-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdist.py
43 lines (35 loc) · 1.33 KB
/
dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import numpy as np
@torch.jit.script
def soft_clamp5(x: torch.Tensor):
return x.div_(5.).tanh_().mul(5.)
class Normal:
def __init__(self, mu, log_sigma):
self.mu = torch.clamp(mu, -5, 5)
log_sigma = torch.clamp(log_sigma, -5, 5)
self.std = log_sigma.mul(0.5).exp()
def sample(self):
eps = self.mu.mul(0).normal_()
z = eps.mul_(self.std).add_(self.mu)
return z, eps
@staticmethod
def get_standard(bs, nz, device):
zeros = torch.zeros(bs, nz).to(device)
return Normal(zeros, zeros)
def sample_given_eps(self, eps):
return eps * self.std + self.mu
def log_p(self, samples):
normalized_samples = (samples - self.mu) / self.std
log_p = - 0.5 * normalized_samples * normalized_samples - 0.5 * np.log(2 * np.pi) - torch.log(self.std)
log_p = torch.sum(log_p, dim=-1)
return log_p
def kl(self, normal_dist):
assert normal_dist.mu.shape == self.mu.shape
term1 = (self.mu - normal_dist.mu) / normal_dist.std
term2 = self.std / normal_dist.std
loss = 0.5 * (term1 * term1 + term2 * term2) - 0.5 - torch.log(term2)
loss = torch.sum(loss, dim=-1)
return loss
def set_device(self, cuda_id):
self.mu = self.mu.to(cuda_id)
self.std = self.std.to(cuda_id)