Replies: 1 comment
-
以下是完整的 Python 代码,可以在训练识别(rec)模型时对训练图像进行 高斯模糊、运动模糊、低分辨率缩放 以及 对抗性训练 进行数据增强: import cv2
import numpy as np
import random
import torch
import torch.nn.functional as F
# 高斯模糊
def apply_gaussian_blur(image):
kernel_size = random.choice([3, 5, 7]) # 随机选择核大小
return cv2.GaussianBlur(image, (kernel_size, kernel_size), 0)
# 运动模糊
def apply_motion_blur(image):
size = random.choice([3, 5, 7]) # 运动模糊核大小
kernel = np.zeros((size, size))
xs, ys = np.random.choice(size, 2) # 随机选择模糊方向
kernel[xs, :] = 1
kernel /= size
return cv2.filter2D(image, -1, kernel)
# 低分辨率缩放
def apply_low_resolution(image):
scale_factor = random.uniform(0.5, 0.8) # 随机缩小比例
h, w = image.shape[:2]
new_w, new_h = int(w * scale_factor), int(h * scale_factor)
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
return cv2.resize(image, (w, h), interpolation=cv2.INTER_NEAREST)
# 对抗性训练(FGSM攻击)
def fgsm_attack(image_tensor, epsilon, gradient):
""" FGSM 对抗样本攻击 """
sign_grad = gradient.sign()
perturbed_image = image_tensor + epsilon * sign_grad
return torch.clamp(perturbed_image, 0, 1) # 限制像素值范围
# 训练数据增强流程
def augment_image(image):
""" 对图像应用一系列增强操作 """
if random.random() < 0.3:
image = apply_gaussian_blur(image)
if random.random() < 0.3:
image = apply_motion_blur(image)
if random.random() < 0.3:
image = apply_low_resolution(image)
return image
# 示例:对抗性训练示例
def adversarial_training(model, image_tensor, label, epsilon=0.03):
""" 生成对抗性样本并训练模型 """
image_tensor.requires_grad = True
output = model(image_tensor)
loss = F.cross_entropy(output, label)
loss.backward()
adv_image = fgsm_attack(image_tensor, epsilon, image_tensor.grad)
return adv_image
# 示例代码:应用增强
if __name__ == "__main__":
image = cv2.imread("example.jpg") # 读取训练图像
image = augment_image(image) # 应用数据增强
cv2.imwrite("augmented_example.jpg", image) # 保存增强后的图像
# 假设有一个训练模型(仅示意)
class DummyModel(torch.nn.Module):
def forward(self, x):
return torch.randn((1, 10), requires_grad=True)
model = DummyModel()
image_tensor = torch.randn((1, 3, 32, 32), requires_grad=True) # 伪造的输入图像
label = torch.tensor([1]) # 假设的标签
adv_image = adversarial_training(model, image_tensor, label) 代码说明:
适用场景:
你可以将这些方法集成到 PaddleOCR 训练流程中,在 Response generated by feifei-bot | chatgpt-4o-latest |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
rec模型训练时,将训练图进行高斯模糊、运动模糊、低分辨率缩放 以及 对抗性训练等增强 的完整python代码
Beta Was this translation helpful? Give feedback.
All reactions