-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfftw3.pd
704 lines (602 loc) · 21.1 KB
/
fftw3.pd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
=head1 NAME
PDL::FFTW3 - PDL interface to the Fastest Fourier Transform in the West v3
=cut
# -*- cperl -*-
##### General layout of the module #####
#
# Each type of transform that is supported by this module has a plain,
# unthreaded perl entry point the user calls. This entry point makes sure the
# FFTW plan exists (or makes it). Then it calls the THREADED PP function to
# actually compute the transform
use strict;
use warnings;
# I generate code for up to 10-dimensional FFTs
my $maxrank = 10;
our $VERSION = '0.203';
pp_setversion($VERSION);
pp_addpm( {At => 'Top'}, slurp('README.pod') . <<'EOF' );
use strict;
use warnings;
EOF
pp_addhdr( '
#include <fftw3.h>
/* the Linux kernel does something similar to assert at compile time */
#define static_assert_fftw(x) (void)( sizeof( int[ 1 - 2* !(x) ]) )
' );
# I want to be able to say $X = fft1($x); rank is required. 'fft()' is ambiguous
# about whether threading is desired or if a large fft is desired. Old PDL::FFTW
# did one thing, matlab does another, so I do not include this function at all
my $TEMPLATE_REAL_R2C = <<'EOF';
// make sure the PDL data type I'm using matches the FFTW data type
static_assert_fftw(sizeof($GENERIC())*2 == sizeof($TFD(fftwf_,fftw_)complex));
$TFD(fftwf_,fftw_)plan plan = INT2PTR($TFD(fftwf_,fftw_)plan, $COMP(plan));
$TFD(fftwf_,fftw_)execute_dft_r2c(plan, (void*)$P(real), (void*)$P(complexv));
EOF
my $TEMPLATE_REAL_C2R = <<'EOF';
// make sure the PDL data type I'm using matches the FFTW data type
static_assert_fftw(sizeof($GENERIC()) == sizeof($TGC(fftwf_,fftw_)complex));
$TGC(fftwf_,fftw_)plan plan = INT2PTR($TGC(fftwf_,fftw_)plan, $COMP(plan));
// FFTW inverse real transforms clobber their input. I thus make a new
// buffer and transform from there
PDL_Indx i, nbytes = sizeof($GENERIC());
PDL_Indx rank = $PRIV(vtable)->par_realdims[0], *dims = $PDL(complexv)->dims;
for (i=0; i<rank; i++) nbytes *= dims[i];
void *input_copy = fftw_malloc(nbytes);
broadcastloop %{
memcpy(input_copy, $P(complexv), nbytes);
$TGC(fftwf_,fftw_)execute_dft_c2r(plan, input_copy, (void*)$P(real));
%}
fftw_free(input_copy);
EOF
my $TEMPLATE_COMPLEX = <<'EOF';
// This is the template used by PP to generate the FFTW routines.
// make sure the PDL data type I'm using matches the FFTW data type
static_assert_fftw(sizeof($GENERIC()) == sizeof($TGC(fftwf_,fftw_)complex));
$TGC(fftwf_,fftw_)plan plan = INT2PTR($TGC(fftwf_,fftw_)plan, $COMP(plan));
$TGC(fftwf_,fftw_)execute_dft(plan, (void*)$P(in), (void*)$P(out));
EOF
# I define up to rank-10 FFTs. This is annoyingly arbitrary, but hopefully
# should be sufficient
for my $rank (1..$maxrank)
{
generateDefinitions($rank);
}
pp_export_nothing();
pp_addxs('', <<'EOXS');
MODULE = PDL::FFTW3 PACKAGE = PDL::FFTW3
SV *
dump_plan(planIV)
IV planIV
CODE:
void* plan = NUM2PTR(void *, planIV);
char *s = fftw_sprint_plan((const fftw_plan)plan);
if (!s) croak("Got NULL string from fftw_sprint_plan");
RETVAL = newSVpv(s, 0);
free(s);
OUTPUT:
RETVAL
IV
compute_plan( dims_ref, do_double_precision, is_real_fft, do_inverse_fft, in_pdl, out_pdl, in_alignment, out_alignment )
SV* dims_ref
bool do_double_precision
bool is_real_fft
bool do_inverse_fft
pdl* in_pdl
pdl* out_pdl
int in_alignment
int out_alignment
CODE:
{
// Given input and output matrices, this function computes the FFTW plan
// PDL stores its data in the opposite dimension order from what FFTW wants. I
// handle this by passing in the dimension counts backwards.
AV* dims_av = (AV*)SvRV(dims_ref);
int rank = av_len(dims_av) + 1;
int dims_row_first[rank];
for( int i=0; i<rank; i++)
dims_row_first[i] = SvIV( *av_fetch( dims_av, rank-i-1, 0) );
// I apply the requested mis-alignment. This comes from later thread slices
UVTYPE in_data = PTR2UV(in_pdl->data);
if( in_alignment < 16 )
in_data |= in_alignment;
UVTYPE out_data = PTR2UV(out_pdl->data);
if( out_alignment < 16 )
out_data |= out_alignment;
void* plan;
if( !is_real_fft )
{
int direction = do_inverse_fft ? FFTW_BACKWARD : FFTW_FORWARD;
// complex-complex FFT. Input/output have identical dimensions
if( !do_double_precision )
plan =
fftwf_plan_dft( rank, dims_row_first,
NUM2PTR(void*, in_data), NUM2PTR(void*, out_data),
direction, FFTW_ESTIMATE);
else
plan =
fftw_plan_dft( rank, dims_row_first,
NUM2PTR(void*, in_data), NUM2PTR(void*, out_data),
direction, FFTW_ESTIMATE);
}
else
{
// real-complex FFT. Input/output have different dimensions
if( !do_double_precision)
{
if( !do_inverse_fft )
plan =
fftwf_plan_dft_r2c( rank, dims_row_first,
NUM2PTR(void*, in_data), NUM2PTR(void*, out_data),
FFTW_ESTIMATE );
else
plan =
fftwf_plan_dft_c2r( rank, dims_row_first,
NUM2PTR(void*, in_data), NUM2PTR(void*, out_data),
FFTW_ESTIMATE );
}
else
{
if( !do_inverse_fft )
plan =
fftw_plan_dft_r2c( rank, dims_row_first,
NUM2PTR(void*, in_data), NUM2PTR(void*, out_data),
FFTW_ESTIMATE );
else
plan =
fftw_plan_dft_c2r( rank, dims_row_first,
NUM2PTR(void*, in_data), NUM2PTR(void*, out_data),
FFTW_ESTIMATE );
}
}
if( plan == NULL )
XSRETURN_UNDEF;
else
RETVAL = PTR2IV(plan);
}
OUTPUT:
RETVAL
int
is_same_data( in, out )
pdl* in
pdl* out
CODE:
{
RETVAL = (in->data == out->data) ? 1 : 0;
}
OUTPUT:
RETVAL
#define _get_data_alignment_int( x ) \
( (x & 0xF) == 0 ) ? 16 : \
( (x & 0x7) == 0 ) ? 8 : \
( (x & 0x3) == 0 ) ? 4 : \
( (x & 0x1) == 0 ) ? 2 : 1;
int
get_data_alignment_int( x )
UV x
CODE:
{
RETVAL = _get_data_alignment_int( x );
}
OUTPUT:
RETVAL
int
get_data_alignment_pdl( in )
pdl* in
CODE:
{
RETVAL = _get_data_alignment_int( PTR2UV(in->data) );
}
OUTPUT:
RETVAL
EOXS
pp_addpm( {At => 'Middle'}, <<'EOINCLUDE' );
use PDL::Types;
use List::Util 'reduce';
use threads::shared;
# When I compute an FFTW plan, it goes here.
# This is :shared so that it can be used with Perl threads.
my %existingPlans :shared;
# these are for the unit tests
our $_Nplans = 0;
our $_last_do_double_precision;
# This is a function that sits between the user's call into this module and the
# PP-generated internals. Specifically, this function is called BEFORE any PDL
# threading happens. Here I make sure the FFTW plan exists, or if it doesn't, I
# make it. Thus the PP-based internals can safely assume that the plan exists
sub __fft_internal {
my $thisfunction = shift;
my ($do_inverse_fft, $is_real_fft, $rank) = $thisfunction =~ /^(i?)(r?)N?.*fft([0-9]+)/;
# first I parse the variables. This is a very direct translation of what PP
# does normally. Plan-creation has to be outside of PP, so I must re-do this
# here
my $Nargs = scalar @_;
my ($in, $out);
if ( $Nargs == 2 ) {
# all variables on stack, read in output and temp vars
($in, $out) = map {defined $_ ? PDL::Core::topdl($_) : $_} @_;
} elsif ( $Nargs == 1 ) {
$in = PDL::Core::topdl $_[0];
if ( $in->is_inplace ) {
barf <<EOF if $is_real_fft;
$thisfunction: in-place real FFTs are not supported since the input/output types and data sizes differ.
Giving up.
EOF
$out = $in;
$in->set_inplace(0);
} else {
$out = PDL::null();
}
} else {
barf( <<EOF );
$thisfunction must be given the input or the input and output as args.
Exactly 1 or 2 arguments are required. Instead I got $Nargs args. Giving up.
EOF
}
# make sure the in/out types match. Convert $in if needed. This needs to
# happen before we instantiate $out (if it's null) to make sure we know the
# type
processTypes( $thisfunction, \$in, \$out );
# I now create an ndarray for the null output. Normally PP does this, but I need
# to have the ndarray made to create plans. If I don't, the alignment may
# differ between plan-time and run-time
if ( $out->isnull ) {
my ($type, @dims) = getOutArgs($in, $is_real_fft, $do_inverse_fft);
$out->set_datatype($type->enum); $out->setdims(\@dims); $out->make_physical;
}
validateArguments( $rank, $is_real_fft, $do_inverse_fft, $thisfunction, $in, $out );
# I need to physical-ize the ndarrays before I make a plan. Again, normally PP
# does this, but to make sure alignments match, I need to do this myself, now
$in->make_physical;
$out->make_physical;
my $plan = getPlan( $thisfunction, $rank, $is_real_fft, $do_inverse_fft, $in, $out );
barf "$thisfunction couldn't make a plan. Giving up\n" unless defined $plan;
my $is_native = !$in->type->real; # native complex
# I now have the arguments and the plan. Go!
my $internal_function = 'PDL::__';
$internal_function .=
!$is_real_fft ? 'N' :
($is_native && $do_inverse_fft) ? 'irN' :
$do_inverse_fft ? barf("irfft no longer supports PDL::Complex") :
'rN';
$internal_function .= "fft$rank";
eval { no strict 'refs'; $internal_function->( $in, $out, $plan ) };
barf $@ if $@;
$out;
}
sub getOutArgs {
my ($in, $is_real_fft, $do_inverse_fft) = @_;
my @dims = $in->dims;
my $is_native = !$in->type->real;
my $out_type = $in->type;
if ( !$is_real_fft ) {
# complex fft. Output is the same size as the input.
} elsif ( !$do_inverse_fft ) {
# forward real fft
$dims[0] = int($dims[0]/2)+1;
$out_type = typeWithComplexity(getPrecision($out_type), 1);
} else {
# backward real fft
#
# there's an ambiguity here. I want int($out->dim(0)/2) + 1 == $in->dim(1),
# however this could mean that
# $out->dim(0) = 2*$in->dim(1) - 2
# or
# $out->dim(0) = 2*$in->dim(1) - 1
#
# WITHOUT ANY OTHER INFORMATION, I ASSUME EVEN INPUT SIZES, SO I ASSUME
# $out->dim(0) = 2*$in->dim(1) - 2
if ($is_native) {
$out_type = ($out_type == cfloat) ? float : double;
} else {
shift @dims;
}
$dims[0] = 2*($dims[0]-1);
}
($out_type, @dims);
}
sub validateArguments
{
my ($rank, $is_real_fft, $do_inverse_fft, $thisfunction, $in, $out) = @_;
for my $arg ( $in, $out )
{
barf <<EOF unless defined $arg;
$thisfunction arguments must all be defined. If you want an auto-growing ndarray, use 'null' such as
$thisfunction( \$in, \$out = null )
Giving up.
EOF
my $type = ref $arg;
$type = 'scalar' unless defined $arg;
barf <<EOF unless ref $arg && $arg->isa('PDL');
$thisfunction arguments must be of type 'PDL'.
Instead I got an arg of type '$type'. Giving up.
EOF
}
# validate dimensionality of the ndarrays
my @inout = ($in, $out);
for my $iarg ( 0..1 )
{
my $arg = $inout[$iarg];
if( $arg->isnull )
{
barf "$thisfunction: don't know what to do with a null input. Giving up";
}
if( !$is_real_fft )
{ validateArgumentDimensions_complex( $rank, $thisfunction, $arg); }
else
{ validateArgumentDimensions_real( $rank, $do_inverse_fft, $thisfunction, $iarg, $arg); }
}
# we have an explicit output ndarray we're filling in. Make sure the
# input/output dimensions match up
if ( !$is_real_fft )
{ matchDimensions_complex($thisfunction, $rank, $in, $out); }
else
{ matchDimensions_real($thisfunction, $rank, $do_inverse_fft, $in, $out); }
}
sub validateArgumentDimensions_complex
{
my ( $rank, $thisfunction, $arg ) = @_;
barf "Tried to compute a complex FFT, but non-native-complex argument given"
if $arg->type->real;
my $dims_cmp = $arg->ndims;
barf <<EOF if $dims_cmp < $rank;
Tried to compute a $rank-dimensional FFT, but an array has fewer than $rank dimensions.
Giving up.
EOF
}
sub validateArgumentDimensions_real {
my ( $rank, $do_inverse_fft, $thisfunction, $iarg, $arg ) = @_;
my $is_native = !$arg->type->real; # native complex
# real FFT. Forward transform takes in real and spits out complex;
# backward transform does the reverse
if (!!$do_inverse_fft == !!($iarg == 0)) { # need complex for this
my ($verb, $var, $reason) = ($iarg == 0) ? qw(takes input) : qw(produces output);
if ( ($iarg == 1 && !$is_native) ||
($iarg == 0 && !$is_native)
) {
$reason = "\$$var should be native-complex";
} elsif (!$is_native && $arg->dim(0) != 2) {
$reason = "\$$var->dim(0) == 2 should be true";
}
barf <<EOF if $reason;
$thisfunction $verb complex $var, so $reason,
but it's not (in @{[$arg->info]}: $arg). Giving up.
EOF
}
my ($min_dimensionality, $var) = ($rank, $iarg == 0 ? 'input' : 'output');
if ( $arg->ndims < $min_dimensionality ) {
barf <<EOF;
$thisfunction: The $var needs at least $min_dimensionality dimensions, but
it has fewer. Giving up.
EOF
}
}
sub matchDimensions_complex {
my ($thisfunction, $rank, $in, $out) = @_;
for my $idim (0..$rank) {
if ( $in->dim($idim) != $out->dim($idim) ) {
barf <<EOF;
$thisfunction was given input/output matrices of non-matching sizes.
Giving up.
EOF
}
}
}
sub matchDimensions_real {
my ($thisfunction, $rank, $do_inverse_fft, $in, $out) = @_;
my ($varname1, $varname2, $var1, $var2);
if ( !$do_inverse_fft ) {
# Forward FFT. The input is real, the output is complex.
# $output->dim(1) should be int($input->dim(0)/2) + 1 (Section 2.4 of
# the FFTW3 documentation)
($varname1, $varname2, $var1, $var2) = (qw(input output), $in, $out);
} else {
# Backward FFT. The input is complex, the output is real.
($varname1, $varname2, $var1, $var2) = (qw(output input), $out, $in);
}
barf <<EOF if int($var1->dim(0)/2) + 1 != $var2->dim(0);
$thisfunction: mismatched first dimension:
\$$varname2->dim(0) == int(\$$varname1->dim(0)/2) + 1 wasn't true.
$varname1: @{[$var1->info]}
$varname2: @{[$var2->info]}
Giving up.
EOF
for my $idim (1..$rank-1) {
if ( $var1->dim($idim) != $var2->dim($idim) ) {
barf <<EOF;
$thisfunction was given input/output matrices of non-matching sizes.
Giving up.
EOF
}
}
}
sub processTypes
{
my ($thisfunction, $in, $out) = @_;
# types:
#
# Input and output types must match, and I can only really deal with float and
# double. If given an output, I refuse to tweak the type of the output,
# otherwise, I upgrade to float and then to double
if( $$out->isnull ) {
if( $$in->type < float ) {
forceType( $in, (float) );
}
} else {
# I'm given an output. Make sure this is of a type I can work with,
# otherwise give up
my $out_type = $$out->type;
barf <<EOF if $out_type < float;
$thisfunction can only generate 'float' or 'double' output. You gave an output
of type '$out_type'. I can't change this so I give up
EOF
my $in_type = $$in->type;
my $in_precision = getPrecision($in_type);
my $out_precision = getPrecision($out_type);
return if $in_precision == $out_precision;
forceType( $in, typeWithComplexity($out_precision, !$in_type->real) );
forceType( $out, typeWithComplexity($out_precision, !$out_type->real) );
}
}
sub typeWithComplexity {
my ($precision, $complex) = @_;
$complex ? ($precision == 1 ? cfloat : cdouble) :
$precision == 1 ? float : double;
}
sub getPrecision {
my ($type) = @_;
($type <= float || $type == cfloat) ? 1 : # float
2; # double
}
sub forceType
{
my ($x, $type) = @_;
$$x = convert( $$x, $type ) unless $$x->type == $type;
}
sub getPlan
{
my ($thisfunction, $rank, $is_real_fft, $do_inverse_fft, $in, $out) = @_;
# I get the plan ID, check if I already have a plan, and make a new plan if I
# don't already have one
my @dims = ((!$is_real_fft || !$do_inverse_fft) ? $in : $out)->dims; # FFT dimensionality
my $Nslices = reduce {$a*$b} 1, splice(@dims, $rank);
my $do_double_precision = ($in->get_datatype == $PDL_F || $in->get_datatype == $PDL_CF)
? 0 : 1;
$_last_do_double_precision = $do_double_precision;
my $do_inplace = is_same_data( $in, $out );
# I compute a single plan for the whole set of thread slices. I make a
# worst-case plan, so I find the worst-aligned thread slice and plan off of
# it. So if $Nslices>1 then the worst-case alignment is the worse of (1st,
# 2nd) slices
my $in_alignment = get_data_alignment_pdl( $in );
my $out_alignment = get_data_alignment_pdl( $out );
my $stride_bytes = ($do_double_precision ? 8 : 4) * reduce {$a*$b} @dims;
if( $Nslices > 1 )
{
my $in_alignment_2nd = get_data_alignment_int($in_alignment + $stride_bytes);
my $out_alignment_2nd = get_data_alignment_int($out_alignment + $stride_bytes);
$in_alignment = $in_alignment_2nd if $in_alignment_2nd < $in_alignment;
$out_alignment = $out_alignment_2nd if $out_alignment_2nd < $out_alignment;
}
my $planID = join('_',
$thisfunction,
$do_double_precision,
$do_inplace,
$in_alignment,
$out_alignment,
@dims);
if ( !exists $existingPlans{$planID} )
{
lock(%existingPlans);
$existingPlans{$planID} = compute_plan( \@dims, $do_double_precision, $is_real_fft, $do_inverse_fft,
$in, $out, $in_alignment, $out_alignment );
$_Nplans++;
}
return $existingPlans{$planID};
}
EOINCLUDE
for my $rank (1..$maxrank)
{
my $shapestr = sprintf(q{$a->shape->slice('0:%d')->prodover},$rank-1);
pp_addpm({At => 'Bot'}, pp_line_numbers(__LINE__, <<EOF));
sub fft$rank { __fft_internal( "fft$rank",\@_ ); }
*PDL::fft$rank = \\&fft$rank;
sub ifft$rank {
my \$a = __fft_internal( "ifft$rank", \@_ );
\$a /= $shapestr;
\$a;
}
*PDL::ifft$rank = \\&ifft$rank;
sub rfft$rank { __fft_internal( "rfft$rank", \@_ ); }
*PDL::rfft$rank = \\&rfft$rank;
sub rNfft$rank { __fft_internal( "rNfft$rank", \@_ ); }
*PDL::rNfft$rank = \\&rNfft$rank;
sub irfft$rank { my \$a = __fft_internal( "irfft$rank", \@_ ); \$a /= $shapestr; \$a; }
*PDL::irfft$rank = \\&irfft$rank;
EOF
pp_add_exported( map "${_}fft$rank", '', 'i', 'r', 'rN', 'ir' );
}
##########
# Generate the fftn case. This should probably be done more prettily; for now it's just
# a springboard that jumps into __fft_internal.
pp_addpm({At=> 'Bot'}, pp_line_numbers(__LINE__, sprintf <<'EOF', $maxrank));
sub _rank_springboard {
my ($name, $source, $rank, @rest) = @_;
my $inverse = ($name =~ m/^i/);
unless(defined $rank) {
die "${name}n: second argument must be the rank of the transform you want";
}
$rank = 0+$rank; # force numeric context
unless($rank>=1 ) {
die "${name}n: second argument (rank) must be between 1 and %d";
}
my $active_lo = 0;
my $active_hi = $rank-1;
unless($source->ndims > $active_hi) {
die "${name}n: rank is $rank but input has only ".($active_hi-$active_lo)." active dims!";
}
my $out = __fft_internal( $name.$rank, $source, @rest );
if($inverse) {
$out /= $out->shape->slice("$active_lo:$active_hi")->prodover;
}
return $out;
}
sub fftn { _rank_springboard( "fft", @_ ) }
sub ifftn { _rank_springboard( "ifft", @_ ) }
sub rfftn { _rank_springboard( "rfft", @_ ) }
sub irfftn { _rank_springboard( "irfft", @_ ) }
*PDL::fftn = \&fftn;
*PDL::ifftn = \&ifftn;
*PDL::rfftn = \&rfftn;
*PDL::irfftn = \&irfftn;
EOF
pp_add_exported( map "${_}fftn", '','i','r','ir' );
pp_done();
sub generateDefinitions
{
my $rank = shift;
my %pp_def = (
HandleBad => 0,
OtherPars => 'IV plan', # comes from pre-fft code not user
# this is a private function so I don't want to create
# user-visible documentation or exports
Doc => undef,
PMFunc => ''
);
################################################################################
####### first I generate the definitions for the simple complex-complex FFT case
# make dimension string 'n1,n2,n3,n4...'.
my @dims_real = my @dims_complex = my @dims = map "n$_", 1..$rank;
my $dims_string = join(',', @dims);
$pp_def{Pars} = "in($dims_string); [o]out($dims_string);";
$pp_def{GenericTypes} = [qw(G C)];
pp_def( "__Nfft$rank", %pp_def, Code => $TEMPLATE_COMPLEX );
##################################################################################
####### real-native complex and native complex-real
$dims_complex[0] = 'nhalf'; # first complex dim is real->dim(0)/2+1
my $dims_real_string = join(',', @dims_real);
my $dims_complex_string = join(',', @dims_complex);
# backward
$pp_def{RedoDimsCode} = <<'EOF';
if( $PDL(real)->dims[0] <= 0 )
$SIZE(n1) = 2*$PDL(complexv)->dims[0] - 2;
EOF
$pp_def{Pars} = "complexv($dims_complex_string); real [o]real($dims_real_string);";
pp_def( "__irNfft$rank", %pp_def, Code => $TEMPLATE_REAL_C2R );
# forward
$pp_def{RedoDimsCode} = <<'EOF';
if( $PDL(complexv)->ndims <= 1 || $PDL(complexv)->dims[1] <= 0 )
$SIZE(nhalf) = (int)( $PDL(real)->dims[0]/2 ) + 1;
EOF
$pp_def{Pars} = "real($dims_real_string); complex [o]complexv($dims_complex_string);";
$pp_def{GenericTypes} = [qw(F D)];
pp_def("__rNfft$rank",
%pp_def,
Code => $TEMPLATE_REAL_R2C,
);
}
sub slurp {
my $filename = shift;
open my $fh, '<', $filename or die "open '$filename' for reading: $!";
local $/ = undef;
return qq{\n#line 0 "$filename"\n\n} . <$fh>;
}