-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_all_img.py
61 lines (55 loc) · 2.41 KB
/
predict_all_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def split_image(img_path, model, size = (256,256), shear = 0.25):
# Open tiff and make some changes
img = tiff.imread(img_path)
img = np.rollaxis(img, 0, 3)
h,w,_ = img.shape
print(img.shape)
# Create reflective padding
shear_int = (int(size[0]*shear),int(size[1]*shear))
pad_h_1 = (size[0]-shear_int[0]-(h-size[0])%(size[0]-shear_int[0]))//2
pad_h_2 = (size[0]-shear_int[0]-(h-size[0])%(size[0]-shear_int[0]))//2+(size[0]-shear_int[0]-(h-size[0])%(size[0]-shear_int[0]))%2
pad_w_1 = (size[1]-shear_int[1]-(w-size[1])%(size[1]-shear_int[1]))//2
pad_w_2 = (size[1]-shear_int[1]-(w-size[1])%(size[1]-shear_int[1]))//2+(size[1]-shear_int[1]-(w-size[1])%(size[1]-shear_int[1]))%2
print(pad_h_1,pad_h_2,pad_w_1,pad_w_2)
img = np.pad(img,((pad_h_1,pad_h_2),(pad_w_1,pad_w_2),(0,0)), 'reflect')
# Split image into patches
h,w,_ = img.shape
img_arr = []
n_rows = (h-size[0])//(size[0]-shear_int[0])+1
n_cols = (w-size[1])//(size[1]-shear_int[1])+1
for i in range(n_rows):
for j in range(n_cols):
coord_h = i*(size[0]-shear_int[0])
coord_w = j*(size[1]-shear_int[1])
img_crop = img[coord_h:coord_h+size[0], coord_w:coord_w+size[1],:]
img_arr.append(img_crop)
# Create predictions for patches
mask_arr = []
for img_crop in img_arr:
img_to_pred = np.array([img_crop])
mask_pred = model.predict(img_to_pred)[0]
mask_arr.append(mask_pred)
# Merge masks in one
index = 0
_, _, channels = mask_arr[0].shape
final_seg = np.zeros((h,w,channels))
print(final_seg.shape)
for i in range (n_rows):
for j in range (n_cols):
#print(i,j)
coord_h = i*(size[0]-shear_int[0])
coord_w = j*(size[1]-shear_int[1])
shift_h = shear_int[0]//2
shift_w = shear_int[1]//2
mask_to_append = mask_arr[index]
mask_to_append[0:shift_h,:,:]=0
mask_to_append[size[0]-shift_h:,:,:]=0
mask_to_append[:,0:shift_w,:]=0
mask_to_append[:,size[1]-shift_w:,:]=0
final_seg[coord_h:coord_h+size[0], coord_w:coord_w+size[1]]+=mask_to_append
index+=1
#print(final_seg.shape)
print(final_seg.shape)
final_seg = final_seg[pad_h_1:h-pad_h_2, pad_w_1:w-pad_w_2,:]
print(final_seg.shape)
return final_seg