forked from SaschaWillems/Vulkan-glTF-PBR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVulkanglTFModel.hpp
1423 lines (1259 loc) · 49.4 KB
/
VulkanglTFModel.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Vulkan glTF model and texture loading class based on tinyglTF (https://github.com/syoyo/tinygltf)
*
* Copyright (C) 2018 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#pragma once
#include <stdlib.h>
#include <string>
#include <fstream>
#include <vector>
#include "vulkan/vulkan.h"
#include "VulkanDevice.hpp"
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <gli/gli.hpp>
#include <glm/gtx/string_cast.hpp>
// ERROR is already defined in wingdi.h and collides with a define in the Draco headers
#if defined(_WIN32) && defined(ERROR) && defined(TINYGLTF_ENABLE_DRACO)
#undef ERROR
#pragma message ("ERROR constant already defined, undefining")
#endif
#define TINYGLTF_IMPLEMENTATION
#define TINYGLTF_NO_STB_IMAGE_WRITE
#define STB_IMAGE_IMPLEMENTATION
#define STBI_MSC_SECURE_CRT
#include "tiny_gltf.h"
#if defined(__ANDROID__)
#include <android/asset_manager.h>
#endif
// Changing this value here also requires changing it in the vertex shader
#define MAX_NUM_JOINTS 128u
namespace vkglTF
{
struct Node;
struct BoundingBox {
glm::vec3 min;
glm::vec3 max;
bool valid = false;
BoundingBox() {};
BoundingBox(glm::vec3 min, glm::vec3 max) : min(min), max(max) {}
BoundingBox getAABB(glm::mat4 m) {
glm::vec3 min = glm::vec3(m[3]);
glm::vec3 max = min;
glm::vec3 v0, v1;
glm::vec3 right = glm::vec3(m[0]);
v0 = right * this->min.x;
v1 = right * this->max.x;
min += glm::min(v0, v1);
max += glm::max(v0, v1);
glm::vec3 up = glm::vec3(m[1]);
v0 = up * this->min.y;
v1 = up * this->max.y;
min += glm::min(v0, v1);
max += glm::max(v0, v1);
glm::vec3 back = glm::vec3(m[2]);
v0 = back * this->min.z;
v1 = back * this->max.z;
min += glm::min(v0, v1);
max += glm::max(v0, v1);
return BoundingBox(min, max);
}
};
/*
glTF texture sampler
*/
struct TextureSampler {
VkFilter magFilter;
VkFilter minFilter;
VkSamplerAddressMode addressModeU;
VkSamplerAddressMode addressModeV;
VkSamplerAddressMode addressModeW;
};
/*
glTF texture loading class
*/
struct Texture {
vks::VulkanDevice *device;
VkImage image;
VkImageLayout imageLayout;
VkDeviceMemory deviceMemory;
VkImageView view;
uint32_t width, height;
uint32_t mipLevels;
uint32_t layerCount;
VkDescriptorImageInfo descriptor;
VkSampler sampler;
void updateDescriptor()
{
descriptor.sampler = sampler;
descriptor.imageView = view;
descriptor.imageLayout = imageLayout;
}
void destroy()
{
vkDestroyImageView(device->logicalDevice, view, nullptr);
vkDestroyImage(device->logicalDevice, image, nullptr);
vkFreeMemory(device->logicalDevice, deviceMemory, nullptr);
vkDestroySampler(device->logicalDevice, sampler, nullptr);
}
/*
Load a texture from a glTF image (stored as vector of chars loaded via stb_image)
Also generates the mip chain as glTF images are stored as jpg or png without any mips
*/
void fromglTfImage(tinygltf::Image &gltfimage, TextureSampler textureSampler, vks::VulkanDevice *device, VkQueue copyQueue)
{
this->device = device;
unsigned char* buffer = nullptr;
VkDeviceSize bufferSize = 0;
bool deleteBuffer = false;
if (gltfimage.component == 3) {
// Most devices don't support RGB only on Vulkan so convert if necessary
// TODO: Check actual format support and transform only if required
bufferSize = gltfimage.width * gltfimage.height * 4;
buffer = new unsigned char[bufferSize];
unsigned char* rgba = buffer;
unsigned char* rgb = &gltfimage.image[0];
for (int32_t i = 0; i< gltfimage.width * gltfimage.height; ++i) {
for (int32_t j = 0; j < 3; ++j) {
rgba[j] = rgb[j];
}
rgba += 4;
rgb += 3;
}
deleteBuffer = true;
}
else {
buffer = &gltfimage.image[0];
bufferSize = gltfimage.image.size();
}
VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
VkFormatProperties formatProperties;
width = gltfimage.width;
height = gltfimage.height;
mipLevels = static_cast<uint32_t>(floor(log2(std::max(width, height))) + 1.0);
vkGetPhysicalDeviceFormatProperties(device->physicalDevice, format, &formatProperties);
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT);
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT);
VkMemoryAllocateInfo memAllocInfo{};
memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
VkMemoryRequirements memReqs{};
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo{};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.size = bufferSize;
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer));
vkGetBufferMemoryRequirements(device->logicalDevice, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device->logicalDevice, stagingBuffer, stagingMemory, 0));
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device->logicalDevice, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, buffer, bufferSize);
vkUnmapMemory(device->logicalDevice, stagingMemory);
VkImageCreateInfo imageCreateInfo{};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
VK_CHECK_RESULT(vkCreateImage(device->logicalDevice, &imageCreateInfo, nullptr, &image));
vkGetImageMemoryRequirements(device->logicalDevice, image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device->logicalDevice, image, deviceMemory, 0));
VkCommandBuffer copyCmd = device->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = 1;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = 0;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = width;
bufferCopyRegion.imageExtent.height = height;
bufferCopyRegion.imageExtent.depth = 1;
vkCmdCopyBufferToImage(copyCmd, stagingBuffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &bufferCopyRegion);
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
device->flushCommandBuffer(copyCmd, copyQueue, true);
vkFreeMemory(device->logicalDevice, stagingMemory, nullptr);
vkDestroyBuffer(device->logicalDevice, stagingBuffer, nullptr);
// Generate the mip chain (glTF uses jpg and png, so we need to create this manually)
VkCommandBuffer blitCmd = device->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
for (uint32_t i = 1; i < mipLevels; i++) {
VkImageBlit imageBlit{};
imageBlit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageBlit.srcSubresource.layerCount = 1;
imageBlit.srcSubresource.mipLevel = i - 1;
imageBlit.srcOffsets[1].x = int32_t(width >> (i - 1));
imageBlit.srcOffsets[1].y = int32_t(height >> (i - 1));
imageBlit.srcOffsets[1].z = 1;
imageBlit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageBlit.dstSubresource.layerCount = 1;
imageBlit.dstSubresource.mipLevel = i;
imageBlit.dstOffsets[1].x = int32_t(width >> i);
imageBlit.dstOffsets[1].y = int32_t(height >> i);
imageBlit.dstOffsets[1].z = 1;
VkImageSubresourceRange mipSubRange = {};
mipSubRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
mipSubRange.baseMipLevel = i;
mipSubRange.levelCount = 1;
mipSubRange.layerCount = 1;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = mipSubRange;
vkCmdPipelineBarrier(blitCmd, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
vkCmdBlitImage(blitCmd, image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &imageBlit, VK_FILTER_LINEAR);
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = mipSubRange;
vkCmdPipelineBarrier(blitCmd, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
}
subresourceRange.levelCount = mipLevels;
imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(blitCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
device->flushCommandBuffer(blitCmd, copyQueue, true);
VkSamplerCreateInfo samplerInfo{};
samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerInfo.magFilter = textureSampler.magFilter;
samplerInfo.minFilter = textureSampler.minFilter;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerInfo.addressModeU = textureSampler.addressModeU;
samplerInfo.addressModeV = textureSampler.addressModeV;
samplerInfo.addressModeW = textureSampler.addressModeW;
samplerInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
samplerInfo.maxAnisotropy = 1.0;
samplerInfo.anisotropyEnable = VK_FALSE;
samplerInfo.maxLod = (float)mipLevels;
samplerInfo.maxAnisotropy = 8.0f;
samplerInfo.anisotropyEnable = VK_TRUE;
VK_CHECK_RESULT(vkCreateSampler(device->logicalDevice, &samplerInfo, nullptr, &sampler));
VkImageViewCreateInfo viewInfo{};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.image = image;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = format;
viewInfo.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.subresourceRange.layerCount = 1;
viewInfo.subresourceRange.levelCount = mipLevels;
VK_CHECK_RESULT(vkCreateImageView(device->logicalDevice, &viewInfo, nullptr, &view));
descriptor.sampler = sampler;
descriptor.imageView = view;
descriptor.imageLayout = imageLayout;
if (deleteBuffer)
delete[] buffer;
}
};
/*
glTF material class
*/
struct Material {
enum AlphaMode{ ALPHAMODE_OPAQUE, ALPHAMODE_MASK, ALPHAMODE_BLEND };
AlphaMode alphaMode = ALPHAMODE_OPAQUE;
float alphaCutoff = 1.0f;
float metallicFactor = 1.0f;
float roughnessFactor = 1.0f;
glm::vec4 baseColorFactor = glm::vec4(1.0f);
glm::vec4 emissiveFactor = glm::vec4(1.0f);
vkglTF::Texture *baseColorTexture;
vkglTF::Texture *metallicRoughnessTexture;
vkglTF::Texture *normalTexture;
vkglTF::Texture *occlusionTexture;
vkglTF::Texture *emissiveTexture;
struct TexCoordSets {
uint8_t baseColor = 0;
uint8_t metallicRoughness = 0;
uint8_t specularGlossiness = 0;
uint8_t normal = 0;
uint8_t occlusion = 0;
uint8_t emissive = 0;
} texCoordSets;
struct Extension {
vkglTF::Texture *specularGlossinessTexture;
vkglTF::Texture *diffuseTexture;
glm::vec4 diffuseFactor = glm::vec4(1.0f);
glm::vec3 specularFactor = glm::vec3(0.0f);
} extension;
struct PbrWorkflows {
bool metallicRoughness = true;
bool specularGlossiness = false;
} pbrWorkflows;
VkDescriptorSet descriptorSet = VK_NULL_HANDLE;
};
/*
glTF primitive
*/
struct Primitive {
uint32_t firstIndex;
uint32_t indexCount;
uint32_t vertexCount;
Material &material;
bool hasIndices;
BoundingBox bb;
Primitive(uint32_t firstIndex, uint32_t indexCount, uint32_t vertexCount, Material &material) : firstIndex(firstIndex), indexCount(indexCount), vertexCount(vertexCount), material(material) {
hasIndices = indexCount > 0;
};
void setBoundingBox(glm::vec3 min, glm::vec3 max) {
bb.min = min;
bb.max = max;
bb.valid = true;
}
};
/*
glTF mesh
*/
struct Mesh {
vks::VulkanDevice *device;
std::vector<Primitive*> primitives;
BoundingBox bb;
BoundingBox aabb;
struct UniformBuffer {
VkBuffer buffer;
VkDeviceMemory memory;
VkDescriptorBufferInfo descriptor;
VkDescriptorSet descriptorSet;
void *mapped;
} uniformBuffer;
struct UniformBlock {
glm::mat4 matrix;
glm::mat4 jointMatrix[MAX_NUM_JOINTS]{};
float jointcount{ 0 };
} uniformBlock;
Mesh(vks::VulkanDevice *device, glm::mat4 matrix) {
this->device = device;
this->uniformBlock.matrix = matrix;
VK_CHECK_RESULT(device->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
sizeof(uniformBlock),
&uniformBuffer.buffer,
&uniformBuffer.memory,
&uniformBlock));
VK_CHECK_RESULT(vkMapMemory(device->logicalDevice, uniformBuffer.memory, 0, sizeof(uniformBlock), 0, &uniformBuffer.mapped));
uniformBuffer.descriptor = { uniformBuffer.buffer, 0, sizeof(uniformBlock) };
};
~Mesh() {
vkDestroyBuffer(device->logicalDevice, uniformBuffer.buffer, nullptr);
vkFreeMemory(device->logicalDevice, uniformBuffer.memory, nullptr);
for (Primitive* p : primitives)
delete p;
}
void setBoundingBox(glm::vec3 min, glm::vec3 max) {
bb.min = min;
bb.max = max;
bb.valid = true;
}
};
/*
glTF skin
*/
struct Skin {
std::string name;
Node *skeletonRoot = nullptr;
std::vector<glm::mat4> inverseBindMatrices;
std::vector<Node*> joints;
};
/*
glTF node
*/
struct Node {
Node *parent;
uint32_t index;
std::vector<Node*> children;
glm::mat4 matrix;
std::string name;
Mesh *mesh;
Skin *skin;
int32_t skinIndex = -1;
glm::vec3 translation{};
glm::vec3 scale{ 1.0f };
glm::quat rotation{};
BoundingBox bvh;
BoundingBox aabb;
glm::mat4 localMatrix() {
return glm::translate(glm::mat4(1.0f), translation) * glm::mat4(rotation) * glm::scale(glm::mat4(1.0f), scale) * matrix;
}
glm::mat4 getMatrix() {
glm::mat4 m = localMatrix();
vkglTF::Node *p = parent;
while (p) {
m = p->localMatrix() * m;
p = p->parent;
}
return m;
}
void update() {
if (mesh) {
glm::mat4 m = getMatrix();
if (skin) {
mesh->uniformBlock.matrix = m;
// Update join matrices
glm::mat4 inverseTransform = glm::inverse(m);
size_t numJoints = std::min((uint32_t)skin->joints.size(), MAX_NUM_JOINTS);
for (size_t i = 0; i < numJoints; i++) {
vkglTF::Node *jointNode = skin->joints[i];
glm::mat4 jointMat = jointNode->getMatrix() * skin->inverseBindMatrices[i];
jointMat = inverseTransform * jointMat;
mesh->uniformBlock.jointMatrix[i] = jointMat;
}
mesh->uniformBlock.jointcount = (float)numJoints;
memcpy(mesh->uniformBuffer.mapped, &mesh->uniformBlock, sizeof(mesh->uniformBlock));
} else {
memcpy(mesh->uniformBuffer.mapped, &m, sizeof(glm::mat4));
}
}
for (auto& child : children) {
child->update();
}
}
~Node() {
if (mesh) {
delete mesh;
}
for (auto& child : children) {
delete child;
}
}
};
/*
glTF animation channel
*/
struct AnimationChannel {
enum PathType { TRANSLATION, ROTATION, SCALE };
PathType path;
Node *node;
uint32_t samplerIndex;
};
/*
glTF animation sampler
*/
struct AnimationSampler {
enum InterpolationType { LINEAR, STEP, CUBICSPLINE };
InterpolationType interpolation;
std::vector<float> inputs;
std::vector<glm::vec4> outputsVec4;
};
/*
glTF animation
*/
struct Animation {
std::string name;
std::vector<AnimationSampler> samplers;
std::vector<AnimationChannel> channels;
float start = std::numeric_limits<float>::max();
float end = std::numeric_limits<float>::min();
};
/*
glTF model loading and rendering class
*/
struct Model {
vks::VulkanDevice *device;
struct Vertex {
glm::vec3 pos;
glm::vec3 normal;
glm::vec2 uv0;
glm::vec2 uv1;
glm::vec4 joint0;
glm::vec4 weight0;
};
struct Vertices {
VkBuffer buffer = VK_NULL_HANDLE;
VkDeviceMemory memory;
} vertices;
struct Indices {
int count;
VkBuffer buffer = VK_NULL_HANDLE;
VkDeviceMemory memory;
} indices;
glm::mat4 aabb;
std::vector<Node*> nodes;
std::vector<Node*> linearNodes;
std::vector<Skin*> skins;
std::vector<Texture> textures;
std::vector<TextureSampler> textureSamplers;
std::vector<Material> materials;
std::vector<Animation> animations;
std::vector<std::string> extensions;
struct Dimensions {
glm::vec3 min = glm::vec3(FLT_MAX);
glm::vec3 max = glm::vec3(-FLT_MAX);
} dimensions;
void destroy(VkDevice device)
{
if (vertices.buffer != VK_NULL_HANDLE) {
vkDestroyBuffer(device, vertices.buffer, nullptr);
vkFreeMemory(device, vertices.memory, nullptr);
}
if (indices.buffer != VK_NULL_HANDLE) {
vkDestroyBuffer(device, indices.buffer, nullptr);
vkFreeMemory(device, indices.memory, nullptr);
}
for (auto texture : textures) {
texture.destroy();
}
textures.resize(0);
textureSamplers.resize(0);
for (auto node : nodes) {
delete node;
}
materials.resize(0);
animations.resize(0);
nodes.resize(0);
linearNodes.resize(0);
extensions.resize(0);
skins.resize(0);
};
void loadNode(vkglTF::Node *parent, const tinygltf::Node &node, uint32_t nodeIndex, const tinygltf::Model &model, std::vector<uint32_t>& indexBuffer, std::vector<Vertex>& vertexBuffer, float globalscale)
{
vkglTF::Node *newNode = new Node{};
newNode->index = nodeIndex;
newNode->parent = parent;
newNode->name = node.name;
newNode->skinIndex = node.skin;
newNode->matrix = glm::mat4(1.0f);
// Generate local node matrix
glm::vec3 translation = glm::vec3(0.0f);
if (node.translation.size() == 3) {
translation = glm::make_vec3(node.translation.data());
newNode->translation = translation;
}
glm::mat4 rotation = glm::mat4(1.0f);
if (node.rotation.size() == 4) {
glm::quat q = glm::make_quat(node.rotation.data());
newNode->rotation = glm::mat4(q);
}
glm::vec3 scale = glm::vec3(1.0f);
if (node.scale.size() == 3) {
scale = glm::make_vec3(node.scale.data());
newNode->scale = scale;
}
if (node.matrix.size() == 16) {
newNode->matrix = glm::make_mat4x4(node.matrix.data());
};
// Node with children
if (node.children.size() > 0) {
for (size_t i = 0; i < node.children.size(); i++) {
loadNode(newNode, model.nodes[node.children[i]], node.children[i], model, indexBuffer, vertexBuffer, globalscale);
}
}
// Node contains mesh data
if (node.mesh > -1) {
const tinygltf::Mesh mesh = model.meshes[node.mesh];
Mesh *newMesh = new Mesh(device, newNode->matrix);
for (size_t j = 0; j < mesh.primitives.size(); j++) {
const tinygltf::Primitive &primitive = mesh.primitives[j];
uint32_t indexStart = static_cast<uint32_t>(indexBuffer.size());
uint32_t vertexStart = static_cast<uint32_t>(vertexBuffer.size());
uint32_t indexCount = 0;
uint32_t vertexCount = 0;
glm::vec3 posMin{};
glm::vec3 posMax{};
bool hasSkin = false;
bool hasIndices = primitive.indices > -1;
// Vertices
{
const float *bufferPos = nullptr;
const float *bufferNormals = nullptr;
const float *bufferTexCoordSet0 = nullptr;
const float *bufferTexCoordSet1 = nullptr;
const uint16_t *bufferJoints = nullptr;
const float *bufferWeights = nullptr;
int posByteStride;
int normByteStride;
int uv0ByteStride;
int uv1ByteStride;
int jointByteStride;
int weightByteStride;
// Position attribute is required
assert(primitive.attributes.find("POSITION") != primitive.attributes.end());
const tinygltf::Accessor &posAccessor = model.accessors[primitive.attributes.find("POSITION")->second];
const tinygltf::BufferView &posView = model.bufferViews[posAccessor.bufferView];
bufferPos = reinterpret_cast<const float *>(&(model.buffers[posView.buffer].data[posAccessor.byteOffset + posView.byteOffset]));
posMin = glm::vec3(posAccessor.minValues[0], posAccessor.minValues[1], posAccessor.minValues[2]);
posMax = glm::vec3(posAccessor.maxValues[0], posAccessor.maxValues[1], posAccessor.maxValues[2]);
vertexCount = static_cast<uint32_t>(posAccessor.count);
posByteStride = posAccessor.ByteStride(posView) ? (posAccessor.ByteStride(posView) / sizeof(float)) : tinygltf::GetTypeSizeInBytes(TINYGLTF_TYPE_VEC3);
if (primitive.attributes.find("NORMAL") != primitive.attributes.end()) {
const tinygltf::Accessor &normAccessor = model.accessors[primitive.attributes.find("NORMAL")->second];
const tinygltf::BufferView &normView = model.bufferViews[normAccessor.bufferView];
bufferNormals = reinterpret_cast<const float *>(&(model.buffers[normView.buffer].data[normAccessor.byteOffset + normView.byteOffset]));
normByteStride = normAccessor.ByteStride(normView) ? (normAccessor.ByteStride(normView) / sizeof(float)) : tinygltf::GetTypeSizeInBytes(TINYGLTF_TYPE_VEC3);
}
if (primitive.attributes.find("TEXCOORD_0") != primitive.attributes.end()) {
const tinygltf::Accessor &uvAccessor = model.accessors[primitive.attributes.find("TEXCOORD_0")->second];
const tinygltf::BufferView &uvView = model.bufferViews[uvAccessor.bufferView];
bufferTexCoordSet0 = reinterpret_cast<const float *>(&(model.buffers[uvView.buffer].data[uvAccessor.byteOffset + uvView.byteOffset]));
uv0ByteStride = uvAccessor.ByteStride(uvView) ? (uvAccessor.ByteStride(uvView) / sizeof(float)) : tinygltf::GetTypeSizeInBytes(TINYGLTF_TYPE_VEC2);
}
if (primitive.attributes.find("TEXCOORD_1") != primitive.attributes.end()) {
const tinygltf::Accessor &uvAccessor = model.accessors[primitive.attributes.find("TEXCOORD_1")->second];
const tinygltf::BufferView &uvView = model.bufferViews[uvAccessor.bufferView];
bufferTexCoordSet1 = reinterpret_cast<const float *>(&(model.buffers[uvView.buffer].data[uvAccessor.byteOffset + uvView.byteOffset]));
uv1ByteStride = uvAccessor.ByteStride(uvView) ? (uvAccessor.ByteStride(uvView) / sizeof(float)) : tinygltf::GetTypeSizeInBytes(TINYGLTF_TYPE_VEC2);
}
// Skinning
// Joints
if (primitive.attributes.find("JOINTS_0") != primitive.attributes.end()) {
const tinygltf::Accessor &jointAccessor = model.accessors[primitive.attributes.find("JOINTS_0")->second];
const tinygltf::BufferView &jointView = model.bufferViews[jointAccessor.bufferView];
bufferJoints = reinterpret_cast<const uint16_t *>(&(model.buffers[jointView.buffer].data[jointAccessor.byteOffset + jointView.byteOffset]));
jointByteStride = jointAccessor.ByteStride(jointView) ? (jointAccessor.ByteStride(jointView) / sizeof(float)) : tinygltf::GetTypeSizeInBytes(TINYGLTF_TYPE_VEC4);
}
if (primitive.attributes.find("WEIGHTS_0") != primitive.attributes.end()) {
const tinygltf::Accessor &weightAccessor = model.accessors[primitive.attributes.find("WEIGHTS_0")->second];
const tinygltf::BufferView &weightView = model.bufferViews[weightAccessor.bufferView];
bufferWeights = reinterpret_cast<const float *>(&(model.buffers[weightView.buffer].data[weightAccessor.byteOffset + weightView.byteOffset]));
weightByteStride = weightAccessor.ByteStride(weightView) ? (weightAccessor.ByteStride(weightView) / sizeof(float)) : tinygltf::GetTypeSizeInBytes(TINYGLTF_TYPE_VEC4);
}
hasSkin = (bufferJoints && bufferWeights);
for (size_t v = 0; v < posAccessor.count; v++) {
Vertex vert{};
vert.pos = glm::vec4(glm::make_vec3(&bufferPos[v * posByteStride]), 1.0f);
vert.normal = glm::normalize(glm::vec3(bufferNormals ? glm::make_vec3(&bufferNormals[v * normByteStride]) : glm::vec3(0.0f)));
vert.uv0 = bufferTexCoordSet0 ? glm::make_vec2(&bufferTexCoordSet0[v * uv0ByteStride]) : glm::vec3(0.0f);
vert.uv1 = bufferTexCoordSet1 ? glm::make_vec2(&bufferTexCoordSet1[v * uv1ByteStride]) : glm::vec3(0.0f);
vert.joint0 = hasSkin ? glm::vec4(glm::make_vec4(&bufferJoints[v * jointByteStride])) : glm::vec4(0.0f);
vert.weight0 = hasSkin ? glm::make_vec4(&bufferWeights[v * weightByteStride]) : glm::vec4(0.0f);
vertexBuffer.push_back(vert);
}
}
// Indices
if (hasIndices)
{
const tinygltf::Accessor &accessor = model.accessors[primitive.indices > -1 ? primitive.indices : 0];
const tinygltf::BufferView &bufferView = model.bufferViews[accessor.bufferView];
const tinygltf::Buffer &buffer = model.buffers[bufferView.buffer];
indexCount = static_cast<uint32_t>(accessor.count);
const void *dataPtr = &(buffer.data[accessor.byteOffset + bufferView.byteOffset]);
switch (accessor.componentType) {
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: {
const uint32_t *buf = static_cast<const uint32_t*>(dataPtr);
for (size_t index = 0; index < accessor.count; index++) {
indexBuffer.push_back(buf[index] + vertexStart);
}
break;
}
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: {
const uint16_t *buf = static_cast<const uint16_t*>(dataPtr);
for (size_t index = 0; index < accessor.count; index++) {
indexBuffer.push_back(buf[index] + vertexStart);
}
break;
}
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: {
const uint8_t *buf = static_cast<const uint8_t*>(dataPtr);
for (size_t index = 0; index < accessor.count; index++) {
indexBuffer.push_back(buf[index] + vertexStart);
}
break;
}
default:
std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl;
return;
}
}
Primitive *newPrimitive = new Primitive(indexStart, indexCount, vertexCount, primitive.material > -1 ? materials[primitive.material] : materials.back());
newPrimitive->setBoundingBox(posMin, posMax);
newMesh->primitives.push_back(newPrimitive);
}
// Mesh BB from BBs of primitives
for (auto p : newMesh->primitives) {
if (p->bb.valid && !newMesh->bb.valid) {
newMesh->bb = p->bb;
newMesh->bb.valid = true;
}
newMesh->bb.min = glm::min(newMesh->bb.min, p->bb.min);
newMesh->bb.max = glm::max(newMesh->bb.max, p->bb.max);
}
newNode->mesh = newMesh;
}
if (parent) {
parent->children.push_back(newNode);
} else {
nodes.push_back(newNode);
}
linearNodes.push_back(newNode);
}
void loadSkins(tinygltf::Model &gltfModel)
{
for (tinygltf::Skin &source : gltfModel.skins) {
Skin *newSkin = new Skin{};
newSkin->name = source.name;
// Find skeleton root node
if (source.skeleton > -1) {
newSkin->skeletonRoot = nodeFromIndex(source.skeleton);
}
// Find joint nodes
for (int jointIndex : source.joints) {
Node* node = nodeFromIndex(jointIndex);
if (node) {
newSkin->joints.push_back(nodeFromIndex(jointIndex));
}
}
// Get inverse bind matrices from buffer
if (source.inverseBindMatrices > -1) {
const tinygltf::Accessor &accessor = gltfModel.accessors[source.inverseBindMatrices];
const tinygltf::BufferView &bufferView = gltfModel.bufferViews[accessor.bufferView];
const tinygltf::Buffer &buffer = gltfModel.buffers[bufferView.buffer];
newSkin->inverseBindMatrices.resize(accessor.count);
memcpy(newSkin->inverseBindMatrices.data(), &buffer.data[accessor.byteOffset + bufferView.byteOffset], accessor.count * sizeof(glm::mat4));
}
skins.push_back(newSkin);
}
}
void loadTextures(tinygltf::Model &gltfModel, vks::VulkanDevice *device, VkQueue transferQueue)
{
for (tinygltf::Texture &tex : gltfModel.textures) {
tinygltf::Image image = gltfModel.images[tex.source];
vkglTF::TextureSampler textureSampler;
if (tex.sampler == -1) {
// No sampler specified, use a default one
textureSampler.magFilter = VK_FILTER_LINEAR;
textureSampler.minFilter = VK_FILTER_LINEAR;
textureSampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
textureSampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
textureSampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
}
else {
textureSampler = textureSamplers[tex.sampler];
}
vkglTF::Texture texture;
texture.fromglTfImage(image, textureSampler, device, transferQueue);
textures.push_back(texture);
}
}
VkSamplerAddressMode getVkWrapMode(int32_t wrapMode)
{
switch (wrapMode) {
case 10497:
return VK_SAMPLER_ADDRESS_MODE_REPEAT;
case 33071:
return VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
case 33648:
return VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT;
}
}
VkFilter getVkFilterMode(int32_t filterMode)
{
switch (filterMode) {
case 9728:
return VK_FILTER_NEAREST;
case 9729:
return VK_FILTER_LINEAR;
case 9984:
return VK_FILTER_NEAREST;
case 9985:
return VK_FILTER_NEAREST;
case 9986:
return VK_FILTER_LINEAR;
case 9987:
return VK_FILTER_LINEAR;
}
}
void loadTextureSamplers(tinygltf::Model &gltfModel)
{
for (tinygltf::Sampler smpl : gltfModel.samplers) {
vkglTF::TextureSampler sampler{};
sampler.minFilter = getVkFilterMode(smpl.minFilter);
sampler.magFilter = getVkFilterMode(smpl.magFilter);
sampler.addressModeU = getVkWrapMode(smpl.wrapS);
sampler.addressModeV = getVkWrapMode(smpl.wrapT);
sampler.addressModeW = sampler.addressModeV;
textureSamplers.push_back(sampler);
}
}
void loadMaterials(tinygltf::Model &gltfModel)
{
for (tinygltf::Material &mat : gltfModel.materials) {
vkglTF::Material material{};
if (mat.values.find("baseColorTexture") != mat.values.end()) {
material.baseColorTexture = &textures[mat.values["baseColorTexture"].TextureIndex()];
material.texCoordSets.baseColor = mat.values["baseColorTexture"].TextureTexCoord();
}
if (mat.values.find("metallicRoughnessTexture") != mat.values.end()) {
material.metallicRoughnessTexture = &textures[mat.values["metallicRoughnessTexture"].TextureIndex()];
material.texCoordSets.metallicRoughness = mat.values["metallicRoughnessTexture"].TextureTexCoord();
}
if (mat.values.find("roughnessFactor") != mat.values.end()) {
material.roughnessFactor = static_cast<float>(mat.values["roughnessFactor"].Factor());
}
if (mat.values.find("metallicFactor") != mat.values.end()) {
material.metallicFactor = static_cast<float>(mat.values["metallicFactor"].Factor());
}
if (mat.values.find("baseColorFactor") != mat.values.end()) {
material.baseColorFactor = glm::make_vec4(mat.values["baseColorFactor"].ColorFactor().data());
}
if (mat.additionalValues.find("normalTexture") != mat.additionalValues.end()) {
material.normalTexture = &textures[mat.additionalValues["normalTexture"].TextureIndex()];
material.texCoordSets.normal = mat.additionalValues["normalTexture"].TextureTexCoord();
}
if (mat.additionalValues.find("emissiveTexture") != mat.additionalValues.end()) {
material.emissiveTexture = &textures[mat.additionalValues["emissiveTexture"].TextureIndex()];
material.texCoordSets.emissive = mat.additionalValues["emissiveTexture"].TextureTexCoord();
}
if (mat.additionalValues.find("occlusionTexture") != mat.additionalValues.end()) {
material.occlusionTexture = &textures[mat.additionalValues["occlusionTexture"].TextureIndex()];
material.texCoordSets.occlusion = mat.additionalValues["occlusionTexture"].TextureTexCoord();
}
if (mat.additionalValues.find("alphaMode") != mat.additionalValues.end()) {
tinygltf::Parameter param = mat.additionalValues["alphaMode"];
if (param.string_value == "BLEND") {
material.alphaMode = Material::ALPHAMODE_BLEND;
}
if (param.string_value == "MASK") {
material.alphaCutoff = 0.5f;
material.alphaMode = Material::ALPHAMODE_MASK;
}
}
if (mat.additionalValues.find("alphaCutoff") != mat.additionalValues.end()) {
material.alphaCutoff = static_cast<float>(mat.additionalValues["alphaCutoff"].Factor());
}
if (mat.additionalValues.find("emissiveFactor") != mat.additionalValues.end()) {
material.emissiveFactor = glm::vec4(glm::make_vec3(mat.additionalValues["emissiveFactor"].ColorFactor().data()), 1.0);
material.emissiveFactor = glm::vec4(0.0f);
}
// Extensions
// @TODO: Find out if there is a nicer way of reading these properties with recent tinygltf headers
if (mat.extensions.find("KHR_materials_pbrSpecularGlossiness") != mat.extensions.end()) {
auto ext = mat.extensions.find("KHR_materials_pbrSpecularGlossiness");
if (ext->second.Has("specularGlossinessTexture")) {
auto index = ext->second.Get("specularGlossinessTexture").Get("index");
material.extension.specularGlossinessTexture = &textures[index.Get<int>()];
auto texCoordSet = ext->second.Get("specularGlossinessTexture").Get("texCoord");