-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeech_translation.py
66 lines (51 loc) · 1.74 KB
/
speech_translation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import moviepy.editor as mp
import speech_recognition as sr
import numpy as np
import pandas as pd
import scipy
import librosa
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from gtts import gTTS
# take the input english video
my_clip = mp.VideoFileClip(r"input_video")
#Extracting English audio from Video
my_clip.audio.write_audiofile(r"english_audio.wav")
filename = "english_audio.wav"
r = sr.Recognizer()
# open the audio file
with sr.AudioFile(filename) as source:
# listen for the data (load audio to memory)
audio_data = r.record(source)
# recognize (convert from speech to text)
text1 = r.recognize_google(audio_data)
# print(text1)
file = open("english_sub.txt", "w")
file.write(text1)
file.close()
#loading the tokenizer and the model
#loading pretrained model for translation from English to Hindi
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
def translator(text):
# function to translate english text to hindi
input_ids = tokenizer.encode(text, return_tensors="pt", padding=True)
outputs = model.generate(input_ids)
decoded_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return decoded_text
#text you want to translate
#Using the model for translation
texts = open("english_sub.txt", "r")
print(texts)
#file.write(text1)
#file.close()
for text in texts:
# print("English Text: ", text)
translator(text)
file = open("hindi_sub.txt", "w")
file.write(translator(text))
file.close()
# Translating generated text using Google API
hindi = translator(text)
obj = gTTS(text = hindi, slow = False, lang = 'hi')
obj.save('hindi_audio.wav')
# Final output Hindi audio as Hindi_audio.wav