-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_seg.py
222 lines (172 loc) · 8.06 KB
/
test_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os, time, argparse, os.path as osp, numpy as np
import torch
import torch.distributed as dist
# os.environ['CUDA_VISIBLE_DEVICES'] = '2'
from utils.metric_util import MeanIoU_test
from utils.load_save_util import revise_ckpt
from dataloader.dataset import get_label_name
from builder import loss_builder
from mmengine import Config
from mmengine.logging.logger import MMLogger
import warnings
warnings.filterwarnings("ignore")
def pass_print(*args, **kwargs):
pass
def classify_condition(subcondition_list):
# 定义每个条件对应的子条件
subconditions = {
'rain': ['rain15', 'rain33', 'rain55'],
'snow': ['light', 'medium', 'heavy'],
'fog': ['foga', 'fogb', 'fogc']
}
# 确保subcondition_list中的所有子条件都属于同一大类
condition_class = None
for condition, sub_list in subconditions.items():
if subcondition_list[0] in sub_list:
condition_class = condition
break
# 确认所有子条件都属于识别的大类
if not all(sub in subconditions[condition_class] for sub in subcondition_list):
raise ValueError("Subconditions in the batch belong to different conditions.")
return condition_class
def main(local_rank, args):
# global settings
torch.backends.cudnn.benchmark = True
# load config
cfg = Config.fromfile(args.py_config)
dataset_config = cfg.dataset_params
ignore_label = dataset_config['ignore_label']
test_dataloader_config = cfg.test_data_loader
grid_size = cfg.grid_size
# init DDP
if args.launcher == 'none':
distributed = False
rank = 0
cfg.gpu_ids = [0] # debug
else:
distributed = True
ip = os.environ.get("MASTER_ADDR", "127.0.0.1")
port = os.environ.get("MASTER_PORT", "20506")
hosts = int(os.environ.get("WORLD_SIZE", 1)) # number of nodes
rank = int(os.environ.get("RANK", 0)) # node id
gpus = torch.cuda.device_count() # gpus per node
print(f"tcp://{ip}:{port}")
dist.init_process_group(
backend="nccl", init_method=f"tcp://{ip}:{port}",
world_size=hosts * gpus, rank=rank * gpus + local_rank
)
world_size = dist.get_world_size()
cfg.gpu_ids = range(world_size)
torch.cuda.set_device(local_rank)
if dist.get_rank() != 0:
import builtins
builtins.print = pass_print
logger = MMLogger(name='test_log', log_file=args.log_file, log_level='INFO')
# build model
from builder import model_builder
if args.flag == 'K1':
my_model = model_builder.build(cfg.model_Stage2_K1)
elif args.flag == 'K3':
my_model = model_builder.build(cfg.model_Stage2_K3)
elif args.flag == 'S1':
my_model = model_builder.build(cfg.model_Stage1)
# n_parameters = sum(p.numel() for p in my_model.parameters() if p.requires_grad)
# logger.info(f'Number of params: {n_parameters}')
# 计算总参数数
total_params = sum(p.numel() for p in my_model.parameters())
# 计算可训练的参数数
trainable_params = sum(p.numel() for p in my_model.parameters() if p.requires_grad)
# 打印参数信息
logger.info(f'Total number of parameters: {total_params}')
logger.info(f'Number of trainable parameters: {trainable_params}')
logger.info(f'Model:\n{my_model}')
if distributed:
find_unused_parameters = cfg.get('find_unused_parameters', True)
ddp_model_module = torch.nn.parallel.DistributedDataParallel
my_model = ddp_model_module(
my_model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters)
else:
my_model = my_model.cuda()
print('done ddp model')
# generate datasets
label_name = get_label_name(dataset_config["label_mapping"])
unique_label = np.asarray(cfg.unique_label)
# unique_label_str = [label_name[x] for x in unique_label]
unique_label_str = ['clear', 'rain15', 'rain33', 'rain55', 'light', 'medium', 'heavy', 'foga', 'fogb', 'fogc']
from builder import data_builder_test
test_dataset_loader = \
data_builder_test.build_seg(
dataset_config,
test_dataloader_config,
grid_size=grid_size,
dist=distributed,
)
CalMeanIou_pts = MeanIoU_test(unique_label, ignore_label, unique_label_str, 'pts')
# resume and load
assert osp.isfile(args.ckpt_path)
print('ckpt path:', args.ckpt_path)
map_location = 'cpu'
ckpt = torch.load(args.ckpt_path, map_location=map_location)
if 'state_dict' in ckpt:
ckpt = ckpt['state_dict']
print(my_model.load_state_dict(revise_ckpt(ckpt), strict=False))
print(f'successfully loaded ckpt')
print_freq = cfg.print_freq
# eval
my_model.eval()
CalMeanIou_pts.reset()
with torch.no_grad():
for i_iter_test, data in enumerate(test_dataset_loader):
# test_pt_labs的形状是[bs, n, 1]
(points_list, test_grid_list, test_pt_labs_list, test_grid_vox_list, subcondition_list) = data
# 对列表中的每个元素逐个转换为Tensor并移动到GPU上
points = [torch.from_numpy(feat).to(torch.float32).contiguous().cuda() for feat in points_list]
test_grid_float = [torch.from_numpy(grid_ind).to(torch.float32).contiguous().cuda() for grid_ind in test_grid_list]
test_pt_labs = [torch.from_numpy(pt_lab).to(torch.long).contiguous().cuda() for pt_lab in test_pt_labs_list]
test_grid_vox = [torch.from_numpy(grid_ind_vox).to(torch.float32).contiguous().cuda() for grid_ind_vox in test_grid_vox_list]
# 使用辅助函数来分类subcondition_list,并设置flag
condition_class = classify_condition(subcondition_list)
flag_mapping = {
'rain': [1, 0, 0],
'snow': [0, 1, 0],
'fog': [0, 0, 1]
}
flag = flag_mapping.get(condition_class)
if flag is None:
raise ValueError("Unknown condition class.")
if args.flag == 'S1':
predict_labels_pts = my_model(points=points, grid_ind=test_grid_float, grid_ind_vox=test_grid_vox)
else:
predict_labels_pts = my_model(points=points, grid_ind=test_grid_float, grid_ind_vox=test_grid_vox, flag=flag)
# logits_pts = logits.reshape(bs, self.classes, n, 1, 1)
predict_labels_pts = predict_labels_pts[0].squeeze(-1).squeeze(-1)
predict_labels_pts = torch.argmax(predict_labels_pts, dim=1) # bs, n
predict_labels_pts = predict_labels_pts.detach().cpu()
test_pt_labs = test_pt_labs[0].unsqueeze(0) # (1, n, 1)
test_pt_labs = test_pt_labs.squeeze(-1).cpu() # (bs, n)
for count in range(len(predict_labels_pts)):
CalMeanIou_pts._after_step(predict_labels_pts[count], test_pt_labs[count], subcondition_list[count])
if i_iter_test % print_freq == 0 and dist.get_rank() == 0:
logger.info('[EVAL] Iter %5d: Loss: None'%(i_iter_test))
test_miou_pts = CalMeanIou_pts._after_epoch()
logger.info('test miou pts is %.3f' % (test_miou_pts))
if __name__ == '__main__':
# Training settings
parser = argparse.ArgumentParser(description='')
parser.add_argument('--py-config', default='')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='pytorch')
parser.add_argument('--ckpt-path', type=str, default=None)
parser.add_argument('--log-file', type=str, default=None)
parser.add_argument('--save-result', type=bool, default= False)
parser.add_argument('--flag', type=str, default= '')
args = parser.parse_args()
ngpus = torch.cuda.device_count()
args.gpus = ngpus
print(args)
if args.launcher == 'none':
main(0, args)
else:
torch.multiprocessing.spawn(main, args=(args,), nprocs=args.gpus)