-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpx_csv_convert.py
87 lines (62 loc) · 2.6 KB
/
gpx_csv_convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import calendar
import dateutil.parser
import pandas as pd
from xml.dom import minidom
def iso_to_epoch(iso_time):
return calendar.timegm(dateutil.parser.parse(iso_time).timetuple())
class Converter:
def __init__(self, string, name):
if name[-4:] != '.csv':
name = name + '.csv'
# parse an xml file by name
mydoc = minidom.parseString(string)
trkpt = mydoc.getElementsByTagName('trkpt')
time = mydoc.getElementsByTagName('time')
ele = mydoc.getElementsByTagName('ele')
hr = mydoc.getElementsByTagName('gpxtpx:hr')
cad = mydoc.getElementsByTagName('gpxtpx:cad')
temp = mydoc.getElementsByTagName('gpxtpx:atemp')
#hr = mydoc.getElementsByTagName('ns3:hr')
#cad = mydoc.getElementsByTagName('ns3:cad')
lats = []
longs = []
times = []
eles = []
hrs = []
dates = []
parsed_times = []
cads = []
temps = []
for elem in trkpt:
lats.append(elem.attributes['lat'].value)
longs.append(elem.attributes['lon'].value)
for elem in time:
times.append(elem.firstChild.data)
for elem in hr:
hrs.append(elem.firstChild.data)
base_time = iso_to_epoch(times[0])
time_differences = []
for item in times:
time_differences.append(iso_to_epoch(item) - base_time)
date_obj = (dateutil.parser.parse(item))
dates.append(str(date_obj.year) + "-" + str(date_obj.month) + "-" + str(date_obj.day))
parsed_times.append(str(date_obj.hour) + ":" + str(date_obj.minute) + ":" + str(date_obj.second))
for elem in ele:
eles.append(elem.firstChild.data)
for elem in cad:
cads.append(elem.firstChild.data)
for elem in temp:
temps.append(elem.firstChild.data)
hrs.append(0)
data = {'date': pd.Series(dates),
'time': pd.Series(parsed_times),
'latitude': pd.Series(lats),
'longitude': pd.Series(longs),
'elevation': pd.Series(eles),
'heart_rate': pd.Series(hrs),
'cadence': pd.Series(cads),
'temperature': pd.Series(temps)}
#print(len(dates), len(parsed_times), len(lats), len(longs), len(eles), len(hrs), len(cads), len(temps))
df = pd.DataFrame(data=data)
df = df[['date', 'time', 'latitude', 'longitude', 'elevation', 'heart_rate', 'cadence', 'temperature']]
df.to_csv(name, encoding='utf-8', index=False)