forked from markrosslonergan/whipping_star
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathREADME
53 lines (39 loc) · 2.46 KB
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
###############################################################################
*
* .oooooo..o oooooooooo. ooooo ooo .o88o. o8o .
* d8P' `Y8 `888' `Y8b `888b. `8' 888 `" `"' .o8
* Y88bo. 888 888 8 `88b. 8 o888oo oooo .o888oo
* `"Y8888o. 888oooo888' 8 `88b. 8 888 `888 888
* `"Y88b 888 `88b 8 `88b.8 888 888 888
* oo .d8P 888 .88P 8 `888 888 888 888 .
* 8""88888P' o888bood8P' o8o `8 o888o o888o "888"
*
* SBNfit: a fitter, Feldman-Cousins framework, oscillator, covariance matrix maker, collapser
*
* If you have any questions, queries or comments please contact the authors;
*
################################################################################
version 2.9.0
########################################## Building and compiling ########################################
Attention: Please see the github wiki for most up to date documentation https://github.com/markrosslonergan/whipping_star/wiki
#Instructions for GPVM based building and running. While in base git directory
source .setup.sh
#To Build, should work out of the box on GPVM with above setup
cd build
cmake ..
make
This will build the SBNfit source and libraries, as well as executable example programs in build/example
The included simple examples are not physically accurate, just toy MC!
cd examples
#The first example builds a covariance matrix from eventweight std::map<std::string,std::vector<double>> objects
./example1 --xml example.xml --print
should have 4 output files, first two data, second two human readable plots
EXAMPLE1.SBNspec.root : The central value spectra
EXAMPLE1.SBNcovar.root : The full and fractional covariance matricies
SBNfit_spectrum_plots_EXAMPLE1.root : The central value plots, but subchannels stacked to represent a channel
SBNfit_covariance_plots_EXAMPLE1.root : The covariance matricies plotted as TH2D nicely. Inside directory individualDir is all the individual variation matricies
#The second example loads up the computed covariance matrix and makes a plot of the chi^2 as you scale the signal for stats and stats+sys
./example2 --xml example.xml
should have 1 output. EXAMPLE2_plots.root containing a simple TCanvas showing the chi^2 behaviour
For an older out of date tutorial: https://docs.google.com/presentation/d/1vLYPDaID0a4nbx5rnKTda_RzhdTavLdyrkpkGMVZLgE/edit#slide=id.g35c91f84c5_0_194