else "latest")
os.makedirs(outdir, exist_ok=True)
print(f'outdir: {outdir}')
print(f'ss =: {voxel_model.ss}')
print(f'vox_geo_mode =: {voxel_model.vox_geo_mode}')
print(f'density_mode =: {voxel_model.density_mode}')
# Read crop bbox
if args.bbox_path:
crop_bbox = np.loadtxt(args.bbox_path)
else:
crop_bbox = None
# GOGO
fname = 'mesh'
eps_time = time.time()
with torch.no_grad():
if args.direct:
mesh = direct_mc(args, voxel_model, args.final_lv, crop_bbox)
fname += f'_direct'
elif args.adaptive:
mesh = extract_mesh(args, data_pack, voxel_model, args.final_lv, crop_bbox, args.use_lv_avg)
fname += f'_lv{args.final_lv}_adaptive'
if args.use_lv_avg:
fname += '_lv_avg'
else:
fname += f'_lv{args.init_lv}-{args.final_lv}'
mesh = extract_mesh_progressive(args, data_pack, voxel_model, args.init_lv, args.final_lv, crop_bbox)
eps_time = time.time() - eps_time
print(f"Extracted mesh in {eps_time:.3f} sec")
if args.use_mean:
fname += '_dmean'
# Taking the biggest connected component
if args.use_clean:
fname += '_clean'
print("Taking the biggest connected component")
try:
labels = trimesh.graph.connected_component_labels(mesh.face_adjacency)
cc, cc_cnt = np.unique(labels, return_counts=True)
cc_maxid = cc[cc_cnt.argmax()]
mesh.update_faces(labels==cc_maxid)
vmask = np.zeros([len(mesh.vertices)], dtype=bool)
vmask[mesh.faces] = 1
mesh.update_vertices(vmask)
except:
print("Failed to segment largest cc")
# Remesh
if args.use_remesh:
from gpytoolbox import remesh_botsch
avg_edge_len = mesh.edges_unique_length.mean()
if args.remesh_len < 0:
target_edge_len = min(avg_edge_len, voxel_model.inside_extent.item() / 1024)
else:
target_edge_len = args.remesh_len
print(f"Remeshing: original avg_len={avg_edge_len}; target edge_len={target_edge_len}")
try:
eps_time = time.time()
v, f = remesh_botsch(mesh.vertices, mesh.faces, i=5, h=target_edge_len)
eps_time = time.time() - eps_time
print(f"Remeshed in {eps_time:.3f} sec")
mesh = trimesh.Trimesh(vertices=v, faces=f)
except:
print(f"Remesh failed.")
# Colorize vertices
# TODO: Unwrap and use high-res UV texture map
verts_color = None
if args.use_vert_color:
print("Colorizing vertices")
with torch.no_grad():
pts = torch.tensor(mesh.vertices, dtype=torch.float32, device="cuda")
verts_color = colorize_pts(args, pts, data_pack)
verts_color = verts_color.cpu().numpy()
mesh = trimesh.Trimesh(mesh.vertices, mesh.faces, vertex_colors=verts_color)
# Transform to world coordinate
if data_pack.to_world_matrix is not None:
mesh = mesh.apply_transform(data_pack.to_world_matrix)
# Export mesh
print(mesh)
if args.mesh_fname is not None:
fname = args.mesh_fname
outpath = os.path.join(outdir, f'{fname}.ply')
mesh.export(outpath)
print('Save to', outpath)
print("done!")