-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind-unique-columns
executable file
·307 lines (258 loc) · 12.8 KB
/
find-unique-columns
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# Find [combinations of] columns whose values are unique in every row in a CSV.
# https://github.com/OpenTechStrategies/csv2wiki/blob/master/find-unique-columns
#
# Copyright (C) 2017 Open Tech Strategies, LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
__doc__ = """\
Basic usage:
$ ./find-unique-columns [[-g N,M,... [-g P,Q...]] -s SEP] CSV_FILE
The output first shows columns that are individually unique (if any):
Individual columns that are unique across all rows:
1. Some column header
5. Yet another column header
23. foo column header
35. bar column header
220. baz column header
Or if there are no single unique columns, then you'll see this:
No individual columns were unique across all rows.
You can also ask about particular combinations of columns, using the
'-g' / '--group' option (multiple times) and the '-s' / '--separator'
option (once, but required when '--group' is used). Here's how:
$ ./find-unique-columns --group=5,8,29 --separator="_" input.csv
The output will report on whether or not that combination is unique
when concatenated together in every row, with the indicated separator
joining the values. Each unique combination is reported like this:
Unique combination: 5_8_29
5. Yet another column header
8. And so on
29. And so forth
Non-unique combinations won't be represented in the output at all.
You can pass '-g' / '--group' more than once, to ask about multiple
combinations of columns; the same separator is used for all of them.
The reason the separator is required is that there are pathological
cases where concatenating values together might be unique with some
separators (or with no separator) but not with others, when the suffix
of one column's value in a given row happens to combine with the
prefix of another columns value in a way that causes a collision. To
keep things simple, only one separator is supported per invocation --
that is, the same separator is used for all column combinations.
Because, really, how likely are you to be testing different column
groups *and* different separators at the same time?
It is an error to ask about only one column as a combination. Since
any single unique column would be reported in the first part of the
output, it's only meaningful to ask about combinations of two or more.
(Note: The 'csvstat' program in csvkit -- see http://csvkit.rtfd.org/
and https://github.com/wireservice/csvkit -- can be used to find
single-column unique values, in a somewhat cumbersome way: you have to
look at the "Unique values:" field in the output section for each
column, and compare those values with the "Row count" at the end. But
I couldn't figure out any way to test for unique column combinations
with 'csvstat', and it was faster to write this script than to keep
experimenting. If you know of a way to do all of this with csvkit,
please file an issue in github.com/OpenTechStrategies/csv2wiki/ and
we'll deprecate this script in favor of that solution.)
find-unique-columns is free / open source software under the AGPL-3.0
license. Please run with --version option for details.
"""
import csv
import re
import getopt, sys
def usage(errout=False):
"""Print a message explaining how to use this script.
Print to stdout, unless ERROUT, in which case print to stderr."""
out = sys.stderr if errout else sys.stdout
out.write(__doc__)
def version(errout=False):
"""Print a message explaining how to use this script.
Print to stdout, unless ERROUT, in which case print to stderr."""
out = sys.stderr if errout else sys.stdout
out.write("""find-unique-columns version 1.0.0.
Copyright (C) 2017, 2018 Open Tech Strategies, LLC
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.\n""")
def main():
"""
By default, creates wiki pages from a supplied CSV. Optionally,
deletes those pages instead.
"""
# List of lists. Each sub-list is a list of column numbers
# (integers) to test for uniqueness as a group with separator.
column_combinations = []
separator = None # Must be set if column_combinations is non-empty.
try:
opts, args = getopt.getopt(sys.argv[1:], 'hv?g:s:',
["help", "version", "usage",
"group=", "separator=",])
except getopt.GetoptError as err:
sys.stderr.write("ERROR: '%s'\n" % err)
sys.stderr.write("Run with '--help' flag to see usage.\n")
sys.exit(2)
for o, a in opts:
if o in ("-h", "-?", "--help", "--usage",):
usage()
sys.exit(0)
elif o in ("-v", "--version",):
version()
sys.exit(0)
elif o in ("-g", "--group",):
this_combination = a.split(",")
for i in range(len(this_combination)):
this_combination[i] = int(this_combination[i])
column_combinations.append(this_combination)
elif o in ("-s", "--separator",):
if separator is not None:
sys.stderr.write("ERROR: cannot specify multiple separators\n")
sys.stderr.write("Run with '--help' flag to see usage.\n")
sys.exit(2)
separator = a
num_re = re.compile(".*[0-9].*")
if num_re.match(separator):
sys.stderr.write("ERROR: sorry, undocumented restriction: "
"separator cannot contain numbers\n")
sys.stderr.write("ERROR: I mean, come on. Really?\n")
sys.stderr.write("Run with '--help' flag to see usage.\n")
sys.exit(2)
else:
sys.stderr.write("ERROR: unrecognized option '%s'\n" % o)
sys.exit(2)
if len(args) == 0:
sys.stderr.write("ERROR: CSV input file required\n")
sys.stderr.write("Run with '--help' to see usage.\n")
sys.exit(2)
if column_combinations and separator is None:
sys.stderr.write("ERROR: must specify a separator with column group\n")
sys.stderr.write("Run with '--help' to see usage.\n")
sys.exit(2)
if separator is not None and not column_combinations:
sys.stderr.write("ERROR: separator specified without column group\n")
sys.stderr.write("Run with '--help' to see usage.\n")
sys.exit(2)
if column_combinations:
for this_combination in column_combinations:
if len(this_combination) < 2:
sys.stderr.write(
"ERROR: each column combination needs at least 2 columns\n")
sys.stderr.write("Run with '--help' to see usage.\n")
sys.exit(2)
csv_reader = csv.reader(open(args[0]), delimiter=',', quotechar='"')
# Set column headers, using 1-based indexing.
headers = [None,] + next(csv_reader)
# Later when we're printing column numbers, we'll want this.
col_fmt = "{0: >%d}" % len(str(len(headers[1:])))
# A dictionary whose keys are column numbers (integers) or column
# combinations (strings of numbers joined by the separator), and
# whose values are one of two things:
#
# - False: we've already discovered that this column or
# combination is not unique, so there's no point looking at
# more rows.
#
# - Sub-dictionary: keys are cell strings, values are True (but
# ignored). If we encounter the same cell string more than
# once, then we replace the entire sub-dict with False,
# because we know this column or combination is not unique.
columns_and_combinations = {}
# Initialize with a subdictionary for each single columns.
for col_num in range(1, len(headers)):
columns_and_combinations[col_num] = {}
# And initialize with a subdictionary for each column combination.
for col_list in column_combinations:
group_key = separator.join([str(x) for x in col_list])
columns_and_combinations[group_key] = {}
# 1-based list whose indices are column numbers and whose elements
# are the maximum cell length seen so far in that column. By the
# end of the iteration over the CSV input, this holds the maximum
# length seen in any row for each column.
max_lengths = [0] * len(headers)
row_num = 0
for row in csv_reader:
# TODO: We could reduce memory footprint by storing hashes
# instead of actual cell values / combined cell values.
row_num += 1
row = [None,] + row # use 1-based indexing, to match columns & headers
cell_num = 0
# Handle individual columns first.
for cell in row[1:]:
cell_num += 1
if max_lengths[cell_num] < len(row[cell_num]):
max_lengths[cell_num] = len(row[cell_num])
if columns_and_combinations[cell_num] is not False:
if cell in columns_and_combinations[cell_num]:
# If you're ever surprised that a certain column
# isn't unique, you can uncomment this to see
# where its first collision happens.
#
# sys.stderr.write(
# "DEBUG: non-unique: row %d, col %d: '%s'\n"
# % (row_num, cell_num, row[cell_num]))
columns_and_combinations[cell_num] = False
else:
columns_and_combinations[cell_num][cell] = True
# Handle combinations of columns.
for col_list in column_combinations:
group_key = separator.join([str(x) for x in col_list])
cell_vals = list(row[i] for i in col_list)
joined_cells = separator.join(cell_vals)
if columns_and_combinations[group_key] is not False:
if joined_cells in columns_and_combinations[group_key]:
columns_and_combinations[group_key] = False
else:
columns_and_combinations[group_key][joined_cells] = True
# All the information is now in 'columns_and_combinations'.
# Start the output phase.
single_unique_columns = sorted([x for x in columns_and_combinations
if isinstance(x, int) and columns_and_combinations[x]])
combined_unique_columns = sorted([x for x in columns_and_combinations
if isinstance(x, str) and columns_and_combinations[x]])
# Determine padding needed to print cell lengths.
len_fmt = "{0: >%d}" % len(str(max(max_lengths)))
# Report on individually unique columns.
if len(single_unique_columns) == 0:
print("No individual columns were unique across all rows.")
else:
print("Individual columns that are unique across all rows:")
print("")
for col_num in single_unique_columns:
print(" %s. (max len: %s) %s"
% (col_fmt.format(col_num),
len_fmt.format(max_lengths[col_num]),
headers[col_num]))
# Report on combined unique columns.
if len(combined_unique_columns) == 0:
print("None of the requested combinations of columns were unique.")
for combination in combined_unique_columns:
print("")
print("Unique combination: %s" % combination)
print("")
# Turn the combinations back into column numbers.
col_nums = [int(x) for x in combination.split(separator)]
for col_num in col_nums:
print(" %s. (max len: %s) %s"
% (col_fmt.format(col_num),
len_fmt.format(max_lengths[col_num]),
headers[col_num]))
if __name__ == '__main__':
main()