forked from pxk27/riscv-hyp-tests
-
Notifications
You must be signed in to change notification settings - Fork 1
/
rvh_test.c
452 lines (375 loc) · 13 KB
/
rvh_test.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#include <rvh_test.h>
//enum test_state {};
extern test_func_t _hyp_test_table, _hyp_test_table_size;
test_func_t* hyp_test_table = &_hyp_test_table;
size_t hyp_test_table_size = (size_t) &_hyp_test_table_size;
extern test_func_t _non_hyp_test_table, _non_hyp_test_table_size;
test_func_t* non_hyp_test_table = &_non_hyp_test_table;
size_t non_hyp_test_table_size = (size_t) &_non_hyp_test_table_size;
unsigned test_num = 0;
unsigned curr_priv = PRIV_M;
unsigned real_priv = PRIV_M;
struct exception excpt;
uint64_t ecall_args[2];
uint64_t ecall(uint64_t a0, uint64_t a1)
{
ecall_args[0] = a0;
ecall_args[1] = a1;
asm volatile("ecall" ::: "memory");
return ecall_args[0];
}
static inline bool is_user(int priv) {
return priv == PRIV_VU || priv == PRIV_HU;
}
void set_prev_priv(int priv){
switch(curr_priv){
case PRIV_M: {
uint64_t temp = CSRR(mstatus);
temp &= ~((3ULL << 11) | (1ULL << 39));
if(priv == PRIV_VS || priv == PRIV_HS) temp |= (1ULL << 11);
if(priv == PRIV_VU || priv == PRIV_VS) temp |= (1ULL << 39);
CSRW(mstatus, temp);
}
break;
case PRIV_HS:{
uint64_t temp = CSRR(sstatus);
temp &= ~(0x1ULL << 8);
if(priv == PRIV_HS || priv == PRIV_VS) temp |= (0x1ULL << 8);
CSRW(sstatus, temp);
temp = CSRR(CSR_HSTATUS);
temp &= ~(0x3ULL << 7);
if(priv == PRIV_VS) temp |= (1ULL << 8);
if(priv == PRIV_VU || priv == PRIV_VS) temp |= (0x1ULL << 7);
CSRW(CSR_HSTATUS, temp);
}
break;
case PRIV_VS: {
uint64_t temp = CSRR(sstatus);
CSRC(sstatus, 0x1ULL << 8);
}
break;
default: ERROR("unknown current priv %d (%s)\n", priv, __func__);
}
}
static inline void lower_priv(unsigned priv){
if(priv == curr_priv)
return;
if(priv >= curr_priv){
ERROR("trying to \"lower\" to a higher priv");
}
if(curr_priv == PRIV_VS && priv == PRIV_HU){
ERROR("trying to go from vs to hu");
}
set_prev_priv(priv);
real_priv = priv;
if(curr_priv == PRIV_M) {
asm volatile(
"la t0, 1f\n\t"
"csrw mepc, t0\n\t"
"mret\n\t"
"1:\n\t"
::: "t0"
);
} else if(curr_priv == PRIV_VS || curr_priv == PRIV_HS){
asm volatile(
"la t0, 1f\n\t"
"csrw sepc, t0\n\t"
"sret\n\t"
"1:\n\t"
::: "t0"
);
} else {
ERROR("cant lower priv from u");
}
curr_priv = priv;
}
void goto_priv(int target_priv){
static bool on_going = false;
DEBUG("goto_priv: real = %s, target = %s, curr = %s", priv_strs[real_priv], priv_strs[target_priv], priv_strs[curr_priv]);
if(is_user(target_priv) && is_user(curr_priv)) {
goto_priv(PRIV_M);
}
if(real_priv == target_priv || target_priv >= PRIV_MAX){
if(on_going)
VERBOSE("...entered %s mode", priv_strs[target_priv]);
on_going = false;
curr_priv = target_priv;
return;
}
if(!on_going)
VERBOSE("entering %s mode...", priv_strs[target_priv]);
on_going = true;
if(target_priv > curr_priv){
ecall(ECALL_GOTO_PRIV, target_priv);
} else {
VERBOSE("...entered %s mode", priv_strs[target_priv]);
on_going = false;
lower_priv(target_priv);
}
}
static bool is_inst_fault(uint64_t cause){
if(!(cause == CAUSE_IAM || cause == CAUSE_IAF ||
cause == CAUSE_IPF || cause == CAUSE_IGPF)) {
return false;
}
return true;
}
static bool is_ecall(uint64_t cause){
if(!(cause == CAUSE_ECU || cause == CAUSE_ECS ||
cause == CAUSE_ECV || cause == CAUSE_ECM)) {
return false;
}
return true;
}
static inline uint64_t next_instruction(uint64_t epc){
if(((*(uint16_t*)epc) & 0b11) == 0b11) return epc + 4;
else return epc + 2;
}
#define return_from_exception(from_priv, to_priv, cause, epc) {\
uint64_t _temp_status;\
switch(from_priv){\
case PRIV_M:\
_temp_status = CSRR(mstatus);\
_temp_status &= ~((3ULL << 11) | (1ULL << 39) | (1ULL << 7));\
if(to_priv == PRIV_M) _temp_status |= (3ULL << 11);\
if(to_priv == PRIV_VS || to_priv == PRIV_HS) _temp_status |= (1ULL << 11);\
if(to_priv == PRIV_VU || to_priv == PRIV_VS) _temp_status |= (1ULL << 39);\
CSRW(mstatus, _temp_status);\
if(!(cause & (1ULL << 63))) CSRW(mepc, next_instruction(epc));\
break;\
case PRIV_HS:\
_temp_status = CSRR(CSR_HSTATUS);\
_temp_status &= ~(0x1ULL << 7);\
if(to_priv == PRIV_VU || to_priv == PRIV_VS) _temp_status |= (0x1ULL << 7);\
CSRW(CSR_HSTATUS, _temp_status);\
case PRIV_VS:\
_temp_status = CSRR(sstatus);\
_temp_status &= ~((1ULL << 8) | (1ULL << 5));\
if(to_priv == PRIV_VS || to_priv == PRIV_HS) _temp_status |= (0x1ULL << 8);\
CSRW(sstatus, _temp_status);\
if(!(cause & (1ULL << 63))) CSRW(sepc, next_instruction(epc));\
break;\
}\
return from_priv;\
}
uint64_t mhandler(){
real_priv = PRIV_M;
uint64_t cause = CSRR(mcause);
uint64_t epc = CSRR(mepc);
uint64_t tval = CSRR(mtval);
uint64_t tval2 = CSRR(CSR_MTVAL2);
uint64_t tinst= CSRR(CSR_MTINST);
VERBOSE("machine handler (mcause 0x%llx)", cause);
DEBUG("mepc = 0x%lx", epc);
DEBUG("mtval = 0x%lx", tval);
DEBUG("mtval2 = 0x%lx", tval2);
DEBUG("mtinst = 0x%lx", tinst);
DEBUG("mpp = 0x%lx", (CSRR(mstatus) >> 11) & 0x3);
DEBUG("mpv = 0x%lx", (CSRR(mstatus) >> 39) & 0x1);
DEBUG("gva = 0x%lx", (CSRR(mstatus) >> MSTATUS_GVA_OFF) & 0x1);
if(is_ecall(cause) && ecall_args[0] == ECALL_GOTO_PRIV){
goto_priv(ecall_args[1]);
} else if(!excpt.testing){
ERROR("untested exception! cause NO: %ld\n", cause);
}
if(cause & (1ULL << 63)){
DEBUG("mip = 0x%lx", CSRR(CSR_MIP));
DEBUG("mie = 0x%lx", CSRR(CSR_MIE));
DEBUG("mideleg = 0x%lx", CSRR(CSR_MIDELEG));
DEBUG("hip = 0x%lx", CSRR(CSR_HIP));
DEBUG("hie = 0x%lx", CSRR(CSR_HIE));
DEBUG("hideleg = 0x%lx", CSRR(CSR_HIDELEG));
DEBUG("sip = 0x%lx", CSRR(CSR_SIP));
DEBUG("sie = 0x%lx", CSRR(CSR_SIE));
DEBUG("vsip = 0x%lx", CSRR(CSR_VSIP));
DEBUG("vsie = 0x%lx", CSRR(CSR_VSIE));
CSRC(mip, 1ULL << (cause & ~(1ULL << 63)));
}
excpt.triggered = true;
excpt.priv = PRIV_M;
excpt.cause = cause;
excpt.epc = epc;
excpt.tval = tval;
excpt.tinst = tinst;
excpt.tval2 = tval2;
excpt.gva = !!((CSRR(mstatus) >> MSTATUS_GVA_OFF) & 0x1);
excpt.xpv = !!((CSRR(mstatus) >> 39) & 0x1);
excpt.testing = false;
if(is_inst_fault(cause)){
if(excpt.fault_inst != 0){
epc = excpt.fault_inst;
DEBUG("isntruction fault! return: 0x%lx", excpt.fault_inst);
} else
ERROR("instruction fault without return address");
}
excpt.fault_inst = 0;
unsigned temp_priv = real_priv;
real_priv = curr_priv;
return_from_exception(temp_priv, curr_priv, cause, epc);
}
uint64_t hshandler(){
real_priv = PRIV_HS;
uint64_t cause = CSRR(scause);
uint64_t epc = CSRR(sepc);
uint64_t tval = CSRR(stval);
uint64_t htval = CSRR(CSR_HTVAL);
uint64_t htinst = CSRR(CSR_HTINST);
VERBOSE("hypervisor handler scause (scause = 0x%llx)", cause);
DEBUG("sepc = 0x%lx", epc);
DEBUG("stval = 0x%lx", tval);
DEBUG("htval = 0x%lx", htval);
DEBUG("htinst = 0x%lx", htinst);
DEBUG("hstatus = 0x%lx", CSRR(CSR_HSTATUS));
DEBUG("spv = 0x%lx", (CSRR(CSR_HSTATUS) >> 7) & 0x1);
DEBUG("spvp = 0x%lx", (CSRR(CSR_HSTATUS) >> 8) & 0x1);
DEBUG("gva = 0x%lx", (CSRR(CSR_HSTATUS) >> HSTATUS_GVA_OFF) & 0x1);
if(is_ecall(cause) && ecall_args[0] == ECALL_GOTO_PRIV){
goto_priv(ecall_args[1]);
} else if(is_ecall(cause)) {
ERROR("unknown ecall");
} else if(!excpt.testing){
ERROR("untested exception!");
}
if(cause & (1ULL << 63)){
DEBUG("hip = 0x%lx", CSRR(CSR_HIP));
DEBUG("sip = 0x%lx", CSRR(CSR_SIP));
DEBUG("vsip = 0x%lx", CSRR(CSR_VSIP));
CSRC(sip, 1ULL << (cause & ~(1ULL << 63)));
//CSRC(CSR_HVIP, 1ULL << (cause & ~(1ULL << 63)));
CSRC(CSR_HIP, 1ULL << (cause & ~(1ULL << 63)));
}
excpt.triggered = true;
excpt.priv = PRIV_HS;
excpt.cause = cause;
excpt.epc = epc;
excpt.tval = tval;
excpt.tinst = htinst;
excpt.tval2 = htval;
excpt.gva = !!((CSRR(CSR_HSTATUS) >> HSTATUS_GVA_OFF) & 0x1);
excpt.xpv = !!((CSRR(CSR_HSTATUS) >> 7) & 0x1);
excpt.testing = false;
if(is_inst_fault(cause)){
if(excpt.fault_inst != 0){
epc = excpt.fault_inst;
DEBUG("isntruction fault! return: 0x%lx", excpt.fault_inst);
} else
ERROR("instruction fault without return address");
}
excpt.fault_inst = 0;
unsigned temp_priv = real_priv;
real_priv = curr_priv;
return_from_exception(temp_priv, curr_priv, cause, epc);
}
uint64_t vshandler(){
real_priv = PRIV_VS;
uint64_t cause = CSRR(scause);
uint64_t epc = CSRR(sepc);
uint64_t tval = CSRR(stval);
VERBOSE("virtual supervisor handler (scause = 0x%llx)", cause);
DEBUG("scause = 0x%llx", cause);
DEBUG("sepc = 0x%lx", epc);
DEBUG("stval = 0x%lx", tval);
if(is_ecall(cause) && ecall_args[0] == ECALL_GOTO_PRIV){
goto_priv(ecall_args[1]);
} else if(!excpt.testing){
ERROR("untested exception!");
}
if(cause & (1ULL << 63)){
DEBUG("sip = 0x%lx", CSRR(CSR_SIP));
CSRC(sip, 1ULL << (cause & ~(1ULL << 63)));
}
excpt.triggered = true;
excpt.priv = PRIV_VS;
excpt.cause = cause;
excpt.epc = epc;
excpt.tval = tval;
excpt.testing = false;
if(is_inst_fault(cause)){
if(excpt.fault_inst != 0) epc = excpt.fault_inst;
else ERROR("instruction fault without return address");
}
excpt.fault_inst = 0;
unsigned temp_priv = real_priv;
real_priv = curr_priv;
return_from_exception(temp_priv, curr_priv, cause, epc);
}
uint32_t expand_compressed_instruction(uint16_t ins) {
if(!INS_COMPRESSED(ins)) {
ERROR("trying to expand non-compressed instruction");
}
if(INS_MATCH_C_LW(ins) || INS_MATCH_C_LD(ins) || INS_MATCH_C_SW(ins) || INS_MATCH_C_SD(ins)){
bool is_load = INS_MATCH_C_LW(ins) || INS_MATCH_C_LD(ins);
bool is_double = INS_MATCH_C_LD(ins) || INS_MATCH_C_SD(ins);
uint32_t opcode_funct3 = is_double?
(is_load ? MATCH_LD : MATCH_SD):
(is_load ? MATCH_LW : MATCH_SW);
uint32_t rd_rs2 = ((ins & INS_C_RDRS2_MASK) >> INS_C_RDRS2_OFF) + 8;
uint32_t rs1 = ((ins & INS_C_RS1_MASK) >> INS_C_RS1_OFF) + 8;
uint32_t imm = ((ins & INS_C_IMM1_MASK) >> INS_C_IMM1_OFF) << 3 |
is_double ?
((ins & INS_C_IMM0_MASK) >> INS_C_IMM0_OFF) << 6 :
((ins & INS_C_IMM0_MASK) >> INS_C_IMM0_OFF) & 0x1 << 6 |
((ins & INS_C_IMM0_MASK) >> INS_C_IMM0_OFF) >> 1 & 0x1 << 2;
return opcode_funct3 | rd_rs2 << (is_load ? 7 : 20) |
rs1 << 15 | (imm & 0x1f) << 7 | (imm >> 5) << 25;
} else {
ERROR("expansion not implemented for target compressed instruction: 0x%x", ins);
}
}
extern void hshandler_entry();
extern void mhandler_entry();
extern void vshandler_entry();
void reset_state(){
goto_priv(PRIV_M);
CSRW(mstatus, 0ULL);
//CSRW(mtvec, 0ULL);
CSRW(medeleg, 0ULL);
CSRW(mideleg, 0ULL);
CSRW(mip, 0ULL);
CSRW(mie, 0ULL);
//CSRW(mtime, 0ULL);
//CSRW(mtimecmp, 0ULL);
CSRW(mscratch, 0ULL);
CSRW(mepc, 0ULL);
CSRW(mtval, 0ULL);
CSRW(CSR_MTINST, 0ULL);
CSRW(CSR_MTVAL2, 0ULL);
//what about pmp register?
CSRW(sstatus, 0ULL);
//CSRW(stvec, 0ULL);
CSRW(sip, 0ULL);
CSRW(sie, 0ULL);
CSRW(sscratch, 0ULL);
CSRW(sepc, 0ULL);
CSRW(scause, 0ULL);
CSRW(stval, 0ULL);
CSRW(satp, 0ULL);
CSRW(CSR_HSTATUS, 0ULL);
CSRW(CSR_HIDELEG, 0ULL);
CSRW(CSR_HEDELEG, 0ULL);
CSRW(CSR_HVIP, 0ULL);
CSRW(CSR_HIP, 0ULL);
CSRW(CSR_HIE, 0ULL);
CSRW(CSR_HTVAL, 0ULL);
CSRW(CSR_HTINST, 0ULL);
CSRW(CSR_HGATP, 0ULL);
CSRW(CSR_VSSTATUS, 0ULL);
CSRW(CSR_VSIP, 0ULL);
CSRW(CSR_VSIE, 0ULL);
//CSRW(CSR_VSTVEC, 0ULL);
CSRW(CSR_VSSCRATCH, 0ULL);
CSRW(CSR_VSEPC, 0ULL);
CSRW(CSR_VSCAUSE, 0ULL);
CSRW(CSR_VSTVAL, 0ULL);
CSRW(CSR_VSATP, 0ULL);
CSRW(mtvec, mhandler_entry);
CSRS(medeleg, (1ULL << 8) | (1ULL << 10));
// full access to physical memory to other modes
CSRW(pmpcfg0, 0xf);
CSRW(pmpaddr0, (uint64_t) -1);
CSRW(stvec, hshandler_entry);
CSRS(CSR_HEDELEG, (1ULL << 8));
CSRW(CSR_VSTVEC, vshandler_entry);
sfence();
hfence();
}