-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathRV32I.vhd
560 lines (472 loc) · 19.4 KB
/
RV32I.vhd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
-- +===========================================================+
-- | RISC-V RV32I(M) ISA IMPLEMENTATION |
-- |===========================================================|
-- |student: Deligiannis Nikos |
-- |supervisor: Aristides Efthymiou |
-- |===========================================================|
-- | UNIVERSITY OF IOANNINA - 2019 |
-- | VCAS LABORATORY |
-- +===========================================================+
-- *** RISC-V 32I WITH 5 PIPELINE STAGES IMPLEMENTATION ***
----------------------------------------------------------------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_MISC.ALL;
LIBRARY WORK;
USE WORK.PIPELINE.ALL;
USE WORK.TOOLBOX.ALL;
ENTITY RV32I IS
PORT(
CLK : IN STD_LOGIC;
RST : IN STD_LOGIC;
-- TESTING SIGNALS --
PC : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
I_F : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
I_D : OUT STD_LOGIC_VECTOR(17 DOWNTO 0);
ALU : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
MEM : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
WB : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
-- EXTRA --
--NPC_PLUS_4_MUX : OUT STD_LOGIC;
--NPC_TEST : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
EXE_TNT : OUT STD_LOGIC;
ALU_VALUE_A : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
ALU_VALUE_B : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
--ALU_OPCODE_T : OUT STD_LOGIC_VECTOR(8 DOWNTO 0);
ECALL : OUT STD_LOGIC;
REGISTER_GP : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
T_FWDA : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
T_FWDB : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
T_FWDC : OUT STD_LOGIC;
WB_DATA : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
--T4_R : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
--T5_R : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
--ID_J_ADDR : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
--PC_IN_ID : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
TEST_STALL : OUT STD_LOGIC;
TEST_FLUSH : OUT STD_LOGIC;
OP_BYPASS : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
OP_LATCH : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
TEST_ALU_PIPE: OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
TEST_ALU_FWD : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
TEST_MEM_WRD : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
TEST_MEM_WRAD: OUT STD_LOGIC_VECTOR(6 DOWNTO 0)
);
END RV32I;
ARCHITECTURE STRUCTURAL OF RV32I IS
-- PIPELINE CONTROL --
SIGNAL PIPE_STALL_SIG: STD_LOGIC;
SIGNAL PIPE_FLUSH_SIG: STD_LOGIC;
-- PIPE REG A [ IF -> ID ]
SIGNAL PIPE_A_OUT_IFWORD: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL PIPE_A_OUT_PC_VAL: STD_LOGIC_VECTOR(31 DOWNTO 0);
-- PIPE REG B [ ID -> EXE ]
SIGNAL PIPE_B_OUT_RS1_VAL : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL PIPE_B_OUT_RS2_VAL : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL PIPE_B_OUT_RD_ADDR : STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL PIPE_B_OUT_IMM : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL PIPE_B_OUT_TARGET_J : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL PIPE_B_OUT_PC_VAL : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL PIPE_B_OUT_CTRL_WORD : STD_LOGIC_VECTOR(17 DOWNTO 0);
SIGNAL PIPE_B_OUT_FWD_A : STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL PIPE_B_OUT_FWD_B : STD_LOGIC_VECTOR(1 DOWNTO 0);
-- PIPE REG C [ EXE -> MEM ]
SIGNAL PIPE_C_OUT_WB_OPCODE : STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL PIPE_C_OUT_MEM_OP_DUMP: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL PIPE_C_OUT_RD_ADDR : STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL PIPE_C_RS2_VAL_DUMP : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL PIPE_C_OUT_ALU_RES : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL PIPE_C_OUT_FWD_C : STD_LOGIC;
-- PIPE REG D [ MEM -> WB ]
SIGNAL PIPE_D_OUT_MEM_RES : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL PIPE_D_OUT_ALU_RES : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL PIPE_D_OUT_RD_ADDR : STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL PIPE_D_OUT_WB_LOG_OPCODE : STD_LOGIC_VECTOR(3 DOWNTO 0);
-- PC REGISTER I/O --
SIGNAL PC_IN_NEXT_PC : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL PC_OUT : STD_LOGIC_VECTOR(31 DOWNTO 0); -- The Output won't be used due to the nature of the M4K blocks.
SIGNAL NPC_ON_JALR : STD_LOGIC_VECTOR(31 DOWNTO 0); -- The register will actually be bypassed.
-- IF I/O --
SIGNAL IF_OUT_IFWORD : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL IF_OUT_PC_VAL : STD_LOGIC_VECTOR(31 DOWNTO 0);
-- ID I/O --
SIGNAL ID_IN_WB_RD_ADR: STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL ID_IN_WB_RD_VAL: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL ID_IN_RD_EXE : STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL ID_IN_RD_MEM : STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL ID_IN_LOAD_EXE : STD_LOGIC;
SIGNAL ID_OUT_RS1_VAL : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL ID_OUT_RS2_VAL : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL ID_OUT_RD_ADR : STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL ID_OUT_IMM : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL ID_OUT_J_TARGET: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL ID_OUT_PC_VAL : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL ID_OUT_OPCODES : STD_LOGIC_VECTOR(17 DOWNTO 0);
SIGNAL ID_OUT_STALL : STD_LOGIC;
SIGNAL ID_OUT_FWD_A : STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL ID_OUT_FWD_B : STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL ID_OUT_FWD_C : STD_LOGIC; -- This will bypass the Pipeline Register B
-- And go directly to C
SIGNAL RS1_ADDRESS_IF : STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL RS2_ADDRESS_IF : STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL RD_EQ_RS1_RS2 : STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL RS1_TO_EXE : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL RS2_TO_EXE : STD_LOGIC_VECTOR(31 DOWNTO 0);
-- EXE I/O & PRE-LOGIC --
SIGNAL A_B_SELECTOR : STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL A : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL B : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL ALU_OPCODE : STD_LOGIC_VECTOR(8 DOWNTO 0);
SIGNAL TO_OTHER_PIPE : STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL SHIELD_SELECT : STD_LOGIC;
SIGNAL FORWARD_FROM_MEM : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL FORWARD_FROM_EXE : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL BUF_FWD_B_A : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL BUF_FWD_B_B : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL TO_ALU_A : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL TO_ALU_B : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL ALU_RES : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL BRANCH_T_NT : STD_LOGIC;
SIGNAL NPC_JALR : STD_LOGIC;
SIGNAL NPC_JUMP : STD_LOGIC;
SIGNAL BUF_ADR_MUX : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL PC_PLUS_FOUR : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL ALU_RES_OR_PC_PLUS_4 : STD_LOGIC_VECTOR(31 DOWNTO 0);
-- MEM I/O --
SIGNAL BUF_FWDC_MUX : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL FORWARD_TO_MEM_FROM_MEM : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL MEM_OUT_RES : STD_LOGIC_VECTOR(31 DOWNTO 0);
-- WB I/O --
SIGNAL WB_IN_MEM_OR_ALU : STD_LOGIC_VECTOR(31 DOWNTO 0);
-- TEST
SIGNAL GP_REG_TEST : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL SIM_END : STD_LOGIC;
--SIGNAL T5_REG_TEST : STD_LOGIC_VECTOR(31 DOWNTO 0);
--SIGNAL T4_REG_TEST : STD_LOGIC_VECTOR(31 DOWNTO 0);
BEGIN
-- PC REGISTER --
PC0: PC_REGISTER
PORT MAP( CLK => CLK, RST => RST, STALL => PIPE_STALL_SIG, NEXT_PC => PC_IN_NEXT_PC, ADDRESS => PC_OUT );
-- INSTRUCTION FETCH --
IF1: INSTRUCTION_FETCH
PORT MAP(
GLB_CLK => CLK,
STALL => PIPE_STALL_SIG,
PC => PC_IN_NEXT_PC, -- Bypassing the PC Register
MEMWORD => IF_OUT_IFWORD,
PC_ADD => IF_OUT_PC_VAL
);
-- FETCHED WORD [FROM I$] PC REGISTER VALUE
-- +------------------- \/ ------------------------------------------- \/ ---------------------+
-- | IF -> PIPELINE REGISTER A -> ID |
-- +------------------- \/ ------------------------------------------- \/ ---------------------+
PIPE_A: PIPE_IF_TO_ID_REGISTER
PORT MAP( -- Control
CLK => CLK,
RST => RST,
FLUSH => PIPE_FLUSH_SIG,
STALL => PIPE_STALL_SIG,
-- Inputs
I_IF_WORD => IF_OUT_IFWORD,
I_PC_ADDR => PC_OUT,
-- Outputs
O_IF_WORD => PIPE_A_OUT_IFWORD,
O_PC_ADDR => PIPE_A_OUT_PC_VAL
);
ID2: INSTRUCTION_DECODE
GENERIC MAP( CTRL_WORD_TOTAL => 20, CTRL_WORD_OUT => 18 )
PORT MAP(
CLK => CLK,
RST => RST,
WB_RD_LOAD => ID_IN_WB_RD_ADR, -- Input from WB
WB_RD_DATA => ID_IN_WB_RD_VAL, -- Input from WB
PC_VALUE => PIPE_A_OUT_PC_VAL,-- Input from IF (Reg A)
IF_WORD => PIPE_A_OUT_IFWORD,-- Input from IF (Reg A)
RD_FROM_EXE=> ID_IN_RD_EXE, -- Input from EXE(after Shield)
RD_FROM_MEM=> ID_IN_RD_MEM, -- Input from MEM
PIPE_LOAD_E=> ID_IN_LOAD_EXE, -- Input from EXE
RS1_VALUE => ID_OUT_RS1_VAL,
RS2_VALUE => ID_OUT_RS2_VAL,
RD_ADDR => ID_OUT_RD_ADR,
IMMEDIATE => ID_OUT_IMM,
TARGET_AD => ID_OUT_J_TARGET,
PC_VALUE_O => ID_OUT_PC_VAL,
CTRL_WORD => ID_OUT_OPCODES, -- To RERGROUP Module.
PIPE_STALL => PIPE_STALL_SIG, -- Stall control signals is generated here.
PIPE_FWDA => ID_OUT_FWD_A, -- To Pipeline Register B
PIPE_FWDB => ID_OUT_FWD_B, -- /
PIPE_FWDC => ID_OUT_FWD_C, -- To Pipeline Register C !!!
SIMULATION_END => SIM_END,
GP => GP_REG_TEST
--T5 => T5_REG_TEST,
--T4 => T4_REG_TEST
);
-- "FORWARD-BYPASS" OF REGFILE (FWD D) --
RS1_ADDRESS_IF <= PIPE_A_OUT_IFWORD(19 DOWNTO 15);
RS2_ADDRESS_IF <= PIPE_A_OUT_IFWORD(24 DOWNTO 20);
-- IF RS1/RS2 EQUALS RD[WB] AND RD[WB] != 0
RD_EQ_RS1_RS2(1) <= AND_REDUCE( RS1_ADDRESS_IF XNOR ID_IN_WB_RD_ADR ) AND OR_REDUCE(ID_IN_WB_RD_ADR);
RD_EQ_RS1_RS2(0) <= AND_REDUCE( RS2_ADDRESS_IF XNOR ID_IN_WB_RD_ADR ) AND OR_REDUCE(ID_IN_WB_RD_ADR);
WB_RD_RS1: MUX2X1 -- Check for equalities between RS1/RS2 and RD[WB].
GENERIC MAP(INSIZE => 32) -- If found any, then the WB_Value has to be bypassed
PORT MAP( -- and written to the Register File because the ALU
D0 => ID_OUT_RS1_VAL, -- will have the correct value 1 cc later otherwise.
D1 => ID_IN_WB_RD_VAL,
SEL => RD_EQ_RS1_RS2(1),
O => RS1_TO_EXE
);
WB_RD_RS2: MUX2X1
GENERIC MAP( INSIZE => 32 )
PORT MAP(
D0 => ID_OUT_RS2_VAL,
D1 => ID_IN_WB_RD_VAL,
SEL => RD_EQ_RS1_RS2(0),
O => RS2_TO_EXE
);
-- RS1 RS2 IMM RD [ADR] PC TARGET ADR FWD_A FWD_B CTRLWORD
-- + -- \/ - \/ - \/ - \/ -------- \/ -------- \/ -------- \/ -------- \/ -------- \/ ---------+
-- | ID -> PIPELINE REGISTER B -> EXE |
-- + -- \/ - \/ - \/ - \/ -------- \/ -------- \/ -------- \/ -------- \/ -------- \/ ---------+
PIPE_B: PIPE_ID_TO_EXE_REGISTER
PORT MAP( -- Control
CLK => CLK,
RST => RST,
FLUSH => PIPE_FLUSH_SIG,
STALL => PIPE_STALL_SIG,
-- Inputs
I_RS1_VAL => RS1_TO_EXE,
I_RS2_VAL => RS2_TO_EXE,
I_IMM_VAL => ID_OUT_IMM,
I_RD_ADDR => ID_OUT_RD_ADR,
I_PC_VAL => ID_OUT_PC_VAL,
I_TARGET_ADDR => ID_OUT_J_TARGET,
I_CTRL_WORD => ID_OUT_OPCODES,
I_FWD_A => ID_OUT_FWD_A,
I_FWD_B => ID_OUT_FWD_B,
-- Outputs
O_RS1_VAL => PIPE_B_OUT_RS1_VAL,
O_RS2_VAL => PIPE_B_OUT_RS2_VAL,
O_IMM_VAL => PIPE_B_OUT_IMM,
O_RD_ADDR => PIPE_B_OUT_RD_ADDR,
O_PC_VAL => PIPE_B_OUT_PC_VAL,
O_TARGET_ADDR => PIPE_B_OUT_TARGET_J,
O_CTRL_WORD => PIPE_B_OUT_CTRL_WORD,
O_FWD_A => PIPE_B_OUT_FWD_A,
O_FWD_B => PIPE_B_OUT_FWD_B
);
CTRL_FIX: CONTROL_WORD_REGROUP
PORT MAP(
CTRL_WORD => PIPE_B_OUT_CTRL_WORD,
TO_EXE_SELECTOR => A_B_SELECTOR,
TO_EXE_ALU => ALU_OPCODE,
TO_OTHERS => TO_OTHER_PIPE
);
NPC_JALR <= A_B_SELECTOR(3); -- Will be used later for Next PC
NPC_JUMP <= A_B_SELECTOR(2); -- Multiplexers
-- FORWARD MUXES [ B path < A path ]
FWDB_A: MUX2X1 -- Forward B for A
GENERIC MAP( INSIZE => 32 )
PORT MAP(
D0 => PIPE_B_OUT_RS1_VAL,
D1 => FORWARD_FROM_MEM,
SEL => PIPE_B_OUT_FWD_B(1), -- #Bit 1 for RS1 , 0 for RS2/IMM etc.
O => BUF_FWD_B_A
);
FWDA_A: MUX2X1 -- Forward A for A
GENERIC MAP( INSIZE => 32 )
PORT MAP(
D0 => BUF_FWD_B_A,
D1 => FORWARD_FROM_EXE,
SEL => PIPE_B_OUT_FWD_A(1), -- #Bit 1 for RS1 , 0 for RS2/IMM etc.
O => TO_ALU_A
);
FWDB_B: MUX2X1 -- Forward B for B
GENERIC MAP( INSIZE => 32 )
PORT MAP(
D0 => PIPE_B_OUT_RS2_VAL,
D1 => FORWARD_FROM_MEM,
SEL => PIPE_B_OUT_FWD_B(0), -- #Bit 1 for RS1 , 0 for RS2/IMM etc.
O => BUF_FWD_B_B
);
FWDA_B: MUX2X1 -- Forward A for B
GENERIC MAP( INSIZE => 32 )
PORT MAP(
D0 => BUF_FWD_B_B,
D1 => FORWARD_FROM_EXE,
SEL => PIPE_B_OUT_FWD_A(0), -- #Bit 1 for RS1 , 0 for RS2/IMM etc.
O => TO_ALU_B
);
-- Decide which values are going to ALU
ALU_IN: DECODE_TO_EXECUTE
PORT MAP(
RS1 => TO_ALU_A,
RS2 => TO_ALU_B,
PC_I => PIPE_B_OUT_PC_VAL,
IMME => PIPE_B_OUT_IMM,
JALR => A_B_SELECTOR(3),
JUMP => A_B_SELECTOR(2),
PC => A_B_SELECTOR(1),
IMM => A_B_SELECTOR(0),
A => A,
B => B
);
-- INSTRUCTION EXECUTE - ALU --
EXE3: EXE
PORT MAP(
A => A,
B => B,
OP => ALU_OPCODE,
RES => ALU_RES,
TNT => BRANCH_T_NT
);
-- FEEDBACK TO PREVIOUS MODULES
SHIELD_SELECT <= '1' WHEN (ALU_OPCODE(2) = '1' OR ( TO_OTHER_PIPE(3) = '1' AND TO_OTHER_PIPE(2 DOWNTO 1) /= "11")) ELSE
'0';
BRANCH_SHIELD: MUX2X1 -- This is just in case there is a branch in EXE (which has no RD) and by random
GENERIC MAP ( INSIZE => 5 ) -- the IMMEDIATE [11..7] has the same value as the RD address which is in ID. To avoid
PORT MAP ( -- providing a false FWD_A signal we add this "shield" which gives "00000" as RD in this case (which will be caught by STALL_FWD_PREDICTOR)
D0 => PIPE_B_OUT_RD_ADDR,
D1 => "00000",
SEL => SHIELD_SELECT, -- BRANCH CTRL SIG
O => ID_IN_RD_EXE
);
ID_IN_LOAD_EXE <= NOT TO_OTHER_PIPE(3); -- This is the MSB of MEMOP CTRL Signal (0 for loads, 1 for Stores and mem-free-ops)
PIPE_FLUSH_SIG <= NPC_JUMP OR BRANCH_T_NT; -- Flush control signal is generted here.
-- NEXT PC CALCULATION --
NPC_ON_JALR <= ALU_RES(31 DOWNTO 1) & "0";
ADR_MUX: MUX2X1
GENERIC MAP( INSIZE => 32 )
PORT MAP(
D0 => PIPE_B_OUT_TARGET_J,
D1 => NPC_ON_JALR, -- This path will be taken only if the command is a JALR (LSB = 0).
SEL => NPC_JALR,
O => BUF_ADR_MUX
);
PC_P4: PC_PLUS_4 PORT MAP ( PC => PC_OUT, RES => PC_PLUS_FOUR );
NPC_MUX: MUX2X1
GENERIC MAP( INSIZE => 32 )
PORT MAP(
D0 => PC_PLUS_FOUR,
D1 => BUF_ADR_MUX,
SEL => PIPE_FLUSH_SIG,
O => PC_IN_NEXT_PC -- Input to PC Register (and I$).
);
-- If there is a JALR then, the value that must be transfered to MEM-WB is the ID_ADDER's result, because we do things the oposite way with JALR
JALR_OR_ALU: MUX2X1
GENERIC MAP( INSIZE => 32 )
PORT MAP(
D0 => ALU_RES,
D1 => PIPE_B_OUT_TARGET_J,
SEL => NPC_JALR,
O => ALU_RES_OR_PC_PLUS_4
);
-- ALU RES RD[ADR] RS2 OPCODE[MEM&WB]
-- +-------- \/ ---------------- \/ ---------------- \/ ---------------- \/ -------------------+
-- | EXE -> PIPELINE REGISTER C -> MEM |
-- +-------- \/ ---------------- \/ ---------------- \/ ---------------- \/ -------------------+
PIPE_C: PIPE_EXE_TO_MEM_REGISTER
PORT MAP(
CLK => CLK,
RST => RST,
I_FWD_C => ID_OUT_FWD_C,
I_ALU_RES => ALU_RES_OR_PC_PLUS_4, --ALU_RES,
I_RD_ADDR => PIPE_B_OUT_RD_ADDR,
I_RS2_VAL => TO_ALU_B,
OP_MEM_WB => TO_OTHER_PIPE,
OP_WB => PIPE_C_OUT_WB_OPCODE,
OP_MEM => PIPE_C_OUT_MEM_OP_DUMP, -- Will be bypassed.
O_RD_ADDR => PIPE_C_OUT_RD_ADDR,
O_RS2_VAL => PIPE_C_RS2_VAL_DUMP, -- Will be bypassed.
O_ALU_RES => PIPE_C_OUT_ALU_RES,
O_FWD_C => PIPE_C_OUT_FWD_C
);
FWDC_MUC: MUX2X1
GENERIC MAP( INSIZE => 32 )
PORT MAP(
D0 => TO_ALU_B, -- Even here, we have to bypass.
D1 => FORWARD_TO_MEM_FROM_MEM,
SEL => PIPE_C_OUT_FWD_C,
O => BUF_FWDC_MUX
);
MEM4: MEMORY
PORT MAP(
CLK => CLK,
OPCODE_PIPE => PIPE_C_OUT_MEM_OP_DUMP , -- Will be used for Loads "Masking"
OPCODE_BYPSS => TO_OTHER_PIPE(3 DOWNTO 1), -- Bypassing the C Reg (ONLY MEMOP FOR STORES)
ALU_RES_PIPE => PIPE_C_OUT_ALU_RES(1 DOWNTO 0), -- For loads
ALU_RES_BYPSS => ALU_RES_OR_PC_PLUS_4(1 DOWNTO 0), -- For stores Bypass the C Reg
WR_ADR => ALU_RES_OR_PC_PLUS_4(8 DOWNTO 2), -- Bypassing the C Reg
WR_DAT => BUF_FWDC_MUX, -- Bypassing the C Reg
MEM_RES => MEM_OUT_RES
);
-- FEEDBACK TO PREVIOUS MODULES --
ID_IN_RD_MEM <= PIPE_C_OUT_RD_ADDR;
FORWARD_FROM_EXE <= PIPE_C_OUT_ALU_RES; -- Forward A
FORWARD_TO_MEM_FROM_MEM <= MEM_OUT_RES; -- Forward C
-- OPCODE[WB] MEM RES ALU RES RD [ADR]
-- +------ \/ ------------ \/ ------------------------------------ \/ ------------ \/ ---------+
-- | MEM -> PIPELINE REGISTER D -> WB |
-- +------ \/ ------------ \/ ------------------------------------ \/ ------------ \/ ---------+
PIPE_D: PIPE_MEM_TO_WB_REGISTER
PORT MAP(
CLK => CLK,
RST => RST,
I_MEM_RES => MEM_OUT_RES,
I_ALU_RES => PIPE_C_OUT_ALU_RES,
OP_WB => PIPE_C_OUT_WB_OPCODE,
I_RD_ADDR => PIPE_C_OUT_RD_ADDR,
O_MEM_RES => PIPE_D_OUT_MEM_RES,
O_ALU_RES => PIPE_D_OUT_ALU_RES,
O_RD_ADDR => PIPE_D_OUT_RD_ADDR,
OP_WB_LOG => PIPE_D_OUT_WB_LOG_OPCODE
);
SEL_FEED: MEM_TO_WB
PORT MAP(
MEM_IN => PIPE_D_OUT_MEM_RES,
ALU_IN => PIPE_D_OUT_ALU_RES,
MEMOP => PIPE_D_OUT_WB_LOG_OPCODE(3 DOWNTO 1),
WB_IN => WB_IN_MEM_OR_ALU
);
WB5: WRITE_BACK
PORT MAP(
WB_OP => PIPE_D_OUT_WB_LOG_OPCODE(0),
WB_ADR => PIPE_D_OUT_RD_ADDR,
WB_DAT => WB_IN_MEM_OR_ALU,
RD_ADR => ID_IN_WB_RD_ADR, -- Back to ID's Register file.
RD_DAT => ID_IN_WB_RD_VAL -- Back to ID's Register file.
);
-- FEEDBACK TO PREVIOUS MODULES --
FORWARD_FROM_MEM <= WB_IN_MEM_OR_ALU; -- Either ALU's or MEM's Result for Forward B.
----------------------------------------------------------------------------------------------
-- Each Stage's Output
PC <= PC_OUT;
I_F <= IF_OUT_IFWORD;
I_D <= ID_OUT_OPCODES;
ALU <= ALU_RES;
MEM <= MEM_OUT_RES;
WB <= ID_IN_WB_RD_ADR;
--NPC_PLUS_4_MUX <= NPC_JUMP OR BRANCH_T_NT;
--NPC_TEST <= PC_IN_NEXT_PC;
EXE_TNT <= BRANCH_T_NT;
ALU_VALUE_A <= TO_ALU_A;
ALU_VALUE_B <= TO_ALU_B;
--ALU_OPCODE_T<= ALU_OPCODE;
REGISTER_GP <= GP_REG_TEST;
ECALL <= SIM_END;
T_FWDA <= PIPE_B_OUT_FWD_A;
T_FWDB <= PIPE_B_OUT_FWD_B;
T_FWDC <= PIPE_C_OUT_FWD_C;
WB_DATA <= ID_IN_WB_RD_VAL;
--T4_R <= T4_REG_TEST;
--T5_R <= T5_REG_TEST;
--ID_J_ADDR <= ID_OUT_J_TARGET;
--PC_IN_ID <= PIPE_A_OUT_PC_VAL;
TEST_FLUSH <= PIPE_FLUSH_SIG;
TEST_STALL <= PIPE_STALL_SIG;
OP_BYPASS <= TO_OTHER_PIPE(3 DOWNTO 1);
OP_LATCH <= PIPE_C_OUT_MEM_OP_DUMP;
TEST_ALU_PIPE <= PIPE_C_OUT_ALU_RES(1 DOWNTO 0);
TEST_ALU_FWD <= ALU_RES_OR_PC_PLUS_4(1 DOWNTO 0);
TEST_MEM_WRD <= BUF_FWDC_MUX; -- RS2
TEST_MEM_WRAD <= ALU_RES_OR_PC_PLUS_4(6 DOWNTO 0);
END STRUCTURAL;