forked from wang-fujin/PINN4SOH
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_comparision.py
200 lines (163 loc) · 7.57 KB
/
main_comparision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import torch.nn as nn
import numpy as np
import os
from utils.util import AverageMeter,get_logger
from Model.Compare_Models import MLP,CNN
from Model.Model import LR_Scheduler
from dataloader.dataloader import XJTUdata,HUSTdata,MITdata,TJUdata
import argparse
class Trainer():
def __init__(self,model,train_loader,valid_loader,test_loader,args):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model = model.to(self.device)
self.args = args
self.train_loader = train_loader
self.valid_loader = valid_loader
self.test_loader = test_loader
self.save_dir = args.save_folder
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
self.epochs = args.epochs
self.logger = get_logger(os.path.join(args.save_folder,args.log_dir))
self.loss_meter = AverageMeter()
self.loss_func = nn.MSELoss()
self.optimizer = torch.optim.Adam(self.model.parameters(),lr=args.warmup_lr)
self.scheduler = LR_Scheduler(optimizer=self.optimizer,
warmup_epochs=args.warmup_epochs,
warmup_lr=args.warmup_lr,
num_epochs=args.epochs,
base_lr=args.lr,
final_lr=args.final_lr)
def clear_logger(self):
self.logger.removeHandler(self.logger.handlers[0])
self.logger.handlers.clear()
def train_one_epoch(self,epoch):
self.model.train()
self.loss_meter.reset()
for (x1,_,y1,_) in self.train_loader:
x1 = x1.to(self.device)
y1 = y1.to(self.device)
y_pred = self.model(x1)
loss = self.loss_func(y_pred,y1)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.loss_meter.update(loss.item())
info = '[Train] epoch:{:0>3d}, data loss:{:.6f}'.format(epoch,self.loss_meter.avg)
self.logger.info(info)
return self.loss_meter.avg
def valid(self,epoch):
self.model.eval()
self.loss_meter.reset()
with torch.no_grad():
for (x1,_,y1,_) in self.valid_loader:
x1 = x1.to(self.device)
y1 = y1.to(self.device)
y_pred = self.model(x1)
loss = self.loss_func(y_pred,y1)
self.loss_meter.update(loss.item())
info = '[Valid] epoch:{:0>3d}, data loss:{:.6f}'.format(epoch,self.loss_meter.avg)
self.logger.info(info)
return self.loss_meter.avg
def test(self):
self.model.eval()
self.loss_meter.reset()
true_label = []
pred_label = []
with torch.no_grad():
for (x1,_,y1,_) in self.test_loader:
x1 = x1.to(self.device)
y_pred = self.model(x1)
true_label.append(y1.cpu().detach().numpy())
pred_label.append(y_pred.cpu().detach().numpy())
true_label = np.concatenate(true_label,axis=0)
pred_label = np.concatenate(pred_label,axis=0)
if self.save_dir is not None:
np.save(os.path.join(self.save_dir,'true_label.npy'),true_label)
np.save(os.path.join(self.save_dir,'pred_label.npy'),pred_label)
return true_label,pred_label
def train(self):
min_loss = 100
early_stop = 0
for epoch in range(1,self.epochs+1):
early_stop += 1
train_loss = self.train_one_epoch(epoch)
current_lr = self.scheduler.step()
valid_loss = self.valid(epoch)
if valid_loss < min_loss and self.test_loader is not None:
min_loss = valid_loss
true_label,pred_label = self.test()
early_stop = 0
if early_stop > 10:
break
self.clear_logger()
def load_model(args):
if args.model == 'MLP':
model = MLP()
elif args.model == 'CNN':
model = CNN()
return model
def load_XJTU_data(args,small_sample=None):
root = 'data/XJTU data'
data = XJTUdata(root=root, args=args)
train_list = []
test_list = []
files = os.listdir(root)
for file in files:
if args.xjtu_batch in file:
if '4' in file or '8' in file:
test_list.append(os.path.join(root, file))
else:
train_list.append(os.path.join(root, file))
if small_sample is not None:
train_list = train_list[:small_sample]
train_loader = data.read_all(specific_path_list=train_list)
test_loader = data.read_all(specific_path_list=test_list)
dataloader = {'train': train_loader['train_2'],
'valid': train_loader['valid_2'],
'test': test_loader['test_3']}
return dataloader
def get_args():
parser = argparse.ArgumentParser('The parameters of Comparision methods')
parser.add_argument('--model',type=str,default='CNN',choices=['MLP','CNN'])
parser.add_argument('--dataset',type=str,default='XJTU',choices=['XJTU','HUST','MIT','TJU'])
parser.add_argument('--normalization_method',type=str, default='min-max', help='min-max,z-score')
# XJTU data
parser.add_argument('--xjtu_batch',type=str,default='2C',choices=['2C','3C','R2.5','R3','RW','satellite'])
# TJU data
parser.add_argument('--in_same_batch',type=bool,default=True)
parser.add_argument('--tju_batch',type=int,default=0,choices=[0,1,2])
parser.add_argument('--tju_train_batch',type=int,default=-1, choices=[-1,0,1,2])
parser.add_argument('--tju_test_batch',type=int,default=-1, choices=[-1,0,1,2])
# scheduler related
parser.add_argument('--epochs', type=int, default=200, help='epoch')
parser.add_argument('--early_stop', type=int, default=20, help='early stop')
parser.add_argument('--warmup_epochs', type=int, default=30, help='warmup epoch')
parser.add_argument('--warmup_lr', type=float, default=2e-3, help='warmup lr')
parser.add_argument('--lr', type=float, default=1e-2, help='learning rate')
parser.add_argument('--final_lr', type=float, default=2e-4, help='final lr')
parser.add_argument('--lr_F', type=float, default=5e-4, help='lr of F')
parser.add_argument('--save_folder',type=str,default='./results of reviewer/')
parser.add_argument('--log_dir',type=str,default='logging.txt')
parser.add_argument('--batch_size',type=int,default=512)
args = parser.parse_args()
if not os.path.exists(args.save_folder):
os.makedirs(args.save_folder)
return args
if __name__ == '__main__':
args = get_args()
xjtu_batch_names = ['2C','3C','R2.5','R3','RW','satellite']
# tju_batch = [0,1,2]
setattr(args,'model','MLP') # select model: MLP or CNN
for i in range(len(xjtu_batch_names)):
setattr(args,'xjtu_batch',xjtu_batch_names[i])
# setattr(args,'tju_batch',tju_batch[i])
for e in range(10):
setattr(args,'save_folder',os.path.join('./results of reviewer/',f'{args.dataset}-{args.model} results/{i}-{i}/Experiment{e+1}'))
if not os.path.exists(args.save_folder):
os.makedirs(args.save_folder)
model = load_model(args)
data_loader = load_XJTU_data(args)
trainer = Trainer(model,data_loader['train'],data_loader['valid'],data_loader['test'],args)
trainer.train()