forked from isl-org/DPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_segmentation.py
163 lines (127 loc) · 4.43 KB
/
run_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""Compute segmentation maps for images in the input folder.
"""
import os
import glob
import cv2
import argparse
import torch
import torch.nn.functional as F
import util.io
from torchvision.transforms import Compose
from dpt.models import DPTSegmentationModel
from dpt.transforms import Resize, NormalizeImage, PrepareForNet
def run(input_path, output_path, model_path, model_type="dpt_hybrid", optimize=True):
"""Run segmentation network
Args:
input_path (str): path to input folder
output_path (str): path to output folder
model_path (str): path to saved model
"""
print("initialize")
# select device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device: %s" % device)
net_w = net_h = 480
# load network
if model_type == "dpt_large":
model = DPTSegmentationModel(
150,
path=model_path,
backbone="vitl16_384",
)
elif model_type == "dpt_hybrid":
model = DPTSegmentationModel(
150,
path=model_path,
backbone="vitb_rn50_384",
)
else:
assert (
False
), f"model_type '{model_type}' not implemented, use: --model_type [dpt_large|dpt_hybrid]"
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="minimal",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
PrepareForNet(),
]
)
model.eval()
if optimize == True and device == torch.device("cuda"):
model = model.to(memory_format=torch.channels_last)
model = model.half()
model.to(device)
# get input
img_names = glob.glob(os.path.join(input_path, "*"))
num_images = len(img_names)
# create output folder
os.makedirs(output_path, exist_ok=True)
print("start processing")
for ind, img_name in enumerate(img_names):
print(" processing {} ({}/{})".format(img_name, ind + 1, num_images))
# input
img = util.io.read_image(img_name)
img_input = transform({"image": img})["image"]
# compute
with torch.no_grad():
sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
if optimize == True and device == torch.device("cuda"):
sample = sample.to(memory_format=torch.channels_last)
sample = sample.half()
out = model.forward(sample)
prediction = torch.nn.functional.interpolate(
out, size=img.shape[:2], mode="bicubic", align_corners=False
)
prediction = torch.argmax(prediction, dim=1) + 1
prediction = prediction.squeeze().cpu().numpy()
# output
filename = os.path.join(
output_path, os.path.splitext(os.path.basename(img_name))[0]
)
util.io.write_segm_img(filename, img, prediction, alpha=0.5)
print("finished")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-i", "--input_path", default="input", help="folder with input images"
)
parser.add_argument(
"-o", "--output_path", default="output_semseg", help="folder for output images"
)
parser.add_argument(
"-m",
"--model_weights",
default=None,
help="path to the trained weights of model",
)
# 'vit_large', 'vit_hybrid'
parser.add_argument("-t", "--model_type", default="dpt_hybrid", help="model type")
parser.add_argument("--optimize", dest="optimize", action="store_true")
parser.add_argument("--no-optimize", dest="optimize", action="store_false")
parser.set_defaults(optimize=True)
args = parser.parse_args()
default_models = {
"dpt_large": "weights/dpt_large-ade20k-b12dca68.pt",
"dpt_hybrid": "weights/dpt_hybrid-ade20k-53898607.pt",
}
if args.model_weights is None:
args.model_weights = default_models[args.model_type]
# set torch options
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# compute segmentation maps
run(
args.input_path,
args.output_path,
args.model_weights,
args.model_type,
args.optimize,
)