forked from llmware-ai/llmware
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathusing_slim_summary.py
35 lines (24 loc) · 1.48 KB
/
using_slim_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
""" This example illustrates how to use slim-summary model to summarize a longer text. """
from llmware.models import ModelCatalog
# load the model and set the sampling and output parameters
model = ModelCatalog().load_model("slim-summary-tool",
sample=False,
temperature=0.0,
max_output=200)
# get the test data set packaged with the model
test_script = ModelCatalog().get_test_script("slim-summary-tool")
# iterate through the samples
for i, sample in enumerate(test_script):
# invoke function call on the model, passing the context passage and the 'summarize' function
# the parameter can be a generic phrase, e.g., 'key points' or 'brief description' or 'summary'
# if the material has a lot of numeric data points, try the parameter 'data points' or 'financial data points'
# if you are looking for a single line of output, try 'brief description'
# the number in ( ) is optional - but is intended to guide the model to provide with a list with the requested
# number of elements
response = model.function_call(sample["context"], function="summarize", params=["data points (5)"])
# display the response
print("\nresponse: ", response)
# check how effectively the model mapped the output to the requested number of points
r = response["llm_response"]
for j, entries in enumerate(r):
print("summary points: ", j, entries)