diff --git a/examples/tm_scrfd_trt_fp16.cpp b/examples/tm_scrfd_trt_fp16.cpp index fc6b2ee6e..bb15aba8c 100644 --- a/examples/tm_scrfd_trt_fp16.cpp +++ b/examples/tm_scrfd_trt_fp16.cpp @@ -270,8 +270,8 @@ static void draw_objects(const cv::Mat& bgr, const std::vector& obje void show_usage() { fprintf( - stderr, - "[Usage]: [-h]\n [-m model_file] [-i image_file] [-r repeat_count] [-t thread_count]\n"); + stderr, + "[Usage]: [-h]\n [-m model_file] [-i image_file] [-r repeat_count] [-t thread_count]\n"); } void get_input_data_scrfd(const char* image_file, float* input_data, int letterbox_rows, int letterbox_cols, const float* mean, const float* scale) @@ -334,8 +334,8 @@ int main(int argc, char* argv[]) const char* image_file = nullptr; int img_c = 3; - const float mean[3] = { 127.5f, 127.5f, 127.5f }; - const float scale[3] = { 1 / 128.f, 1 / 128.f, 1 / 128.f }; + const float mean[3] = {127.5f, 127.5f, 127.5f}; + const float scale[3] = {1 / 128.f, 1 / 128.f, 1 / 128.f}; // allow none square letterbox, set default letterbox size int letterbox_rows = 320; @@ -409,9 +409,8 @@ int main(int argc, char* argv[]) } fprintf(stderr, "tengine-lite library version: %s\n", get_tengine_version()); - /* create NVIDIA TensorRT backend */ - trt_option trt_opt = { 0 }; + trt_option trt_opt = {0}; trt_opt.dev_name = "TensorRT"; trt_opt.dla_index = 0; trt_opt.gpu_index = 0; @@ -424,7 +423,6 @@ int main(int argc, char* argv[]) return -1; } - /* create graph, load tengine model xxx.tmfile */ graph_t graph = create_graph(trt_context, "tengine", model_file); if (graph == nullptr) @@ -434,7 +432,7 @@ int main(int argc, char* argv[]) } int img_size = letterbox_rows * letterbox_cols * img_c; - int dims[] = { 1, 3, letterbox_rows, letterbox_cols }; + int dims[] = {1, 3, letterbox_rows, letterbox_cols}; std::vector input_data(img_size); tensor_t input_tensor = get_graph_input_tensor(graph, 0, 0); @@ -485,7 +483,7 @@ int main(int argc, char* argv[]) max_time = (std::max)(max_time, cur); } fprintf(stderr, "Repeat %d times, thread %d, avg time %.2f ms, max_time %.2f ms, min_time %.2f ms\n", repeat_count, num_thread, - total_time / repeat_count, max_time, min_time); + total_time / repeat_count, max_time, min_time); fprintf(stderr, "--------------------------------------\n"); /* postprocess */ @@ -493,7 +491,7 @@ int main(int argc, char* argv[]) const float nms_threshold = 0.45f; std::vector proposals, objects; - int strides[] = { 8, 16, 32 }; + int strides[] = {8, 16, 32}; for (int stride_index = 0; stride_index < 3; stride_index++) { tensor_t score_tensor = get_graph_tensor(graph, score_pred_name[stride_index]); diff --git a/tools/convert_tool/ncnn/ncnn2tengine.cpp b/tools/convert_tool/ncnn/ncnn2tengine.cpp index f475a7230..de5aaef5e 100644 --- a/tools/convert_tool/ncnn/ncnn2tengine.cpp +++ b/tools/convert_tool/ncnn/ncnn2tengine.cpp @@ -1498,6 +1498,7 @@ void ncnn_serializer::register_op_load() op_load_map["Slice"] = std::pair(OP_SLICE, load_slice); op_load_map["Sigmoid"] = std::pair(OP_SIGMOID, load_no_param); op_load_map["UnaryOp"] = std::pair(OP_UNARY, load_unary); + op_load_map["Deconvolution"] = std::pair(OP_DECONV, load_deconv); op_load_map["DeconvolutionDepthWise"] = std::pair(OP_DECONV, load_deconv); } /*