-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathextract_tensorflow_logs.py
132 lines (103 loc) · 4.24 KB
/
extract_tensorflow_logs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import re
import sys
import glob
import json
import argparse
import pprint
import numpy as np
pp = pprint.PrettyPrinter(indent=1)
os.chdir(sys.path[0])
parser = argparse.ArgumentParser(description="flags for cnn benchmark")
parser.add_argument("--log_dir", type=str, default="../ngc/tensorflow", required=True)
parser.add_argument("--output_dir", type=str, default="./result", required=False)
parser.add_argument('--warmup_batches', type=int, default=20)
parser.add_argument('--train_batches', type=int, default=120)
parser.add_argument('--batch_size_per_device', type=int, default=128)
args = parser.parse_args()
class AutoVivification(dict):
"""Implementation of perl's autovivification feature."""
def __getitem__(self, item):
try:
return dict.__getitem__(self, item)
except KeyError:
value = self[item] = type(self)()
return value
def extract_info_from_file(log_file, result_dict, speed_dict):
# extract info from file name
fname = os.path.basename(log_file)
run_case = log_file.split("/")[-2] # eg: 1n1g
model = fname.split("_")[0]
batch_size = int(fname.split("_")[1].strip("b"))
pricition = fname.split("_")[2]
test_iter = int(fname.split("_")[3].strip(".log"))
total_batch_size = 0
node_num = int(run_case[0])
if len(run_case) == 4:
card_num = int(run_case[-2])
elif len(run_case) == 5:
card_num = int(run_case[-3:-1])
tmp_dict = {
'average_speed': 0,
'batch_size_per_device': batch_size,
}
from_iter = 0 if args.warmup_batches < 20 else args.warmup_batches-20
to_iter = args.train_batches-20
avg_speed_list = []
# extract info from file content
with open(log_file) as f:
lines = f.readlines()
for line in lines:
if " imgs_per_sec " in line:
p1 = re.compile(r' imgs_per_sec \: \d+.\d+ ', re.S)
s = re.findall(p1, line)
speed = round(float(s[0].split(" : ")[1].strip()), 2)
avg_speed_list.append(speed)
# compute avg throughoutput
avg_speed = round(np.mean(avg_speed_list[from_iter:to_iter]), 2)
tmp_dict['average_speed'] = avg_speed
result_dict[model][run_case]['average_speed'] = tmp_dict['average_speed']
result_dict[model][run_case]['batch_size_per_device'] = tmp_dict['batch_size_per_device']
speed_dict[model][run_case][test_iter] = avg_speed
print(log_file, speed_dict[model][run_case])
def compute_speedup(result_dict, speed_dict):
model_list = [key for key in result_dict] # eg.['vgg16', 'rn50']
for m in model_list:
run_case = [key for key in result_dict[m]] # eg.['4n8g', '2n8g', '1n8g', '1n4g', '1n1g']
for d in run_case:
speed_up = 1.0
if result_dict[m]['1n1g']['average_speed']:
result_dict[m][d]['average_speed'] = compute_average(speed_dict[m][d])
result_dict[m][d]['median_speed'] = compute_median(speed_dict[m][d])
speed_up = result_dict[m][d]['median_speed'] / compute_median(speed_dict[m]['1n1g'])
result_dict[m][d]['speedup'] = round(speed_up, 2)
def compute_median(iter_dict):
speed_list = [i for i in iter_dict.values()]
return round(np.median(speed_list), 2)
def compute_average(iter_dict):
i = 0
total_speed = 0
for iter in iter_dict:
i += 1
total_speed += iter_dict[iter]
return round(total_speed / i, 2)
def extract_result():
result_dict = AutoVivification()
speed_dict = AutoVivification()
logs_list = glob.glob(os.path.join(args.log_dir, "*/*.log"))
for l in logs_list:
extract_info_from_file(l, result_dict, speed_dict)
# compute speedup
compute_speedup(result_dict, speed_dict)
# print result
pp.pprint(result_dict)
# write to file as JSON format
os.makedirs(args.output_dir, exist_ok=True)
framwork = args.log_dir.split('/')[-1]
result_file_name = os.path.join(args.output_dir, framwork + "_result.json")
print("Saving result to {}".format(result_file_name))
with open(result_file_name, 'w') as f:
json.dump(result_dict, f)
if __name__ == "__main__":
assert args.warmup_batches >=20 and args.train_batches > args.warmup_batches
extract_result()