diff --git a/BCG_complete_mkts.html b/BCG_complete_mkts.html index 8107deae..d241f4ef 100644 --- a/BCG_complete_mkts.html +++ b/BCG_complete_mkts.html @@ -293,13 +293,13 @@
Requirement already satisfied: mpmath>=0.19 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from sympy->quantecon) (1.3.0)
+Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
+Requirement already satisfied: mpmath>=0.19 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from sympy->quantecon) (1.3.0)
Downloading quantecon-0.7.2-py3-none-any.whl (215 kB)
?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/215.4 kB ? eta -:--:--
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 215.4/215.4 kB 9.8 MB/s eta 0:00:00
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 215.4/215.4 kB 9.4 MB/s eta 0:00:00
?25h
@@ -1513,8 +1513,8 @@ 37.3.1.2. 2nd example
-CPU times: user 4.59 s, sys: 128 ms, total: 4.72 s
-Wall time: 4.72 s
+CPU times: user 4.59 s, sys: 103 ms, total: 4.69 s
+Wall time: 4.69 s
@@ -1528,8 +1528,8 @@ 37.3.1.2. 2nd example
-CPU times: user 8.51 ms, sys: 0 ns, total: 8.51 ms
-Wall time: 2.79 ms
+CPU times: user 7.52 ms, sys: 382 µs, total: 7.9 ms
+Wall time: 2.15 ms
diff --git a/BCG_incomplete_mkts.html b/BCG_incomplete_mkts.html
index f3203c06..12984bee 100644
--- a/BCG_incomplete_mkts.html
+++ b/BCG_incomplete_mkts.html
@@ -288,7 +288,9 @@ 38. Equilibrium Capital Structures with
Requirement already satisfied: requests in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (2.31.0)
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
-Requirement already satisfied: llvmlite<0.43,>=0.42.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.42.0)
+
+
+Requirement already satisfied: llvmlite<0.43,>=0.42.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.42.0)
Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
diff --git a/_images/002db9ed6bab60ac92f89fb37558b8800ec55b1b2f2c04d89bf34d068b255520.png b/_images/002db9ed6bab60ac92f89fb37558b8800ec55b1b2f2c04d89bf34d068b255520.png
deleted file mode 100644
index 8e0a9194..00000000
Binary files a/_images/002db9ed6bab60ac92f89fb37558b8800ec55b1b2f2c04d89bf34d068b255520.png and /dev/null differ
diff --git a/_images/0130dba3f23f57c4cfe9aae352b1eb92ef48ac5a2351dd5a03d05990e34e084a.png b/_images/0130dba3f23f57c4cfe9aae352b1eb92ef48ac5a2351dd5a03d05990e34e084a.png
new file mode 100644
index 00000000..ba400299
Binary files /dev/null and b/_images/0130dba3f23f57c4cfe9aae352b1eb92ef48ac5a2351dd5a03d05990e34e084a.png differ
diff --git a/_images/0541b47d327941c79c4d0b1cc81d624404f525a70a34bc572979b7a970b8ccd9.png b/_images/0541b47d327941c79c4d0b1cc81d624404f525a70a34bc572979b7a970b8ccd9.png
deleted file mode 100644
index 73fd0cc7..00000000
Binary files a/_images/0541b47d327941c79c4d0b1cc81d624404f525a70a34bc572979b7a970b8ccd9.png and /dev/null differ
diff --git a/_images/0628cc90f6edd83410ea5682d5b7e5939ef9d13bdf22e5982e930eb3a2d4adb8.png b/_images/0628cc90f6edd83410ea5682d5b7e5939ef9d13bdf22e5982e930eb3a2d4adb8.png
deleted file mode 100644
index 4180f1ea..00000000
Binary files a/_images/0628cc90f6edd83410ea5682d5b7e5939ef9d13bdf22e5982e930eb3a2d4adb8.png and /dev/null differ
diff --git a/_images/0a5edb229b71c1d1dcf5a6227e85640b9382bc32dbceb0c4129360877fda3460.png b/_images/0a5edb229b71c1d1dcf5a6227e85640b9382bc32dbceb0c4129360877fda3460.png
new file mode 100644
index 00000000..e02ef8b4
Binary files /dev/null and b/_images/0a5edb229b71c1d1dcf5a6227e85640b9382bc32dbceb0c4129360877fda3460.png differ
diff --git a/_images/0c79be3cd1566cbc40529db2a5a77c64f93d8a19ba9b5060dedfb844cf9f9d9e.png b/_images/0c79be3cd1566cbc40529db2a5a77c64f93d8a19ba9b5060dedfb844cf9f9d9e.png
new file mode 100644
index 00000000..b3c7ffbe
Binary files /dev/null and b/_images/0c79be3cd1566cbc40529db2a5a77c64f93d8a19ba9b5060dedfb844cf9f9d9e.png differ
diff --git a/_images/0edceb54e98e0aa21de5b19d24582f667ed2bb29b8d71fb37ec4b165b5acedc2.png b/_images/0edceb54e98e0aa21de5b19d24582f667ed2bb29b8d71fb37ec4b165b5acedc2.png
deleted file mode 100644
index c3ffa5ef..00000000
Binary files a/_images/0edceb54e98e0aa21de5b19d24582f667ed2bb29b8d71fb37ec4b165b5acedc2.png and /dev/null differ
diff --git a/_images/0fdb823a002466b538a20e4573fa99bb8c2516c163ff85cc87d5336388afbd47.png b/_images/0fdb823a002466b538a20e4573fa99bb8c2516c163ff85cc87d5336388afbd47.png
new file mode 100644
index 00000000..604a178c
Binary files /dev/null and b/_images/0fdb823a002466b538a20e4573fa99bb8c2516c163ff85cc87d5336388afbd47.png differ
diff --git a/_images/105ff661e548aa95c22440437b4d90d32d59d14d44a1733799b58295ed014de4.png b/_images/105ff661e548aa95c22440437b4d90d32d59d14d44a1733799b58295ed014de4.png
deleted file mode 100644
index 24b3f982..00000000
Binary files a/_images/105ff661e548aa95c22440437b4d90d32d59d14d44a1733799b58295ed014de4.png and /dev/null differ
diff --git a/_images/11b3434af7a8c8000b1dfe0f5456aeee699e0489fa19ff2366ad371f43c1ab0d.png b/_images/11b3434af7a8c8000b1dfe0f5456aeee699e0489fa19ff2366ad371f43c1ab0d.png
deleted file mode 100644
index fbf297fb..00000000
Binary files a/_images/11b3434af7a8c8000b1dfe0f5456aeee699e0489fa19ff2366ad371f43c1ab0d.png and /dev/null differ
diff --git a/_images/14a0b78ae657399ba2692e8c42fb59f894a164e40241c6c3bd6d4b08d7f39e86.png b/_images/14a0b78ae657399ba2692e8c42fb59f894a164e40241c6c3bd6d4b08d7f39e86.png
new file mode 100644
index 00000000..aa159adc
Binary files /dev/null and b/_images/14a0b78ae657399ba2692e8c42fb59f894a164e40241c6c3bd6d4b08d7f39e86.png differ
diff --git a/_images/1563f4f0da82b1c4d19abc04f7921419a85af67c2d57181d1898f045157f7415.png b/_images/1563f4f0da82b1c4d19abc04f7921419a85af67c2d57181d1898f045157f7415.png
deleted file mode 100644
index 4f8ed13e..00000000
Binary files a/_images/1563f4f0da82b1c4d19abc04f7921419a85af67c2d57181d1898f045157f7415.png and /dev/null differ
diff --git a/_images/1679a725a12b05956fd7d416d85793875dd90bca8678489801313719501448bd.png b/_images/1679a725a12b05956fd7d416d85793875dd90bca8678489801313719501448bd.png
deleted file mode 100644
index d333e70a..00000000
Binary files a/_images/1679a725a12b05956fd7d416d85793875dd90bca8678489801313719501448bd.png and /dev/null differ
diff --git a/_images/17b9bf411c1218d84ea27977beaa15de4eded4f233f835a49b5aa572de94a3db.png b/_images/17b9bf411c1218d84ea27977beaa15de4eded4f233f835a49b5aa572de94a3db.png
deleted file mode 100644
index 87c399f9..00000000
Binary files a/_images/17b9bf411c1218d84ea27977beaa15de4eded4f233f835a49b5aa572de94a3db.png and /dev/null differ
diff --git a/_images/1b479ae4be7e5e0511c3ad813b895e1e35e1d6afdb195aff913b75c9e998fa87.png b/_images/1b479ae4be7e5e0511c3ad813b895e1e35e1d6afdb195aff913b75c9e998fa87.png
new file mode 100644
index 00000000..d62dee93
Binary files /dev/null and b/_images/1b479ae4be7e5e0511c3ad813b895e1e35e1d6afdb195aff913b75c9e998fa87.png differ
diff --git a/_images/1bcca8dd9a461d55b776a44f4ff57c2aa15ecb14400ee3e2d75a418749271a21.png b/_images/1bcca8dd9a461d55b776a44f4ff57c2aa15ecb14400ee3e2d75a418749271a21.png
deleted file mode 100644
index 3b5f6bae..00000000
Binary files a/_images/1bcca8dd9a461d55b776a44f4ff57c2aa15ecb14400ee3e2d75a418749271a21.png and /dev/null differ
diff --git a/_images/1d0e15d17cffdae5466d1eed3abd90d9bd12295223f7e92c5dd2cdbecf1db961.png b/_images/1d0e15d17cffdae5466d1eed3abd90d9bd12295223f7e92c5dd2cdbecf1db961.png
deleted file mode 100644
index f4947bce..00000000
Binary files a/_images/1d0e15d17cffdae5466d1eed3abd90d9bd12295223f7e92c5dd2cdbecf1db961.png and /dev/null differ
diff --git a/_images/1efcbfd368f352e1f1194ae5d329664a6f4c2ea5329a3bc4d2fcc87dbaaa73f4.png b/_images/1efcbfd368f352e1f1194ae5d329664a6f4c2ea5329a3bc4d2fcc87dbaaa73f4.png
new file mode 100644
index 00000000..bf8892cf
Binary files /dev/null and b/_images/1efcbfd368f352e1f1194ae5d329664a6f4c2ea5329a3bc4d2fcc87dbaaa73f4.png differ
diff --git a/_images/20677ba8241e2d56f555af05df3414456fe364ec7d4728c1f34015988369f744.png b/_images/20677ba8241e2d56f555af05df3414456fe364ec7d4728c1f34015988369f744.png
deleted file mode 100644
index f370fec2..00000000
Binary files a/_images/20677ba8241e2d56f555af05df3414456fe364ec7d4728c1f34015988369f744.png and /dev/null differ
diff --git a/_images/2299dc56d8020fe86037e92651b5c3f7073fa2284f502e85463ca8e67d8148e9.png b/_images/2299dc56d8020fe86037e92651b5c3f7073fa2284f502e85463ca8e67d8148e9.png
deleted file mode 100644
index 6aa83dda..00000000
Binary files a/_images/2299dc56d8020fe86037e92651b5c3f7073fa2284f502e85463ca8e67d8148e9.png and /dev/null differ
diff --git a/_images/24651d7a813932ff4c2e66c756be249bdb29b42817829e4b907b60b9f6d95271.png b/_images/24651d7a813932ff4c2e66c756be249bdb29b42817829e4b907b60b9f6d95271.png
new file mode 100644
index 00000000..169eed82
Binary files /dev/null and b/_images/24651d7a813932ff4c2e66c756be249bdb29b42817829e4b907b60b9f6d95271.png differ
diff --git a/_images/2ab3782bf709dc7dd9d749f1248773ab5488d166e9eeb5272ec94dd4586f3f64.png b/_images/2ab3782bf709dc7dd9d749f1248773ab5488d166e9eeb5272ec94dd4586f3f64.png
deleted file mode 100644
index 7e900f8f..00000000
Binary files a/_images/2ab3782bf709dc7dd9d749f1248773ab5488d166e9eeb5272ec94dd4586f3f64.png and /dev/null differ
diff --git a/_images/2f14e678b4242131b1d15c2b6d076508ad69e7a1c362bd5e797dfaf4b16e3386.png b/_images/2f14e678b4242131b1d15c2b6d076508ad69e7a1c362bd5e797dfaf4b16e3386.png
deleted file mode 100644
index 8df97b0e..00000000
Binary files a/_images/2f14e678b4242131b1d15c2b6d076508ad69e7a1c362bd5e797dfaf4b16e3386.png and /dev/null differ
diff --git a/_images/2f2428119dbe9687d448cb8eeb771e79d04f1aceb2fd7e482b4817441798a1b1.png b/_images/2f2428119dbe9687d448cb8eeb771e79d04f1aceb2fd7e482b4817441798a1b1.png
new file mode 100644
index 00000000..b9d961a4
Binary files /dev/null and b/_images/2f2428119dbe9687d448cb8eeb771e79d04f1aceb2fd7e482b4817441798a1b1.png differ
diff --git a/_images/2fc725adcccd278b9e555d8b5f5e260edf2f0e7ffffe9093b192673c536cf6df.png b/_images/2fc725adcccd278b9e555d8b5f5e260edf2f0e7ffffe9093b192673c536cf6df.png
new file mode 100644
index 00000000..777d3146
Binary files /dev/null and b/_images/2fc725adcccd278b9e555d8b5f5e260edf2f0e7ffffe9093b192673c536cf6df.png differ
diff --git a/_images/31123f52a78858f97bb5f75c08b8bd2c8714bfa0886b7d1af1d6f02f27f9a952.png b/_images/31123f52a78858f97bb5f75c08b8bd2c8714bfa0886b7d1af1d6f02f27f9a952.png
deleted file mode 100644
index 5d4a1150..00000000
Binary files a/_images/31123f52a78858f97bb5f75c08b8bd2c8714bfa0886b7d1af1d6f02f27f9a952.png and /dev/null differ
diff --git a/_images/352c47bf256bea3a60de784086f06097ff6b00e66d4f3c444e7ad1623bba4623.png b/_images/352c47bf256bea3a60de784086f06097ff6b00e66d4f3c444e7ad1623bba4623.png
deleted file mode 100644
index 019bb624..00000000
Binary files a/_images/352c47bf256bea3a60de784086f06097ff6b00e66d4f3c444e7ad1623bba4623.png and /dev/null differ
diff --git a/_images/37ef86d2c4ea995a49c5c3d610fc61ecfc5d098612b25a5926af8eb7fffc39eb.png b/_images/37ef86d2c4ea995a49c5c3d610fc61ecfc5d098612b25a5926af8eb7fffc39eb.png
new file mode 100644
index 00000000..c7a0e0f2
Binary files /dev/null and b/_images/37ef86d2c4ea995a49c5c3d610fc61ecfc5d098612b25a5926af8eb7fffc39eb.png differ
diff --git a/_images/38859170d8dc7497b0206492824190e60077026633afae58ad21cd07d7fdfb22.png b/_images/38859170d8dc7497b0206492824190e60077026633afae58ad21cd07d7fdfb22.png
new file mode 100644
index 00000000..4d47e980
Binary files /dev/null and b/_images/38859170d8dc7497b0206492824190e60077026633afae58ad21cd07d7fdfb22.png differ
diff --git a/_images/3a69a2fc094f1b447e8ddebda28c5683c6e5922fcd11b4d8a2226db3624bd06f.png b/_images/3a69a2fc094f1b447e8ddebda28c5683c6e5922fcd11b4d8a2226db3624bd06f.png
new file mode 100644
index 00000000..78bbd36f
Binary files /dev/null and b/_images/3a69a2fc094f1b447e8ddebda28c5683c6e5922fcd11b4d8a2226db3624bd06f.png differ
diff --git a/_images/3a9e08df7e13e8ba98123392d236b8b8547b9f8ce6d04e301d90fd844adb46b1.png b/_images/3a9e08df7e13e8ba98123392d236b8b8547b9f8ce6d04e301d90fd844adb46b1.png
deleted file mode 100644
index 16d057ab..00000000
Binary files a/_images/3a9e08df7e13e8ba98123392d236b8b8547b9f8ce6d04e301d90fd844adb46b1.png and /dev/null differ
diff --git a/_images/3dbbe7044d46635808b40b1a6f8be859e6ab4ec9177d387b824f4ba4be888266.png b/_images/3dbbe7044d46635808b40b1a6f8be859e6ab4ec9177d387b824f4ba4be888266.png
new file mode 100644
index 00000000..777d54b7
Binary files /dev/null and b/_images/3dbbe7044d46635808b40b1a6f8be859e6ab4ec9177d387b824f4ba4be888266.png differ
diff --git a/_images/3f73df4807b66ab8f93f14d317906bccaf80be257fd1a9cc48009387a03059df.png b/_images/3f73df4807b66ab8f93f14d317906bccaf80be257fd1a9cc48009387a03059df.png
deleted file mode 100644
index 3f2b00dd..00000000
Binary files a/_images/3f73df4807b66ab8f93f14d317906bccaf80be257fd1a9cc48009387a03059df.png and /dev/null differ
diff --git a/_images/517c63e0b642ab134b1b5dbe4325f80ac16ae8553aa8aa33dd7da2c0ada5ced3.png b/_images/517c63e0b642ab134b1b5dbe4325f80ac16ae8553aa8aa33dd7da2c0ada5ced3.png
new file mode 100644
index 00000000..a3dc63a6
Binary files /dev/null and b/_images/517c63e0b642ab134b1b5dbe4325f80ac16ae8553aa8aa33dd7da2c0ada5ced3.png differ
diff --git a/_images/5233f9be5a932e7a766591d7c7ebbcb4b1900c1bb98b68cd956d316384d176e8.png b/_images/5233f9be5a932e7a766591d7c7ebbcb4b1900c1bb98b68cd956d316384d176e8.png
new file mode 100644
index 00000000..d24a27bb
Binary files /dev/null and b/_images/5233f9be5a932e7a766591d7c7ebbcb4b1900c1bb98b68cd956d316384d176e8.png differ
diff --git a/_images/56dfff59de0917859e5c418a7b3ea4bc390ae9eb8d8272f2fbbaf467398343b8.png b/_images/56dfff59de0917859e5c418a7b3ea4bc390ae9eb8d8272f2fbbaf467398343b8.png
new file mode 100644
index 00000000..591a7cef
Binary files /dev/null and b/_images/56dfff59de0917859e5c418a7b3ea4bc390ae9eb8d8272f2fbbaf467398343b8.png differ
diff --git a/_images/596e1c9704306bb1a174f53420b74dbd43dc24ce8dc111109fd5844d85b2316a.png b/_images/596e1c9704306bb1a174f53420b74dbd43dc24ce8dc111109fd5844d85b2316a.png
new file mode 100644
index 00000000..173a7266
Binary files /dev/null and b/_images/596e1c9704306bb1a174f53420b74dbd43dc24ce8dc111109fd5844d85b2316a.png differ
diff --git a/_images/5d3b318877398b91d5102fec99a84468c9c05127cb1a619d37c72e15bfea95b8.png b/_images/5d3b318877398b91d5102fec99a84468c9c05127cb1a619d37c72e15bfea95b8.png
new file mode 100644
index 00000000..bc0db63b
Binary files /dev/null and b/_images/5d3b318877398b91d5102fec99a84468c9c05127cb1a619d37c72e15bfea95b8.png differ
diff --git a/_images/5da1816213c3703481067c63476b608da2608b4dffd8d06e6b090536e2778e8b.png b/_images/5da1816213c3703481067c63476b608da2608b4dffd8d06e6b090536e2778e8b.png
new file mode 100644
index 00000000..182db036
Binary files /dev/null and b/_images/5da1816213c3703481067c63476b608da2608b4dffd8d06e6b090536e2778e8b.png differ
diff --git a/_images/5e2cb8e25e3674c93e06ae6235a90e5758d5c774c800458a1272bbc23796b531.png b/_images/5e2cb8e25e3674c93e06ae6235a90e5758d5c774c800458a1272bbc23796b531.png
deleted file mode 100644
index 0a5e4c7f..00000000
Binary files a/_images/5e2cb8e25e3674c93e06ae6235a90e5758d5c774c800458a1272bbc23796b531.png and /dev/null differ
diff --git a/_images/607a92db109b88eab30160a7c1d9487eed397783fe736c5fa3d3f5a931867f68.png b/_images/607a92db109b88eab30160a7c1d9487eed397783fe736c5fa3d3f5a931867f68.png
deleted file mode 100644
index 53c2565f..00000000
Binary files a/_images/607a92db109b88eab30160a7c1d9487eed397783fe736c5fa3d3f5a931867f68.png and /dev/null differ
diff --git a/_images/609babfb4f2b0a8dbe444aa0b2d3a38f54994edad566eaf2ce3963fd6ce48c39.png b/_images/609babfb4f2b0a8dbe444aa0b2d3a38f54994edad566eaf2ce3963fd6ce48c39.png
new file mode 100644
index 00000000..e5deaab6
Binary files /dev/null and b/_images/609babfb4f2b0a8dbe444aa0b2d3a38f54994edad566eaf2ce3963fd6ce48c39.png differ
diff --git a/_images/61f251619ecd2bea64b4248ae518810406e42b12267e8ad9edba709835ec0f04.png b/_images/61f251619ecd2bea64b4248ae518810406e42b12267e8ad9edba709835ec0f04.png
deleted file mode 100644
index 74f201fb..00000000
Binary files a/_images/61f251619ecd2bea64b4248ae518810406e42b12267e8ad9edba709835ec0f04.png and /dev/null differ
diff --git a/_images/61f9a328cb6c4fe0332fa514d8fcb19bce218d3f4a43db83fedc82cf90b4856e.png b/_images/61f9a328cb6c4fe0332fa514d8fcb19bce218d3f4a43db83fedc82cf90b4856e.png
deleted file mode 100644
index 67556560..00000000
Binary files a/_images/61f9a328cb6c4fe0332fa514d8fcb19bce218d3f4a43db83fedc82cf90b4856e.png and /dev/null differ
diff --git a/_images/62729577feefc14a85bbba142cd67216ef5924f80d5f452a67065fcb58d79bd4.png b/_images/62729577feefc14a85bbba142cd67216ef5924f80d5f452a67065fcb58d79bd4.png
deleted file mode 100644
index 6ed7490c..00000000
Binary files a/_images/62729577feefc14a85bbba142cd67216ef5924f80d5f452a67065fcb58d79bd4.png and /dev/null differ
diff --git a/_images/62abdaaba3cd3d05ee6ea970503c8e3844d9d6285d212303e869ed214a719c65.png b/_images/62abdaaba3cd3d05ee6ea970503c8e3844d9d6285d212303e869ed214a719c65.png
new file mode 100644
index 00000000..a0df33e6
Binary files /dev/null and b/_images/62abdaaba3cd3d05ee6ea970503c8e3844d9d6285d212303e869ed214a719c65.png differ
diff --git a/_images/653b9fa1928d2e1a3289787f499c4aad835e761326e91170daf983217b8d9673.png b/_images/653b9fa1928d2e1a3289787f499c4aad835e761326e91170daf983217b8d9673.png
deleted file mode 100644
index 2d68888a..00000000
Binary files a/_images/653b9fa1928d2e1a3289787f499c4aad835e761326e91170daf983217b8d9673.png and /dev/null differ
diff --git a/_images/670ab1e4ba538136e6032d4bbd09de899a4dfc3069bc8e9cf47732d15ebbcbd5.png b/_images/670ab1e4ba538136e6032d4bbd09de899a4dfc3069bc8e9cf47732d15ebbcbd5.png
deleted file mode 100644
index 76b07d4f..00000000
Binary files a/_images/670ab1e4ba538136e6032d4bbd09de899a4dfc3069bc8e9cf47732d15ebbcbd5.png and /dev/null differ
diff --git a/_images/67e1fb0f3fe184bdd3c406ab226032b056952a4e75f6d70a133d8431ef800007.png b/_images/67e1fb0f3fe184bdd3c406ab226032b056952a4e75f6d70a133d8431ef800007.png
deleted file mode 100644
index 7abf9ce1..00000000
Binary files a/_images/67e1fb0f3fe184bdd3c406ab226032b056952a4e75f6d70a133d8431ef800007.png and /dev/null differ
diff --git a/_images/698b75e012cf9798169cff7df6f4b5c8a15e2ee332475ed6130bbdb32a8309ae.png b/_images/698b75e012cf9798169cff7df6f4b5c8a15e2ee332475ed6130bbdb32a8309ae.png
new file mode 100644
index 00000000..4da5dcff
Binary files /dev/null and b/_images/698b75e012cf9798169cff7df6f4b5c8a15e2ee332475ed6130bbdb32a8309ae.png differ
diff --git a/_images/6a11d0d9d02b61d5d73d3fe2fa0477866d887e0780d051fceab5befb9a3442e6.png b/_images/6a11d0d9d02b61d5d73d3fe2fa0477866d887e0780d051fceab5befb9a3442e6.png
new file mode 100644
index 00000000..d352b7ff
Binary files /dev/null and b/_images/6a11d0d9d02b61d5d73d3fe2fa0477866d887e0780d051fceab5befb9a3442e6.png differ
diff --git a/_images/6aab5104d30bd72b42fa7602154f97d5f6c22052146c5f3922d65d1845d51e3c.png b/_images/6aab5104d30bd72b42fa7602154f97d5f6c22052146c5f3922d65d1845d51e3c.png
new file mode 100644
index 00000000..f4564162
Binary files /dev/null and b/_images/6aab5104d30bd72b42fa7602154f97d5f6c22052146c5f3922d65d1845d51e3c.png differ
diff --git a/_images/6d606ddb3105d727503aa5a637cb6d136aadc9f1d317ad8fa1ebd56c94ca8604.png b/_images/6d606ddb3105d727503aa5a637cb6d136aadc9f1d317ad8fa1ebd56c94ca8604.png
new file mode 100644
index 00000000..3aa29a86
Binary files /dev/null and b/_images/6d606ddb3105d727503aa5a637cb6d136aadc9f1d317ad8fa1ebd56c94ca8604.png differ
diff --git a/_images/6e4f393bc51960fce849820bf5cf7d469d64501bca42f01b2f41393ad46d1880.png b/_images/6e4f393bc51960fce849820bf5cf7d469d64501bca42f01b2f41393ad46d1880.png
deleted file mode 100644
index bf14db65..00000000
Binary files a/_images/6e4f393bc51960fce849820bf5cf7d469d64501bca42f01b2f41393ad46d1880.png and /dev/null differ
diff --git a/_images/764c6e0ed1ee34f1afe1f6b5554450dfbde8fe67d1684e17ab3845b1bc302269.png b/_images/764c6e0ed1ee34f1afe1f6b5554450dfbde8fe67d1684e17ab3845b1bc302269.png
deleted file mode 100644
index 4a83d166..00000000
Binary files a/_images/764c6e0ed1ee34f1afe1f6b5554450dfbde8fe67d1684e17ab3845b1bc302269.png and /dev/null differ
diff --git a/_images/7a6ac2b486031d957469433075d71af12c1808f8004df7588f8047867066de99.png b/_images/7a6ac2b486031d957469433075d71af12c1808f8004df7588f8047867066de99.png
deleted file mode 100644
index a1e181ca..00000000
Binary files a/_images/7a6ac2b486031d957469433075d71af12c1808f8004df7588f8047867066de99.png and /dev/null differ
diff --git a/_images/7dcf34feb84aafc9797ad095810db4a10576a2e1de717f8881615263bf0afcc7.png b/_images/7dcf34feb84aafc9797ad095810db4a10576a2e1de717f8881615263bf0afcc7.png
new file mode 100644
index 00000000..a9a55c95
Binary files /dev/null and b/_images/7dcf34feb84aafc9797ad095810db4a10576a2e1de717f8881615263bf0afcc7.png differ
diff --git a/_images/7fe9b0783525bec943641fbadffbf6a4f9dd7e07d80c20f95dbdc1a179544fd3.png b/_images/7fe9b0783525bec943641fbadffbf6a4f9dd7e07d80c20f95dbdc1a179544fd3.png
new file mode 100644
index 00000000..ac597375
Binary files /dev/null and b/_images/7fe9b0783525bec943641fbadffbf6a4f9dd7e07d80c20f95dbdc1a179544fd3.png differ
diff --git a/_images/84061f0b3ad9c4a6746c04a26c782ec0567ca06706cf24b71324ea6bd1887709.png b/_images/84061f0b3ad9c4a6746c04a26c782ec0567ca06706cf24b71324ea6bd1887709.png
deleted file mode 100644
index 3f4ed4d5..00000000
Binary files a/_images/84061f0b3ad9c4a6746c04a26c782ec0567ca06706cf24b71324ea6bd1887709.png and /dev/null differ
diff --git a/_images/859a62bd1c4528268d49acc5d8360646cc865b929e79bad6eb549d934a239739.png b/_images/859a62bd1c4528268d49acc5d8360646cc865b929e79bad6eb549d934a239739.png
deleted file mode 100644
index eed2b45a..00000000
Binary files a/_images/859a62bd1c4528268d49acc5d8360646cc865b929e79bad6eb549d934a239739.png and /dev/null differ
diff --git a/_images/876bb634fcfb12b60239b337ac60c4f57665b0d391ed8d697e0bb46aeccc6391.png b/_images/876bb634fcfb12b60239b337ac60c4f57665b0d391ed8d697e0bb46aeccc6391.png
new file mode 100644
index 00000000..10b7e615
Binary files /dev/null and b/_images/876bb634fcfb12b60239b337ac60c4f57665b0d391ed8d697e0bb46aeccc6391.png differ
diff --git a/_images/885e3991f1be74d66041748d90d672cbe6706a5a5a82267e3168dd94eb587f91.png b/_images/885e3991f1be74d66041748d90d672cbe6706a5a5a82267e3168dd94eb587f91.png
deleted file mode 100644
index 71195bb4..00000000
Binary files a/_images/885e3991f1be74d66041748d90d672cbe6706a5a5a82267e3168dd94eb587f91.png and /dev/null differ
diff --git a/_images/8ae8590f7a87579f947a5391b20d76ab2deea61fc7f102cae264aecd894717bc.png b/_images/8ae8590f7a87579f947a5391b20d76ab2deea61fc7f102cae264aecd894717bc.png
deleted file mode 100644
index 925e8caa..00000000
Binary files a/_images/8ae8590f7a87579f947a5391b20d76ab2deea61fc7f102cae264aecd894717bc.png and /dev/null differ
diff --git a/_images/9210bd976572919b1c2c349755f626ebed87a9b9360b738b4a549b053413c122.png b/_images/9210bd976572919b1c2c349755f626ebed87a9b9360b738b4a549b053413c122.png
new file mode 100644
index 00000000..17f8b6ec
Binary files /dev/null and b/_images/9210bd976572919b1c2c349755f626ebed87a9b9360b738b4a549b053413c122.png differ
diff --git a/_images/94267647ef42e4f67408335af040e664416453695196afd5a8db5c92915f8076.png b/_images/94267647ef42e4f67408335af040e664416453695196afd5a8db5c92915f8076.png
new file mode 100644
index 00000000..a4224809
Binary files /dev/null and b/_images/94267647ef42e4f67408335af040e664416453695196afd5a8db5c92915f8076.png differ
diff --git a/_images/94af2c006185cbcf9097207c902b23417623350f51c5098726dc045d4d3f1f0c.png b/_images/94af2c006185cbcf9097207c902b23417623350f51c5098726dc045d4d3f1f0c.png
new file mode 100644
index 00000000..280fa871
Binary files /dev/null and b/_images/94af2c006185cbcf9097207c902b23417623350f51c5098726dc045d4d3f1f0c.png differ
diff --git a/_images/97e77712c6f54fef57b20f080c53469930e3128c2bbd290219b3a9508caf332c.png b/_images/97e77712c6f54fef57b20f080c53469930e3128c2bbd290219b3a9508caf332c.png
new file mode 100644
index 00000000..a59d4af3
Binary files /dev/null and b/_images/97e77712c6f54fef57b20f080c53469930e3128c2bbd290219b3a9508caf332c.png differ
diff --git a/_images/98f38424ed153cc26a0b3a0d3e69ea3136c2eaad7426894258515885d4be0d48.png b/_images/98f38424ed153cc26a0b3a0d3e69ea3136c2eaad7426894258515885d4be0d48.png
new file mode 100644
index 00000000..36429b0e
Binary files /dev/null and b/_images/98f38424ed153cc26a0b3a0d3e69ea3136c2eaad7426894258515885d4be0d48.png differ
diff --git a/_images/9981fc3dc5e379edee6e3356c49618f5da9a345b7bebdbaf9e32370268188c72.png b/_images/9981fc3dc5e379edee6e3356c49618f5da9a345b7bebdbaf9e32370268188c72.png
new file mode 100644
index 00000000..d50e76fd
Binary files /dev/null and b/_images/9981fc3dc5e379edee6e3356c49618f5da9a345b7bebdbaf9e32370268188c72.png differ
diff --git a/_images/998e333741bca92e577853d510419d7cf306470a5a45f76e3b22916385ea0af8.png b/_images/998e333741bca92e577853d510419d7cf306470a5a45f76e3b22916385ea0af8.png
deleted file mode 100644
index 00f80b8d..00000000
Binary files a/_images/998e333741bca92e577853d510419d7cf306470a5a45f76e3b22916385ea0af8.png and /dev/null differ
diff --git a/_images/9b721d4884f353fc90fefc0790ae9ec81d4502d73d59f3ef7874c009a6ca37a1.png b/_images/9b721d4884f353fc90fefc0790ae9ec81d4502d73d59f3ef7874c009a6ca37a1.png
deleted file mode 100644
index 42a9a86c..00000000
Binary files a/_images/9b721d4884f353fc90fefc0790ae9ec81d4502d73d59f3ef7874c009a6ca37a1.png and /dev/null differ
diff --git a/_images/9d66c1148f5d9577fb0d89a4948e5e0c719c543757f754666e70c4d5261ee464.png b/_images/9d66c1148f5d9577fb0d89a4948e5e0c719c543757f754666e70c4d5261ee464.png
new file mode 100644
index 00000000..d99744e0
Binary files /dev/null and b/_images/9d66c1148f5d9577fb0d89a4948e5e0c719c543757f754666e70c4d5261ee464.png differ
diff --git a/_images/a05c552e1f2abaf900e2909add5ef02eef76f0976f863933b68e31d878bc7f82.png b/_images/a05c552e1f2abaf900e2909add5ef02eef76f0976f863933b68e31d878bc7f82.png
deleted file mode 100644
index 7c4abacb..00000000
Binary files a/_images/a05c552e1f2abaf900e2909add5ef02eef76f0976f863933b68e31d878bc7f82.png and /dev/null differ
diff --git a/_images/a0d7b344ef2c2671fd47e9c9d5f4c41e5369e37b714910f5c6ad37292b9f640e.png b/_images/a0d7b344ef2c2671fd47e9c9d5f4c41e5369e37b714910f5c6ad37292b9f640e.png
deleted file mode 100644
index a26f6e77..00000000
Binary files a/_images/a0d7b344ef2c2671fd47e9c9d5f4c41e5369e37b714910f5c6ad37292b9f640e.png and /dev/null differ
diff --git a/_images/a7b54a227c399e58562c85c0c93a9283df3076166719faabc97ef11087b555f0.png b/_images/a7b54a227c399e58562c85c0c93a9283df3076166719faabc97ef11087b555f0.png
new file mode 100644
index 00000000..303d7d8a
Binary files /dev/null and b/_images/a7b54a227c399e58562c85c0c93a9283df3076166719faabc97ef11087b555f0.png differ
diff --git a/_images/a8163e262d40be1dbc284eb1949258649e75ac66bc9cb680aaa90e9d0bf7c5ed.png b/_images/a8163e262d40be1dbc284eb1949258649e75ac66bc9cb680aaa90e9d0bf7c5ed.png
new file mode 100644
index 00000000..33ce4999
Binary files /dev/null and b/_images/a8163e262d40be1dbc284eb1949258649e75ac66bc9cb680aaa90e9d0bf7c5ed.png differ
diff --git a/_images/a863bcc31e6e68b8ccd8d1e3b9f7483b97945a0a75f09b81c0b1473fe2a1bf37.png b/_images/a863bcc31e6e68b8ccd8d1e3b9f7483b97945a0a75f09b81c0b1473fe2a1bf37.png
deleted file mode 100644
index 503cf4e1..00000000
Binary files a/_images/a863bcc31e6e68b8ccd8d1e3b9f7483b97945a0a75f09b81c0b1473fe2a1bf37.png and /dev/null differ
diff --git a/_images/ad66a2f66a02e8c9e174f0e066a9992f453f3f1d7a8e41662e53c3306129c4e8.png b/_images/ad66a2f66a02e8c9e174f0e066a9992f453f3f1d7a8e41662e53c3306129c4e8.png
deleted file mode 100644
index 406a2cfd..00000000
Binary files a/_images/ad66a2f66a02e8c9e174f0e066a9992f453f3f1d7a8e41662e53c3306129c4e8.png and /dev/null differ
diff --git a/_images/ad70b9a19d81d913dcdc1c04a236a959f04888fdafcf310c378732d6ca473a91.png b/_images/ad70b9a19d81d913dcdc1c04a236a959f04888fdafcf310c378732d6ca473a91.png
deleted file mode 100644
index 03797f74..00000000
Binary files a/_images/ad70b9a19d81d913dcdc1c04a236a959f04888fdafcf310c378732d6ca473a91.png and /dev/null differ
diff --git a/_images/afa291b217d1ab47b34656354f5d966ccdae1b9866973bcee670fd2008785ddf.png b/_images/afa291b217d1ab47b34656354f5d966ccdae1b9866973bcee670fd2008785ddf.png
deleted file mode 100644
index de051f97..00000000
Binary files a/_images/afa291b217d1ab47b34656354f5d966ccdae1b9866973bcee670fd2008785ddf.png and /dev/null differ
diff --git a/_images/aff5b9601fd48e5173fb482cf17973ad70d46104794f32ddaa9736da52d18d0d.png b/_images/aff5b9601fd48e5173fb482cf17973ad70d46104794f32ddaa9736da52d18d0d.png
deleted file mode 100644
index b0e36b43..00000000
Binary files a/_images/aff5b9601fd48e5173fb482cf17973ad70d46104794f32ddaa9736da52d18d0d.png and /dev/null differ
diff --git a/_images/b01c4290d436b0cce7c8ec9b1e02e2c6d6453d4158b51e266c68d6663bc84ab0.png b/_images/b01c4290d436b0cce7c8ec9b1e02e2c6d6453d4158b51e266c68d6663bc84ab0.png
new file mode 100644
index 00000000..73d95b64
Binary files /dev/null and b/_images/b01c4290d436b0cce7c8ec9b1e02e2c6d6453d4158b51e266c68d6663bc84ab0.png differ
diff --git a/_images/b141b7cffbc3f9799e30c20825586c71931df345cc14fb36491bfc91014cd2cf.png b/_images/b141b7cffbc3f9799e30c20825586c71931df345cc14fb36491bfc91014cd2cf.png
new file mode 100644
index 00000000..ae77b55c
Binary files /dev/null and b/_images/b141b7cffbc3f9799e30c20825586c71931df345cc14fb36491bfc91014cd2cf.png differ
diff --git a/_images/b21730e5f6328f3797ed23262f73bd9292ebf3fde4d6cd4aa8e3689dcf434f49.png b/_images/b21730e5f6328f3797ed23262f73bd9292ebf3fde4d6cd4aa8e3689dcf434f49.png
deleted file mode 100644
index ec02d700..00000000
Binary files a/_images/b21730e5f6328f3797ed23262f73bd9292ebf3fde4d6cd4aa8e3689dcf434f49.png and /dev/null differ
diff --git a/_images/b4fe3bf6448c9bf0301c8258f727436b4dcfee94e1ae3e28ff055e180b21f260.png b/_images/b4fe3bf6448c9bf0301c8258f727436b4dcfee94e1ae3e28ff055e180b21f260.png
new file mode 100644
index 00000000..d0d811e0
Binary files /dev/null and b/_images/b4fe3bf6448c9bf0301c8258f727436b4dcfee94e1ae3e28ff055e180b21f260.png differ
diff --git a/_images/b68fb4849c0ca61bb37dd323f2d0681a994c32503fe0cbd65e6c751dc35d7de6.png b/_images/b68fb4849c0ca61bb37dd323f2d0681a994c32503fe0cbd65e6c751dc35d7de6.png
deleted file mode 100644
index 7bc6da0e..00000000
Binary files a/_images/b68fb4849c0ca61bb37dd323f2d0681a994c32503fe0cbd65e6c751dc35d7de6.png and /dev/null differ
diff --git a/_images/b7412f4b099681fa3c722398e5788df5e5cecdeb54926a2cb60f30ca4d02214a.png b/_images/b7412f4b099681fa3c722398e5788df5e5cecdeb54926a2cb60f30ca4d02214a.png
deleted file mode 100644
index 3bba27df..00000000
Binary files a/_images/b7412f4b099681fa3c722398e5788df5e5cecdeb54926a2cb60f30ca4d02214a.png and /dev/null differ
diff --git a/_images/b8a02f35d22e5c6da20f6626f3124574063859095bbb405bf0f2b0323192f264.png b/_images/b8a02f35d22e5c6da20f6626f3124574063859095bbb405bf0f2b0323192f264.png
new file mode 100644
index 00000000..5950cd46
Binary files /dev/null and b/_images/b8a02f35d22e5c6da20f6626f3124574063859095bbb405bf0f2b0323192f264.png differ
diff --git a/_images/b8c8933f2dd5bcfa43037e299bde7241b24458ae9167bd2e8e0b52b6f353c1d8.png b/_images/b8c8933f2dd5bcfa43037e299bde7241b24458ae9167bd2e8e0b52b6f353c1d8.png
new file mode 100644
index 00000000..01b1098b
Binary files /dev/null and b/_images/b8c8933f2dd5bcfa43037e299bde7241b24458ae9167bd2e8e0b52b6f353c1d8.png differ
diff --git a/_images/b9303604bbc54e12de9dd6028e2cc894d280b511582cb0744ea5262319f202b9.png b/_images/b9303604bbc54e12de9dd6028e2cc894d280b511582cb0744ea5262319f202b9.png
new file mode 100644
index 00000000..8b0f457b
Binary files /dev/null and b/_images/b9303604bbc54e12de9dd6028e2cc894d280b511582cb0744ea5262319f202b9.png differ
diff --git a/_images/ba552e7415ab28109dfbb0018fc8f2950ba97a6d81117377f01694640ae37e36.png b/_images/ba552e7415ab28109dfbb0018fc8f2950ba97a6d81117377f01694640ae37e36.png
new file mode 100644
index 00000000..c3960e6e
Binary files /dev/null and b/_images/ba552e7415ab28109dfbb0018fc8f2950ba97a6d81117377f01694640ae37e36.png differ
diff --git a/_images/c05709bf75086a71b9272aa44eafd6d06e88814fba53e0527e426a421d00637b.png b/_images/c05709bf75086a71b9272aa44eafd6d06e88814fba53e0527e426a421d00637b.png
new file mode 100644
index 00000000..75f545c6
Binary files /dev/null and b/_images/c05709bf75086a71b9272aa44eafd6d06e88814fba53e0527e426a421d00637b.png differ
diff --git a/_images/c2c301687df180e2e0ebff932efdb146ce5e18dd369993dbbc965844812e4b0a.png b/_images/c2c301687df180e2e0ebff932efdb146ce5e18dd369993dbbc965844812e4b0a.png
new file mode 100644
index 00000000..c5c1b50d
Binary files /dev/null and b/_images/c2c301687df180e2e0ebff932efdb146ce5e18dd369993dbbc965844812e4b0a.png differ
diff --git a/_images/d553185bbb8b3386f1b5b275d4d5bbb1792cb8bca258c128d142f07fd5de4e89.png b/_images/d553185bbb8b3386f1b5b275d4d5bbb1792cb8bca258c128d142f07fd5de4e89.png
new file mode 100644
index 00000000..85ac7568
Binary files /dev/null and b/_images/d553185bbb8b3386f1b5b275d4d5bbb1792cb8bca258c128d142f07fd5de4e89.png differ
diff --git a/_images/d6a3dffd1dc2b8d13f667c8fc395cd30dac8933830a14e58a6e2ea382a60bc79.png b/_images/d6a3dffd1dc2b8d13f667c8fc395cd30dac8933830a14e58a6e2ea382a60bc79.png
deleted file mode 100644
index 5652a474..00000000
Binary files a/_images/d6a3dffd1dc2b8d13f667c8fc395cd30dac8933830a14e58a6e2ea382a60bc79.png and /dev/null differ
diff --git a/_images/da8cdaa3cd7a77928aa19e38ac51436781263e434f1ce63a22a24ac0b5409795.png b/_images/da8cdaa3cd7a77928aa19e38ac51436781263e434f1ce63a22a24ac0b5409795.png
deleted file mode 100644
index bbc62470..00000000
Binary files a/_images/da8cdaa3cd7a77928aa19e38ac51436781263e434f1ce63a22a24ac0b5409795.png and /dev/null differ
diff --git a/_images/dac4593b0d6ceb46cf796d3b04cec1959447544d8696d95713cd9459e2228d3a.png b/_images/dac4593b0d6ceb46cf796d3b04cec1959447544d8696d95713cd9459e2228d3a.png
deleted file mode 100644
index 4d3d7d3a..00000000
Binary files a/_images/dac4593b0d6ceb46cf796d3b04cec1959447544d8696d95713cd9459e2228d3a.png and /dev/null differ
diff --git a/_images/db6bf4b0f30cae7248ac499b3f0724857e9c2e27697e0c7564c47974df9dd219.png b/_images/db6bf4b0f30cae7248ac499b3f0724857e9c2e27697e0c7564c47974df9dd219.png
deleted file mode 100644
index fbeb210c..00000000
Binary files a/_images/db6bf4b0f30cae7248ac499b3f0724857e9c2e27697e0c7564c47974df9dd219.png and /dev/null differ
diff --git a/_images/de4f3673cbaeccda22fe06e42c485a02e6ab0474d29b1ef22c56dd38c259b902.png b/_images/de4f3673cbaeccda22fe06e42c485a02e6ab0474d29b1ef22c56dd38c259b902.png
new file mode 100644
index 00000000..58bc132f
Binary files /dev/null and b/_images/de4f3673cbaeccda22fe06e42c485a02e6ab0474d29b1ef22c56dd38c259b902.png differ
diff --git a/_images/e1026bbe86bc2a11e14b7d438f113f61d1d4f7442c32be3562bd6a41cfbb741b.png b/_images/e1026bbe86bc2a11e14b7d438f113f61d1d4f7442c32be3562bd6a41cfbb741b.png
deleted file mode 100644
index 16f6daa8..00000000
Binary files a/_images/e1026bbe86bc2a11e14b7d438f113f61d1d4f7442c32be3562bd6a41cfbb741b.png and /dev/null differ
diff --git a/_images/e3422b71dc0a34482d07ab66ea822401a05b892db5ae9f63315585c42b0b855f.png b/_images/e3422b71dc0a34482d07ab66ea822401a05b892db5ae9f63315585c42b0b855f.png
new file mode 100644
index 00000000..7bca8059
Binary files /dev/null and b/_images/e3422b71dc0a34482d07ab66ea822401a05b892db5ae9f63315585c42b0b855f.png differ
diff --git a/_images/edb215baa040dc4da8d72af72c184cb07cea3709a1ba4858bbd3d339b0267d76.png b/_images/edb215baa040dc4da8d72af72c184cb07cea3709a1ba4858bbd3d339b0267d76.png
new file mode 100644
index 00000000..0a3de5fb
Binary files /dev/null and b/_images/edb215baa040dc4da8d72af72c184cb07cea3709a1ba4858bbd3d339b0267d76.png differ
diff --git a/_images/ef2c60c634e31ecf2233f74d6e43ed6132f608016671fa226778679aa9cf3817.png b/_images/ef2c60c634e31ecf2233f74d6e43ed6132f608016671fa226778679aa9cf3817.png
new file mode 100644
index 00000000..37e85ff7
Binary files /dev/null and b/_images/ef2c60c634e31ecf2233f74d6e43ed6132f608016671fa226778679aa9cf3817.png differ
diff --git a/_images/ef6343687e720cd2fbc01e694202317d5f3a750afe042a334c0133d8bc30599b.png b/_images/ef6343687e720cd2fbc01e694202317d5f3a750afe042a334c0133d8bc30599b.png
deleted file mode 100644
index 114d7114..00000000
Binary files a/_images/ef6343687e720cd2fbc01e694202317d5f3a750afe042a334c0133d8bc30599b.png and /dev/null differ
diff --git a/_images/f207b3bbf0a39c17bf94b0ed22dadecc58e7160a073853dc64cbdc075d43d053.png b/_images/f207b3bbf0a39c17bf94b0ed22dadecc58e7160a073853dc64cbdc075d43d053.png
deleted file mode 100644
index f4e6b7ca..00000000
Binary files a/_images/f207b3bbf0a39c17bf94b0ed22dadecc58e7160a073853dc64cbdc075d43d053.png and /dev/null differ
diff --git a/_images/f3929a1ebdb2c57633b11e30e5a746ba7b445dd319e18df30ac5bb2b95c2e6ca.png b/_images/f3929a1ebdb2c57633b11e30e5a746ba7b445dd319e18df30ac5bb2b95c2e6ca.png
new file mode 100644
index 00000000..f0aa7e6e
Binary files /dev/null and b/_images/f3929a1ebdb2c57633b11e30e5a746ba7b445dd319e18df30ac5bb2b95c2e6ca.png differ
diff --git a/_images/f405666d3b6e503d983759bc6a184fbac611c3f0ee7b4f3c9d1a9a28f842372e.png b/_images/f405666d3b6e503d983759bc6a184fbac611c3f0ee7b4f3c9d1a9a28f842372e.png
new file mode 100644
index 00000000..84655ee0
Binary files /dev/null and b/_images/f405666d3b6e503d983759bc6a184fbac611c3f0ee7b4f3c9d1a9a28f842372e.png differ
diff --git a/_images/f44fbde2d515c9124af7864ee6e8bd936300296ad5dd54000324b56dd7b21645.png b/_images/f44fbde2d515c9124af7864ee6e8bd936300296ad5dd54000324b56dd7b21645.png
deleted file mode 100644
index 8d057b3d..00000000
Binary files a/_images/f44fbde2d515c9124af7864ee6e8bd936300296ad5dd54000324b56dd7b21645.png and /dev/null differ
diff --git a/_images/f6e2245beafb76d58310f09964f1e3e8a96b9f8d4665ac96eb54fd82235a508b.png b/_images/f6e2245beafb76d58310f09964f1e3e8a96b9f8d4665ac96eb54fd82235a508b.png
deleted file mode 100644
index 383f1877..00000000
Binary files a/_images/f6e2245beafb76d58310f09964f1e3e8a96b9f8d4665ac96eb54fd82235a508b.png and /dev/null differ
diff --git a/_images/f8572cc0e2e708c33e0e6ead925c92d74061eef402ffe0d6adf0b5c5a325f79b.png b/_images/f8572cc0e2e708c33e0e6ead925c92d74061eef402ffe0d6adf0b5c5a325f79b.png
new file mode 100644
index 00000000..e3b0f308
Binary files /dev/null and b/_images/f8572cc0e2e708c33e0e6ead925c92d74061eef402ffe0d6adf0b5c5a325f79b.png differ
diff --git a/_images/faa5442008286b13d314d694c6dd39b7261293071d5f3527756321eacf6fc93e.png b/_images/faa5442008286b13d314d694c6dd39b7261293071d5f3527756321eacf6fc93e.png
deleted file mode 100644
index 56957389..00000000
Binary files a/_images/faa5442008286b13d314d694c6dd39b7261293071d5f3527756321eacf6fc93e.png and /dev/null differ
diff --git a/_images/fc95cecf28efa885e4612eb6d6e9d6c8ee4f425f2b41ee77381801e971bb03af.png b/_images/fc95cecf28efa885e4612eb6d6e9d6c8ee4f425f2b41ee77381801e971bb03af.png
new file mode 100644
index 00000000..77ffaffa
Binary files /dev/null and b/_images/fc95cecf28efa885e4612eb6d6e9d6c8ee4f425f2b41ee77381801e971bb03af.png differ
diff --git a/_images/fde071f18bdaf010c9a27a724cfa046670c342f863457973cddcaba671a5e46e.png b/_images/fde071f18bdaf010c9a27a724cfa046670c342f863457973cddcaba671a5e46e.png
deleted file mode 100644
index 4b861c4e..00000000
Binary files a/_images/fde071f18bdaf010c9a27a724cfa046670c342f863457973cddcaba671a5e46e.png and /dev/null differ
diff --git a/_images/fe53c444feb5dff7a2c8dc994c7965b8dfbab1eb319b34533a9a7740bbf58d53.png b/_images/fe53c444feb5dff7a2c8dc994c7965b8dfbab1eb319b34533a9a7740bbf58d53.png
new file mode 100644
index 00000000..45707087
Binary files /dev/null and b/_images/fe53c444feb5dff7a2c8dc994c7965b8dfbab1eb319b34533a9a7740bbf58d53.png differ
diff --git a/_notebooks/BCG_complete_mkts.ipynb b/_notebooks/BCG_complete_mkts.ipynb
index 874127c3..f428fa9a 100644
--- a/_notebooks/BCG_complete_mkts.ipynb
+++ b/_notebooks/BCG_complete_mkts.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "12c27dce",
+ "id": "08fda670",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "065833c3",
+ "id": "c55fce53",
"metadata": {},
"source": [
"# Irrelevance of Capital Structures with Complete Markets\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c6d77452",
+ "id": "cd15232d",
"metadata": {
"hide-output": false
},
@@ -34,7 +34,7 @@
},
{
"cell_type": "markdown",
- "id": "eef0c8d6",
+ "id": "b9de6bea",
"metadata": {},
"source": [
"## Introduction\n",
@@ -67,7 +67,7 @@
},
{
"cell_type": "markdown",
- "id": "08584d46",
+ "id": "341e481a",
"metadata": {},
"source": [
"### Setup\n",
@@ -100,7 +100,7 @@
},
{
"cell_type": "markdown",
- "id": "353584b1",
+ "id": "8367fc37",
"metadata": {},
"source": [
"### Endowments\n",
@@ -125,7 +125,7 @@
},
{
"cell_type": "markdown",
- "id": "ffe7fa0f",
+ "id": "8230290d",
"metadata": {},
"source": [
"### Technology:\n",
@@ -142,7 +142,7 @@
},
{
"cell_type": "markdown",
- "id": "9b10edd4",
+ "id": "7b81eb20",
"metadata": {},
"source": [
"### Preferences:\n",
@@ -167,7 +167,7 @@
},
{
"cell_type": "markdown",
- "id": "3ecf63d6",
+ "id": "df891a2a",
"metadata": {},
"source": [
"### Parameterizations\n",
@@ -190,7 +190,7 @@
},
{
"cell_type": "markdown",
- "id": "9423e6d6",
+ "id": "a327a240",
"metadata": {},
"source": [
"### Pareto criterion and planning problem\n",
@@ -248,7 +248,7 @@
},
{
"cell_type": "markdown",
- "id": "971bc9bb",
+ "id": "1df04ebb",
"metadata": {},
"source": [
"### Helpful observations and bookkeeping\n",
@@ -329,7 +329,7 @@
},
{
"cell_type": "markdown",
- "id": "8dc2684c",
+ "id": "c89dbd10",
"metadata": {},
"source": [
"#### Remarks\n",
@@ -348,7 +348,7 @@
},
{
"cell_type": "markdown",
- "id": "94326d03",
+ "id": "2c05d7b3",
"metadata": {},
"source": [
"## Competitive equilibrium\n",
@@ -367,7 +367,7 @@
},
{
"cell_type": "markdown",
- "id": "d00278e8",
+ "id": "12de0121",
"metadata": {},
"source": [
"### Measures of agents and firms\n",
@@ -419,7 +419,7 @@
},
{
"cell_type": "markdown",
- "id": "6920292f",
+ "id": "88c2f496",
"metadata": {},
"source": [
"#### Ownership\n",
@@ -459,7 +459,7 @@
},
{
"cell_type": "markdown",
- "id": "0fa2848c",
+ "id": "fff22a9a",
"metadata": {},
"source": [
"#### Asset markets\n",
@@ -478,7 +478,7 @@
},
{
"cell_type": "markdown",
- "id": "72ddf4ba",
+ "id": "086550f0",
"metadata": {},
"source": [
"### Objects appearing in a competitive equilibrium\n",
@@ -507,7 +507,7 @@
},
{
"cell_type": "markdown",
- "id": "ad793d26",
+ "id": "99e443d4",
"metadata": {},
"source": [
"### A representative firm’s problem\n",
@@ -554,7 +554,7 @@
},
{
"cell_type": "markdown",
- "id": "a7c27ccc",
+ "id": "f6fb4885",
"metadata": {},
"source": [
"### A consumer’s problem\n",
@@ -727,7 +727,7 @@
},
{
"cell_type": "markdown",
- "id": "8d81f8a8",
+ "id": "ce10fe14",
"metadata": {},
"source": [
"### Computing competitive equilibrium prices and quantities\n",
@@ -822,7 +822,7 @@
},
{
"cell_type": "markdown",
- "id": "0912bd67",
+ "id": "d391569a",
"metadata": {},
"source": [
"### Modigliani-Miller theorem\n",
@@ -904,7 +904,7 @@
},
{
"cell_type": "markdown",
- "id": "36f29683",
+ "id": "eed6cba7",
"metadata": {},
"source": [
"## Code\n",
@@ -978,7 +978,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0331fe28",
+ "id": "4065aa47",
"metadata": {
"hide-output": false
},
@@ -994,7 +994,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "69f6906f",
+ "id": "153b4c9d",
"metadata": {
"hide-output": false
},
@@ -1189,7 +1189,7 @@
},
{
"cell_type": "markdown",
- "id": "e503a774",
+ "id": "171080f5",
"metadata": {},
"source": [
"### Examples\n",
@@ -1199,7 +1199,7 @@
},
{
"cell_type": "markdown",
- "id": "99bb06f6",
+ "id": "3da0ee68",
"metadata": {},
"source": [
"#### 1st example\n",
@@ -1218,7 +1218,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d7548180",
+ "id": "a6fa7186",
"metadata": {
"hide-output": false
},
@@ -1231,7 +1231,7 @@
},
{
"cell_type": "markdown",
- "id": "87439a98",
+ "id": "55cc9488",
"metadata": {},
"source": [
"Let’s plot the agents’ time-1 endowments with respect to shocks to see\n",
@@ -1241,7 +1241,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b1c3cfcc",
+ "id": "65f0422a",
"metadata": {
"hide-output": false
},
@@ -1278,7 +1278,7 @@
},
{
"cell_type": "markdown",
- "id": "50424823",
+ "id": "4a886d2b",
"metadata": {},
"source": [
"Let’s also compare the optimal capital stock, $ k $, and optimal\n",
@@ -1288,7 +1288,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "95a8df8d",
+ "id": "f210b4f6",
"metadata": {
"hide-output": false
},
@@ -1311,7 +1311,7 @@
},
{
"cell_type": "markdown",
- "id": "ab0f3605",
+ "id": "a35368e8",
"metadata": {},
"source": [
"#### 2nd example\n",
@@ -1326,7 +1326,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4a1b600d",
+ "id": "e8805e2c",
"metadata": {
"hide-output": false
},
@@ -1358,7 +1358,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "aa7cab49",
+ "id": "156f1425",
"metadata": {
"hide-output": false
},
@@ -1371,7 +1371,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bbcadb48",
+ "id": "f6fe4b27",
"metadata": {
"hide-output": false
},
@@ -1385,7 +1385,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a6c2c160",
+ "id": "e74c9af9",
"metadata": {
"hide-output": false
},
@@ -1416,7 +1416,7 @@
}
],
"metadata": {
- "date": 1723011579.9793224,
+ "date": 1723517845.990379,
"filename": "BCG_complete_mkts.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/BCG_incomplete_mkts.ipynb b/_notebooks/BCG_incomplete_mkts.ipynb
index 460650f3..deee55a7 100644
--- a/_notebooks/BCG_incomplete_mkts.ipynb
+++ b/_notebooks/BCG_incomplete_mkts.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "70ec1ace",
+ "id": "ead9112e",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "383a72ae",
+ "id": "0dceb097",
"metadata": {},
"source": [
"# Equilibrium Capital Structures with Incomplete Markets\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "706e79ca",
+ "id": "c7bb996a",
"metadata": {
"hide-output": false
},
@@ -34,7 +34,7 @@
},
{
"cell_type": "markdown",
- "id": "ecbfcdba",
+ "id": "e8a6dcc3",
"metadata": {},
"source": [
"## Introduction\n",
@@ -84,7 +84,7 @@
},
{
"cell_type": "markdown",
- "id": "a0b4d06f",
+ "id": "a63e0c5c",
"metadata": {},
"source": [
"### Setup\n",
@@ -108,7 +108,7 @@
},
{
"cell_type": "markdown",
- "id": "e30aefa8",
+ "id": "d0e0e17a",
"metadata": {},
"source": [
"### Ownership\n",
@@ -123,7 +123,7 @@
},
{
"cell_type": "markdown",
- "id": "aae2c4a1",
+ "id": "327696f3",
"metadata": {},
"source": [
"### Measures of agents and firms\n",
@@ -200,7 +200,7 @@
},
{
"cell_type": "markdown",
- "id": "b55333ce",
+ "id": "3f18ea54",
"metadata": {},
"source": [
"### Endowments\n",
@@ -217,7 +217,7 @@
},
{
"cell_type": "markdown",
- "id": "5b78a26e",
+ "id": "f9cb4865",
"metadata": {},
"source": [
"### Feasibility:\n",
@@ -236,7 +236,7 @@
},
{
"cell_type": "markdown",
- "id": "e8ee9755",
+ "id": "8cfab663",
"metadata": {},
"source": [
"### Parameterizations\n",
@@ -259,7 +259,7 @@
},
{
"cell_type": "markdown",
- "id": "43f1c6c3",
+ "id": "bac00a4c",
"metadata": {},
"source": [
"### Preferences:\n",
@@ -284,7 +284,7 @@
},
{
"cell_type": "markdown",
- "id": "85ab0db6",
+ "id": "6f60070e",
"metadata": {},
"source": [
"### Risk-sharing motives\n",
@@ -304,7 +304,7 @@
},
{
"cell_type": "markdown",
- "id": "1d3a1e94",
+ "id": "0c632b84",
"metadata": {},
"source": [
"## Asset Markets\n",
@@ -360,7 +360,7 @@
},
{
"cell_type": "markdown",
- "id": "2b538c80",
+ "id": "7f21256f",
"metadata": {},
"source": [
"### Consumers\n",
@@ -451,7 +451,7 @@
},
{
"cell_type": "markdown",
- "id": "097f014c",
+ "id": "0441e6f3",
"metadata": {},
"source": [
"### Pricing functions\n",
@@ -490,7 +490,7 @@
},
{
"cell_type": "markdown",
- "id": "2b534a16",
+ "id": "e02073ae",
"metadata": {},
"source": [
"### Firms\n",
@@ -547,7 +547,7 @@
},
{
"cell_type": "markdown",
- "id": "3ae2c9fd",
+ "id": "cf125657",
"metadata": {},
"source": [
"#### Firm’s optimization problem\n",
@@ -620,7 +620,7 @@
},
{
"cell_type": "markdown",
- "id": "2662899d",
+ "id": "9711f3a1",
"metadata": {},
"source": [
"## Equilibrium verification\n",
@@ -647,7 +647,7 @@
},
{
"cell_type": "markdown",
- "id": "7b6c3c69",
+ "id": "3d618d63",
"metadata": {},
"source": [
"## Pseudo Code\n",
@@ -745,7 +745,7 @@
},
{
"cell_type": "markdown",
- "id": "8b220f74",
+ "id": "4bf4902c",
"metadata": {},
"source": [
"## Code\n",
@@ -792,7 +792,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0eb1e5ec",
+ "id": "1649b6e0",
"metadata": {
"hide-output": false
},
@@ -807,7 +807,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9ccb2e70",
+ "id": "e8ec8180",
"metadata": {
"hide-output": false
},
@@ -1300,7 +1300,7 @@
},
{
"cell_type": "markdown",
- "id": "2879a11d",
+ "id": "9f54ee78",
"metadata": {},
"source": [
"## Examples\n",
@@ -1310,7 +1310,7 @@
},
{
"cell_type": "markdown",
- "id": "c9848561",
+ "id": "2a9746a5",
"metadata": {},
"source": [
"### First example\n",
@@ -1322,7 +1322,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5aed3206",
+ "id": "64b5fe24",
"metadata": {
"hide-output": false
},
@@ -1335,7 +1335,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6fb3372e",
+ "id": "a108f88a",
"metadata": {
"hide-output": false
},
@@ -1348,7 +1348,7 @@
},
{
"cell_type": "markdown",
- "id": "51b21e8b",
+ "id": "b1875613",
"metadata": {},
"source": [
"Python reports to us that the equilibrium firm value is $ V=0.101 $,\n",
@@ -1365,7 +1365,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "08eeb777",
+ "id": "2bab059c",
"metadata": {
"hide-output": false
},
@@ -1379,7 +1379,7 @@
},
{
"cell_type": "markdown",
- "id": "125fec0b",
+ "id": "98f7d144",
"metadata": {},
"source": [
"Up to the approximation involved in using a discrete grid, these numbers\n",
@@ -1396,7 +1396,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fc54da1c",
+ "id": "12262315",
"metadata": {
"hide-output": false
},
@@ -1437,7 +1437,7 @@
},
{
"cell_type": "markdown",
- "id": "890b33d8",
+ "id": "3d184b49",
"metadata": {},
"source": [
"#### A Modigliani-Miller theorem?\n",
@@ -1532,7 +1532,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "45a8a625",
+ "id": "767aa0f9",
"metadata": {
"hide-output": false
},
@@ -1756,7 +1756,7 @@
},
{
"cell_type": "markdown",
- "id": "90679603",
+ "id": "3d036f9b",
"metadata": {},
"source": [
"Here is our strategy for checking *stability* of an equilibrium.\n",
@@ -1782,7 +1782,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "61bf0ce9",
+ "id": "e8ed9541",
"metadata": {
"hide-output": false
},
@@ -1830,7 +1830,7 @@
},
{
"cell_type": "markdown",
- "id": "bbb4f71b",
+ "id": "4af53059",
"metadata": {},
"source": [
"In the above 3D surface of prospective firm valuations, the perturbed\n",
@@ -1848,7 +1848,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "dd22830b",
+ "id": "718ce584",
"metadata": {
"hide-output": false
},
@@ -1895,7 +1895,7 @@
},
{
"cell_type": "markdown",
- "id": "3340bc11",
+ "id": "29d6bb92",
"metadata": {},
"source": [
"In contrast to $ (k^*,b^* - e) $, the 3D surface for\n",
@@ -1915,7 +1915,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1fea4c12",
+ "id": "fe4642a6",
"metadata": {
"hide-output": false
},
@@ -1926,7 +1926,7 @@
},
{
"cell_type": "markdown",
- "id": "5257ff42",
+ "id": "f1ad6d16",
"metadata": {},
"source": [
"Our two *stability experiments* suggest that the equilibrium capital\n",
@@ -1940,7 +1940,7 @@
},
{
"cell_type": "markdown",
- "id": "ceba18e2",
+ "id": "29499998",
"metadata": {},
"source": [
"#### Equilibrium equity and bond price functions\n",
@@ -1953,7 +1953,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fb96fdb8",
+ "id": "5de27290",
"metadata": {
"hide-output": false
},
@@ -1991,7 +1991,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a696234f",
+ "id": "0ca161de",
"metadata": {
"hide-output": false
},
@@ -2028,7 +2028,7 @@
},
{
"cell_type": "markdown",
- "id": "e589d87a",
+ "id": "9dd9738f",
"metadata": {},
"source": [
"### Comments on equilibrium pricing functions\n",
@@ -2044,7 +2044,7 @@
},
{
"cell_type": "markdown",
- "id": "856c49db",
+ "id": "6b015d00",
"metadata": {},
"source": [
"### Another example economy\n",
@@ -2070,7 +2070,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0389c8b9",
+ "id": "52bf3d97",
"metadata": {
"hide-output": false
},
@@ -2125,7 +2125,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6ef6284c",
+ "id": "a9e7b44e",
"metadata": {
"hide-output": false
},
@@ -2164,7 +2164,7 @@
},
{
"cell_type": "markdown",
- "id": "1032ecc2",
+ "id": "077f6d02",
"metadata": {},
"source": [
"## A picture worth a thousand words\n",
@@ -2184,7 +2184,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "41d45c53",
+ "id": "e97f5f3e",
"metadata": {
"hide-output": false
},
@@ -2216,7 +2216,7 @@
},
{
"cell_type": "markdown",
- "id": "08e84a9e",
+ "id": "64fbad16",
"metadata": {},
"source": [
"It is rewarding to stare at the above plots too.\n",
@@ -2232,7 +2232,7 @@
}
],
"metadata": {
- "date": 1723011580.0441456,
+ "date": 1723517846.2269802,
"filename": "BCG_incomplete_mkts.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/additive_functionals.ipynb b/_notebooks/additive_functionals.ipynb
index d50a379e..dd1c2c4e 100644
--- a/_notebooks/additive_functionals.ipynb
+++ b/_notebooks/additive_functionals.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "0c8e9ca2",
+ "id": "9248274d",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "a55a5981",
+ "id": "b3a6c723",
"metadata": {},
"source": [
"# Additive and Multiplicative Functionals\n",
@@ -24,7 +24,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2c252f9f",
+ "id": "cebba9e1",
"metadata": {
"hide-output": false
},
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "7d90a1be",
+ "id": "605c5304",
"metadata": {},
"source": [
"## Overview\n",
@@ -80,7 +80,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "baed4bd0",
+ "id": "13617fd8",
"metadata": {
"hide-output": false
},
@@ -95,7 +95,7 @@
},
{
"cell_type": "markdown",
- "id": "24bebf62",
+ "id": "621df52f",
"metadata": {},
"source": [
"## A Particular Additive Functional\n",
@@ -149,7 +149,7 @@
},
{
"cell_type": "markdown",
- "id": "2518356b",
+ "id": "cd46f903",
"metadata": {},
"source": [
"### Linear State-Space Representation\n",
@@ -220,7 +220,7 @@
},
{
"cell_type": "markdown",
- "id": "6e2a9818",
+ "id": "6dfd635b",
"metadata": {},
"source": [
"## Dynamics\n",
@@ -269,7 +269,7 @@
},
{
"cell_type": "markdown",
- "id": "df2f7ebf",
+ "id": "4465a81c",
"metadata": {},
"source": [
"### Simulation\n",
@@ -287,7 +287,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "598dafef",
+ "id": "b0140e14",
"metadata": {
"hide-output": false
},
@@ -447,7 +447,7 @@
},
{
"cell_type": "markdown",
- "id": "4a9eaf86",
+ "id": "6a78367b",
"metadata": {},
"source": [
"#### Plotting\n",
@@ -458,7 +458,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fe404851",
+ "id": "16000f76",
"metadata": {
"hide-output": false
},
@@ -741,7 +741,7 @@
},
{
"cell_type": "markdown",
- "id": "3c7ee7ce",
+ "id": "09d469e0",
"metadata": {},
"source": [
"For now, we just plot $ y_t $ and $ x_t $, postponing until later a description of exactly how we compute them.\n",
@@ -753,7 +753,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1fcb4414",
+ "id": "1daeb0bc",
"metadata": {
"hide-output": false
},
@@ -792,7 +792,7 @@
},
{
"cell_type": "markdown",
- "id": "2acd0b86",
+ "id": "9a4a52d6",
"metadata": {},
"source": [
"Notice the irregular but persistent growth in $ y_t $."
@@ -800,7 +800,7 @@
},
{
"cell_type": "markdown",
- "id": "4e2632f9",
+ "id": "edf80773",
"metadata": {},
"source": [
"### Decomposition\n",
@@ -936,7 +936,7 @@
},
{
"cell_type": "markdown",
- "id": "19f3f128",
+ "id": "61b1f06d",
"metadata": {},
"source": [
"## Code\n",
@@ -959,7 +959,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "713bb727",
+ "id": "fce17c3f",
"metadata": {
"hide-output": false
},
@@ -971,7 +971,7 @@
},
{
"cell_type": "markdown",
- "id": "0790f626",
+ "id": "05e9a1f8",
"metadata": {},
"source": [
"When we plot multiple realizations of a component in the 2nd, 3rd, and 4th panels, we also plot the population 95% probability coverage sets computed using the LinearStateSpace class.\n",
@@ -988,7 +988,7 @@
},
{
"cell_type": "markdown",
- "id": "036b9fe7",
+ "id": "291e2932",
"metadata": {},
"source": [
"### Associated Multiplicative Functional\n",
@@ -1035,7 +1035,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b7ee1d27",
+ "id": "14ed71cc",
"metadata": {
"hide-output": false
},
@@ -1047,7 +1047,7 @@
},
{
"cell_type": "markdown",
- "id": "34f63c72",
+ "id": "9b00c189",
"metadata": {},
"source": [
"As before, when we plotted multiple realizations of a component in the 2nd, 3rd, and 4th panels, we also plotted population 95% confidence bands computed using the LinearStateSpace class.\n",
@@ -1065,7 +1065,7 @@
},
{
"cell_type": "markdown",
- "id": "bc002cde",
+ "id": "dd9687f3",
"metadata": {},
"source": [
"### Peculiar Large Sample Property\n",
@@ -1090,7 +1090,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "84f18143",
+ "id": "63838c6b",
"metadata": {
"hide-output": false
},
@@ -1103,7 +1103,7 @@
},
{
"cell_type": "markdown",
- "id": "a99f392d",
+ "id": "36bf84d6",
"metadata": {},
"source": [
"The dotted line in the above graph is the mean $ E \\tilde M_t = 1 $ of the martingale.\n",
@@ -1115,7 +1115,7 @@
},
{
"cell_type": "markdown",
- "id": "3f3c18d6",
+ "id": "2b3ce438",
"metadata": {},
"source": [
"## More About the Multiplicative Martingale\n",
@@ -1136,7 +1136,7 @@
},
{
"cell_type": "markdown",
- "id": "a461d17a",
+ "id": "eb1763a7",
"metadata": {},
"source": [
"### Simulating a Multiplicative Martingale Again\n",
@@ -1153,7 +1153,7 @@
},
{
"cell_type": "markdown",
- "id": "2c032eea",
+ "id": "99c66f1b",
"metadata": {},
"source": [
"### Sample Paths\n",
@@ -1166,7 +1166,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cbeca4df",
+ "id": "cef3dd80",
"metadata": {
"hide-output": false
},
@@ -1278,7 +1278,7 @@
},
{
"cell_type": "markdown",
- "id": "e7a352f3",
+ "id": "b6d0fa52",
"metadata": {},
"source": [
"The heavy lifting is done inside the `AMF_LSS_VAR` class.\n",
@@ -1289,7 +1289,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "82f6da99",
+ "id": "2508d6be",
"metadata": {
"hide-output": false
},
@@ -1339,7 +1339,7 @@
},
{
"cell_type": "markdown",
- "id": "2a014979",
+ "id": "934f680c",
"metadata": {},
"source": [
"Now that we have these functions in our toolkit, let’s apply them to run some\n",
@@ -1349,7 +1349,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ee345995",
+ "id": "92ba90cf",
"metadata": {
"hide-output": false
},
@@ -1392,7 +1392,7 @@
},
{
"cell_type": "markdown",
- "id": "647234a3",
+ "id": "0eb6b18c",
"metadata": {},
"source": [
"Let’s plot the probability density functions for $ \\log {\\widetilde M}_t $ for\n",
@@ -1419,7 +1419,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bf619e96",
+ "id": "61ee7a6c",
"metadata": {
"hide-output": false
},
@@ -1474,7 +1474,7 @@
},
{
"cell_type": "markdown",
- "id": "62b451a4",
+ "id": "c51b8378",
"metadata": {},
"source": [
"These probability density functions help us understand mechanics underlying the **peculiar property** of our multiplicative martingale\n",
@@ -1489,7 +1489,7 @@
},
{
"cell_type": "markdown",
- "id": "a0d3d41c",
+ "id": "1baed8b9",
"metadata": {},
"source": [
"### Multiplicative Martingale as Likelihood Ratio Process\n",
@@ -1505,7 +1505,7 @@
}
],
"metadata": {
- "date": 1723011580.0832446,
+ "date": 1723517846.2645457,
"filename": "additive_functionals.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/amss.ipynb b/_notebooks/amss.ipynb
index 99713858..c82807c5 100644
--- a/_notebooks/amss.ipynb
+++ b/_notebooks/amss.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "96d7f855",
+ "id": "f98a29db",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "fbc50ee9",
+ "id": "d7620f5a",
"metadata": {},
"source": [
"# Optimal Taxation without State-Contingent Debt\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d6fed394",
+ "id": "490ed387",
"metadata": {
"hide-output": false
},
@@ -34,7 +34,7 @@
},
{
"cell_type": "markdown",
- "id": "e065decb",
+ "id": "d6a78e1e",
"metadata": {},
"source": [
"## Overview\n",
@@ -45,7 +45,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "28acb6a3",
+ "id": "d400baa8",
"metadata": {
"hide-output": false
},
@@ -62,7 +62,7 @@
},
{
"cell_type": "markdown",
- "id": "195cc166",
+ "id": "882ac7ad",
"metadata": {},
"source": [
"In [an earlier lecture](https://python-advanced.quantecon.org/opt_tax_recur.html), we described a model of\n",
@@ -86,7 +86,7 @@
},
{
"cell_type": "markdown",
- "id": "3f19853c",
+ "id": "8822cad4",
"metadata": {},
"source": [
"## Competitive Equilibrium with Distorting Taxes\n",
@@ -150,7 +150,7 @@
},
{
"cell_type": "markdown",
- "id": "567c513c",
+ "id": "e9c9da91",
"metadata": {},
"source": [
"### Risk-free One-Period Debt Only\n",
@@ -284,7 +284,7 @@
},
{
"cell_type": "markdown",
- "id": "dcef2303",
+ "id": "4dd1aae5",
"metadata": {},
"source": [
"### Comparison with Lucas-Stokey Economy\n",
@@ -300,7 +300,7 @@
},
{
"cell_type": "markdown",
- "id": "a9712415",
+ "id": "bede00e2",
"metadata": {},
"source": [
"### Ramsey Problem Without State-contingent Debt\n",
@@ -338,7 +338,7 @@
},
{
"cell_type": "markdown",
- "id": "18792c16",
+ "id": "6491a607",
"metadata": {},
"source": [
"#### Lagrangian Formulation\n",
@@ -374,7 +374,7 @@
},
{
"cell_type": "markdown",
- "id": "00f86dc6",
+ "id": "8d9a4b46",
"metadata": {},
"source": [
"### Some Calculations\n",
@@ -464,7 +464,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "69ccc31d",
+ "id": "52ae530b",
"metadata": {
"hide-output": false
},
@@ -672,7 +672,7 @@
},
{
"cell_type": "markdown",
- "id": "902aa3d9",
+ "id": "048a8279",
"metadata": {},
"source": [
"To analyze the AMSS model, we find it useful to adopt a recursive formulation\n",
@@ -681,7 +681,7 @@
},
{
"cell_type": "markdown",
- "id": "099266f0",
+ "id": "392a064b",
"metadata": {},
"source": [
"## Recursive Version of AMSS Model\n",
@@ -704,7 +704,7 @@
},
{
"cell_type": "markdown",
- "id": "c7e40833",
+ "id": "63cce8e7",
"metadata": {},
"source": [
"### Recasting State Variables\n",
@@ -773,7 +773,7 @@
},
{
"cell_type": "markdown",
- "id": "58bab347",
+ "id": "d49c794f",
"metadata": {},
"source": [
"### Measurability Constraints\n",
@@ -802,7 +802,7 @@
},
{
"cell_type": "markdown",
- "id": "578dfd5b",
+ "id": "953e3e97",
"metadata": {},
"source": [
"### Two Bellman Equations\n",
@@ -866,7 +866,7 @@
},
{
"cell_type": "markdown",
- "id": "f830263e",
+ "id": "e408ea53",
"metadata": {},
"source": [
"### Martingale Supercedes State-Variable Degeneracy\n",
@@ -915,7 +915,7 @@
},
{
"cell_type": "markdown",
- "id": "e9c69ce1",
+ "id": "79171102",
"metadata": {},
"source": [
"### Exercise 44.1\n",
@@ -927,7 +927,7 @@
},
{
"cell_type": "markdown",
- "id": "416b31ca",
+ "id": "8569df92",
"metadata": {},
"source": [
"### Absence of State Variable Degeneracy\n",
@@ -956,7 +956,7 @@
},
{
"cell_type": "markdown",
- "id": "8f049145",
+ "id": "2343a238",
"metadata": {},
"source": [
"### Digression on Non-negative Transfers\n",
@@ -993,7 +993,7 @@
},
{
"cell_type": "markdown",
- "id": "554ff520",
+ "id": "e19cf625",
"metadata": {},
"source": [
"### Code\n",
@@ -1004,7 +1004,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "62bf5ba3",
+ "id": "73ac285b",
"metadata": {
"hide-output": false
},
@@ -1226,7 +1226,7 @@
},
{
"cell_type": "markdown",
- "id": "e7454b53",
+ "id": "6f2dc41f",
"metadata": {},
"source": [
"## Examples\n",
@@ -1236,7 +1236,7 @@
},
{
"cell_type": "markdown",
- "id": "45ed5861",
+ "id": "95a2d3ea",
"metadata": {},
"source": [
"### Anticipated One-Period War\n",
@@ -1302,7 +1302,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d96f8760",
+ "id": "68fe3e7a",
"metadata": {
"hide-output": false
},
@@ -1358,7 +1358,7 @@
},
{
"cell_type": "markdown",
- "id": "6bf8f04c",
+ "id": "af2e23a9",
"metadata": {},
"source": [
"The following figure plots Ramsey plans under complete and incomplete\n",
@@ -1374,7 +1374,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a7dcaffb",
+ "id": "12c99261",
"metadata": {
"hide-output": false
},
@@ -1410,7 +1410,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a8900afe",
+ "id": "a51fe6c5",
"metadata": {
"hide-output": false
},
@@ -1432,7 +1432,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "43e6d663",
+ "id": "41872455",
"metadata": {
"hide-output": false
},
@@ -1446,7 +1446,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1b750f93",
+ "id": "2103cbda",
"metadata": {
"hide-output": false
},
@@ -1459,7 +1459,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e76ff7c4",
+ "id": "4fe8f0dc",
"metadata": {
"hide-output": false
},
@@ -1493,7 +1493,7 @@
},
{
"cell_type": "markdown",
- "id": "378791f1",
+ "id": "f49a8c31",
"metadata": {},
"source": [
"How a Ramsey planner responds to war depends on the structure of the asset market.\n",
@@ -1537,7 +1537,7 @@
},
{
"cell_type": "markdown",
- "id": "f5aaad18",
+ "id": "3495202c",
"metadata": {},
"source": [
"#### Perpetual War Alert\n",
@@ -1562,7 +1562,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5ac77b78",
+ "id": "f9554997",
"metadata": {
"hide-output": false
},
@@ -1608,7 +1608,7 @@
},
{
"cell_type": "markdown",
- "id": "bb68ae2b",
+ "id": "f87cc7ae",
"metadata": {},
"source": [
"With these preferences, Ramsey tax rates will vary even in the Lucas-Stokey\n",
@@ -1622,7 +1622,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ebda5804",
+ "id": "87e9bc02",
"metadata": {
"hide-output": false
},
@@ -1659,7 +1659,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "123411cd",
+ "id": "436e958a",
"metadata": {
"hide-output": false
},
@@ -1674,7 +1674,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d018393d",
+ "id": "40bd815b",
"metadata": {
"hide-output": false
},
@@ -1686,7 +1686,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "357d59d0",
+ "id": "7259e187",
"metadata": {
"hide-output": false
},
@@ -1718,7 +1718,7 @@
},
{
"cell_type": "markdown",
- "id": "a1dbe7e5",
+ "id": "2201827f",
"metadata": {},
"source": [
"When the government experiences a prolonged period of peace, it is able to reduce\n",
@@ -1740,7 +1740,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bb1ac68a",
+ "id": "9cbda0ec",
"metadata": {
"hide-output": false
},
@@ -1756,7 +1756,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f5444001",
+ "id": "2d3e7f8f",
"metadata": {
"hide-output": false
},
@@ -1784,7 +1784,7 @@
},
{
"cell_type": "markdown",
- "id": "46c2e375",
+ "id": "0db1d5ec",
"metadata": {},
"source": [
"[1] In an allocation that solves the Ramsey problem and that levies distorting\n",
@@ -1804,7 +1804,7 @@
}
],
"metadata": {
- "date": 1723011580.1362457,
+ "date": 1723517846.3180559,
"filename": "amss.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/amss2.ipynb b/_notebooks/amss2.ipynb
index 2d1c0baf..7b3fb409 100644
--- a/_notebooks/amss2.ipynb
+++ b/_notebooks/amss2.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "8fab0fb5",
+ "id": "ba703834",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "8bf75853",
+ "id": "b96d3c4a",
"metadata": {},
"source": [
"# Fluctuating Interest Rates Deliver Fiscal Insurance\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ea60f8de",
+ "id": "9427d750",
"metadata": {
"hide-output": false
},
@@ -33,7 +33,7 @@
},
{
"cell_type": "markdown",
- "id": "44a57b8c",
+ "id": "e72bc2a2",
"metadata": {},
"source": [
"## Overview\n",
@@ -95,7 +95,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "91ffb1cc",
+ "id": "62d4f1a6",
"metadata": {
"hide-output": false
},
@@ -107,7 +107,7 @@
},
{
"cell_type": "markdown",
- "id": "d8014d8b",
+ "id": "17cd484f",
"metadata": {},
"source": [
"## Forces at Work\n",
@@ -137,7 +137,7 @@
},
{
"cell_type": "markdown",
- "id": "e6d44f37",
+ "id": "b2f28976",
"metadata": {},
"source": [
"## Logical Flow of Lecture\n",
@@ -157,7 +157,7 @@
},
{
"cell_type": "markdown",
- "id": "e3e39942",
+ "id": "5debe7f9",
"metadata": {},
"source": [
"### Equations from Lucas-Stokey (1983) Model\n",
@@ -226,7 +226,7 @@
},
{
"cell_type": "markdown",
- "id": "3bcf47e2",
+ "id": "345133b9",
"metadata": {},
"source": [
"### Specification with CRRA Utility\n",
@@ -284,7 +284,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "763a6d8b",
+ "id": "2528a8c4",
"metadata": {
"hide-output": false
},
@@ -332,7 +332,7 @@
},
{
"cell_type": "markdown",
- "id": "b4895916",
+ "id": "fc9f91f7",
"metadata": {},
"source": [
"## Example Economy\n",
@@ -366,7 +366,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "41b078e8",
+ "id": "4ef7e7d2",
"metadata": {
"hide-output": false
},
@@ -535,7 +535,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3f03cc9a",
+ "id": "c8994fe1",
"metadata": {
"hide-output": false
},
@@ -844,7 +844,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3c338b16",
+ "id": "fcc2a800",
"metadata": {
"hide-output": false
},
@@ -923,7 +923,7 @@
},
{
"cell_type": "markdown",
- "id": "ed4e4281",
+ "id": "0e76e238",
"metadata": {},
"source": [
"## Reverse Engineering Strategy\n",
@@ -974,7 +974,7 @@
},
{
"cell_type": "markdown",
- "id": "88bcb20b",
+ "id": "1eec83af",
"metadata": {},
"source": [
"## Code for Reverse Engineering\n",
@@ -985,7 +985,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5b1d4a61",
+ "id": "e399ce3f",
"metadata": {
"hide-output": false
},
@@ -1031,7 +1031,7 @@
},
{
"cell_type": "markdown",
- "id": "47c3037d",
+ "id": "9122c33d",
"metadata": {},
"source": [
"To recover and print out $ \\bar b $"
@@ -1040,7 +1040,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0234c91a",
+ "id": "7823039d",
"metadata": {
"hide-output": false
},
@@ -1052,7 +1052,7 @@
},
{
"cell_type": "markdown",
- "id": "42a51326",
+ "id": "e18a05d5",
"metadata": {},
"source": [
"To complete the reverse engineering exercise by jointly determining $ c_0, b_0 $, we\n",
@@ -1062,7 +1062,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7f0495a8",
+ "id": "609ba70b",
"metadata": {
"hide-output": false
},
@@ -1089,7 +1089,7 @@
},
{
"cell_type": "markdown",
- "id": "d31ce4d8",
+ "id": "e7ed62d6",
"metadata": {},
"source": [
"To solve the equations for $ c_0, b_0 $, we use SciPy’s fsolve function"
@@ -1098,7 +1098,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ad2efec1",
+ "id": "7f8eb2ce",
"metadata": {
"hide-output": false
},
@@ -1111,7 +1111,7 @@
},
{
"cell_type": "markdown",
- "id": "bb03c688",
+ "id": "e5b9cd5d",
"metadata": {},
"source": [
"Thus, we have reverse engineered an initial $ b0 = -1.038698407551764 $ that ought to render the AMSS measurability constraints slack."
@@ -1119,7 +1119,7 @@
},
{
"cell_type": "markdown",
- "id": "2faaf875",
+ "id": "ec5c05db",
"metadata": {},
"source": [
"## Short Simulation for Reverse-engineered: Initial Debt\n",
@@ -1133,7 +1133,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a360fe27",
+ "id": "429a527c",
"metadata": {
"hide-output": false
},
@@ -1181,7 +1181,7 @@
},
{
"cell_type": "markdown",
- "id": "9db4247f",
+ "id": "4155edc3",
"metadata": {},
"source": [
"The Ramsey allocations and Ramsey outcomes are **identical** for the Lucas-Stokey and AMSS economies.\n",
@@ -1195,7 +1195,7 @@
},
{
"cell_type": "markdown",
- "id": "7d5f24df",
+ "id": "210bac99",
"metadata": {},
"source": [
"## Long Simulation\n",
@@ -1230,7 +1230,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "51740acc",
+ "id": "60beb0bc",
"metadata": {
"hide-output": false
},
@@ -1258,7 +1258,7 @@
},
{
"cell_type": "markdown",
- "id": "b64e4b8c",
+ "id": "a64e0d70",
"metadata": {},
"source": [
"### Remarks about Long Simulation\n",
@@ -1279,7 +1279,7 @@
},
{
"cell_type": "markdown",
- "id": "e912acc8",
+ "id": "07323170",
"metadata": {},
"source": [
"## BEGS Approximations of Limiting Debt and Convergence Rate\n",
@@ -1322,7 +1322,7 @@
},
{
"cell_type": "markdown",
- "id": "cc4d985b",
+ "id": "2d57ed88",
"metadata": {},
"source": [
"### Asymptotic Mean\n",
@@ -1362,7 +1362,7 @@
},
{
"cell_type": "markdown",
- "id": "14bafa5a",
+ "id": "91c21f61",
"metadata": {},
"source": [
"### Rate of Convergence\n",
@@ -1380,7 +1380,7 @@
},
{
"cell_type": "markdown",
- "id": "5e66f26a",
+ "id": "7bf80577",
"metadata": {},
"source": [
"### Formulas and Code Details\n",
@@ -1428,7 +1428,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2f5879e5",
+ "id": "36ea54e4",
"metadata": {
"hide-output": false
},
@@ -1450,7 +1450,7 @@
},
{
"cell_type": "markdown",
- "id": "dbc96e45",
+ "id": "aca93668",
"metadata": {},
"source": [
"Now let’s form the two random variables $ {\\mathcal R}, {\\mathcal X} $ appearing in the BEGS approximating formulas"
@@ -1459,7 +1459,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "245798b0",
+ "id": "5cdab54d",
"metadata": {
"hide-output": false
},
@@ -1485,7 +1485,7 @@
},
{
"cell_type": "markdown",
- "id": "c6e90fb0",
+ "id": "122b68df",
"metadata": {},
"source": [
"Now let’s compute the ingredient of the approximating limit and the approximating rate of convergence"
@@ -1494,7 +1494,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "68311d3d",
+ "id": "fad1ea89",
"metadata": {
"hide-output": false
},
@@ -1508,7 +1508,7 @@
},
{
"cell_type": "markdown",
- "id": "f7ac00ea",
+ "id": "7e459618",
"metadata": {},
"source": [
"Print out $ \\hat b $ and $ \\bar b $"
@@ -1517,7 +1517,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ac4afbbb",
+ "id": "c16068ce",
"metadata": {
"hide-output": false
},
@@ -1528,7 +1528,7 @@
},
{
"cell_type": "markdown",
- "id": "7408a373",
+ "id": "c74b8724",
"metadata": {},
"source": [
"So we have"
@@ -1537,7 +1537,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9d0ebd91",
+ "id": "71f7f437",
"metadata": {
"hide-output": false
},
@@ -1548,7 +1548,7 @@
},
{
"cell_type": "markdown",
- "id": "6abcedb7",
+ "id": "a0a3b1ba",
"metadata": {},
"source": [
"These outcomes show that $ \\hat b $ does a remarkably good job of approximating $ \\bar b $.\n",
@@ -1559,7 +1559,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "57f39066",
+ "id": "3a6defe0",
"metadata": {
"hide-output": false
},
@@ -1571,7 +1571,7 @@
},
{
"cell_type": "markdown",
- "id": "9793ac9a",
+ "id": "7944544a",
"metadata": {},
"source": [
"This is *machine zero*, a verification that $ \\hat b $ succeeds in minimizing the nonnegative fiscal cost criterion $ J ( {\\mathcal B}^*) $ defined in\n",
@@ -1583,7 +1583,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f539c14d",
+ "id": "959f19a0",
"metadata": {
"hide-output": false
},
@@ -1596,7 +1596,7 @@
},
{
"cell_type": "markdown",
- "id": "63d85e43",
+ "id": "ffb32e26",
"metadata": {},
"source": [
"Now let’s compute the implied meantime to get to within 0.01 of the limit"
@@ -1605,7 +1605,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6230e8be",
+ "id": "ef9d4259",
"metadata": {
"hide-output": false
},
@@ -1617,7 +1617,7 @@
},
{
"cell_type": "markdown",
- "id": "a1dbde65",
+ "id": "5e607794",
"metadata": {},
"source": [
"The slow rate of convergence and the implied time of getting within one percent of the limiting value do a good job of approximating\n",
@@ -1628,7 +1628,7 @@
}
],
"metadata": {
- "date": 1723011580.3850067,
+ "date": 1723517846.371155,
"filename": "amss2.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/amss3.ipynb b/_notebooks/amss3.ipynb
index 874151ed..d0c0b587 100644
--- a/_notebooks/amss3.ipynb
+++ b/_notebooks/amss3.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "e34aa31a",
+ "id": "2b47daf2",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "6d2bdcad",
+ "id": "b36f7343",
"metadata": {},
"source": [
"# Fiscal Risk and Government Debt\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0c4d9233",
+ "id": "ce5c9e2b",
"metadata": {
"hide-output": false
},
@@ -33,7 +33,7 @@
},
{
"cell_type": "markdown",
- "id": "d1eba14d",
+ "id": "03aab58c",
"metadata": {},
"source": [
"## Overview\n",
@@ -81,7 +81,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "510b49b3",
+ "id": "0129d5b8",
"metadata": {
"hide-output": false
},
@@ -93,7 +93,7 @@
},
{
"cell_type": "markdown",
- "id": "1597a948",
+ "id": "53b90799",
"metadata": {},
"source": [
"## The Economy\n",
@@ -138,7 +138,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "12881f01",
+ "id": "545712f5",
"metadata": {
"hide-output": false
},
@@ -186,7 +186,7 @@
},
{
"cell_type": "markdown",
- "id": "0fae4997",
+ "id": "b5b344e4",
"metadata": {},
"source": [
"### First and Second Moments\n",
@@ -199,7 +199,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8e60597f",
+ "id": "4542b89d",
"metadata": {
"hide-output": false
},
@@ -221,7 +221,7 @@
},
{
"cell_type": "markdown",
- "id": "3edd3a6f",
+ "id": "bb1ac780",
"metadata": {},
"source": [
"## Long Simulation\n",
@@ -236,7 +236,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8a440ed2",
+ "id": "7d722f78",
"metadata": {
"hide-output": false
},
@@ -405,7 +405,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f21569de",
+ "id": "b1771f20",
"metadata": {
"hide-output": false
},
@@ -714,7 +714,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "93583ac9",
+ "id": "e6860426",
"metadata": {
"hide-output": false
},
@@ -793,7 +793,7 @@
},
{
"cell_type": "markdown",
- "id": "886115aa",
+ "id": "6f5fd7c2",
"metadata": {},
"source": [
"Next, we show the code that we use to generate a very long simulation starting from initial\n",
@@ -805,7 +805,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "da63bb48",
+ "id": "0c51baa3",
"metadata": {
"hide-output": false
},
@@ -846,7 +846,7 @@
},
{
"cell_type": "markdown",
- "id": "8e1a7def",
+ "id": "688a4ea7",
"metadata": {},
"source": [
"![https://python-advanced.quantecon.org/_static/lecture_specific/amss3/amss3_g1.png](https://python-advanced.quantecon.org/_static/lecture_specific/amss3/amss3_g1.png)\n",
@@ -878,7 +878,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5ece19af",
+ "id": "22422e85",
"metadata": {
"hide-output": false
},
@@ -906,7 +906,7 @@
},
{
"cell_type": "markdown",
- "id": "12a8041b",
+ "id": "b194b2a1",
"metadata": {},
"source": [
"![https://python-advanced.quantecon.org/_static/lecture_specific/amss3/amss3_g2.png](https://python-advanced.quantecon.org/_static/lecture_specific/amss3/amss3_g2.png)\n",
@@ -922,7 +922,7 @@
},
{
"cell_type": "markdown",
- "id": "9dcbf728",
+ "id": "bd54dc74",
"metadata": {},
"source": [
"## Asymptotic Mean and Rate of Convergence\n",
@@ -976,7 +976,7 @@
},
{
"cell_type": "markdown",
- "id": "eb00b0c3",
+ "id": "fa77dbc7",
"metadata": {},
"source": [
"### Asymptotic Mean\n",
@@ -1019,7 +1019,7 @@
},
{
"cell_type": "markdown",
- "id": "922445fd",
+ "id": "4b47b17b",
"metadata": {},
"source": [
"### Rate of Convergence\n",
@@ -1038,7 +1038,7 @@
},
{
"cell_type": "markdown",
- "id": "a21f02b9",
+ "id": "ca05a8ac",
"metadata": {},
"source": [
"### More Advanced Topic\n",
@@ -1050,7 +1050,7 @@
},
{
"cell_type": "markdown",
- "id": "531f6a38",
+ "id": "7e8dc519",
"metadata": {},
"source": [
"### Chicken and Egg\n",
@@ -1075,7 +1075,7 @@
},
{
"cell_type": "markdown",
- "id": "1b1a1ced",
+ "id": "420227eb",
"metadata": {},
"source": [
"### Approximating the Ergodic Mean\n",
@@ -1097,7 +1097,7 @@
},
{
"cell_type": "markdown",
- "id": "b9c51900",
+ "id": "0cc1c600",
"metadata": {},
"source": [
"### Step by Step\n",
@@ -1240,7 +1240,7 @@
},
{
"cell_type": "markdown",
- "id": "2d2db9d0",
+ "id": "b2fca0ca",
"metadata": {},
"source": [
"### Execution\n",
@@ -1250,7 +1250,7 @@
},
{
"cell_type": "markdown",
- "id": "aeb8f871",
+ "id": "f4d31a54",
"metadata": {},
"source": [
"#### Step 1"
@@ -1259,7 +1259,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7387fd66",
+ "id": "095f9756",
"metadata": {
"hide-output": false
},
@@ -1283,7 +1283,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "207d427a",
+ "id": "27a1d8bb",
"metadata": {
"hide-output": false
},
@@ -1294,7 +1294,7 @@
},
{
"cell_type": "markdown",
- "id": "e1a7a0be",
+ "id": "c7f62594",
"metadata": {},
"source": [
"#### Step 2"
@@ -1303,7 +1303,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a497c6ea",
+ "id": "73fa98ec",
"metadata": {
"hide-output": false
},
@@ -1314,7 +1314,7 @@
},
{
"cell_type": "markdown",
- "id": "83a98e71",
+ "id": "53d6e8ff",
"metadata": {},
"source": [
"### Note about Code\n",
@@ -1331,7 +1331,7 @@
},
{
"cell_type": "markdown",
- "id": "227daae5",
+ "id": "1969b80b",
"metadata": {},
"source": [
"### Running the code\n",
@@ -1345,7 +1345,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "95062aea",
+ "id": "71f763a3",
"metadata": {
"hide-output": false
},
@@ -1364,7 +1364,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e949ede9",
+ "id": "2259201b",
"metadata": {
"hide-output": false
},
@@ -1376,7 +1376,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3a25e41d",
+ "id": "ec198668",
"metadata": {
"hide-output": false
},
@@ -1387,7 +1387,7 @@
},
{
"cell_type": "markdown",
- "id": "4b88dabe",
+ "id": "9d72a75c",
"metadata": {},
"source": [
"We only want unconditional expectations because we are in an IID case.\n",
@@ -1399,7 +1399,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d98b2fa8",
+ "id": "41cfccf9",
"metadata": {
"hide-output": false
},
@@ -1412,7 +1412,7 @@
},
{
"cell_type": "markdown",
- "id": "313c1694",
+ "id": "8d80665e",
"metadata": {},
"source": [
"Let’s look at the random variables $ {\\mathcal R}, {\\mathcal X} $"
@@ -1421,7 +1421,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ead46287",
+ "id": "15c035fc",
"metadata": {
"hide-output": false
},
@@ -1433,7 +1433,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "acf77f38",
+ "id": "d0b1fa77",
"metadata": {
"hide-output": false
},
@@ -1445,7 +1445,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "451e1395",
+ "id": "1df254cb",
"metadata": {
"hide-output": false
},
@@ -1457,7 +1457,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "33346284",
+ "id": "dcb9ab24",
"metadata": {
"hide-output": false
},
@@ -1469,7 +1469,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "307606c1",
+ "id": "50c02a97",
"metadata": {
"hide-output": false
},
@@ -1480,7 +1480,7 @@
},
{
"cell_type": "markdown",
- "id": "77b56e08",
+ "id": "30c45ef6",
"metadata": {},
"source": [
"#### Step 3"
@@ -1489,7 +1489,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3da8e1cf",
+ "id": "687bce72",
"metadata": {
"hide-output": false
},
@@ -1502,7 +1502,7 @@
},
{
"cell_type": "markdown",
- "id": "22e135e8",
+ "id": "7c469777",
"metadata": {},
"source": [
"Note that $ B $ is a scalar.\n",
@@ -1513,7 +1513,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5b4c9db8",
+ "id": "7cb02358",
"metadata": {
"hide-output": false
},
@@ -1528,7 +1528,7 @@
},
{
"cell_type": "markdown",
- "id": "bce4f9c8",
+ "id": "d78bae05",
"metadata": {},
"source": [
"In the above cell, B is fixed at 1 and $ \\tau $ is to be computed as\n",
@@ -1540,7 +1540,7 @@
},
{
"cell_type": "markdown",
- "id": "aed786b4",
+ "id": "1b849af8",
"metadata": {},
"source": [
"#### Step 4"
@@ -1549,7 +1549,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "63b28d90",
+ "id": "d03d9b54",
"metadata": {
"hide-output": false
},
@@ -1565,7 +1565,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "92aa6fb3",
+ "id": "45de150d",
"metadata": {
"hide-output": false
},
@@ -1576,7 +1576,7 @@
},
{
"cell_type": "markdown",
- "id": "81de6eae",
+ "id": "f3ff5170",
"metadata": {},
"source": [
"#### Step 6"
@@ -1585,7 +1585,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0f42f741",
+ "id": "1233d712",
"metadata": {
"hide-output": false
},
@@ -1598,7 +1598,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d5b8660b",
+ "id": "7612924c",
"metadata": {
"hide-output": false
},
@@ -1610,7 +1610,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d398c99f",
+ "id": "0f9298e7",
"metadata": {
"hide-output": false
},
@@ -1624,7 +1624,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d693b7f6",
+ "id": "9711ce91",
"metadata": {
"hide-output": false
},
@@ -1637,7 +1637,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cfbfeb19",
+ "id": "b0708210",
"metadata": {
"hide-output": false
},
@@ -1650,7 +1650,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "baa3f01f",
+ "id": "12b62d79",
"metadata": {
"hide-output": false
},
@@ -1663,7 +1663,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "49c69d99",
+ "id": "3da67f29",
"metadata": {
"hide-output": false
},
@@ -1676,7 +1676,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4c45e5fc",
+ "id": "b88bab95",
"metadata": {
"hide-output": false
},
@@ -1687,7 +1687,7 @@
}
],
"metadata": {
- "date": 1723011580.4482102,
+ "date": 1723517846.433113,
"filename": "amss3.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/arellano.ipynb b/_notebooks/arellano.ipynb
index 78272bbb..ca867b8d 100644
--- a/_notebooks/arellano.ipynb
+++ b/_notebooks/arellano.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "875b2496",
+ "id": "e412c068",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "ec29593b",
+ "id": "df661840",
"metadata": {},
"source": [
"# Default Risk and Income Fluctuations\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1564ca64",
+ "id": "9a2c16ac",
"metadata": {
"hide-output": false
},
@@ -33,7 +33,7 @@
},
{
"cell_type": "markdown",
- "id": "5d11d174",
+ "id": "c9f0b6f1",
"metadata": {},
"source": [
"## Overview\n",
@@ -85,7 +85,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ea8962a7",
+ "id": "faeb7418",
"metadata": {
"hide-output": false
},
@@ -99,7 +99,7 @@
},
{
"cell_type": "markdown",
- "id": "4b016fcc",
+ "id": "353335f4",
"metadata": {},
"source": [
"## Structure\n",
@@ -109,7 +109,7 @@
},
{
"cell_type": "markdown",
- "id": "4d123a6f",
+ "id": "ba5e5796",
"metadata": {},
"source": [
"### Output, Consumption and Debt\n",
@@ -151,7 +151,7 @@
},
{
"cell_type": "markdown",
- "id": "7e10a1a3",
+ "id": "6f9ef9c4",
"metadata": {},
"source": [
"### Asset Markets\n",
@@ -193,7 +193,7 @@
},
{
"cell_type": "markdown",
- "id": "32d8e5ae",
+ "id": "8118fa44",
"metadata": {},
"source": [
"### Financial Markets\n",
@@ -225,7 +225,7 @@
},
{
"cell_type": "markdown",
- "id": "0c40e44d",
+ "id": "ba19cb47",
"metadata": {},
"source": [
"### Government’s Decisions\n",
@@ -251,7 +251,7 @@
},
{
"cell_type": "markdown",
- "id": "8dbf0685",
+ "id": "bc05b7fe",
"metadata": {},
"source": [
"### Reentering International Credit Market\n",
@@ -262,7 +262,7 @@
},
{
"cell_type": "markdown",
- "id": "8a893f0c",
+ "id": "4bb417b4",
"metadata": {},
"source": [
"## Equilibrium\n",
@@ -354,7 +354,7 @@
},
{
"cell_type": "markdown",
- "id": "b3647054",
+ "id": "5cd1d5dd",
"metadata": {},
"source": [
"### Definition of Equilibrium\n",
@@ -379,7 +379,7 @@
},
{
"cell_type": "markdown",
- "id": "222a7d3b",
+ "id": "2e4f747d",
"metadata": {},
"source": [
"## Computation\n",
@@ -425,7 +425,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "72e3acb8",
+ "id": "e050291a",
"metadata": {
"hide-output": false
},
@@ -472,7 +472,7 @@
},
{
"cell_type": "markdown",
- "id": "75959e6e",
+ "id": "a2eb47bd",
"metadata": {},
"source": [
"Notice how the class returns the data it stores as simple numerical values and\n",
@@ -488,7 +488,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8d48a8a9",
+ "id": "1edf89fe",
"metadata": {
"hide-output": false
},
@@ -501,7 +501,7 @@
},
{
"cell_type": "markdown",
- "id": "7e459d6f",
+ "id": "fea37c51",
"metadata": {},
"source": [
"Here is a function to compute the bond price at each state, given $ v_c $ and\n",
@@ -511,7 +511,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3f5e6cb4",
+ "id": "9734dc4a",
"metadata": {
"hide-output": false
},
@@ -538,7 +538,7 @@
},
{
"cell_type": "markdown",
- "id": "547da4c6",
+ "id": "52a9681d",
"metadata": {},
"source": [
"Next we introduce Bellman operators that updated $ v_d $ and $ v_c $."
@@ -547,7 +547,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "03d788d2",
+ "id": "fd6d80b7",
"metadata": {
"hide-output": false
},
@@ -599,7 +599,7 @@
},
{
"cell_type": "markdown",
- "id": "3cdc47b0",
+ "id": "989abb9c",
"metadata": {},
"source": [
"Here is a fast function that calls these operators in the right sequence."
@@ -608,7 +608,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4c215652",
+ "id": "c7fcf3fd",
"metadata": {
"hide-output": false
},
@@ -645,7 +645,7 @@
},
{
"cell_type": "markdown",
- "id": "6027cefe",
+ "id": "4fbaf77b",
"metadata": {},
"source": [
"We can now write a function that will use the `Arellano_Economy` class and the\n",
@@ -662,7 +662,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7cf9010a",
+ "id": "cec25dc6",
"metadata": {
"hide-output": false
},
@@ -706,7 +706,7 @@
},
{
"cell_type": "markdown",
- "id": "c8e2929c",
+ "id": "0dac12bd",
"metadata": {},
"source": [
"Finally, we write a function that will allow us to simulate the economy once\n",
@@ -716,7 +716,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d952c7f2",
+ "id": "38c78fd6",
"metadata": {
"hide-output": false
},
@@ -786,7 +786,7 @@
},
{
"cell_type": "markdown",
- "id": "4dd36104",
+ "id": "9b9fd63c",
"metadata": {},
"source": [
"## Results\n",
@@ -857,7 +857,7 @@
},
{
"cell_type": "markdown",
- "id": "607568ac",
+ "id": "1e9052d1",
"metadata": {},
"source": [
"## Exercises\n",
@@ -868,7 +868,7 @@
},
{
"cell_type": "markdown",
- "id": "8feaede8",
+ "id": "67737206",
"metadata": {},
"source": [
"## Exercise 13.1\n",
@@ -881,7 +881,7 @@
},
{
"cell_type": "markdown",
- "id": "1008a2ee",
+ "id": "69406fca",
"metadata": {},
"source": [
"## Solution to[ Exercise 13.1](https://python-advanced.quantecon.org/#arella_ex1)\n",
@@ -892,7 +892,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7db28495",
+ "id": "be2eba72",
"metadata": {
"hide-output": false
},
@@ -904,7 +904,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "527990c1",
+ "id": "553bf25e",
"metadata": {
"hide-output": false
},
@@ -915,7 +915,7 @@
},
{
"cell_type": "markdown",
- "id": "ad717174",
+ "id": "f4516fca",
"metadata": {},
"source": [
"Compute the bond price schedule as seen in figure 3 of Arellano (2008)"
@@ -924,7 +924,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d632791e",
+ "id": "8f59b769",
"metadata": {
"hide-output": false
},
@@ -960,7 +960,7 @@
},
{
"cell_type": "markdown",
- "id": "78c10d8d",
+ "id": "b6342978",
"metadata": {},
"source": [
"Draw a plot of the value functions"
@@ -969,7 +969,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3968ebf8",
+ "id": "910f7aad",
"metadata": {
"hide-output": false
},
@@ -989,7 +989,7 @@
},
{
"cell_type": "markdown",
- "id": "7b7598a6",
+ "id": "057ad1b1",
"metadata": {},
"source": [
"Draw a heat map for default probability"
@@ -998,7 +998,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a8bd2626",
+ "id": "43d98475",
"metadata": {
"hide-output": false
},
@@ -1023,7 +1023,7 @@
},
{
"cell_type": "markdown",
- "id": "7e3dd42c",
+ "id": "0b0094e0",
"metadata": {},
"source": [
"Plot a time series of major variables simulated from the model"
@@ -1032,7 +1032,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "543e0793",
+ "id": "55615cd3",
"metadata": {
"hide-output": false
},
@@ -1081,7 +1081,7 @@
}
],
"metadata": {
- "date": 1723011580.4827392,
+ "date": 1723517846.621057,
"filename": "arellano.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/arma.ipynb b/_notebooks/arma.ipynb
index d9582f96..1ade7ca4 100644
--- a/_notebooks/arma.ipynb
+++ b/_notebooks/arma.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "ccdd898a",
+ "id": "0600f058",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "8d93f3e6",
+ "id": "81271d10",
"metadata": {},
"source": [
"# Covariance Stationary Processes\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "57f9adf9",
+ "id": "49085ce3",
"metadata": {
"hide-output": false
},
@@ -33,7 +33,7 @@
},
{
"cell_type": "markdown",
- "id": "19c96e3d",
+ "id": "ca9ab2b7",
"metadata": {},
"source": [
"## Overview\n",
@@ -52,7 +52,7 @@
},
{
"cell_type": "markdown",
- "id": "4c980fe2",
+ "id": "ad2d7c19",
"metadata": {},
"source": [
"### ARMA Processes\n",
@@ -68,7 +68,7 @@
},
{
"cell_type": "markdown",
- "id": "3fd27556",
+ "id": "17b701a8",
"metadata": {},
"source": [
"### Spectral Analysis\n",
@@ -89,7 +89,7 @@
},
{
"cell_type": "markdown",
- "id": "103e66de",
+ "id": "0dbaaa6d",
"metadata": {},
"source": [
"### Other Reading\n",
@@ -102,7 +102,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8395ee2f",
+ "id": "c04466a3",
"metadata": {
"hide-output": false
},
@@ -115,7 +115,7 @@
},
{
"cell_type": "markdown",
- "id": "5fc060a1",
+ "id": "ade706ae",
"metadata": {},
"source": [
"## Introduction\n",
@@ -137,7 +137,7 @@
},
{
"cell_type": "markdown",
- "id": "cddf6b50",
+ "id": "e2cb1d35",
"metadata": {},
"source": [
"### Definitions\n",
@@ -159,7 +159,7 @@
},
{
"cell_type": "markdown",
- "id": "5908c683",
+ "id": "78e37f1d",
"metadata": {},
"source": [
"### Example 1: White Noise\n",
@@ -182,7 +182,7 @@
},
{
"cell_type": "markdown",
- "id": "86eac39b",
+ "id": "591ed565",
"metadata": {},
"source": [
"### Example 2: General Linear Processes\n",
@@ -221,7 +221,7 @@
},
{
"cell_type": "markdown",
- "id": "a105edd6",
+ "id": "46e89469",
"metadata": {},
"source": [
"### Wold Representation\n",
@@ -249,7 +249,7 @@
},
{
"cell_type": "markdown",
- "id": "7033a7e0",
+ "id": "1816c30a",
"metadata": {},
"source": [
"### AR and MA\n",
@@ -292,7 +292,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f625e0db",
+ "id": "654cd062",
"metadata": {
"hide-output": false
},
@@ -316,7 +316,7 @@
},
{
"cell_type": "markdown",
- "id": "4f5f7a39",
+ "id": "21d7a7a7",
"metadata": {},
"source": [
"Another very simple process is the MA(1) process (here MA means “moving average”)\n",
@@ -342,7 +342,7 @@
},
{
"cell_type": "markdown",
- "id": "61b34643",
+ "id": "c5cc7db6",
"metadata": {},
"source": [
"### ARMA Processes\n",
@@ -411,7 +411,7 @@
},
{
"cell_type": "markdown",
- "id": "baf98dbe",
+ "id": "9f80a27d",
"metadata": {},
"source": [
"## Spectral Analysis\n",
@@ -429,7 +429,7 @@
},
{
"cell_type": "markdown",
- "id": "b2c0ef87",
+ "id": "af382997",
"metadata": {},
"source": [
"### Complex Numbers\n",
@@ -470,7 +470,7 @@
},
{
"cell_type": "markdown",
- "id": "c570e15f",
+ "id": "54e1c701",
"metadata": {},
"source": [
"### Spectral Densities\n",
@@ -512,7 +512,7 @@
},
{
"cell_type": "markdown",
- "id": "d3870ae4",
+ "id": "8a4e8a9c",
"metadata": {},
"source": [
"### Example 1: White Noise\n",
@@ -528,7 +528,7 @@
},
{
"cell_type": "markdown",
- "id": "e218fa25",
+ "id": "664bdffb",
"metadata": {},
"source": [
"### Example 2: AR and MA and ARMA\n",
@@ -576,7 +576,7 @@
},
{
"cell_type": "markdown",
- "id": "ca2f2de5",
+ "id": "289f6919",
"metadata": {},
"source": [
"### Interpreting the Spectral Density\n",
@@ -589,7 +589,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "285e3de7",
+ "id": "609a57c5",
"metadata": {
"hide-output": false
},
@@ -616,7 +616,7 @@
},
{
"cell_type": "markdown",
- "id": "b0f2c470",
+ "id": "51a1d17b",
"metadata": {},
"source": [
"These spectral densities correspond to the autocovariance functions for the\n",
@@ -650,7 +650,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "19e5996a",
+ "id": "1d6f3ace",
"metadata": {
"hide-output": false
},
@@ -693,7 +693,7 @@
},
{
"cell_type": "markdown",
- "id": "1fed271b",
+ "id": "2d05d5da",
"metadata": {},
"source": [
"On the other hand, if we evaluate $ f(\\omega) $ at $ \\omega = \\pi / 3 $, then the cycles are\n",
@@ -704,7 +704,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d7d65568",
+ "id": "e530b303",
"metadata": {
"hide-output": false
},
@@ -747,7 +747,7 @@
},
{
"cell_type": "markdown",
- "id": "c2fabcec",
+ "id": "2fda85bd",
"metadata": {},
"source": [
"In summary, the spectral density is large at frequencies $ \\omega $ where the autocovariance function exhibits damped cycles."
@@ -755,7 +755,7 @@
},
{
"cell_type": "markdown",
- "id": "8f6986e8",
+ "id": "3cb5dacf",
"metadata": {},
"source": [
"### Inverting the Transformation\n",
@@ -781,7 +781,7 @@
},
{
"cell_type": "markdown",
- "id": "d2966ae1",
+ "id": "77ae2ff7",
"metadata": {},
"source": [
"### Mathematical Theory\n",
@@ -870,7 +870,7 @@
},
{
"cell_type": "markdown",
- "id": "44c0de57",
+ "id": "ddc65982",
"metadata": {},
"source": [
"## Implementation\n",
@@ -891,7 +891,7 @@
},
{
"cell_type": "markdown",
- "id": "a3a17e13",
+ "id": "c4d6369b",
"metadata": {},
"source": [
"### Application\n",
@@ -904,7 +904,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "546bd625",
+ "id": "532fac0f",
"metadata": {
"hide-output": false
},
@@ -965,7 +965,7 @@
},
{
"cell_type": "markdown",
- "id": "b33a2208",
+ "id": "f5d8373c",
"metadata": {},
"source": [
"Now let’s call these functions to generate plots.\n",
@@ -976,7 +976,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9b7da1ef",
+ "id": "ae74f9d2",
"metadata": {
"hide-output": false
},
@@ -990,7 +990,7 @@
},
{
"cell_type": "markdown",
- "id": "acab4560",
+ "id": "3bd51a07",
"metadata": {},
"source": [
"If we look carefully, things look good: the spectrum is the flat line at $ 10^0 $ at the very top of the spectrum graphs,\n",
@@ -1012,7 +1012,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a353cb64",
+ "id": "3ab7d3c4",
"metadata": {
"hide-output": false
},
@@ -1026,7 +1026,7 @@
},
{
"cell_type": "markdown",
- "id": "24d20078",
+ "id": "9a1845bb",
"metadata": {},
"source": [
"Ljungqvist and Sargent’s second model is $ X_t = .9 X_{t-1} + \\epsilon_t $"
@@ -1035,7 +1035,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e8c00dec",
+ "id": "67f2fe6a",
"metadata": {
"hide-output": false
},
@@ -1049,7 +1049,7 @@
},
{
"cell_type": "markdown",
- "id": "e25fb835",
+ "id": "668842dc",
"metadata": {},
"source": [
"Ljungqvist and Sargent’s third model is $ X_t = .8 X_{t-4} + \\epsilon_t $"
@@ -1058,7 +1058,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "dce9a61e",
+ "id": "6e945f96",
"metadata": {
"hide-output": false
},
@@ -1072,7 +1072,7 @@
},
{
"cell_type": "markdown",
- "id": "738d393f",
+ "id": "65e61fca",
"metadata": {},
"source": [
"Ljungqvist and Sargent’s fourth model is $ X_t = .98 X_{t-1} + \\epsilon_t -.7 \\epsilon_{t-1} $"
@@ -1081,7 +1081,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3c81d605",
+ "id": "cd93b3f4",
"metadata": {
"hide-output": false
},
@@ -1095,7 +1095,7 @@
},
{
"cell_type": "markdown",
- "id": "32a8e5cb",
+ "id": "fa037a10",
"metadata": {},
"source": [
"### Explanation\n",
@@ -1153,7 +1153,7 @@
},
{
"cell_type": "markdown",
- "id": "a1921515",
+ "id": "5f1e32f3",
"metadata": {},
"source": [
"### Computing the Autocovariance Function\n",
@@ -1198,7 +1198,7 @@
}
],
"metadata": {
- "date": 1723011580.5371983,
+ "date": 1723517846.6731813,
"filename": "arma.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/asset_pricing_lph.ipynb b/_notebooks/asset_pricing_lph.ipynb
index 7654a5e0..244ef04f 100644
--- a/_notebooks/asset_pricing_lph.ipynb
+++ b/_notebooks/asset_pricing_lph.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "c5aee880",
+ "id": "acdaeb4e",
"metadata": {},
"source": [
"# Elementary Asset Pricing Theory\n",
@@ -13,7 +13,7 @@
},
{
"cell_type": "markdown",
- "id": "400be509",
+ "id": "68c21a53",
"metadata": {},
"source": [
"## Overview\n",
@@ -58,7 +58,7 @@
},
{
"cell_type": "markdown",
- "id": "a5c6e33b",
+ "id": "d07108d5",
"metadata": {},
"source": [
"## Key Equation\n",
@@ -102,7 +102,7 @@
},
{
"cell_type": "markdown",
- "id": "bbc877c8",
+ "id": "6dfbe06c",
"metadata": {},
"source": [
"## Implications of Key Equation\n",
@@ -178,7 +178,7 @@
},
{
"cell_type": "markdown",
- "id": "45df42de",
+ "id": "03ee3734",
"metadata": {},
"source": [
"## Expected Return - Beta Representation\n",
@@ -297,7 +297,7 @@
},
{
"cell_type": "markdown",
- "id": "44b51503",
+ "id": "11cb78dd",
"metadata": {},
"source": [
"## Mean-Variance Frontier\n",
@@ -371,7 +371,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9874967e",
+ "id": "a181ff79",
"metadata": {
"hide-output": false
},
@@ -419,7 +419,7 @@
},
{
"cell_type": "markdown",
- "id": "35f2e413",
+ "id": "dd69129a",
"metadata": {},
"source": [
"The figure shows two straight lines, the blue upper one being the locus of $ ( \\sigma(R^i), E(R^i) $ pairs that are on\n",
@@ -454,7 +454,7 @@
},
{
"cell_type": "markdown",
- "id": "703d6c18",
+ "id": "cd300cfb",
"metadata": {},
"source": [
"## Sharpe Ratios and the Price of Risk\n",
@@ -479,7 +479,7 @@
},
{
"cell_type": "markdown",
- "id": "6bd85740",
+ "id": "71af0201",
"metadata": {},
"source": [
"## Mathematical Structure of Frontier\n",
@@ -511,7 +511,7 @@
},
{
"cell_type": "markdown",
- "id": "1c1704d6",
+ "id": "ed60e053",
"metadata": {},
"source": [
"## Multi-factor Models\n",
@@ -549,7 +549,7 @@
},
{
"cell_type": "markdown",
- "id": "d2985e5a",
+ "id": "561cb48b",
"metadata": {},
"source": [
"## Empirical Implementations\n",
@@ -613,7 +613,7 @@
},
{
"cell_type": "markdown",
- "id": "fb81d1ab",
+ "id": "5d7838a2",
"metadata": {},
"source": [
"## Exercises\n",
@@ -624,7 +624,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "94056a8c",
+ "id": "016482a9",
"metadata": {
"hide-output": false
},
@@ -637,7 +637,7 @@
},
{
"cell_type": "markdown",
- "id": "976d6450",
+ "id": "4dce6bcd",
"metadata": {},
"source": [
"Lots of our calculations will involve computing population and sample OLS regressions.\n",
@@ -648,7 +648,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "07d92416",
+ "id": "269bfc00",
"metadata": {
"hide-output": false
},
@@ -670,7 +670,7 @@
},
{
"cell_type": "markdown",
- "id": "1035c322",
+ "id": "386a774a",
"metadata": {},
"source": [
"## Exercise 35.1\n",
@@ -686,7 +686,7 @@
},
{
"cell_type": "markdown",
- "id": "5317e0f4",
+ "id": "48503f31",
"metadata": {},
"source": [
"## Solution to[ Exercise 35.1](https://python-advanced.quantecon.org/#apl_ex1)\n",
@@ -712,7 +712,7 @@
},
{
"cell_type": "markdown",
- "id": "de345d8f",
+ "id": "d7637594",
"metadata": {},
"source": [
"## Exercise 35.2\n",
@@ -722,7 +722,7 @@
},
{
"cell_type": "markdown",
- "id": "0ab3ef5a",
+ "id": "b06e4cdd",
"metadata": {},
"source": [
"## Solution to[ Exercise 35.2](https://python-advanced.quantecon.org/#apl_ex2)\n",
@@ -736,7 +736,7 @@
},
{
"cell_type": "markdown",
- "id": "764127a0",
+ "id": "577b89ff",
"metadata": {},
"source": [
"## Exercise 35.3\n",
@@ -791,7 +791,7 @@
},
{
"cell_type": "markdown",
- "id": "ee6170bc",
+ "id": "d6a46f05",
"metadata": {},
"source": [
"## Solution to[ Exercise 35.3](https://python-advanced.quantecon.org/#apl_ex3)\n",
@@ -802,7 +802,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "abda1687",
+ "id": "e5401fbc",
"metadata": {
"hide-output": false
},
@@ -822,7 +822,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "422b364d",
+ "id": "aba2ca49",
"metadata": {
"hide-output": false
},
@@ -837,7 +837,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "36a3e5c8",
+ "id": "19aec5a5",
"metadata": {
"hide-output": false
},
@@ -852,7 +852,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d660994e",
+ "id": "2c59fbfc",
"metadata": {
"hide-output": false
},
@@ -873,7 +873,7 @@
},
{
"cell_type": "markdown",
- "id": "0ba41d9a",
+ "id": "6510151b",
"metadata": {},
"source": [
"Now that we have a panel of data, we’d like to solve the inverse problem by assuming the theory specified above and estimating the coefficients given above."
@@ -882,7 +882,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f036608d",
+ "id": "4762030b",
"metadata": {
"hide-output": false
},
@@ -893,7 +893,7 @@
},
{
"cell_type": "markdown",
- "id": "425564b5",
+ "id": "5c4f70a5",
"metadata": {},
"source": [
"**Inverse Problem:**\n",
@@ -906,7 +906,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b5a1adaf",
+ "id": "a54ad8a7",
"metadata": {
"hide-output": false
},
@@ -918,7 +918,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "090aa73d",
+ "id": "05118bb1",
"metadata": {
"hide-output": false
},
@@ -929,7 +929,7 @@
},
{
"cell_type": "markdown",
- "id": "0ae43f9b",
+ "id": "ea97c5fd",
"metadata": {},
"source": [
"Let’s compare these with the *true* population parameter values."
@@ -938,7 +938,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e82ef83f",
+ "id": "2fbd1e37",
"metadata": {
"hide-output": false
},
@@ -949,7 +949,7 @@
},
{
"cell_type": "markdown",
- "id": "3d59958e",
+ "id": "cf18dfff",
"metadata": {},
"source": [
"1. $ \\xi $ and $ \\lambda $ "
@@ -958,7 +958,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b0c1c706",
+ "id": "c9fde020",
"metadata": {
"hide-output": false
},
@@ -970,7 +970,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6828427e",
+ "id": "f1a9b7b2",
"metadata": {
"hide-output": false
},
@@ -982,7 +982,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bc7d7276",
+ "id": "52073b89",
"metadata": {
"hide-output": false
},
@@ -993,7 +993,7 @@
},
{
"cell_type": "markdown",
- "id": "a0c3f903",
+ "id": "99899a4a",
"metadata": {},
"source": [
"1. $ \\beta_{i, R^m} $ and $ \\sigma_i $ "
@@ -1002,7 +1002,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "31c8d462",
+ "id": "efb21c33",
"metadata": {
"hide-output": false
},
@@ -1018,7 +1018,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "dc955452",
+ "id": "0c18a672",
"metadata": {
"hide-output": false
},
@@ -1030,7 +1030,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e9203191",
+ "id": "4081ec9b",
"metadata": {
"hide-output": false
},
@@ -1041,7 +1041,7 @@
},
{
"cell_type": "markdown",
- "id": "0b303ebc",
+ "id": "0ab72ac6",
"metadata": {},
"source": [
"Q: How close did your estimates come to the parameters we specified?"
@@ -1049,7 +1049,7 @@
},
{
"cell_type": "markdown",
- "id": "c659f2ec",
+ "id": "3bb68227",
"metadata": {},
"source": [
"## Exercise 35.4\n",
@@ -1063,7 +1063,7 @@
},
{
"cell_type": "markdown",
- "id": "4de96e52",
+ "id": "2a0872bd",
"metadata": {},
"source": [
"## Solution to[ Exercise 35.4](https://python-advanced.quantecon.org/#apl_ex4)\n",
@@ -1081,7 +1081,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8f52e5b6",
+ "id": "b07cb37f",
"metadata": {
"hide-output": false
},
@@ -1104,7 +1104,7 @@
},
{
"cell_type": "markdown",
- "id": "707a847c",
+ "id": "49f2635b",
"metadata": {},
"source": [
"Let’s try to solve $ a $ and $ b $ using the actual model parameters."
@@ -1113,7 +1113,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cedae945",
+ "id": "7f29a1ad",
"metadata": {
"hide-output": false
},
@@ -1125,7 +1125,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "30cd7662",
+ "id": "a8f77953",
"metadata": {
"hide-output": false
},
@@ -1136,7 +1136,7 @@
},
{
"cell_type": "markdown",
- "id": "00e98cc0",
+ "id": "0d5a73b8",
"metadata": {},
"source": [
"## Exercise 35.5\n",
@@ -1146,7 +1146,7 @@
},
{
"cell_type": "markdown",
- "id": "8f86de66",
+ "id": "8adc7a2f",
"metadata": {},
"source": [
"## Solution to[ Exercise 35.5](https://python-advanced.quantecon.org/#apl_ex5)\n",
@@ -1157,7 +1157,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cf827783",
+ "id": "c6926636",
"metadata": {
"hide-output": false
},
@@ -1169,7 +1169,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2c70cf6e",
+ "id": "60717e15",
"metadata": {
"hide-output": false
},
@@ -1180,7 +1180,7 @@
}
],
"metadata": {
- "date": 1723011580.588927,
+ "date": 1723517846.7239914,
"filename": "asset_pricing_lph.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/black_litterman.ipynb b/_notebooks/black_litterman.ipynb
index 6745de85..e7c12746 100644
--- a/_notebooks/black_litterman.ipynb
+++ b/_notebooks/black_litterman.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "99dd596f",
+ "id": "ccdc69ba",
"metadata": {},
"source": [
"\n",
@@ -13,7 +13,7 @@
},
{
"cell_type": "markdown",
- "id": "9baa5b6b",
+ "id": "8b94cbfa",
"metadata": {},
"source": [
"# Two Modifications of Mean-Variance Portfolio Theory"
@@ -21,7 +21,7 @@
},
{
"cell_type": "markdown",
- "id": "ce645840",
+ "id": "99ad80fb",
"metadata": {},
"source": [
"## Overview\n",
@@ -81,7 +81,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a4f76c7e",
+ "id": "ac3e5a7d",
"metadata": {
"hide-output": false
},
@@ -95,7 +95,7 @@
},
{
"cell_type": "markdown",
- "id": "3d9f4735",
+ "id": "bf004770",
"metadata": {},
"source": [
"## Mean-Variance Portfolio Choice\n",
@@ -158,7 +158,7 @@
},
{
"cell_type": "markdown",
- "id": "52320644",
+ "id": "111f3931",
"metadata": {},
"source": [
"## Estimating Mean and Variance\n",
@@ -178,7 +178,7 @@
},
{
"cell_type": "markdown",
- "id": "ae319013",
+ "id": "2949133a",
"metadata": {},
"source": [
"## Black-Litterman Starting Point\n",
@@ -196,7 +196,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ec89989d",
+ "id": "3fa24812",
"metadata": {
"hide-output": false
},
@@ -249,7 +249,7 @@
},
{
"cell_type": "markdown",
- "id": "0702a1cb",
+ "id": "28136323",
"metadata": {},
"source": [
"Black and Litterman’s responded to this situation in the following way:\n",
@@ -277,7 +277,7 @@
},
{
"cell_type": "markdown",
- "id": "569420f9",
+ "id": "ea66f0ed",
"metadata": {},
"source": [
"## Details\n",
@@ -349,7 +349,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "34663524",
+ "id": "fa2cced7",
"metadata": {
"hide-output": false
},
@@ -384,7 +384,7 @@
},
{
"cell_type": "markdown",
- "id": "180651aa",
+ "id": "cdb53125",
"metadata": {},
"source": [
"## Adding Views\n",
@@ -447,7 +447,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "db0e511f",
+ "id": "3b2c384e",
"metadata": {
"hide-output": false
},
@@ -511,7 +511,7 @@
},
{
"cell_type": "markdown",
- "id": "fd74ded1",
+ "id": "e4403470",
"metadata": {},
"source": [
"## Bayesian Interpretation\n",
@@ -561,7 +561,7 @@
},
{
"cell_type": "markdown",
- "id": "75c54ad8",
+ "id": "be49b80c",
"metadata": {},
"source": [
"## Curve Decolletage\n",
@@ -691,7 +691,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7e36dad1",
+ "id": "ec5cd8f2",
"metadata": {
"hide-output": false
},
@@ -769,7 +769,7 @@
},
{
"cell_type": "markdown",
- "id": "da159b35",
+ "id": "9c5ecab3",
"metadata": {},
"source": [
"Note that the line that connects the two points\n",
@@ -790,7 +790,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "edb4aeef",
+ "id": "449b2dcc",
"metadata": {
"hide-output": false
},
@@ -840,7 +840,7 @@
},
{
"cell_type": "markdown",
- "id": "76ba06c3",
+ "id": "5d01a5d0",
"metadata": {},
"source": [
"## Black-Litterman Recommendation as Regularization\n",
@@ -996,7 +996,7 @@
},
{
"cell_type": "markdown",
- "id": "aa583d79",
+ "id": "6992f900",
"metadata": {},
"source": [
"## A Robust Control Operator\n",
@@ -1136,7 +1136,7 @@
},
{
"cell_type": "markdown",
- "id": "cec23cf9",
+ "id": "64aa6a39",
"metadata": {},
"source": [
"## A Robust Mean-Variance Portfolio Model\n",
@@ -1207,7 +1207,7 @@
},
{
"cell_type": "markdown",
- "id": "e29bbf3c",
+ "id": "e5872d14",
"metadata": {},
"source": [
"## Appendix\n",
@@ -1283,7 +1283,7 @@
},
{
"cell_type": "markdown",
- "id": "92f35c3f",
+ "id": "4b6bd85d",
"metadata": {},
"source": [
"## Special Case – IID Sample\n",
@@ -1326,7 +1326,7 @@
},
{
"cell_type": "markdown",
- "id": "0dc06a02",
+ "id": "79841980",
"metadata": {},
"source": [
"## Dependence and Sampling Frequency\n",
@@ -1391,7 +1391,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7def298a",
+ "id": "7170206c",
"metadata": {
"hide-output": false
},
@@ -1422,7 +1422,7 @@
},
{
"cell_type": "markdown",
- "id": "afb89897",
+ "id": "30c55d02",
"metadata": {},
"source": [
"## Frequency and the Mean Estimator\n",
@@ -1504,7 +1504,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b373035c",
+ "id": "885443c6",
"metadata": {
"hide-output": false
},
@@ -1532,7 +1532,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b6c92c59",
+ "id": "1248d9b9",
"metadata": {
"hide-output": false
},
@@ -1578,7 +1578,7 @@
},
{
"cell_type": "markdown",
- "id": "ad0bc8d4",
+ "id": "b5c6bfbc",
"metadata": {},
"source": [
"The above figure illustrates the relationship between the asymptotic\n",
@@ -1596,7 +1596,7 @@
}
],
"metadata": {
- "date": 1723011580.63527,
+ "date": 1723517846.772456,
"filename": "black_litterman.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/calvo.ipynb b/_notebooks/calvo.ipynb
index 276035e0..f6bd11ef 100644
--- a/_notebooks/calvo.ipynb
+++ b/_notebooks/calvo.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "6ab7a84c",
+ "id": "b339f0a0",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "c7e09ed3",
+ "id": "7efc6315",
"metadata": {},
"source": [
"# Ramsey Plans, Time Inconsistency, Sustainable Plans\n",
@@ -24,7 +24,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "83f92433",
+ "id": "b4e69859",
"metadata": {
"hide-output": false
},
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "c9cfdb89",
+ "id": "22fd4abc",
"metadata": {},
"source": [
"## Overview\n",
@@ -81,7 +81,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e69872d5",
+ "id": "0362a6fc",
"metadata": {
"hide-output": false
},
@@ -92,7 +92,7 @@
},
{
"cell_type": "markdown",
- "id": "101e27a5",
+ "id": "0a113cb8",
"metadata": {},
"source": [
"We’ll start with some imports:"
@@ -101,7 +101,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c909a78f",
+ "id": "b34bb2f9",
"metadata": {
"hide-output": false
},
@@ -117,7 +117,7 @@
},
{
"cell_type": "markdown",
- "id": "219f696b",
+ "id": "4da54310",
"metadata": {},
"source": [
"## Model components\n",
@@ -260,7 +260,7 @@
},
{
"cell_type": "markdown",
- "id": "2c4fe552",
+ "id": "0b7eb4f0",
"metadata": {},
"source": [
"## Friedman’s optimal rate of deflation\n",
@@ -293,7 +293,7 @@
},
{
"cell_type": "markdown",
- "id": "4f8ae96f",
+ "id": "92210aed",
"metadata": {},
"source": [
"## Calvo’s perturbation of optimal deflation rate\n",
@@ -374,7 +374,7 @@
},
{
"cell_type": "markdown",
- "id": "7e5ff10a",
+ "id": "67f74277",
"metadata": {},
"source": [
"## Structure\n",
@@ -411,7 +411,7 @@
},
{
"cell_type": "markdown",
- "id": "f04235f4",
+ "id": "a8edbda3",
"metadata": {},
"source": [
"## Intertemporal structure\n",
@@ -439,7 +439,7 @@
},
{
"cell_type": "markdown",
- "id": "661f18a8",
+ "id": "fe329912",
"metadata": {},
"source": [
"## Four timing protocols\n",
@@ -504,7 +504,7 @@
},
{
"cell_type": "markdown",
- "id": "3421c926",
+ "id": "834e3035",
"metadata": {},
"source": [
"## A Ramsey planner\n",
@@ -531,7 +531,7 @@
},
{
"cell_type": "markdown",
- "id": "5a1eaeed",
+ "id": "2fd3672a",
"metadata": {},
"source": [
"### Subproblem 1\n",
@@ -657,7 +657,7 @@
},
{
"cell_type": "markdown",
- "id": "36f364ab",
+ "id": "2e5e1ed9",
"metadata": {},
"source": [
"### Subproblem 2\n",
@@ -696,7 +696,7 @@
},
{
"cell_type": "markdown",
- "id": "81dcefea",
+ "id": "344d9d5c",
"metadata": {},
"source": [
"### Representation of Ramsey plan\n",
@@ -773,7 +773,7 @@
},
{
"cell_type": "markdown",
- "id": "e9f14bca",
+ "id": "6a91f5dd",
"metadata": {},
"source": [
"### Digression on timeless perspective\n",
@@ -789,7 +789,7 @@
},
{
"cell_type": "markdown",
- "id": "b3c251cb",
+ "id": "9923294c",
"metadata": {},
"source": [
"### Multiple roles of $ \\theta_t $\n",
@@ -811,7 +811,7 @@
},
{
"cell_type": "markdown",
- "id": "6279b2f4",
+ "id": "4adbaf04",
"metadata": {},
"source": [
"### Time inconsistency\n",
@@ -829,7 +829,7 @@
},
{
"cell_type": "markdown",
- "id": "d1415a58",
+ "id": "1936a01e",
"metadata": {},
"source": [
"## Constrained-to-constant-growth-rate Ramsey plan\n",
@@ -885,7 +885,7 @@
},
{
"cell_type": "markdown",
- "id": "434cacc4",
+ "id": "6aff1e45",
"metadata": {},
"source": [
"## Markov perfect governments\n",
@@ -1003,7 +1003,7 @@
},
{
"cell_type": "markdown",
- "id": "894f8c3a",
+ "id": "72eae8d8",
"metadata": {},
"source": [
"## Outcomes under three timing protocols\n",
@@ -1059,7 +1059,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6c1fe7c4",
+ "id": "c40190bc",
"metadata": {
"hide-output": false
},
@@ -1180,7 +1180,7 @@
},
{
"cell_type": "markdown",
- "id": "353095ee",
+ "id": "6a863821",
"metadata": {},
"source": [
"Let’s create an instance of ChangLQ with the following parameters:"
@@ -1189,7 +1189,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6b2d2374",
+ "id": "e5500a94",
"metadata": {
"hide-output": false
},
@@ -1200,7 +1200,7 @@
},
{
"cell_type": "markdown",
- "id": "77e39aa9",
+ "id": "cc77b73f",
"metadata": {},
"source": [
"The following code plots value functions for a continuation Ramsey\n",
@@ -1210,7 +1210,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ab94de9b",
+ "id": "3854c47b",
"metadata": {
"hide-output": false
},
@@ -1280,7 +1280,7 @@
},
{
"cell_type": "markdown",
- "id": "f6630fb5",
+ "id": "eee92c31",
"metadata": {},
"source": [
"The dotted line in the above graph is the 45-degree line.\n",
@@ -1314,7 +1314,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "75034242",
+ "id": "0317e0c1",
"metadata": {
"hide-output": false
},
@@ -1355,7 +1355,7 @@
},
{
"cell_type": "markdown",
- "id": "dc438e80",
+ "id": "8f0a364e",
"metadata": {},
"source": [
"In the above graph, notice that $ \\theta^* < \\theta_\\infty^R < \\theta^{CR} < \\theta_0^R < \\theta^{MPE} . $\n",
@@ -1366,7 +1366,7 @@
},
{
"cell_type": "markdown",
- "id": "11ee2060",
+ "id": "c30d9c5c",
"metadata": {},
"source": [
"### Ramsey planner’s value function\n",
@@ -1400,7 +1400,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "37d48571",
+ "id": "bbebbbb8",
"metadata": {
"hide-output": false
},
@@ -1413,7 +1413,7 @@
},
{
"cell_type": "markdown",
- "id": "864110d1",
+ "id": "2bca79f5",
"metadata": {},
"source": [
"So our claim that $ J(\\theta_\\infty^R) = V^{CR}(\\theta_\\infty^R) $is verified numerically.\n",
@@ -1440,7 +1440,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e1390605",
+ "id": "4a192403",
"metadata": {
"hide-output": false
},
@@ -1554,7 +1554,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "361ce57c",
+ "id": "c0a46a4e",
"metadata": {
"hide-output": false
},
@@ -1571,7 +1571,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7fff2e0c",
+ "id": "d344302d",
"metadata": {
"hide-output": false
},
@@ -1582,7 +1582,7 @@
},
{
"cell_type": "markdown",
- "id": "32667fc1",
+ "id": "7e3c7a1d",
"metadata": {},
"source": [
"The above graphs and table convey many useful things.\n",
@@ -1613,7 +1613,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5af9303b",
+ "id": "b07e24a1",
"metadata": {
"hide-output": false
},
@@ -1630,7 +1630,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "074ca4c8",
+ "id": "40586d73",
"metadata": {
"hide-output": false
},
@@ -1641,7 +1641,7 @@
},
{
"cell_type": "markdown",
- "id": "22e18b70",
+ "id": "80016e0e",
"metadata": {},
"source": [
"The above table and figures show how\n",
@@ -1659,7 +1659,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5f7d4620",
+ "id": "f15eb83d",
"metadata": {
"hide-output": false
},
@@ -1675,7 +1675,7 @@
},
{
"cell_type": "markdown",
- "id": "7ffed06d",
+ "id": "7b58098e",
"metadata": {},
"source": [
"The above graphs indicate that as $ c $ approaches zero, $ \\theta_\\infty^R, \\theta_0^R, \\theta^{CR} $,\n",
@@ -1699,7 +1699,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "39971fcf",
+ "id": "7cc6625e",
"metadata": {
"hide-output": false
},
@@ -1766,7 +1766,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f7f99231",
+ "id": "b819efbd",
"metadata": {
"hide-output": false
},
@@ -1780,7 +1780,7 @@
},
{
"cell_type": "markdown",
- "id": "46e2ca0d",
+ "id": "55491dd5",
"metadata": {},
"source": [
"Notice how $ d_1 $ changes as we raise the discount factor parameter $ \\beta $.\n",
@@ -1791,7 +1791,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "907f9a68",
+ "id": "37e3df52",
"metadata": {
"hide-output": false
},
@@ -1806,7 +1806,7 @@
},
{
"cell_type": "markdown",
- "id": "d2190ded",
+ "id": "29991206",
"metadata": {},
"source": [
"Evidently, increasing $ c $ causes the decay factor $ d_1 $ to increase.\n",
@@ -1818,7 +1818,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "69e09eb4",
+ "id": "c91e6782",
"metadata": {
"hide-output": false
},
@@ -1833,7 +1833,7 @@
},
{
"cell_type": "markdown",
- "id": "d7eccf49",
+ "id": "58a869d6",
"metadata": {},
"source": [
"The above panels for an $ \\alpha = 4 $ setting indicate that $ \\alpha $ and $ c $ affect outcomes\n",
@@ -1844,7 +1844,7 @@
},
{
"cell_type": "markdown",
- "id": "97bd8880",
+ "id": "a6a0e998",
"metadata": {},
"source": [
"### Time inconsistency of Ramsey plan\n",
@@ -1869,7 +1869,7 @@
},
{
"cell_type": "markdown",
- "id": "338807e9",
+ "id": "fdaaa71a",
"metadata": {},
"source": [
"### Implausibility of Ramsey plan\n",
@@ -1891,7 +1891,7 @@
},
{
"cell_type": "markdown",
- "id": "10b93ff3",
+ "id": "b622a196",
"metadata": {},
"source": [
"### Ramsey plan strikes back\n",
@@ -1908,7 +1908,7 @@
},
{
"cell_type": "markdown",
- "id": "412d44f5",
+ "id": "c93829a7",
"metadata": {},
"source": [
"## A fourth model of government decision making\n",
@@ -1931,7 +1931,7 @@
},
{
"cell_type": "markdown",
- "id": "7d7682d1",
+ "id": "7831f871",
"metadata": {},
"source": [
"### Government decisions\n",
@@ -1967,7 +1967,7 @@
},
{
"cell_type": "markdown",
- "id": "ffe5b3bb",
+ "id": "cdef8228",
"metadata": {},
"source": [
"### Temptation to deviate from plan\n",
@@ -1999,7 +1999,7 @@
},
{
"cell_type": "markdown",
- "id": "8c33b173",
+ "id": "94160a61",
"metadata": {},
"source": [
"## Sustainable or credible plan\n",
@@ -2042,7 +2042,7 @@
},
{
"cell_type": "markdown",
- "id": "9ac069e9",
+ "id": "93f99f7f",
"metadata": {},
"source": [
"### Abreu’s self-enforcing plan\n",
@@ -2114,7 +2114,7 @@
},
{
"cell_type": "markdown",
- "id": "54df1e2e",
+ "id": "de9477b5",
"metadata": {},
"source": [
"### Abreu’s carrot-stick plan\n",
@@ -2156,7 +2156,7 @@
},
{
"cell_type": "markdown",
- "id": "014ddaec",
+ "id": "be51ea60",
"metadata": {},
"source": [
"### Example of self-enforcing plan\n",
@@ -2185,7 +2185,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f9f6dfbc",
+ "id": "1ba6f1cc",
"metadata": {
"hide-output": false
},
@@ -2243,7 +2243,7 @@
},
{
"cell_type": "markdown",
- "id": "acc89db2",
+ "id": "5cadb2ff",
"metadata": {},
"source": [
"To confirm that the plan $ \\vec \\mu^A $ is **self-enforcing**, we\n",
@@ -2266,7 +2266,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "86af6b86",
+ "id": "1c8f7dc8",
"metadata": {
"hide-output": false
},
@@ -2277,7 +2277,7 @@
},
{
"cell_type": "markdown",
- "id": "3d860f49",
+ "id": "8da0804b",
"metadata": {},
"source": [
"Given that plan $ \\vec \\mu^A $ is self-enforcing, we can check that\n",
@@ -2291,7 +2291,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "646eb06a",
+ "id": "676d957f",
"metadata": {
"hide-output": false
},
@@ -2312,7 +2312,7 @@
},
{
"cell_type": "markdown",
- "id": "f6cf3918",
+ "id": "43f91976",
"metadata": {},
"source": [
"### Recursive representation of a sustainable plan\n",
@@ -2349,7 +2349,7 @@
},
{
"cell_type": "markdown",
- "id": "da9dbbf3",
+ "id": "2b6723b9",
"metadata": {},
"source": [
"## Whose plan is it?\n",
@@ -2372,7 +2372,7 @@
},
{
"cell_type": "markdown",
- "id": "5a340976",
+ "id": "25efbc22",
"metadata": {},
"source": [
"## Comparison of equilibrium values\n",
@@ -2397,7 +2397,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "80ee3b23",
+ "id": "9a693dd6",
"metadata": {
"hide-output": false
},
@@ -2409,7 +2409,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8ecfbfe0",
+ "id": "aeee003c",
"metadata": {
"hide-output": false
},
@@ -2421,7 +2421,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "022ccc0f",
+ "id": "cc8a4292",
"metadata": {
"hide-output": false
},
@@ -2432,7 +2432,7 @@
},
{
"cell_type": "markdown",
- "id": "12885cad",
+ "id": "61f2d8f6",
"metadata": {},
"source": [
"We have also computed **credible plans** for a government or sequence\n",
@@ -2447,7 +2447,7 @@
},
{
"cell_type": "markdown",
- "id": "2c1e382e",
+ "id": "4c6a00ab",
"metadata": {},
"source": [
"## Note on dynamic programming squared\n",
@@ -2469,7 +2469,7 @@
}
],
"metadata": {
- "date": 1723011580.9427352,
+ "date": 1723517847.0328875,
"filename": "calvo.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/calvo_machine_learn.ipynb b/_notebooks/calvo_machine_learn.ipynb
index 0af26675..d1a37c07 100644
--- a/_notebooks/calvo_machine_learn.ipynb
+++ b/_notebooks/calvo_machine_learn.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "7aaf85f3",
+ "id": "05376b6e",
"metadata": {},
"source": [
"# Machine Learning a Ramsey Plan"
@@ -10,7 +10,7 @@
},
{
"cell_type": "markdown",
- "id": "2b7d6e65",
+ "id": "a4b9ed60",
"metadata": {},
"source": [
"## Introduction\n",
@@ -71,7 +71,7 @@
},
{
"cell_type": "markdown",
- "id": "9b78c801",
+ "id": "dbefb338",
"metadata": {},
"source": [
"## The Model\n",
@@ -95,7 +95,7 @@
},
{
"cell_type": "markdown",
- "id": "abe59aac",
+ "id": "52b8e85b",
"metadata": {},
"source": [
"## Model components\n",
@@ -147,7 +147,7 @@
},
{
"cell_type": "markdown",
- "id": "29ea1009",
+ "id": "47158cdd",
"metadata": {},
"source": [
"## \n",
@@ -224,7 +224,7 @@
},
{
"cell_type": "markdown",
- "id": "2ddf4470",
+ "id": "5e070fa3",
"metadata": {},
"source": [
"## Parameters and variables\n",
@@ -246,7 +246,7 @@
},
{
"cell_type": "markdown",
- "id": "cb5e8419",
+ "id": "44e6ab8d",
"metadata": {},
"source": [
"### Basic objects\n",
@@ -315,7 +315,7 @@
},
{
"cell_type": "markdown",
- "id": "bac4fc0a",
+ "id": "972c15df",
"metadata": {},
"source": [
"## Approximations\n",
@@ -394,7 +394,7 @@
},
{
"cell_type": "markdown",
- "id": "b1b1c8b8",
+ "id": "0ba05584",
"metadata": {},
"source": [
"## A gradient algorithm\n",
@@ -408,7 +408,7 @@
},
{
"cell_type": "markdown",
- "id": "90fab0dd",
+ "id": "93d403c9",
"metadata": {},
"source": [
"### Implementation\n",
@@ -421,7 +421,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b956d8bb",
+ "id": "69942f96",
"metadata": {
"hide-output": false
},
@@ -435,7 +435,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d59b6cf6",
+ "id": "05735e8f",
"metadata": {
"hide-output": false
},
@@ -452,7 +452,7 @@
},
{
"cell_type": "markdown",
- "id": "13f84708",
+ "id": "cf7d7ba3",
"metadata": {},
"source": [
"First, because we’ll want to compare the results we obtain here with those obtained with another, more structured, approach, we copy the class `ChangLQ` to solve the LQ Chang model in this quantecon lecture [Ramsey Plans, Time Inconsistency, Sustainable Plans](https://python-advanced.quantecon.org/calvo.html).\n",
@@ -463,7 +463,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b5614500",
+ "id": "3de4839b",
"metadata": {
"hide-output": false
},
@@ -584,7 +584,7 @@
},
{
"cell_type": "markdown",
- "id": "c27e4ec6",
+ "id": "7fa46b78",
"metadata": {},
"source": [
"Now we compute the value of $ V $ under this setup, and compare it against those obtained in [Outcomes under three timing protocols](https://python-advanced.quantecon.org/calvo.html#compute-lq)."
@@ -593,7 +593,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bde203c6",
+ "id": "0fe5a893",
"metadata": {
"hide-output": false
},
@@ -607,7 +607,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4beac21c",
+ "id": "0d3a935d",
"metadata": {
"hide-output": false
},
@@ -665,7 +665,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0505e5c0",
+ "id": "d8f8dc99",
"metadata": {
"hide-output": false
},
@@ -679,7 +679,7 @@
},
{
"cell_type": "markdown",
- "id": "9f33e284",
+ "id": "04dbeeab",
"metadata": {},
"source": [
"Now we want to maximize the function $ V $ by choice of $ \\mu $.\n",
@@ -690,7 +690,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "01d7effa",
+ "id": "d240594b",
"metadata": {
"hide-output": false
},
@@ -730,7 +730,7 @@
},
{
"cell_type": "markdown",
- "id": "0a423ef7",
+ "id": "ebb0ecb3",
"metadata": {},
"source": [
"Here we use automatic differentiation functionality in JAX with `grad`."
@@ -739,7 +739,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "20c50df9",
+ "id": "4b440383",
"metadata": {
"hide-output": false
},
@@ -756,7 +756,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f185c5c0",
+ "id": "05b19a8f",
"metadata": {
"hide-output": false
},
@@ -773,7 +773,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0dd21522",
+ "id": "8a5273dd",
"metadata": {
"hide-output": false
},
@@ -785,7 +785,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e4fe137b",
+ "id": "c980b299",
"metadata": {
"hide-output": false
},
@@ -797,7 +797,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "79ca687a",
+ "id": "70adfa43",
"metadata": {
"hide-output": false
},
@@ -809,7 +809,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "389973be",
+ "id": "320a652f",
"metadata": {
"hide-output": false
},
@@ -820,7 +820,7 @@
},
{
"cell_type": "markdown",
- "id": "508df1c3",
+ "id": "9b98491b",
"metadata": {},
"source": [
"### Restricting $ \\mu_t = \\bar \\mu $ for all $ t $\n",
@@ -838,7 +838,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6faa0cf3",
+ "id": "ec0e69b4",
"metadata": {
"hide-output": false
},
@@ -859,7 +859,7 @@
},
{
"cell_type": "markdown",
- "id": "2d00a89d",
+ "id": "b6eaed13",
"metadata": {},
"source": [
"Compare it to $ \\mu^{CR} $ in [Ramsey Plans, Time Inconsistency, Sustainable Plans](https://python-advanced.quantecon.org/calvo.html), we again obtained a close estimate."
@@ -868,7 +868,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b09415ab",
+ "id": "d24c0b74",
"metadata": {
"hide-output": false
},
@@ -880,7 +880,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f3190f22",
+ "id": "90ca302d",
"metadata": {
"hide-output": false
},
@@ -893,7 +893,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "71c54fe0",
+ "id": "efd53478",
"metadata": {
"hide-output": false
},
@@ -904,7 +904,7 @@
},
{
"cell_type": "markdown",
- "id": "bcd895f6",
+ "id": "31477280",
"metadata": {},
"source": [
"## A more structured ML algorithm\n",
@@ -989,7 +989,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bbdbd017",
+ "id": "01d53d28",
"metadata": {
"hide-output": false
},
@@ -1008,7 +1008,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b9480dfe",
+ "id": "cd46857c",
"metadata": {
"hide-output": false
},
@@ -1022,7 +1022,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "50f2bb93",
+ "id": "df2f5691",
"metadata": {
"hide-output": false
},
@@ -1036,7 +1036,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a1b0c705",
+ "id": "43af1d79",
"metadata": {
"hide-output": false
},
@@ -1047,7 +1047,7 @@
},
{
"cell_type": "markdown",
- "id": "d950de02",
+ "id": "06db7de8",
"metadata": {},
"source": [
"As before, the Ramsey planner’s criterion is\n",
@@ -1133,7 +1133,7 @@
},
{
"cell_type": "markdown",
- "id": "0646bcce",
+ "id": "2576c6b9",
"metadata": {},
"source": [
"### Two implementations\n",
@@ -1144,7 +1144,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1dc7e638",
+ "id": "331a89ca",
"metadata": {
"hide-output": false
},
@@ -1172,7 +1172,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e7d46de7",
+ "id": "cf10f341",
"metadata": {
"hide-output": false
},
@@ -1189,7 +1189,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ef718668",
+ "id": "7cbfbbe2",
"metadata": {
"hide-output": false
},
@@ -1206,7 +1206,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ad551cd1",
+ "id": "c1818326",
"metadata": {
"hide-output": false
},
@@ -1218,7 +1218,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "176f3892",
+ "id": "2f1b7e38",
"metadata": {
"hide-output": false
},
@@ -1230,7 +1230,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "78a38ef2",
+ "id": "5ac99984",
"metadata": {
"hide-output": false
},
@@ -1242,7 +1242,7 @@
},
{
"cell_type": "markdown",
- "id": "1c9aec6f",
+ "id": "72bbaeae",
"metadata": {},
"source": [
"We find that by exploiting more knowledge about the structure of the problem, we can significantly speed up our computation.\n",
@@ -1253,7 +1253,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f608a9f9",
+ "id": "0cc2269f",
"metadata": {
"hide-output": false
},
@@ -1280,7 +1280,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d5416b13",
+ "id": "78ce4584",
"metadata": {
"hide-output": false
},
@@ -1292,7 +1292,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1ca91420",
+ "id": "16d0687f",
"metadata": {
"hide-output": false
},
@@ -1304,7 +1304,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "29871b90",
+ "id": "cff2b4aa",
"metadata": {
"hide-output": false
},
@@ -1315,7 +1315,7 @@
},
{
"cell_type": "markdown",
- "id": "29bf0237",
+ "id": "858d58fc",
"metadata": {},
"source": [
"We can check the gradient of the analytical solution against the `JAX` computed version"
@@ -1324,7 +1324,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "eb38c373",
+ "id": "f7da1383",
"metadata": {
"hide-output": false
},
@@ -1352,7 +1352,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "10ee7b8e",
+ "id": "66cd379a",
"metadata": {
"hide-output": false
},
@@ -1364,7 +1364,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c7e3bd9c",
+ "id": "ba06009d",
"metadata": {
"hide-output": false
},
@@ -1376,7 +1376,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8bfb6cb5",
+ "id": "82af02ad",
"metadata": {
"hide-output": false
},
@@ -1387,7 +1387,7 @@
},
{
"cell_type": "markdown",
- "id": "8885dc7e",
+ "id": "3c1ac701",
"metadata": {},
"source": [
"## Some Exploratory Regressions\n",
@@ -1419,7 +1419,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e4e91d16",
+ "id": "ba9683b7",
"metadata": {
"hide-output": false
},
@@ -1441,7 +1441,7 @@
},
{
"cell_type": "markdown",
- "id": "3154672b",
+ "id": "4f3fb7f6",
"metadata": {},
"source": [
"We notice that $ \\theta_t $ is less than $ \\mu_t $for low $ t $’s but that it eventually converges to\n",
@@ -1459,7 +1459,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e8634cad",
+ "id": "442773ba",
"metadata": {
"hide-output": false
},
@@ -1477,7 +1477,7 @@
},
{
"cell_type": "markdown",
- "id": "67914e64",
+ "id": "df811859",
"metadata": {},
"source": [
"Our regression tells us that along the Ramsey outcome $ \\vec \\mu, \\vec \\theta $ the linear function\n",
@@ -1498,7 +1498,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "606fa75e",
+ "id": "9f58502a",
"metadata": {
"hide-output": false
},
@@ -1514,7 +1514,7 @@
},
{
"cell_type": "markdown",
- "id": "91975ff5",
+ "id": "9b5bf1fe",
"metadata": {},
"source": [
"The time $ 0 $ pair $ (\\theta_0, \\mu_0) $ appears as the point on the upper right.\n",
@@ -1529,7 +1529,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "43e73224",
+ "id": "594920a0",
"metadata": {
"hide-output": false
},
@@ -1549,7 +1549,7 @@
},
{
"cell_type": "markdown",
- "id": "a7b38d60",
+ "id": "0658fa71",
"metadata": {},
"source": [
"We find that the regression line fits perfectly and thus discover the affine relationship\n",
@@ -1566,7 +1566,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a8defbba",
+ "id": "311a912d",
"metadata": {
"hide-output": false
},
@@ -1584,7 +1584,7 @@
},
{
"cell_type": "markdown",
- "id": "b36de2a6",
+ "id": "c730902a",
"metadata": {},
"source": [
"Points for succeeding times appear further and further to the lower left and eventually converge to\n",
@@ -1593,7 +1593,7 @@
},
{
"cell_type": "markdown",
- "id": "cd6426d5",
+ "id": "cf0dbc68",
"metadata": {},
"source": [
"### Continuation Values\n",
@@ -1618,7 +1618,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d80a9127",
+ "id": "d8390406",
"metadata": {
"hide-output": false
},
@@ -1655,7 +1655,7 @@
},
{
"cell_type": "markdown",
- "id": "4fa6fbcd",
+ "id": "501dbd01",
"metadata": {},
"source": [
"The initial continuation value $ v_0 $ should equals the optimized value of the Ramsey planner’s criterion $ V $ defined\n",
@@ -1667,7 +1667,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "eb40dd88",
+ "id": "886319f0",
"metadata": {
"hide-output": false
},
@@ -1678,7 +1678,7 @@
},
{
"cell_type": "markdown",
- "id": "fb35a5a3",
+ "id": "47b41d33",
"metadata": {},
"source": [
"We can also verify approximate equality by inspecting a graph of $ v_t $ against $ t $ for $ t=0, \\ldots, T $ along with the value attained by a restricted Ramsey planner $ V^{CR} $ and the optimized value of the ordinary Ramsey planner $ V^R $"
@@ -1687,7 +1687,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "18e24e10",
+ "id": "46a5ba06",
"metadata": {
"hide-output": false
},
@@ -1714,7 +1714,7 @@
},
{
"cell_type": "markdown",
- "id": "09a165d9",
+ "id": "9284a01d",
"metadata": {},
"source": [
"Figure Fig. 41.1 shows several striking patterns:\n",
@@ -1740,7 +1740,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f119c307",
+ "id": "076e236d",
"metadata": {
"hide-output": false
},
@@ -1759,7 +1759,7 @@
},
{
"cell_type": "markdown",
- "id": "9bd6873e",
+ "id": "727bbbd5",
"metadata": {},
"source": [
"The regression has an $ R^2 $ equal to $ 1 $ and so fits perfectly.\n",
@@ -1773,7 +1773,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "21330c9b",
+ "id": "ac8e786c",
"metadata": {
"hide-output": false
},
@@ -1784,7 +1784,7 @@
},
{
"cell_type": "markdown",
- "id": "1fb9d7a1",
+ "id": "c3399911",
"metadata": {},
"source": [
"Let’s plot $ v_t $ against $ \\theta_t $ along with the nonlinear regression line."
@@ -1793,7 +1793,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2e12fe9d",
+ "id": "d22bb74a",
"metadata": {
"hide-output": false
},
@@ -1820,7 +1820,7 @@
},
{
"cell_type": "markdown",
- "id": "3f0f3f45",
+ "id": "ebe59ed7",
"metadata": {},
"source": [
"The highest continuation value $ v_0 $ at $ t=0 $ appears at the peak of the function quadratic function\n",
@@ -1835,7 +1835,7 @@
},
{
"cell_type": "markdown",
- "id": "777a7df5",
+ "id": "a7735742",
"metadata": {},
"source": [
"## What has Machine Learning Taught Us?\n",
@@ -1915,7 +1915,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "23632be2",
+ "id": "f6d352c7",
"metadata": {
"hide-output": false
},
@@ -1926,7 +1926,7 @@
},
{
"cell_type": "markdown",
- "id": "dc341cb7",
+ "id": "2e1b2be9",
"metadata": {},
"source": [
"Now let’s print out the decision rule for $ \\mu_t $ uncovered by applying dynamic programming squared."
@@ -1935,7 +1935,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "726fe33b",
+ "id": "e47f0e6e",
"metadata": {
"hide-output": false
},
@@ -1947,7 +1947,7 @@
},
{
"cell_type": "markdown",
- "id": "428a63f7",
+ "id": "87fa6d88",
"metadata": {},
"source": [
"Now let’s print out the decision rule for $ \\theta_{t+1} $ uncovered by applying dynamic programming squared."
@@ -1956,7 +1956,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "66ec67be",
+ "id": "45c4b9da",
"metadata": {
"hide-output": false
},
@@ -1968,7 +1968,7 @@
},
{
"cell_type": "markdown",
- "id": "5ccc791d",
+ "id": "ad592b18",
"metadata": {},
"source": [
"Evidently, these agree with the relationships that we discovered by running regressions on the Ramsey outcomes $ \\vec \\mu^R, \\vec \\theta^R $ that we constructed with either of our machine learning algorithms.\n",
@@ -1989,7 +1989,7 @@
}
],
"metadata": {
- "date": 1723011581.0167055,
+ "date": 1723517847.1052845,
"filename": "calvo_machine_learn.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/cattle_cycles.ipynb b/_notebooks/cattle_cycles.ipynb
index 5e08c559..2b453f89 100644
--- a/_notebooks/cattle_cycles.ipynb
+++ b/_notebooks/cattle_cycles.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "b6a39835",
+ "id": "139f4746",
"metadata": {},
"source": [
"\n",
@@ -13,7 +13,7 @@
},
{
"cell_type": "markdown",
- "id": "43f859aa",
+ "id": "42d1b1eb",
"metadata": {},
"source": [
"# Cattle Cycles\n",
@@ -27,7 +27,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "003245fd",
+ "id": "2b021dae",
"metadata": {
"hide-output": false
},
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "5beabf55",
+ "id": "37465581",
"metadata": {},
"source": [
"This lecture uses the DLE class to construct instances of the “Cattle Cycles” model\n",
@@ -53,7 +53,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3fb6de84",
+ "id": "58dd6dbc",
"metadata": {
"hide-output": false
},
@@ -68,7 +68,7 @@
},
{
"cell_type": "markdown",
- "id": "359e6825",
+ "id": "db3bd433",
"metadata": {},
"source": [
"## The Model\n",
@@ -130,7 +130,7 @@
},
{
"cell_type": "markdown",
- "id": "9eedfd10",
+ "id": "70294416",
"metadata": {},
"source": [
"## Mapping into HS2013 Framework"
@@ -138,7 +138,7 @@
},
{
"cell_type": "markdown",
- "id": "3228495a",
+ "id": "1239f17a",
"metadata": {},
"source": [
"### Preferences\n",
@@ -153,7 +153,7 @@
},
{
"cell_type": "markdown",
- "id": "c868cddf",
+ "id": "6475843c",
"metadata": {},
"source": [
"### Technology\n",
@@ -203,7 +203,7 @@
},
{
"cell_type": "markdown",
- "id": "60f1fd47",
+ "id": "545fb9ef",
"metadata": {},
"source": [
"### Information\n",
@@ -242,7 +242,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3ed26a64",
+ "id": "cb7e398a",
"metadata": {
"hide-output": false
},
@@ -258,7 +258,7 @@
},
{
"cell_type": "markdown",
- "id": "59d8738b",
+ "id": "4be28461",
"metadata": {},
"source": [
"We set parameters to those used by [[Rosen *et al.*, 1994](https://python-advanced.quantecon.org/zreferences.html#id70)]"
@@ -267,7 +267,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ea5dc34f",
+ "id": "8c7e896e",
"metadata": {
"hide-output": false
},
@@ -341,7 +341,7 @@
},
{
"cell_type": "markdown",
- "id": "e7d41231",
+ "id": "7657888a",
"metadata": {},
"source": [
"Notice that we have set $ \\rho_1 = \\rho_2 = 0 $, so $ h_t $ and\n",
@@ -358,7 +358,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6d34ef90",
+ "id": "8e4194c3",
"metadata": {
"hide-output": false
},
@@ -391,7 +391,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6a3bfefa",
+ "id": "b4b5cc79",
"metadata": {
"hide-output": false
},
@@ -410,7 +410,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e6aea79c",
+ "id": "d25d141a",
"metadata": {
"hide-output": false
},
@@ -421,7 +421,7 @@
},
{
"cell_type": "markdown",
- "id": "050d983e",
+ "id": "440b8492",
"metadata": {},
"source": [
"[[Rosen *et al.*, 1994](https://python-advanced.quantecon.org/zreferences.html#id70)] use the model to understand the\n",
@@ -434,7 +434,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "642c2e54",
+ "id": "540e3bcb",
"metadata": {
"hide-output": false
},
@@ -451,7 +451,7 @@
},
{
"cell_type": "markdown",
- "id": "73fdc4b2",
+ "id": "375e410b",
"metadata": {},
"source": [
"In their Figure 3, [[Rosen *et al.*, 1994](https://python-advanced.quantecon.org/zreferences.html#id70)] plot the impulse response functions\n",
@@ -464,7 +464,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e4d719c8",
+ "id": "dd458947",
"metadata": {
"hide-output": false
},
@@ -493,7 +493,7 @@
},
{
"cell_type": "markdown",
- "id": "57462eef",
+ "id": "b494cf24",
"metadata": {},
"source": [
"The above figures show how consumption patterns differ markedly,\n",
@@ -516,7 +516,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "29813e61",
+ "id": "d9cb9745",
"metadata": {
"hide-output": false
},
@@ -538,7 +538,7 @@
},
{
"cell_type": "markdown",
- "id": "b4787d41",
+ "id": "170eae3a",
"metadata": {},
"source": [
"The fact that $ y_t $ is a weighted moving average of $ x_t $\n",
@@ -549,7 +549,7 @@
}
],
"metadata": {
- "date": 1723011581.0387359,
+ "date": 1723517847.1267962,
"filename": "cattle_cycles.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/chang_credible.ipynb b/_notebooks/chang_credible.ipynb
index 0a7d0027..07eee0a9 100644
--- a/_notebooks/chang_credible.ipynb
+++ b/_notebooks/chang_credible.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "bec6d9ee",
+ "id": "862e7fd3",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "e4b66f9a",
+ "id": "94f8dd42",
"metadata": {},
"source": [
"# Credible Government Policies in a Model of Chang\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a53e309a",
+ "id": "72ace7b7",
"metadata": {
"hide-output": false
},
@@ -33,7 +33,7 @@
},
{
"cell_type": "markdown",
- "id": "4f3b60f2",
+ "id": "f1e3a6f1",
"metadata": {},
"source": [
"## Overview\n",
@@ -92,7 +92,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e745c9e3",
+ "id": "5f9fd976",
"metadata": {
"hide-output": false
},
@@ -105,7 +105,7 @@
},
{
"cell_type": "markdown",
- "id": "b400f0d9",
+ "id": "b616dfbb",
"metadata": {},
"source": [
"## The Setting\n",
@@ -160,7 +160,7 @@
},
{
"cell_type": "markdown",
- "id": "5b6443d7",
+ "id": "54096150",
"metadata": {},
"source": [
"### The Household’s Problem\n",
@@ -221,7 +221,7 @@
},
{
"cell_type": "markdown",
- "id": "3261dba0",
+ "id": "1c09b731",
"metadata": {},
"source": [
"### Government\n",
@@ -263,10 +263,9 @@
"y_t = f(x_t) \\tag{48.5}\n",
"$$\n",
"\n",
- "where $ f: \\mathbb{R}\\rightarrow \\mathbb{R} $ satisfies $ f(x) > 0 $,\n",
- "is twice continuously differentiable, $ f''(x) < 0 $, and\n",
- "$ f(x) = f(-x) $ for all $ x \\in\n",
- "\\mathbb{R} $, so that subsidies and taxes are equally distorting.\n",
+ "where $ f: \\mathbb{R}\\rightarrow \\mathbb{R} $ satisfies $ f(x) > 0 $, $ f(x) $\n",
+ "is twice continuously differentiable, $ f''(x) < 0 $, $ f'(0) = 0 $, and\n",
+ "$ f(x) = f(-x) $ for all $ x \\in \\mathbb{R} $, so that subsidies and taxes are equally distorting.\n",
"\n",
"The purpose is not to model the causes of tax distortions in any detail but simply to summarize\n",
"the *outcome* of those distortions via the function $ f(x) $.\n",
@@ -280,7 +279,7 @@
},
{
"cell_type": "markdown",
- "id": "ee260de5",
+ "id": "27c7c477",
"metadata": {},
"source": [
"### Within-period Timing Protocol\n",
@@ -310,7 +309,7 @@
},
{
"cell_type": "markdown",
- "id": "62a7f98b",
+ "id": "b7c2e1fd",
"metadata": {},
"source": [
"### Household’s Problem\n",
@@ -377,7 +376,7 @@
},
{
"cell_type": "markdown",
- "id": "3c0b33e4",
+ "id": "25f71524",
"metadata": {},
"source": [
"### Competitive Equilibrium\n",
@@ -403,7 +402,7 @@
},
{
"cell_type": "markdown",
- "id": "a29a0a1b",
+ "id": "a76a795c",
"metadata": {},
"source": [
"### A Credible Government Policy\n",
@@ -486,7 +485,7 @@
},
{
"cell_type": "markdown",
- "id": "12ed64dd",
+ "id": "521a18cf",
"metadata": {},
"source": [
"### Sustainable Plans\n",
@@ -663,7 +662,7 @@
},
{
"cell_type": "markdown",
- "id": "4673e27e",
+ "id": "8df1d363",
"metadata": {},
"source": [
"## Calculating the Set of Sustainable Promise-Value Pairs\n",
@@ -851,7 +850,7 @@
"following functional forms:\n",
"\n",
"$$\n",
- "u(c) = log(c)\n",
+ "u(c) = \\log(c)\n",
"$$\n",
"\n",
"$$\n",
@@ -879,7 +878,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b68157e2",
+ "id": "ba856c97",
"metadata": {
"hide-output": false
},
@@ -1387,7 +1386,7 @@
},
{
"cell_type": "markdown",
- "id": "70db6595",
+ "id": "e6b216a2",
"metadata": {},
"source": [
"### Comparison of Sets\n",
@@ -1402,7 +1401,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bc13b21d",
+ "id": "15685ea7",
"metadata": {
"hide-output": false
},
@@ -1414,7 +1413,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6ee911a4",
+ "id": "53d92867",
"metadata": {
"hide-output": false
},
@@ -1425,7 +1424,7 @@
},
{
"cell_type": "markdown",
- "id": "952443ab",
+ "id": "7de228af",
"metadata": {},
"source": [
"The following plot shows both the set of $ w,\\theta $ pairs associated with competitive equilibria (in red)\n",
@@ -1435,7 +1434,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e1eda8fd",
+ "id": "2f1dc2fd",
"metadata": {
"hide-output": false
},
@@ -1477,7 +1476,7 @@
},
{
"cell_type": "markdown",
- "id": "6685afd7",
+ "id": "15afd969",
"metadata": {},
"source": [
"Evidently, the Ramsey plan, denoted by the $ R $, is not sustainable.\n",
@@ -1488,7 +1487,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1f0c85ce",
+ "id": "e0cb7c58",
"metadata": {
"hide-output": false
},
@@ -1501,7 +1500,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e939866c",
+ "id": "210d63da",
"metadata": {
"hide-output": false
},
@@ -1512,7 +1511,7 @@
},
{
"cell_type": "markdown",
- "id": "449c2f6c",
+ "id": "662fb0ac",
"metadata": {},
"source": [
"Let’s plot both sets"
@@ -1521,7 +1520,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4cdbf33f",
+ "id": "8f86b3a5",
"metadata": {
"hide-output": false
},
@@ -1532,7 +1531,7 @@
},
{
"cell_type": "markdown",
- "id": "efad2ee2",
+ "id": "cd6d8f76",
"metadata": {},
"source": [
"Evidently, the Ramsey plan is now sustainable."
@@ -1540,7 +1539,7 @@
}
],
"metadata": {
- "date": 1723011581.0839624,
+ "date": 1723517847.1704562,
"filename": "chang_credible.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/chang_ramsey.ipynb b/_notebooks/chang_ramsey.ipynb
index 2ca902d2..26c7bd8d 100644
--- a/_notebooks/chang_ramsey.ipynb
+++ b/_notebooks/chang_ramsey.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "ff3207a1",
+ "id": "765b48ac",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "c66dfcf6",
+ "id": "310caf20",
"metadata": {},
"source": [
"# Competitive Equilibria of a Model of Chang\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "197563bc",
+ "id": "d357ff1b",
"metadata": {
"hide-output": false
},
@@ -33,7 +33,7 @@
},
{
"cell_type": "markdown",
- "id": "f21d9663",
+ "id": "d8254cfd",
"metadata": {},
"source": [
"## Overview\n",
@@ -81,7 +81,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cfd20bba",
+ "id": "a9f403b3",
"metadata": {
"hide-output": false
},
@@ -94,7 +94,7 @@
},
{
"cell_type": "markdown",
- "id": "8bf5f255",
+ "id": "5dd152f9",
"metadata": {},
"source": [
"### The Setting\n",
@@ -152,15 +152,15 @@
},
{
"cell_type": "markdown",
- "id": "ce8a0eea",
+ "id": "32b57f3b",
"metadata": {},
"source": [
- "## Setting"
+ "## Decisions"
]
},
{
"cell_type": "markdown",
- "id": "be4de7d8",
+ "id": "92403422",
"metadata": {},
"source": [
"### The Household’s Problem\n",
@@ -169,7 +169,7 @@
"$ \\vec q $ and sequences $ \\vec y, \\vec x $ of income and total\n",
"tax collections, respectively.\n",
"\n",
- "The household chooses nonnegative\n",
+ "Facing vector $ \\vec q $ as a price taker, the representative household chooses nonnegative\n",
"sequences $ \\vec c, \\vec M $ of consumption and nominal balances,\n",
"respectively, to maximize\n",
"\n",
@@ -211,8 +211,8 @@
"Inequality [(47.2)](#equation-eqn-chang-ramsey2) is the household’s time $ t $ budget constraint.\n",
"\n",
"It tells how real balances $ q_t M_t $ carried out of period $ t $ depend\n",
- "on income, consumption, taxes, and real balances $ q_t M_{t-1} $\n",
- "carried into the period.\n",
+ "on real balances $ q_t M_{t-1} $\n",
+ "carried into period $ t $, income, consumption, taxes.\n",
"\n",
"Equation [(47.3)](#equation-eqn-chang-ramsey3) imposes an exogenous upper bound\n",
"$ \\bar m $ on the household’s choice of real balances, where\n",
@@ -221,7 +221,7 @@
},
{
"cell_type": "markdown",
- "id": "ce2aa067",
+ "id": "124fa2a2",
"metadata": {},
"source": [
"### Government\n",
@@ -232,8 +232,28 @@
"[ \\underline \\pi, \\overline \\pi] $, where\n",
"$ 0 < \\underline \\pi < 1 < { 1 \\over \\beta } \\leq \\overline \\pi $.\n",
"\n",
- "The government faces a sequence of budget constraints with time\n",
- "$ t $ component\n",
+ "The government purchases no goods.\n",
+ "\n",
+ "It taxes only to acquire paper currency that it will withdraw from circulation (e.g., by burning it).\n",
+ "\n",
+ "Let $ p_t $ be the price level at time $ t $, measured as time $ t $ dollars per unit of the consumption good.\n",
+ "\n",
+ "Evidently, the value of paper currency meassured in units of the consumption good at time $ t $ is\n",
+ "\n",
+ "$$\n",
+ "q_t = \\frac{1}{p_t} .\n",
+ "$$\n",
+ "\n",
+ "The government faces a sequence of budget constraints with time $ t $ component\n",
+ "\n",
+ "$$\n",
+ "x_t + \\frac{M_{t} - M_{t-1}}{p_t} = 0,\n",
+ "$$\n",
+ "\n",
+ "where $ x_t $ is the real value of revenue that the government raises from taxes and $ \\frac{M_{t} - M_{t-1}}{p_t} $ is\n",
+ "the real value of revenue that the government raises by printing new paper currency.\n",
+ "\n",
+ "Evidently, this budget constraint can be rewritten as\n",
"\n",
"$$\n",
"-x_t = q_t (M_t - M_{t-1})\n",
@@ -248,7 +268,7 @@
"-x_t = m_t (1-h_t) \\tag{47.4}\n",
"$$\n",
"\n",
- "The restrictions $ m_t \\in [0, \\bar m] $ and $ h_t \\in \\Pi $ evidently\n",
+ "The restrictions $ m_t \\in [0, \\bar m] $ and $ h_t \\in \\Pi = [\\underline \\pi, \\overline \\pi] $ evidently\n",
"imply that $ x_t \\in X \\equiv [(\\underline \\pi -1)\\bar m,\n",
"(\\overline \\pi -1) \\bar m] $.\n",
"\n",
@@ -264,10 +284,27 @@
"y_t = f(x_t), \\tag{47.5}\n",
"$$\n",
"\n",
- "where $ f: \\mathbb{R}\\rightarrow \\mathbb{R} $ satisfies $ f(x) > 0 $,\n",
- "is twice continuously differentiable, $ f''(x) < 0 $, and\n",
- "$ f(x) = f(-x) $ for all $ x \\in\n",
- "\\mathbb{R} $, so that subsidies and taxes are equally distorting.\n",
+ "where $ f: \\mathbb{R}\\rightarrow \\mathbb{R} $ satisfies $ f(x) > 0 $, $ f(x) $\n",
+ "is twice continuously differentiable, $ f''(x) < 0 $, $ f'(0) = 0 $, and\n",
+ "$ f(x) = f(-x) $ for all $ x \\in \\mathbb{R} $, so that subsidies and taxes are equally distorting.\n",
+ "\n",
+ "**Example parameterizations**\n",
+ "\n",
+ "In some of our Python code deployed later in this lecture, we’ll assume the following functional forms:\n",
+ "\n",
+ "$$\n",
+ "u(c) = \\log(c)\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "v(m) = \\frac{1}{500}(m \\bar m - 0.5m^2)^{0.5}\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "f(x) = 180 - (0.4x)^2\n",
+ "$$\n",
+ "\n",
+ "**The tax distortion function**\n",
"\n",
"Calvo’s and Chang’s purpose is not to model the causes of tax distortions in\n",
"any detail but simply to summarize\n",
@@ -313,7 +350,7 @@
},
{
"cell_type": "markdown",
- "id": "80ab372a",
+ "id": "71954310",
"metadata": {},
"source": [
"### Household’s Problem\n",
@@ -385,7 +422,7 @@
},
{
"cell_type": "markdown",
- "id": "d3c8507b",
+ "id": "40ebddeb",
"metadata": {},
"source": [
"## Competitive Equilibrium\n",
@@ -411,7 +448,7 @@
},
{
"cell_type": "markdown",
- "id": "4a5fe353",
+ "id": "eb7a92f9",
"metadata": {},
"source": [
"## Inventory of Objects in Play\n",
@@ -470,7 +507,7 @@
},
{
"cell_type": "markdown",
- "id": "5401c5ba",
+ "id": "51a308cd",
"metadata": {},
"source": [
"## Analysis\n",
@@ -644,7 +681,7 @@
},
{
"cell_type": "markdown",
- "id": "fcd18d7f",
+ "id": "a0568025",
"metadata": {},
"source": [
"### Some Useful Notation\n",
@@ -711,7 +748,7 @@
},
{
"cell_type": "markdown",
- "id": "347efee8",
+ "id": "b543499b",
"metadata": {},
"source": [
"### Another Operator\n",
@@ -813,7 +850,7 @@
},
{
"cell_type": "markdown",
- "id": "eb024127",
+ "id": "8a20a29b",
"metadata": {},
"source": [
"## Calculating all Promise-Value Pairs in CE\n",
@@ -941,7 +978,7 @@
"following functional forms:\n",
"\n",
"$$\n",
- "u(c) = log(c)\n",
+ "u(c) = \\log(c)\n",
"$$\n",
"\n",
"$$\n",
@@ -966,7 +1003,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d367a3fb",
+ "id": "dbed865f",
"metadata": {
"hide-output": false
},
@@ -1475,7 +1512,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "84f4f7d2",
+ "id": "534cec99",
"metadata": {
"hide-output": false
},
@@ -1488,7 +1525,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fe9cc42f",
+ "id": "5a379129",
"metadata": {
"hide-output": false
},
@@ -1529,7 +1566,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "789ca9fc",
+ "id": "4dc9afcb",
"metadata": {
"hide-output": false
},
@@ -1543,7 +1580,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "014fe4c5",
+ "id": "db474d52",
"metadata": {
"hide-output": false
},
@@ -1554,7 +1591,7 @@
},
{
"cell_type": "markdown",
- "id": "841d89d1",
+ "id": "3351a51d",
"metadata": {},
"source": [
"## Solving a Continuation Ramsey Planner’s Bellman Equation\n",
@@ -1615,7 +1652,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bb7b2bdf",
+ "id": "193a3183",
"metadata": {
"hide-output": false
},
@@ -1630,7 +1667,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ec6f8007",
+ "id": "79993065",
"metadata": {
"hide-output": false
},
@@ -1642,7 +1679,7 @@
},
{
"cell_type": "markdown",
- "id": "0343a5fa",
+ "id": "ae7213c2",
"metadata": {},
"source": [
"First, a quick check that our approximations of the value functions are\n",
@@ -1654,7 +1691,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3a712a1d",
+ "id": "92c161f8",
"metadata": {
"hide-output": false
},
@@ -1665,7 +1702,7 @@
},
{
"cell_type": "markdown",
- "id": "78e9c0f6",
+ "id": "70493818",
"metadata": {},
"source": [
"The value functions plotted below trace out the right edges of the sets\n",
@@ -1675,7 +1712,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "21a5ad14",
+ "id": "daf48244",
"metadata": {
"hide-output": false
},
@@ -1694,7 +1731,7 @@
},
{
"cell_type": "markdown",
- "id": "599a4ed2",
+ "id": "3c24ec93",
"metadata": {},
"source": [
"The next figure plots the optimal policy functions; values of\n",
@@ -1704,7 +1741,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e7e15018",
+ "id": "87966cf1",
"metadata": {
"hide-output": false
},
@@ -1729,7 +1766,7 @@
},
{
"cell_type": "markdown",
- "id": "e56d11e3",
+ "id": "62bcfe88",
"metadata": {},
"source": [
"With the first set of parameter values, the value of $ \\theta' $ chosen by the Ramsey\n",
@@ -1750,7 +1787,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c044d31e",
+ "id": "3db1052f",
"metadata": {
"hide-output": false
},
@@ -1769,7 +1806,7 @@
},
{
"cell_type": "markdown",
- "id": "32298a6e",
+ "id": "3c016374",
"metadata": {},
"source": [
"Subproblem 2 is equivalent to the planner choosing the initial value of\n",
@@ -1785,7 +1822,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5d2d12da",
+ "id": "6e03df5f",
"metadata": {
"hide-output": false
},
@@ -1808,7 +1845,7 @@
},
{
"cell_type": "markdown",
- "id": "d451c64d",
+ "id": "a8e6a226",
"metadata": {},
"source": [
"### Next Steps\n",
@@ -1824,7 +1861,7 @@
}
],
"metadata": {
- "date": 1723011581.3473868,
+ "date": 1723517847.2300484,
"filename": "chang_ramsey.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/classical_filtering.ipynb b/_notebooks/classical_filtering.ipynb
index bae6805a..656d6f6d 100644
--- a/_notebooks/classical_filtering.ipynb
+++ b/_notebooks/classical_filtering.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "46d54900",
+ "id": "40273a9d",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "82954f52",
+ "id": "5f701783",
"metadata": {},
"source": [
"# Classical Prediction and Filtering With Linear Algebra"
@@ -19,7 +19,7 @@
},
{
"cell_type": "markdown",
- "id": "64a8ee55",
+ "id": "0879792f",
"metadata": {},
"source": [
"## Overview\n",
@@ -72,7 +72,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9789f9ed",
+ "id": "b5c471c2",
"metadata": {
"hide-output": false
},
@@ -83,7 +83,7 @@
},
{
"cell_type": "markdown",
- "id": "da50445b",
+ "id": "4d691b51",
"metadata": {},
"source": [
"### References\n",
@@ -93,7 +93,7 @@
},
{
"cell_type": "markdown",
- "id": "09a512c4",
+ "id": "30e859cb",
"metadata": {},
"source": [
"## Finite Dimensional Prediction\n",
@@ -245,7 +245,7 @@
},
{
"cell_type": "markdown",
- "id": "446ae0e2",
+ "id": "976c8d0e",
"metadata": {},
"source": [
"### Implementation\n",
@@ -256,7 +256,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f147549a",
+ "id": "dcf9ecbe",
"metadata": {
"hide-output": false
},
@@ -572,7 +572,7 @@
},
{
"cell_type": "markdown",
- "id": "76f1f4cf",
+ "id": "f15665f5",
"metadata": {},
"source": [
"Let’s use this code to tackle two interesting examples."
@@ -580,7 +580,7 @@
},
{
"cell_type": "markdown",
- "id": "f101e363",
+ "id": "1d8fabeb",
"metadata": {},
"source": [
"### Example 1\n",
@@ -603,7 +603,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1756fe30",
+ "id": "b5d13215",
"metadata": {
"hide-output": false
},
@@ -619,7 +619,7 @@
},
{
"cell_type": "markdown",
- "id": "bb61491b",
+ "id": "31f348be",
"metadata": {},
"source": [
"The Wold representation is computed by `example.coeffs_of_c()`.\n",
@@ -630,7 +630,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0fb3075e",
+ "id": "14b23ec3",
"metadata": {
"hide-output": false
},
@@ -642,7 +642,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1a38de6a",
+ "id": "8473df47",
"metadata": {
"hide-output": false
},
@@ -653,7 +653,7 @@
},
{
"cell_type": "markdown",
- "id": "5eac7cd2",
+ "id": "779f1843",
"metadata": {},
"source": [
"Now let’s form the covariance matrix of a time series vector of length $ N $\n",
@@ -666,7 +666,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7897cfac",
+ "id": "d5ef0e71",
"metadata": {
"hide-output": false
},
@@ -678,7 +678,7 @@
},
{
"cell_type": "markdown",
- "id": "3a1ea752",
+ "id": "893bf2c5",
"metadata": {},
"source": [
"Notice how the lower rows of the “moving average representations” are converging to the appropriate infinite history Wold representation\n",
@@ -688,7 +688,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0724ff9f",
+ "id": "7b8b0886",
"metadata": {
"hide-output": false
},
@@ -700,7 +700,7 @@
},
{
"cell_type": "markdown",
- "id": "52ac66f6",
+ "id": "6e520bfb",
"metadata": {},
"source": [
"Notice how the lower rows of the “autoregressive representations” are converging to the appropriate infinite-history\n",
@@ -710,7 +710,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b2c992aa",
+ "id": "56bea0af",
"metadata": {
"hide-output": false
},
@@ -722,7 +722,7 @@
},
{
"cell_type": "markdown",
- "id": "496c6160",
+ "id": "d05b16d7",
"metadata": {},
"source": [
"### Example 2\n",
@@ -749,7 +749,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "57cdb558",
+ "id": "5d7d37fc",
"metadata": {
"hide-output": false
},
@@ -767,7 +767,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "20f38ac1",
+ "id": "f360c92c",
"metadata": {
"hide-output": false
},
@@ -779,7 +779,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "43705dc1",
+ "id": "87fe6528",
"metadata": {
"hide-output": false
},
@@ -792,7 +792,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7335e125",
+ "id": "52872552",
"metadata": {
"hide-output": false
},
@@ -805,7 +805,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "08d8d083",
+ "id": "2f90d866",
"metadata": {
"hide-output": false
},
@@ -817,7 +817,7 @@
},
{
"cell_type": "markdown",
- "id": "6e30bf4e",
+ "id": "3839f4be",
"metadata": {},
"source": [
"### Prediction\n",
@@ -899,7 +899,7 @@
},
{
"cell_type": "markdown",
- "id": "6aed92dc",
+ "id": "f3c2ced6",
"metadata": {},
"source": [
"## Combined Finite Dimensional Control and Prediction\n",
@@ -987,7 +987,7 @@
},
{
"cell_type": "markdown",
- "id": "da01cb99",
+ "id": "5a3a4634",
"metadata": {},
"source": [
"## Infinite Horizon Prediction and Filtering Problems\n",
@@ -1053,7 +1053,7 @@
},
{
"cell_type": "markdown",
- "id": "67e86202",
+ "id": "04226fec",
"metadata": {},
"source": [
"### Problem Formulation\n",
@@ -1433,7 +1433,7 @@
},
{
"cell_type": "markdown",
- "id": "3eeeb933",
+ "id": "3643437f",
"metadata": {},
"source": [
"## Exercises"
@@ -1441,7 +1441,7 @@
},
{
"cell_type": "markdown",
- "id": "f38766fc",
+ "id": "3cdfd9d8",
"metadata": {},
"source": [
"## Exercise 32.1\n",
@@ -1476,7 +1476,7 @@
},
{
"cell_type": "markdown",
- "id": "ec915f9b",
+ "id": "bce95764",
"metadata": {},
"source": [
"## Exercise 32.2\n",
@@ -1556,7 +1556,7 @@
}
],
"metadata": {
- "date": 1723011581.401782,
+ "date": 1723517847.2810225,
"filename": "classical_filtering.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/coase.ipynb b/_notebooks/coase.ipynb
index cc52c36b..c43c9ea7 100644
--- a/_notebooks/coase.ipynb
+++ b/_notebooks/coase.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "5a85cd6c",
+ "id": "828f6e19",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "ee5d9f1c",
+ "id": "978d171d",
"metadata": {},
"source": [
"# Coase’s Theory of the Firm"
@@ -19,7 +19,7 @@
},
{
"cell_type": "markdown",
- "id": "eae938be",
+ "id": "f57735d8",
"metadata": {},
"source": [
"## Overview\n",
@@ -50,7 +50,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "512dd6fe",
+ "id": "f1f9b473",
"metadata": {
"hide-output": false
},
@@ -63,7 +63,7 @@
},
{
"cell_type": "markdown",
- "id": "a53b9f85",
+ "id": "7a32ee68",
"metadata": {},
"source": [
"### Why Firms Exist\n",
@@ -96,7 +96,7 @@
},
{
"cell_type": "markdown",
- "id": "2cdf7450",
+ "id": "e5e89c8f",
"metadata": {},
"source": [
"### A Trade-Off\n",
@@ -133,7 +133,7 @@
},
{
"cell_type": "markdown",
- "id": "0744861c",
+ "id": "4543bbd5",
"metadata": {},
"source": [
"### Summary\n",
@@ -147,7 +147,7 @@
},
{
"cell_type": "markdown",
- "id": "61d310b8",
+ "id": "2f200bee",
"metadata": {},
"source": [
"### A Quantitative Interpretation\n",
@@ -165,7 +165,7 @@
},
{
"cell_type": "markdown",
- "id": "5de9a5c8",
+ "id": "69f56de5",
"metadata": {},
"source": [
"## The Model\n",
@@ -181,7 +181,7 @@
},
{
"cell_type": "markdown",
- "id": "1f4afc52",
+ "id": "867a1d1d",
"metadata": {},
"source": [
"### Subcontracting\n",
@@ -224,7 +224,7 @@
},
{
"cell_type": "markdown",
- "id": "9814fc6a",
+ "id": "f942e373",
"metadata": {},
"source": [
"### Costs\n",
@@ -254,7 +254,7 @@
},
{
"cell_type": "markdown",
- "id": "9f667847",
+ "id": "6f7d178c",
"metadata": {},
"source": [
"## Equilibrium\n",
@@ -277,7 +277,7 @@
},
{
"cell_type": "markdown",
- "id": "18632bd9",
+ "id": "16be544a",
"metadata": {},
"source": [
"### Informal Definition of Equilibrium\n",
@@ -291,7 +291,7 @@
},
{
"cell_type": "markdown",
- "id": "dbb2189a",
+ "id": "8d40b143",
"metadata": {},
"source": [
"### Formal Definition of Equilibrium\n",
@@ -349,7 +349,7 @@
},
{
"cell_type": "markdown",
- "id": "27862621",
+ "id": "1f26c37a",
"metadata": {},
"source": [
"## Existence, Uniqueness and Computation of Equilibria\n",
@@ -359,7 +359,7 @@
},
{
"cell_type": "markdown",
- "id": "4e3b1ab6",
+ "id": "b0737123",
"metadata": {},
"source": [
"### A Fixed Point Method\n",
@@ -460,7 +460,7 @@
},
{
"cell_type": "markdown",
- "id": "a3d6b5c1",
+ "id": "f71802b0",
"metadata": {},
"source": [
"### Marginal Conditions\n",
@@ -514,7 +514,7 @@
},
{
"cell_type": "markdown",
- "id": "6b19eaca",
+ "id": "d22cd991",
"metadata": {},
"source": [
"## Implementation\n",
@@ -539,7 +539,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bda0326d",
+ "id": "99c1479e",
"metadata": {
"hide-output": false
},
@@ -558,7 +558,7 @@
},
{
"cell_type": "markdown",
- "id": "7fd6024e",
+ "id": "13bf09da",
"metadata": {},
"source": [
"Now let’s implement and iterate with $ T $ until convergence.\n",
@@ -570,7 +570,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a7bab599",
+ "id": "abd73645",
"metadata": {
"hide-output": false
},
@@ -609,7 +609,7 @@
},
{
"cell_type": "markdown",
- "id": "07402a0a",
+ "id": "bbde6a6a",
"metadata": {},
"source": [
"The next function computes optimal choice of upstream boundary and range of\n",
@@ -619,7 +619,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "05082969",
+ "id": "ef2537ea",
"metadata": {
"hide-output": false
},
@@ -646,7 +646,7 @@
},
{
"cell_type": "markdown",
- "id": "59848cc9",
+ "id": "0b24e23b",
"metadata": {},
"source": [
"The allocation of firms can be computed by recursively stepping through firms’ choices of\n",
@@ -658,7 +658,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f45b47dd",
+ "id": "58d80a36",
"metadata": {
"hide-output": false
},
@@ -675,7 +675,7 @@
},
{
"cell_type": "markdown",
- "id": "e2079116",
+ "id": "688e488f",
"metadata": {},
"source": [
"Let’s try this at the default parameters.\n",
@@ -687,7 +687,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "56fffa9e",
+ "id": "289b5654",
"metadata": {
"hide-output": false
},
@@ -710,7 +710,7 @@
},
{
"cell_type": "markdown",
- "id": "1f894225",
+ "id": "3940897c",
"metadata": {},
"source": [
"Here’s the function $ \\ell^* $, which shows how large a firm with\n",
@@ -720,7 +720,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "13b05de8",
+ "id": "3a16683f",
"metadata": {
"hide-output": false
},
@@ -739,7 +739,7 @@
},
{
"cell_type": "markdown",
- "id": "829160a3",
+ "id": "26a20951",
"metadata": {},
"source": [
"Note that downstream firms choose to be larger, a point we return to below."
@@ -747,7 +747,7 @@
},
{
"cell_type": "markdown",
- "id": "c8715016",
+ "id": "15d6cf4b",
"metadata": {},
"source": [
"## Exercises\n",
@@ -758,7 +758,7 @@
},
{
"cell_type": "markdown",
- "id": "07d187ba",
+ "id": "ac7d53e6",
"metadata": {},
"source": [
"## Exercise 15.1\n",
@@ -772,7 +772,7 @@
},
{
"cell_type": "markdown",
- "id": "53f612d6",
+ "id": "170b9fb3",
"metadata": {},
"source": [
"## Solution to[ Exercise 15.1](https://python-advanced.quantecon.org/#coa_ex1)\n",
@@ -783,7 +783,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "54cd18aa",
+ "id": "c9c6dfd3",
"metadata": {
"hide-output": false
},
@@ -800,7 +800,7 @@
},
{
"cell_type": "markdown",
- "id": "bb479883",
+ "id": "c77f8c2f",
"metadata": {},
"source": [
"## Exercise 15.2\n",
@@ -816,7 +816,7 @@
},
{
"cell_type": "markdown",
- "id": "4639a8c9",
+ "id": "0c5f54ec",
"metadata": {},
"source": [
"## Solution to[ Exercise 15.2](https://python-advanced.quantecon.org/#coa_ex2)\n",
@@ -839,7 +839,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a46979e8",
+ "id": "0a995f9e",
"metadata": {
"hide-output": false
},
@@ -863,7 +863,7 @@
}
],
"metadata": {
- "date": 1723011581.4371223,
+ "date": 1723517847.4981983,
"filename": "coase.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/cons_news.ipynb b/_notebooks/cons_news.ipynb
index edd92376..5075806d 100644
--- a/_notebooks/cons_news.ipynb
+++ b/_notebooks/cons_news.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "a7bd072d",
+ "id": "16e7bd0f",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "d849fe21",
+ "id": "c22f384f",
"metadata": {},
"source": [
"# Information and Consumption Smoothing\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ea3304d8",
+ "id": "91754cde",
"metadata": {
"hide-output": false
},
@@ -33,7 +33,7 @@
},
{
"cell_type": "markdown",
- "id": "0bd68fbc",
+ "id": "0c0023dd",
"metadata": {},
"source": [
"## Overview\n",
@@ -59,7 +59,7 @@
},
{
"cell_type": "markdown",
- "id": "e0d051a7",
+ "id": "5a41d45b",
"metadata": {},
"source": [
"### Same non-financial incomes, different information\n",
@@ -120,7 +120,7 @@
},
{
"cell_type": "markdown",
- "id": "4360f0ec",
+ "id": "5880e7a2",
"metadata": {},
"source": [
"## Two Representations of One Nonfinancial Income Process\n",
@@ -251,7 +251,7 @@
},
{
"cell_type": "markdown",
- "id": "ebce9928",
+ "id": "b0ad8c59",
"metadata": {},
"source": [
"## Application of Kalman filter\n",
@@ -299,7 +299,7 @@
},
{
"cell_type": "markdown",
- "id": "f87d5816",
+ "id": "0e91be97",
"metadata": {},
"source": [
"## News Shocks and Less Informative Shocks\n",
@@ -398,7 +398,7 @@
},
{
"cell_type": "markdown",
- "id": "0784276f",
+ "id": "71ce514f",
"metadata": {},
"source": [
"## Representation of $ \\epsilon_t $ Shock in Terms of Future $ y_t $\n",
@@ -430,7 +430,7 @@
},
{
"cell_type": "markdown",
- "id": "eb7afcb8",
+ "id": "76c966b8",
"metadata": {},
"source": [
"## Representation in Terms of $ a_t $ Shocks\n",
@@ -459,7 +459,7 @@
},
{
"cell_type": "markdown",
- "id": "6f82c2f8",
+ "id": "10b5a7bc",
"metadata": {},
"source": [
"## Permanent Income Consumption-Smoothing Model\n",
@@ -515,7 +515,7 @@
},
{
"cell_type": "markdown",
- "id": "cb4d8ae5",
+ "id": "5e75d7ff",
"metadata": {},
"source": [
"## State Space Representations\n",
@@ -557,7 +557,7 @@
},
{
"cell_type": "markdown",
- "id": "64fc4eb1",
+ "id": "a448bacd",
"metadata": {},
"source": [
"## Computations\n",
@@ -678,7 +678,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "71cc01de",
+ "id": "804e7bfe",
"metadata": {
"hide-output": false
},
@@ -692,7 +692,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "886ddf0b",
+ "id": "5c984e46",
"metadata": {
"hide-output": false
},
@@ -714,7 +714,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7d2cea95",
+ "id": "9cad8e5c",
"metadata": {
"hide-output": false
},
@@ -735,7 +735,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "455a6f11",
+ "id": "b7260237",
"metadata": {
"hide-output": false
},
@@ -747,7 +747,7 @@
},
{
"cell_type": "markdown",
- "id": "ad184965",
+ "id": "496ade58",
"metadata": {},
"source": [
"Evidently, optimal consumption and debt decision rules for the consumer\n",
@@ -766,7 +766,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a0e066b7",
+ "id": "5d15b904",
"metadata": {
"hide-output": false
},
@@ -786,7 +786,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e9d12fc4",
+ "id": "665574da",
"metadata": {
"hide-output": false
},
@@ -797,7 +797,7 @@
},
{
"cell_type": "markdown",
- "id": "7f04d8e3",
+ "id": "2d198787",
"metadata": {},
"source": [
"For a consumer having access only to the information associated with the\n",
@@ -850,7 +850,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "50c3ab7c",
+ "id": "0ddaa739",
"metadata": {
"hide-output": false
},
@@ -870,7 +870,7 @@
},
{
"cell_type": "markdown",
- "id": "530b795e",
+ "id": "d4b979fe",
"metadata": {},
"source": [
"The following code computes impulse response functions of\n",
@@ -880,7 +880,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e8b6dd25",
+ "id": "0e17711d",
"metadata": {
"hide-output": false
},
@@ -900,7 +900,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "063f0862",
+ "id": "f2533938",
"metadata": {
"hide-output": false
},
@@ -912,7 +912,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "935626d5",
+ "id": "b2d2efbf",
"metadata": {
"hide-output": false
},
@@ -926,7 +926,7 @@
},
{
"cell_type": "markdown",
- "id": "4e0fa0d7",
+ "id": "001c0bf1",
"metadata": {},
"source": [
"The above two impulse response functions show that when the consumer has\n",
@@ -942,7 +942,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4c09cc69",
+ "id": "b8f1d220",
"metadata": {
"hide-output": false
},
@@ -954,7 +954,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8f38610d",
+ "id": "a2758cf9",
"metadata": {
"hide-output": false
},
@@ -969,7 +969,7 @@
},
{
"cell_type": "markdown",
- "id": "5fa75aa6",
+ "id": "ebab96e3",
"metadata": {},
"source": [
"The above impulse responses show that when the consumer has only the\n",
@@ -993,7 +993,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7815ddcf",
+ "id": "fb7553e6",
"metadata": {
"hide-output": false
},
@@ -1006,7 +1006,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bf02ea99",
+ "id": "dc242e98",
"metadata": {
"hide-output": false
},
@@ -1023,7 +1023,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1c927f61",
+ "id": "5939c874",
"metadata": {
"hide-output": false
},
@@ -1039,7 +1039,7 @@
},
{
"cell_type": "markdown",
- "id": "6d56a4c8",
+ "id": "6e38a5c6",
"metadata": {},
"source": [
"## Simulating Income Process and Two Associated Shock Processes\n",
@@ -1078,7 +1078,7 @@
},
{
"cell_type": "markdown",
- "id": "9d55e69e",
+ "id": "209bca58",
"metadata": {},
"source": [
"## Calculating Innovations in Another Way\n",
@@ -1106,7 +1106,7 @@
},
{
"cell_type": "markdown",
- "id": "dde6a19a",
+ "id": "0802a9e8",
"metadata": {},
"source": [
"## Another Invertibility Issue\n",
@@ -1120,7 +1120,7 @@
}
],
"metadata": {
- "date": 1723011581.481741,
+ "date": 1723517847.5406587,
"filename": "cons_news.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/discrete_dp.ipynb b/_notebooks/discrete_dp.ipynb
index b543bbf3..1322e277 100644
--- a/_notebooks/discrete_dp.ipynb
+++ b/_notebooks/discrete_dp.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "3163622f",
+ "id": "814a45e1",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "b9cdba19",
+ "id": "b9a3468d",
"metadata": {},
"source": [
"# Discrete State Dynamic Programming\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "792d7c86",
+ "id": "4fed62d1",
"metadata": {
"hide-output": false
},
@@ -33,7 +33,7 @@
},
{
"cell_type": "markdown",
- "id": "48702d44",
+ "id": "ecd26115",
"metadata": {},
"source": [
"## Overview\n",
@@ -73,7 +73,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8e22e0d6",
+ "id": "1cef73c8",
"metadata": {
"hide-output": false
},
@@ -89,7 +89,7 @@
},
{
"cell_type": "markdown",
- "id": "b37251bb",
+ "id": "a2f3c3e3",
"metadata": {},
"source": [
"### How to Read this Lecture\n",
@@ -105,7 +105,7 @@
},
{
"cell_type": "markdown",
- "id": "65fb0d1a",
+ "id": "74cf7a84",
"metadata": {},
"source": [
"### Code\n",
@@ -124,7 +124,7 @@
},
{
"cell_type": "markdown",
- "id": "f795c681",
+ "id": "dd60efab",
"metadata": {},
"source": [
"### References\n",
@@ -146,7 +146,7 @@
},
{
"cell_type": "markdown",
- "id": "6b89f34b",
+ "id": "3c18e533",
"metadata": {},
"source": [
"## Discrete DPs\n",
@@ -185,7 +185,7 @@
},
{
"cell_type": "markdown",
- "id": "6ae7708e",
+ "id": "0d9604e4",
"metadata": {},
"source": [
"### Policies\n",
@@ -216,7 +216,7 @@
},
{
"cell_type": "markdown",
- "id": "28c5efc7",
+ "id": "26983462",
"metadata": {},
"source": [
"### Formal Definition\n",
@@ -279,7 +279,7 @@
},
{
"cell_type": "markdown",
- "id": "019eac66",
+ "id": "e33c2a65",
"metadata": {},
"source": [
"### Value and Optimality\n",
@@ -324,7 +324,7 @@
},
{
"cell_type": "markdown",
- "id": "b868b3bd",
+ "id": "1baa6122",
"metadata": {},
"source": [
"### Two Operators\n",
@@ -376,7 +376,7 @@
},
{
"cell_type": "markdown",
- "id": "7cb81aa4",
+ "id": "6beec2a2",
"metadata": {},
"source": [
"### The Bellman Equation and the Principle of Optimality\n",
@@ -412,7 +412,7 @@
},
{
"cell_type": "markdown",
- "id": "b860a7ed",
+ "id": "d8acb8b6",
"metadata": {},
"source": [
"## Solving Discrete DPs\n",
@@ -433,7 +433,7 @@
},
{
"cell_type": "markdown",
- "id": "c74ae943",
+ "id": "87010128",
"metadata": {},
"source": [
"### Value Function Iteration\n",
@@ -449,7 +449,7 @@
},
{
"cell_type": "markdown",
- "id": "9c411672",
+ "id": "76cfe408",
"metadata": {},
"source": [
"### Policy Function Iteration\n",
@@ -472,7 +472,7 @@
},
{
"cell_type": "markdown",
- "id": "828b0878",
+ "id": "9660009e",
"metadata": {},
"source": [
"### Modified Policy Function Iteration\n",
@@ -491,7 +491,7 @@
},
{
"cell_type": "markdown",
- "id": "4fb8c333",
+ "id": "56f16fb3",
"metadata": {},
"source": [
"## Example: A Growth Model\n",
@@ -523,7 +523,7 @@
},
{
"cell_type": "markdown",
- "id": "be47b33f",
+ "id": "e0318514",
"metadata": {},
"source": [
"### Discrete DP Representation\n",
@@ -556,7 +556,7 @@
},
{
"cell_type": "markdown",
- "id": "d5890626",
+ "id": "fafae3e2",
"metadata": {},
"source": [
"### Defining a DiscreteDP Instance\n",
@@ -585,7 +585,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "09b9b315",
+ "id": "82737045",
"metadata": {
"hide-output": false
},
@@ -636,7 +636,7 @@
},
{
"cell_type": "markdown",
- "id": "ee7b2ef5",
+ "id": "00d79c24",
"metadata": {},
"source": [
"Let’s run this code and create an instance of `SimpleOG`."
@@ -645,7 +645,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "87056807",
+ "id": "9d2bb178",
"metadata": {
"hide-output": false
},
@@ -656,7 +656,7 @@
},
{
"cell_type": "markdown",
- "id": "a4dd50a8",
+ "id": "4738c194",
"metadata": {},
"source": [
"Instances of `DiscreteDP` are created using the signature `DiscreteDP(R, Q, β)`.\n",
@@ -667,7 +667,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9e6072ca",
+ "id": "5e254b67",
"metadata": {
"hide-output": false
},
@@ -678,7 +678,7 @@
},
{
"cell_type": "markdown",
- "id": "419a9094",
+ "id": "74769835",
"metadata": {},
"source": [
"Now that we have an instance `ddp` of `DiscreteDP` we can solve it as follows"
@@ -687,7 +687,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5c020750",
+ "id": "7aecfd50",
"metadata": {
"hide-output": false
},
@@ -698,7 +698,7 @@
},
{
"cell_type": "markdown",
- "id": "2785d0cd",
+ "id": "e4fd7798",
"metadata": {},
"source": [
"Let’s see what we’ve got here"
@@ -707,7 +707,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "902df23a",
+ "id": "0be13bb9",
"metadata": {
"hide-output": false
},
@@ -718,7 +718,7 @@
},
{
"cell_type": "markdown",
- "id": "998b2c22",
+ "id": "c7cbb1b8",
"metadata": {},
"source": [
"(In IPython version 4.0 and above you can also type `results.` and hit the tab key)\n",
@@ -729,7 +729,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8d14cb09",
+ "id": "00f44cdf",
"metadata": {
"hide-output": false
},
@@ -741,7 +741,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ed6b58cc",
+ "id": "7e26e33a",
"metadata": {
"hide-output": false
},
@@ -752,7 +752,7 @@
},
{
"cell_type": "markdown",
- "id": "d03a64a8",
+ "id": "bfcbe700",
"metadata": {},
"source": [
"Since we’ve used policy iteration, these results will be exact unless we hit the iteration bound `max_iter`.\n",
@@ -763,7 +763,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e8d997b9",
+ "id": "6900a8ff",
"metadata": {
"hide-output": false
},
@@ -775,7 +775,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "dc071e6d",
+ "id": "119e35b4",
"metadata": {
"hide-output": false
},
@@ -786,7 +786,7 @@
},
{
"cell_type": "markdown",
- "id": "9aa4866e",
+ "id": "db776cb7",
"metadata": {},
"source": [
"Another interesting object is `results.mc`, which is the controlled chain defined by $ Q_{\\sigma^*} $, where $ \\sigma^* $ is the optimal policy.\n",
@@ -800,7 +800,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8c854db3",
+ "id": "9f6ca5bb",
"metadata": {
"hide-output": false
},
@@ -811,7 +811,7 @@
},
{
"cell_type": "markdown",
- "id": "b7d7a60b",
+ "id": "262afa79",
"metadata": {},
"source": [
"Here’s the same information in a bar graph\n",
@@ -825,7 +825,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0b0a5469",
+ "id": "3e9b6b0a",
"metadata": {
"hide-output": false
},
@@ -838,7 +838,7 @@
},
{
"cell_type": "markdown",
- "id": "4eb25d9d",
+ "id": "9df2538b",
"metadata": {},
"source": [
"If we look at the bar graph we can see the rightward shift in probability mass\n",
@@ -848,7 +848,7 @@
},
{
"cell_type": "markdown",
- "id": "d5217280",
+ "id": "03739a26",
"metadata": {},
"source": [
"### State-Action Pair Formulation\n",
@@ -872,7 +872,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "651501d2",
+ "id": "ac31663a",
"metadata": {
"hide-output": false
},
@@ -905,7 +905,7 @@
},
{
"cell_type": "markdown",
- "id": "d51238e4",
+ "id": "edadfa95",
"metadata": {},
"source": [
"For larger problems, you might need to write this code more efficiently by vectorizing or using Numba."
@@ -913,7 +913,7 @@
},
{
"cell_type": "markdown",
- "id": "a29941aa",
+ "id": "cd33cd7f",
"metadata": {},
"source": [
"## Exercises\n",
@@ -925,7 +925,7 @@
},
{
"cell_type": "markdown",
- "id": "4009218a",
+ "id": "372a5ede",
"metadata": {},
"source": [
"## Solutions"
@@ -933,7 +933,7 @@
},
{
"cell_type": "markdown",
- "id": "b60fa836",
+ "id": "5039bd27",
"metadata": {},
"source": [
"### Setup\n",
@@ -947,7 +947,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "120a446c",
+ "id": "b6141989",
"metadata": {
"hide-output": false
},
@@ -961,7 +961,7 @@
},
{
"cell_type": "markdown",
- "id": "36b90435",
+ "id": "5490cb81",
"metadata": {},
"source": [
"Here we want to solve a finite state version of the continuous state model above.\n",
@@ -972,7 +972,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "535edf27",
+ "id": "dcd6621e",
"metadata": {
"hide-output": false
},
@@ -985,7 +985,7 @@
},
{
"cell_type": "markdown",
- "id": "66678b32",
+ "id": "174ad2f4",
"metadata": {},
"source": [
"We choose the action to be the amount of capital to save for the next\n",
@@ -1014,7 +1014,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "af75c8a8",
+ "id": "df187a25",
"metadata": {
"hide-output": false
},
@@ -1036,7 +1036,7 @@
},
{
"cell_type": "markdown",
- "id": "6101a6ec",
+ "id": "6f5327f0",
"metadata": {},
"source": [
"Reward vector `R` (of length `L`):"
@@ -1045,7 +1045,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0371bf1f",
+ "id": "2c1a01c0",
"metadata": {
"hide-output": false
},
@@ -1056,7 +1056,7 @@
},
{
"cell_type": "markdown",
- "id": "902ab6c6",
+ "id": "2b37903c",
"metadata": {},
"source": [
"(Degenerate) transition probability matrix `Q` (of shape `(L, grid_size)`), where we choose the [scipy.sparse.lil_matrix](http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html) format, while any format will do (internally it will be converted to the csr format):"
@@ -1065,7 +1065,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "851b170b",
+ "id": "e0b5047d",
"metadata": {
"hide-output": false
},
@@ -1077,7 +1077,7 @@
},
{
"cell_type": "markdown",
- "id": "6554c758",
+ "id": "0aef0a75",
"metadata": {},
"source": [
"(If you are familiar with the data structure of [scipy.sparse.csr_matrix](http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html), the following is the most efficient way to create the `Q` matrix in\n",
@@ -1087,7 +1087,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "baba20fe",
+ "id": "3ae07ad2",
"metadata": {
"hide-output": false
},
@@ -1100,7 +1100,7 @@
},
{
"cell_type": "markdown",
- "id": "3d2098e6",
+ "id": "a1ef6f02",
"metadata": {},
"source": [
"Discrete growth model:"
@@ -1109,7 +1109,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4871e5f6",
+ "id": "5073d8eb",
"metadata": {
"hide-output": false
},
@@ -1120,7 +1120,7 @@
},
{
"cell_type": "markdown",
- "id": "0a1baf5e",
+ "id": "2a8ed37d",
"metadata": {},
"source": [
"**Notes**\n",
@@ -1132,7 +1132,7 @@
},
{
"cell_type": "markdown",
- "id": "e606460f",
+ "id": "8a9ea84c",
"metadata": {},
"source": [
"### Solving the Model\n",
@@ -1143,7 +1143,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "eaf464c0",
+ "id": "f3c1c228",
"metadata": {
"hide-output": false
},
@@ -1156,7 +1156,7 @@
},
{
"cell_type": "markdown",
- "id": "f75c96d7",
+ "id": "b35fd058",
"metadata": {},
"source": [
"Note that `sigma` contains the *indices* of the optimal *capital\n",
@@ -1167,7 +1167,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "eab32ba6",
+ "id": "342a6b42",
"metadata": {
"hide-output": false
},
@@ -1190,7 +1190,7 @@
},
{
"cell_type": "markdown",
- "id": "0ed3f7e2",
+ "id": "533a36f9",
"metadata": {},
"source": [
"Let us compare the solution of the discrete model with that of the\n",
@@ -1200,7 +1200,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d779b572",
+ "id": "60cf2443",
"metadata": {
"hide-output": false
},
@@ -1229,7 +1229,7 @@
},
{
"cell_type": "markdown",
- "id": "891d97b4",
+ "id": "f1b983a4",
"metadata": {},
"source": [
"The outcomes appear very close to those of the continuous version.\n",
@@ -1240,7 +1240,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "658dd0b4",
+ "id": "1860fcbd",
"metadata": {
"hide-output": false
},
@@ -1252,7 +1252,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3bd85168",
+ "id": "ebf58105",
"metadata": {
"hide-output": false
},
@@ -1263,7 +1263,7 @@
},
{
"cell_type": "markdown",
- "id": "5e1e1323",
+ "id": "ebc0e144",
"metadata": {},
"source": [
"The optimal consumption functions are close as well:"
@@ -1272,7 +1272,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a4f0e23f",
+ "id": "3f818dd8",
"metadata": {
"hide-output": false
},
@@ -1283,7 +1283,7 @@
},
{
"cell_type": "markdown",
- "id": "8fbdcba8",
+ "id": "3250c48f",
"metadata": {},
"source": [
"In fact, the optimal consumption obtained in the discrete version is not\n",
@@ -1293,7 +1293,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3326a562",
+ "id": "d5c4ca5d",
"metadata": {
"hide-output": false
},
@@ -1306,7 +1306,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "419a66fb",
+ "id": "6ce1c408",
"metadata": {
"hide-output": false
},
@@ -1319,7 +1319,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c30e8dc6",
+ "id": "c320ab71",
"metadata": {
"hide-output": false
},
@@ -1330,7 +1330,7 @@
},
{
"cell_type": "markdown",
- "id": "8a4c7f99",
+ "id": "2205ab7e",
"metadata": {},
"source": [
"The value function is monotone:"
@@ -1339,7 +1339,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fe10cddb",
+ "id": "d12f9e1f",
"metadata": {
"hide-output": false
},
@@ -1350,7 +1350,7 @@
},
{
"cell_type": "markdown",
- "id": "6ea4056a",
+ "id": "407ade89",
"metadata": {},
"source": [
"### Comparison of the Solution Methods\n",
@@ -1360,7 +1360,7 @@
},
{
"cell_type": "markdown",
- "id": "1c4f440b",
+ "id": "4640c134",
"metadata": {},
"source": [
"#### Value Iteration"
@@ -1369,7 +1369,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d55e649e",
+ "id": "54f4c1de",
"metadata": {
"hide-output": false
},
@@ -1384,7 +1384,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "92c4708e",
+ "id": "e0c28766",
"metadata": {
"hide-output": false
},
@@ -1395,7 +1395,7 @@
},
{
"cell_type": "markdown",
- "id": "4924f750",
+ "id": "0f2816e8",
"metadata": {},
"source": [
"#### Modified Policy Iteration"
@@ -1404,7 +1404,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8db9386d",
+ "id": "598ce072",
"metadata": {
"hide-output": false
},
@@ -1417,7 +1417,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "478ab436",
+ "id": "c429ef3d",
"metadata": {
"hide-output": false
},
@@ -1428,7 +1428,7 @@
},
{
"cell_type": "markdown",
- "id": "b9e9246f",
+ "id": "0b80f2d9",
"metadata": {},
"source": [
"#### Speed Comparison"
@@ -1437,7 +1437,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d11d1e8e",
+ "id": "6b2e553d",
"metadata": {
"hide-output": false
},
@@ -1450,7 +1450,7 @@
},
{
"cell_type": "markdown",
- "id": "1e98897f",
+ "id": "99947822",
"metadata": {},
"source": [
"As is often the case, policy iteration and modified policy iteration are\n",
@@ -1459,7 +1459,7 @@
},
{
"cell_type": "markdown",
- "id": "33269773",
+ "id": "30ea8be6",
"metadata": {},
"source": [
"### Replication of the Figures\n",
@@ -1469,7 +1469,7 @@
},
{
"cell_type": "markdown",
- "id": "5d95c18a",
+ "id": "a12173ad",
"metadata": {},
"source": [
"#### Convergence of Value Iteration\n",
@@ -1482,7 +1482,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c96969f2",
+ "id": "7cfda779",
"metadata": {
"hide-output": false
},
@@ -1507,7 +1507,7 @@
},
{
"cell_type": "markdown",
- "id": "dda984fd",
+ "id": "6410059e",
"metadata": {},
"source": [
"We next plot the consumption policies along with the value iteration"
@@ -1516,7 +1516,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "66b82d89",
+ "id": "e727ba77",
"metadata": {
"hide-output": false
},
@@ -1549,7 +1549,7 @@
},
{
"cell_type": "markdown",
- "id": "46212d10",
+ "id": "6330cb04",
"metadata": {},
"source": [
"#### Dynamics of the Capital Stock\n",
@@ -1564,7 +1564,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2f43bb3d",
+ "id": "3d20099c",
"metadata": {
"hide-output": false
},
@@ -1599,7 +1599,7 @@
},
{
"cell_type": "markdown",
- "id": "9d161801",
+ "id": "a30d1f79",
"metadata": {},
"source": [
"\n",
@@ -1608,7 +1608,7 @@
},
{
"cell_type": "markdown",
- "id": "34f8b041",
+ "id": "fcb38391",
"metadata": {},
"source": [
"## Appendix: Algorithms\n",
@@ -1623,7 +1623,7 @@
},
{
"cell_type": "markdown",
- "id": "304f897e",
+ "id": "68b45cfc",
"metadata": {},
"source": [
"### Value Iteration\n",
@@ -1650,7 +1650,7 @@
},
{
"cell_type": "markdown",
- "id": "2941b29e",
+ "id": "a778feaa",
"metadata": {},
"source": [
"### Policy Iteration\n",
@@ -1676,7 +1676,7 @@
},
{
"cell_type": "markdown",
- "id": "6cea89cc",
+ "id": "aea43640",
"metadata": {},
"source": [
"### Modified Policy Iteration\n",
@@ -1702,7 +1702,7 @@
}
],
"metadata": {
- "date": 1723011581.5445042,
+ "date": 1723517847.6030302,
"filename": "discrete_dp.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/dyn_stack.ipynb b/_notebooks/dyn_stack.ipynb
index ec83e66b..b1daff18 100644
--- a/_notebooks/dyn_stack.ipynb
+++ b/_notebooks/dyn_stack.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "bc835756",
+ "id": "1abf8f46",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "8c519522",
+ "id": "304c13c2",
"metadata": {},
"source": [
"# Stackelberg Plans\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "711ce765",
+ "id": "e88ccdfc",
"metadata": {
"hide-output": false
},
@@ -33,7 +33,7 @@
},
{
"cell_type": "markdown",
- "id": "0c0fb2a3",
+ "id": "11529295",
"metadata": {},
"source": [
"## Overview\n",
@@ -58,7 +58,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "249bc92c",
+ "id": "db4b0a60",
"metadata": {
"hide-output": false
},
@@ -73,7 +73,7 @@
},
{
"cell_type": "markdown",
- "id": "bdec8117",
+ "id": "91d311f5",
"metadata": {},
"source": [
"## Duopoly\n",
@@ -123,7 +123,7 @@
},
{
"cell_type": "markdown",
- "id": "fd6daaed",
+ "id": "df468b13",
"metadata": {},
"source": [
"### Stackelberg Leader and Follower\n",
@@ -149,7 +149,7 @@
},
{
"cell_type": "markdown",
- "id": "c96f5e68",
+ "id": "52e1d0f8",
"metadata": {},
"source": [
"### Statement of Leader’s and Follower’s Problems\n",
@@ -201,7 +201,7 @@
},
{
"cell_type": "markdown",
- "id": "bef70a48",
+ "id": "23b6d8f4",
"metadata": {},
"source": [
"### Firms’ Problems\n",
@@ -358,7 +358,7 @@
},
{
"cell_type": "markdown",
- "id": "70fd1310",
+ "id": "14204ef2",
"metadata": {},
"source": [
"## Stackelberg Problem\n",
@@ -445,7 +445,7 @@
},
{
"cell_type": "markdown",
- "id": "bc7255df",
+ "id": "9c87d96b",
"metadata": {},
"source": [
"### Interpretation of Second Block of Equations\n",
@@ -480,7 +480,7 @@
},
{
"cell_type": "markdown",
- "id": "fafeca47",
+ "id": "9d4ed6ec",
"metadata": {},
"source": [
"### More Mechanical Details\n",
@@ -507,7 +507,7 @@
},
{
"cell_type": "markdown",
- "id": "8b93a8fd",
+ "id": "f770a15b",
"metadata": {},
"source": [
"### Two Subproblems\n",
@@ -556,7 +556,7 @@
},
{
"cell_type": "markdown",
- "id": "5fb8811b",
+ "id": "95e8a6ad",
"metadata": {},
"source": [
"## Two Bellman Equations\n",
@@ -627,7 +627,7 @@
},
{
"cell_type": "markdown",
- "id": "14c712e5",
+ "id": "c013fc96",
"metadata": {},
"source": [
"## Stackelberg Plan for Duopoly\n",
@@ -672,7 +672,7 @@
},
{
"cell_type": "markdown",
- "id": "42860218",
+ "id": "78a769a2",
"metadata": {},
"source": [
"### Calculations to Prepare Duopoly Model\n",
@@ -690,7 +690,7 @@
},
{
"cell_type": "markdown",
- "id": "a9ab1965",
+ "id": "534072c1",
"metadata": {},
"source": [
"### Firm 1’s Problem\n",
@@ -788,7 +788,7 @@
},
{
"cell_type": "markdown",
- "id": "34f602ff",
+ "id": "407f0d20",
"metadata": {},
"source": [
"## Recursive Representation of Stackelberg Plan\n",
@@ -879,7 +879,7 @@
},
{
"cell_type": "markdown",
- "id": "5240d320",
+ "id": "aff7862d",
"metadata": {},
"source": [
"### Comments and Interpretations\n",
@@ -899,7 +899,7 @@
},
{
"cell_type": "markdown",
- "id": "61110777",
+ "id": "febd4b8f",
"metadata": {},
"source": [
"## Dynamic Programming and Time Consistency of Follower’s Problem\n",
@@ -918,7 +918,7 @@
},
{
"cell_type": "markdown",
- "id": "f2bcf9ac",
+ "id": "06281104",
"metadata": {},
"source": [
"### Recursive Formulation of a Follower’s Problem\n",
@@ -1041,7 +1041,7 @@
},
{
"cell_type": "markdown",
- "id": "2bc8b498",
+ "id": "6c343326",
"metadata": {},
"source": [
"### Time Consistency of Follower’s Plan\n",
@@ -1059,7 +1059,7 @@
},
{
"cell_type": "markdown",
- "id": "f43d5cb0",
+ "id": "b8873608",
"metadata": {},
"source": [
"## Computing Stackelberg Plan\n",
@@ -1073,7 +1073,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "169d3478",
+ "id": "17cc67f0",
"metadata": {
"hide-output": false
},
@@ -1097,7 +1097,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "798399c2",
+ "id": "032eef44",
"metadata": {
"hide-output": false
},
@@ -1157,7 +1157,7 @@
},
{
"cell_type": "markdown",
- "id": "e99ef4de",
+ "id": "67b8cbe2",
"metadata": {},
"source": [
"## Time Series for Price and Quantities\n",
@@ -1170,7 +1170,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "44af924a",
+ "id": "883949c0",
"metadata": {
"hide-output": false
},
@@ -1193,7 +1193,7 @@
},
{
"cell_type": "markdown",
- "id": "323bd398",
+ "id": "43a6a35d",
"metadata": {},
"source": [
"### Value of Stackelberg Leader\n",
@@ -1208,7 +1208,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "44b29998",
+ "id": "e896ddaf",
"metadata": {
"hide-output": false
},
@@ -1226,7 +1226,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "33f0d290",
+ "id": "51a5b9c8",
"metadata": {
"hide-output": false
},
@@ -1240,7 +1240,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "980169f5",
+ "id": "f4cf7e8d",
"metadata": {
"hide-output": false
},
@@ -1255,7 +1255,7 @@
},
{
"cell_type": "markdown",
- "id": "9391475e",
+ "id": "7739a640",
"metadata": {},
"source": [
"## Time Inconsistency of Stackelberg Plan\n",
@@ -1275,7 +1275,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7c2dc2c5",
+ "id": "bf7f1b98",
"metadata": {
"hide-output": false
},
@@ -1296,7 +1296,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b055e3b3",
+ "id": "89c7f684",
"metadata": {
"hide-output": false
},
@@ -1325,7 +1325,7 @@
},
{
"cell_type": "markdown",
- "id": "560ebd65",
+ "id": "f1a42598",
"metadata": {},
"source": [
"The figure above shows\n",
@@ -1340,7 +1340,7 @@
},
{
"cell_type": "markdown",
- "id": "30db4c1e",
+ "id": "5babdb02",
"metadata": {},
"source": [
"## Recursive Formulation of Follower’s Problem\n",
@@ -1355,7 +1355,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4a2dad5b",
+ "id": "424ef551",
"metadata": {
"hide-output": false
},
@@ -1383,7 +1383,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cb8db8a2",
+ "id": "75680fce",
"metadata": {
"hide-output": false
},
@@ -1400,7 +1400,7 @@
},
{
"cell_type": "markdown",
- "id": "88a2ad84",
+ "id": "6cdff140",
"metadata": {},
"source": [
"Note: Variables with `_tilde` are obtained from solving the follower’s\n",
@@ -1410,7 +1410,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ebdc6b4a",
+ "id": "7e8f4c11",
"metadata": {
"hide-output": false
},
@@ -1424,7 +1424,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8b870024",
+ "id": "edc15b69",
"metadata": {
"hide-output": false
},
@@ -1436,7 +1436,7 @@
},
{
"cell_type": "markdown",
- "id": "91ed321b",
+ "id": "54abba9a",
"metadata": {},
"source": [
"### Explanation of Alignment\n",
@@ -1454,7 +1454,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1a6dcf1c",
+ "id": "7ea63533",
"metadata": {
"hide-output": false
},
@@ -1467,7 +1467,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fb3a4a09",
+ "id": "9a53d84b",
"metadata": {
"hide-output": false
},
@@ -1480,7 +1480,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c8079529",
+ "id": "c49e6488",
"metadata": {
"hide-output": false
},
@@ -1493,7 +1493,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9744e6cb",
+ "id": "6df31d3f",
"metadata": {
"hide-output": false
},
@@ -1506,7 +1506,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5ccaabf5",
+ "id": "28ee2245",
"metadata": {
"hide-output": false
},
@@ -1525,7 +1525,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c71a33cf",
+ "id": "158df6e9",
"metadata": {
"hide-output": false
},
@@ -1538,7 +1538,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d2b85dd6",
+ "id": "525a3e35",
"metadata": {
"hide-output": false
},
@@ -1551,7 +1551,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "70a30409",
+ "id": "180d6482",
"metadata": {
"hide-output": false
},
@@ -1594,7 +1594,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "25987d57",
+ "id": "cdccd760",
"metadata": {
"hide-output": false
},
@@ -1620,7 +1620,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "449d56eb",
+ "id": "81ec5975",
"metadata": {
"hide-output": false
},
@@ -1632,7 +1632,7 @@
},
{
"cell_type": "markdown",
- "id": "c85eac3a",
+ "id": "c0c35315",
"metadata": {},
"source": [
"## Markov Perfect Equilibrium\n",
@@ -1672,7 +1672,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "05908bb0",
+ "id": "76b14d4a",
"metadata": {
"hide-output": false
},
@@ -1715,7 +1715,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b27f7c12",
+ "id": "a85bdc8b",
"metadata": {
"hide-output": false
},
@@ -1738,7 +1738,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "011d7d87",
+ "id": "a6d4a794",
"metadata": {
"hide-output": false
},
@@ -1751,7 +1751,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "46169266",
+ "id": "e29000d9",
"metadata": {
"hide-output": false
},
@@ -1779,7 +1779,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a763b9db",
+ "id": "fb92f1cf",
"metadata": {
"hide-output": false
},
@@ -1797,7 +1797,7 @@
},
{
"cell_type": "markdown",
- "id": "0e54f798",
+ "id": "0e2b4b85",
"metadata": {},
"source": [
"## Comparing Markov Perfect Equilibrium and Stackelberg Outcome\n",
@@ -1815,7 +1815,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d04a1a22",
+ "id": "67724ad0",
"metadata": {
"hide-output": false
},
@@ -1841,7 +1841,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "752bec46",
+ "id": "8d4fbe1b",
"metadata": {
"hide-output": false
},
@@ -1857,7 +1857,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f21335ee",
+ "id": "a9fa2ad7",
"metadata": {
"hide-output": false
},
@@ -1869,7 +1869,7 @@
}
],
"metadata": {
- "date": 1723011581.5996025,
+ "date": 1723517847.6596775,
"filename": "dyn_stack.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/entropy.ipynb b/_notebooks/entropy.ipynb
index 233d3370..ee6c1f52 100644
--- a/_notebooks/entropy.ipynb
+++ b/_notebooks/entropy.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "185cae70",
+ "id": "e8d7dadd",
"metadata": {},
"source": [
"# Etymology of Entropy\n",
@@ -26,7 +26,7 @@
},
{
"cell_type": "markdown",
- "id": "7feed8d5",
+ "id": "0ea2beda",
"metadata": {},
"source": [
"## Information Theory\n",
@@ -65,7 +65,7 @@
},
{
"cell_type": "markdown",
- "id": "74f037ee",
+ "id": "0bed889f",
"metadata": {},
"source": [
"## A Measure of Unpredictability\n",
@@ -85,7 +85,7 @@
},
{
"cell_type": "markdown",
- "id": "13bfb9d1",
+ "id": "fe02d4b7",
"metadata": {},
"source": [
"### Example\n",
@@ -119,7 +119,7 @@
},
{
"cell_type": "markdown",
- "id": "5f5a7d04",
+ "id": "7706bf15",
"metadata": {},
"source": [
"### Example\n",
@@ -142,7 +142,7 @@
},
{
"cell_type": "markdown",
- "id": "65df6b41",
+ "id": "786ba4e4",
"metadata": {},
"source": [
"## Mathematical Properties of Entropy\n",
@@ -160,7 +160,7 @@
},
{
"cell_type": "markdown",
- "id": "ee567e7f",
+ "id": "b047a610",
"metadata": {},
"source": [
"## Conditional Entropy\n",
@@ -182,7 +182,7 @@
},
{
"cell_type": "markdown",
- "id": "f24502d3",
+ "id": "acb1860a",
"metadata": {},
"source": [
"## Independence as Maximum Conditional Entropy\n",
@@ -212,7 +212,7 @@
},
{
"cell_type": "markdown",
- "id": "c8bc77a7",
+ "id": "7bbb819d",
"metadata": {},
"source": [
"## Thermodynamics\n",
@@ -235,7 +235,7 @@
},
{
"cell_type": "markdown",
- "id": "a0491103",
+ "id": "22b5e602",
"metadata": {},
"source": [
"## Statistical Divergence\n",
@@ -270,7 +270,7 @@
},
{
"cell_type": "markdown",
- "id": "8d1926a9",
+ "id": "241feb4c",
"metadata": {},
"source": [
"## Continuous distributions\n",
@@ -284,7 +284,7 @@
},
{
"cell_type": "markdown",
- "id": "ef8f9a9c",
+ "id": "264cf3b6",
"metadata": {},
"source": [
"## Relative entropy and Gaussian distributions\n",
@@ -375,7 +375,7 @@
},
{
"cell_type": "markdown",
- "id": "a6c6cbf5",
+ "id": "2a94426a",
"metadata": {},
"source": [
"## Von Neumann Entropy\n",
@@ -401,7 +401,7 @@
},
{
"cell_type": "markdown",
- "id": "0d6d4afa",
+ "id": "1fa8d01d",
"metadata": {},
"source": [
"## Backus-Chernov-Zin Entropy\n",
@@ -453,7 +453,7 @@
},
{
"cell_type": "markdown",
- "id": "67619b56",
+ "id": "80d117f1",
"metadata": {},
"source": [
"## Wiener-Kolmogorov Prediction Error Formula as Entropy\n",
@@ -500,7 +500,7 @@
},
{
"cell_type": "markdown",
- "id": "554bead7",
+ "id": "14b132a9",
"metadata": {},
"source": [
"## Multivariate Processes\n",
@@ -537,7 +537,7 @@
},
{
"cell_type": "markdown",
- "id": "0afd3a2f",
+ "id": "4c63c25a",
"metadata": {},
"source": [
"## Frequency Domain Robust Control\n",
@@ -570,7 +570,7 @@
},
{
"cell_type": "markdown",
- "id": "cf0738b5",
+ "id": "04291ff5",
"metadata": {},
"source": [
"## Relative Entropy for a Continuous Random Variable\n",
@@ -610,7 +610,7 @@
}
],
"metadata": {
- "date": 1723011581.8683457,
+ "date": 1723517847.8641298,
"filename": "entropy.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/estspec.ipynb b/_notebooks/estspec.ipynb
index 6e5b52bc..3bb5dde4 100644
--- a/_notebooks/estspec.ipynb
+++ b/_notebooks/estspec.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "c24075b5",
+ "id": "96959117",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "62e6c09a",
+ "id": "59fd7579",
"metadata": {},
"source": [
"# Estimation of Spectra\n",
@@ -24,7 +24,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "52d15bf4",
+ "id": "1c456959",
"metadata": {
"hide-output": false
},
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "edbc262e",
+ "id": "5b70af4b",
"metadata": {},
"source": [
"## Overview\n",
@@ -61,7 +61,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "daf14a15",
+ "id": "db9b5f76",
"metadata": {
"hide-output": false
},
@@ -74,7 +74,7 @@
},
{
"cell_type": "markdown",
- "id": "fbea104c",
+ "id": "5deb5cd0",
"metadata": {},
"source": [
"\n",
@@ -83,7 +83,7 @@
},
{
"cell_type": "markdown",
- "id": "30383d85",
+ "id": "6016ff90",
"metadata": {},
"source": [
"## Periodograms\n",
@@ -136,7 +136,7 @@
},
{
"cell_type": "markdown",
- "id": "f0fc1ad5",
+ "id": "e16744b3",
"metadata": {},
"source": [
"### Interpretation\n",
@@ -203,7 +203,7 @@
},
{
"cell_type": "markdown",
- "id": "8f8f8889",
+ "id": "644cc3ae",
"metadata": {},
"source": [
"### Calculation\n",
@@ -261,7 +261,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b55bb8a0",
+ "id": "69524bd2",
"metadata": {
"hide-output": false
},
@@ -283,7 +283,7 @@
},
{
"cell_type": "markdown",
- "id": "4823c600",
+ "id": "36230cfd",
"metadata": {},
"source": [
"This estimate looks rather disappointing, but the data size is only 40, so\n",
@@ -301,7 +301,7 @@
},
{
"cell_type": "markdown",
- "id": "d25d340c",
+ "id": "d8c86d51",
"metadata": {},
"source": [
"## Smoothing\n",
@@ -354,7 +354,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2af98c38",
+ "id": "8b74289b",
"metadata": {
"hide-output": false
},
@@ -376,7 +376,7 @@
},
{
"cell_type": "markdown",
- "id": "07dd8dc7",
+ "id": "cb78c3b7",
"metadata": {},
"source": [
"### Estimation with Smoothing\n",
@@ -422,7 +422,7 @@
},
{
"cell_type": "markdown",
- "id": "6ddb7931",
+ "id": "bc891c5f",
"metadata": {},
"source": [
"### Pre-Filtering and Smoothing\n",
@@ -472,7 +472,7 @@
},
{
"cell_type": "markdown",
- "id": "09541147",
+ "id": "d58dc6f0",
"metadata": {},
"source": [
"### The AR(1) Setting\n",
@@ -548,7 +548,7 @@
},
{
"cell_type": "markdown",
- "id": "2496ad18",
+ "id": "f7bb7651",
"metadata": {},
"source": [
"## Exercises\n",
@@ -559,7 +559,7 @@
},
{
"cell_type": "markdown",
- "id": "153b63df",
+ "id": "7bca53b8",
"metadata": {},
"source": [
"## Exercise 29.1\n",
@@ -573,7 +573,7 @@
},
{
"cell_type": "markdown",
- "id": "6790c8c5",
+ "id": "26580f03",
"metadata": {},
"source": [
"## Solution to[ Exercise 29.1](https://python-advanced.quantecon.org/#est_ex1)"
@@ -582,7 +582,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "34a72e20",
+ "id": "c19f28f4",
"metadata": {
"hide-output": false
},
@@ -615,7 +615,7 @@
},
{
"cell_type": "markdown",
- "id": "9f2c689c",
+ "id": "82706ba3",
"metadata": {},
"source": [
"\n",
@@ -624,7 +624,7 @@
},
{
"cell_type": "markdown",
- "id": "7c5bdfd6",
+ "id": "d5256a2d",
"metadata": {},
"source": [
"## Exercise 29.2\n",
@@ -639,7 +639,7 @@
},
{
"cell_type": "markdown",
- "id": "4e10945f",
+ "id": "057a9f5f",
"metadata": {},
"source": [
"## Solution to[ Exercise 29.2](https://python-advanced.quantecon.org/#est_ex2)"
@@ -648,7 +648,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d042759b",
+ "id": "7d1e105b",
"metadata": {
"hide-output": false
},
@@ -682,7 +682,7 @@
}
],
"metadata": {
- "date": 1723011581.894182,
+ "date": 1723517847.8893352,
"filename": "estspec.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/five_preferences.ipynb b/_notebooks/five_preferences.ipynb
index 82d2bf3c..e72d7119 100644
--- a/_notebooks/five_preferences.ipynb
+++ b/_notebooks/five_preferences.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "635e32ce",
+ "id": "4d8ac013",
"metadata": {},
"source": [
"# Risk and Model Uncertainty"
@@ -10,7 +10,7 @@
},
{
"cell_type": "markdown",
- "id": "3b9300da",
+ "id": "fdb65d05",
"metadata": {},
"source": [
"## Overview\n",
@@ -56,7 +56,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "327057f6",
+ "id": "7c627383",
"metadata": {
"hide-output": false
},
@@ -78,7 +78,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7becb527",
+ "id": "05ad9e4b",
"metadata": {
"hide-output": false
},
@@ -106,7 +106,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "41209159",
+ "id": "bd9eb74e",
"metadata": {
"hide-output": false
},
@@ -164,7 +164,7 @@
},
{
"cell_type": "markdown",
- "id": "7c602af2",
+ "id": "1bb7dde6",
"metadata": {},
"source": [
"## Basic objects\n",
@@ -229,7 +229,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ece2e814",
+ "id": "f18f2002",
"metadata": {
"hide-output": false
},
@@ -261,7 +261,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "582fc626",
+ "id": "0817c77d",
"metadata": {
"hide-output": false
},
@@ -276,7 +276,7 @@
},
{
"cell_type": "markdown",
- "id": "8fe482d9",
+ "id": "f9b106f5",
"metadata": {},
"source": [
"The heat maps in the next two figures vary both $ \\hat{\\pi}_1 $ and $ \\pi_1 $.\n",
@@ -287,7 +287,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "effc8a71",
+ "id": "01534d73",
"metadata": {
"hide-output": false
},
@@ -316,7 +316,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e5ff0320",
+ "id": "25edb598",
"metadata": {
"hide-output": false
},
@@ -334,7 +334,7 @@
},
{
"cell_type": "markdown",
- "id": "f592f2e3",
+ "id": "5cbde348",
"metadata": {},
"source": [
"The next figure plots the logarithm of entropy."
@@ -343,7 +343,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3f003622",
+ "id": "9c0e193d",
"metadata": {
"hide-output": false
},
@@ -358,7 +358,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a0cdc292",
+ "id": "c55ff610",
"metadata": {
"hide-output": false
},
@@ -375,7 +375,7 @@
},
{
"cell_type": "markdown",
- "id": "7f1929ac",
+ "id": "9033f8a0",
"metadata": {},
"source": [
"## Five preference specifications\n",
@@ -400,7 +400,7 @@
},
{
"cell_type": "markdown",
- "id": "c4fb0fc1",
+ "id": "d2d095d0",
"metadata": {},
"source": [
"## Expected utility\n",
@@ -422,7 +422,7 @@
},
{
"cell_type": "markdown",
- "id": "dfddd981",
+ "id": "4cee19c9",
"metadata": {},
"source": [
"## Constraint preferences\n",
@@ -547,7 +547,7 @@
},
{
"cell_type": "markdown",
- "id": "469a8a5c",
+ "id": "f99bf00b",
"metadata": {},
"source": [
"## Multiplier preferences\n",
@@ -610,7 +610,7 @@
},
{
"cell_type": "markdown",
- "id": "c5274cb6",
+ "id": "7bfe023b",
"metadata": {},
"source": [
"## Risk-sensitive preferences\n",
@@ -639,7 +639,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7182efea",
+ "id": "292cbc34",
"metadata": {
"hide-output": false
},
@@ -671,7 +671,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b21eff75",
+ "id": "99ee2e33",
"metadata": {
"hide-output": false
},
@@ -687,7 +687,7 @@
},
{
"cell_type": "markdown",
- "id": "124ad45b",
+ "id": "d9f7238e",
"metadata": {},
"source": [
"For large values of $ \\theta $, $ {\\sf T} u(c) $ is approximately linear in the probability $ \\pi_1 $, but for lower values of $ \\theta $, $ {\\sf T} u(c) $ has considerable curvature as a function of $ \\pi_1 $.\n",
@@ -702,7 +702,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d04df539",
+ "id": "5d02bd57",
"metadata": {
"hide-output": false
},
@@ -745,7 +745,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "53e1f1f8",
+ "id": "99b1df76",
"metadata": {
"hide-output": false
},
@@ -788,7 +788,7 @@
},
{
"cell_type": "markdown",
- "id": "a13cfd9e",
+ "id": "c2fa0c4a",
"metadata": {},
"source": [
"The panel on the right portrays how the transformation $ \\exp\\left(\\frac{-u\\left(c\\right)}{\\theta}\\right) $ sends $ u\\left(c\\right) $ to a new function by (i) flipping the sign, and (ii) increasing curvature in proportion to $ \\theta $.\n",
@@ -809,7 +809,7 @@
},
{
"cell_type": "markdown",
- "id": "f520750b",
+ "id": "279a813c",
"metadata": {},
"source": [
"### Digression on moment generating functions\n",
@@ -861,7 +861,7 @@
},
{
"cell_type": "markdown",
- "id": "47fd107b",
+ "id": "063dc983",
"metadata": {},
"source": [
"## Ex post Bayesian preferences\n",
@@ -881,7 +881,7 @@
},
{
"cell_type": "markdown",
- "id": "6a096368",
+ "id": "2859aeb8",
"metadata": {},
"source": [
"## Comparing preferences\n",
@@ -906,7 +906,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "182ba6b0",
+ "id": "09d5b19a",
"metadata": {
"hide-output": false
},
@@ -936,7 +936,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e7933974",
+ "id": "a5327140",
"metadata": {
"hide-output": false
},
@@ -955,7 +955,7 @@
},
{
"cell_type": "markdown",
- "id": "c411bfef",
+ "id": "a60d680d",
"metadata": {},
"source": [
"The next figure shows the function $ \\sum_{i=1}^I \\pi_i m_i [ u(c_i) + \\theta \\log m_i ] $ that is to be\n",
@@ -967,7 +967,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9b3e3306",
+ "id": "9e8f63e0",
"metadata": {
"hide-output": false
},
@@ -995,7 +995,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5baf9c7b",
+ "id": "96422096",
"metadata": {
"hide-output": false
},
@@ -1033,7 +1033,7 @@
},
{
"cell_type": "markdown",
- "id": "ced8566e",
+ "id": "0370079d",
"metadata": {},
"source": [
"Evidently, from this figure and also from formula [(24.12)](#equation-tom12), lower values of $ \\theta $ lead to lower,\n",
@@ -1061,7 +1061,7 @@
},
{
"cell_type": "markdown",
- "id": "6f1b6421",
+ "id": "0556ef60",
"metadata": {},
"source": [
"## Risk aversion and misspecification aversion\n",
@@ -1112,7 +1112,7 @@
},
{
"cell_type": "markdown",
- "id": "9a963898",
+ "id": "64c12417",
"metadata": {},
"source": [
"## Indifference curves\n",
@@ -1156,7 +1156,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b9e877e3",
+ "id": "1a052bd3",
"metadata": {
"hide-output": false
},
@@ -1277,7 +1277,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a0eacb99",
+ "id": "126a3f98",
"metadata": {
"hide-output": false
},
@@ -1325,7 +1325,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0ff3632c",
+ "id": "2b98f180",
"metadata": {
"hide-output": false
},
@@ -1353,7 +1353,7 @@
},
{
"cell_type": "markdown",
- "id": "8dd5c219",
+ "id": "1361712f",
"metadata": {},
"source": [
"**Kink at 45 degree line**\n",
@@ -1423,7 +1423,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1b8fb10b",
+ "id": "dc23adca",
"metadata": {
"hide-output": false
},
@@ -1472,7 +1472,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "43017574",
+ "id": "1e6c8184",
"metadata": {
"hide-output": false
},
@@ -1500,7 +1500,7 @@
},
{
"cell_type": "markdown",
- "id": "e90aad5e",
+ "id": "1d2313a7",
"metadata": {},
"source": [
"Note that all three lines of the left graph intersect at (1, 3). While the intersection at (3, 1) is hard-coded, the intersection at (1,3) arises from the computation, which confirms that the code seems to be\n",
@@ -1537,7 +1537,7 @@
},
{
"cell_type": "markdown",
- "id": "4bd2d124",
+ "id": "dd0e04f3",
"metadata": {},
"source": [
"## State price deflators\n",
@@ -1577,7 +1577,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ae853d4c",
+ "id": "e6773fc0",
"metadata": {
"hide-output": false
},
@@ -1607,7 +1607,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d58388f2",
+ "id": "b088ec0a",
"metadata": {
"hide-output": false
},
@@ -1630,7 +1630,7 @@
},
{
"cell_type": "markdown",
- "id": "5bd382d8",
+ "id": "ed36ab66",
"metadata": {},
"source": [
"Because budget constraints are linear, asset prices are identical under\n",
@@ -1648,7 +1648,7 @@
},
{
"cell_type": "markdown",
- "id": "d4cd9abe",
+ "id": "e5ee20ee",
"metadata": {},
"source": [
"### Consumption-equivalent measures of uncertainty aversion\n",
@@ -1663,7 +1663,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f9509152",
+ "id": "1b6e5a8c",
"metadata": {
"hide-output": false
},
@@ -1695,7 +1695,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3800533a",
+ "id": "1cc04044",
"metadata": {
"hide-output": false
},
@@ -1732,7 +1732,7 @@
},
{
"cell_type": "markdown",
- "id": "642c6e09",
+ "id": "a9fded17",
"metadata": {},
"source": [
"The figure indicates that the certainty equivalent\n",
@@ -1760,7 +1760,7 @@
},
{
"cell_type": "markdown",
- "id": "a5352e5a",
+ "id": "cdfa7b81",
"metadata": {},
"source": [
"## Iso-utility and iso-entropy curves and expansion paths\n",
@@ -1794,7 +1794,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5d80c921",
+ "id": "bfabdcc8",
"metadata": {
"hide-output": false
},
@@ -1843,7 +1843,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3030f18e",
+ "id": "9ea0b29b",
"metadata": {
"hide-output": false
},
@@ -1918,7 +1918,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "66b91d1c",
+ "id": "6ee8de31",
"metadata": {
"hide-output": false
},
@@ -1932,7 +1932,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a0c79109",
+ "id": "cd62a74d",
"metadata": {
"hide-output": false
},
@@ -1945,7 +1945,7 @@
},
{
"cell_type": "markdown",
- "id": "b9c818b1",
+ "id": "42feee5b",
"metadata": {},
"source": [
"## Bounds on expected utility\n",
@@ -2008,7 +2008,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cece9920",
+ "id": "700d6162",
"metadata": {
"hide-output": false
},
@@ -2074,7 +2074,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "eb2f4b7c",
+ "id": "a8a97fb0",
"metadata": {
"hide-output": false
},
@@ -2101,7 +2101,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d31b0ca6",
+ "id": "474c2682",
"metadata": {
"hide-output": false
},
@@ -2117,7 +2117,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c4050682",
+ "id": "61834776",
"metadata": {
"hide-output": false
},
@@ -2134,7 +2134,7 @@
},
{
"cell_type": "markdown",
- "id": "5d6531a4",
+ "id": "7d887ea5",
"metadata": {},
"source": [
"In this figure, expected utility is on the co-ordinate axis\n",
@@ -2184,7 +2184,7 @@
},
{
"cell_type": "markdown",
- "id": "720d7fd1",
+ "id": "138f8d24",
"metadata": {},
"source": [
"## Why entropy?\n",
@@ -2202,7 +2202,7 @@
},
{
"cell_type": "markdown",
- "id": "6f645e74",
+ "id": "ff3f044f",
"metadata": {},
"source": [
"### Entropy and statistical detection\n",
@@ -2250,7 +2250,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "87b8c1f9",
+ "id": "a4fcd52f",
"metadata": {
"hide-output": false
},
@@ -2268,7 +2268,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "16ddb830",
+ "id": "8202589c",
"metadata": {
"hide-output": false
},
@@ -2296,7 +2296,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a79bc5c2",
+ "id": "82cb120c",
"metadata": {
"hide-output": false
},
@@ -2319,7 +2319,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d073bb46",
+ "id": "e05bf4fd",
"metadata": {
"hide-output": false
},
@@ -2330,7 +2330,7 @@
},
{
"cell_type": "markdown",
- "id": "29ac6d46",
+ "id": "43992197",
"metadata": {},
"source": [
"The density for the approximating model is\n",
@@ -2350,7 +2350,7 @@
},
{
"cell_type": "markdown",
- "id": "afe0595f",
+ "id": "07567071",
"metadata": {},
"source": [
"### Axiomatic justifications\n",
@@ -2366,7 +2366,7 @@
}
],
"metadata": {
- "date": 1723011581.9737446,
+ "date": 1723517847.9678419,
"filename": "five_preferences.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/growth_in_dles.ipynb b/_notebooks/growth_in_dles.ipynb
index f23c18c0..c2447c6f 100644
--- a/_notebooks/growth_in_dles.ipynb
+++ b/_notebooks/growth_in_dles.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "db2036e5",
+ "id": "4ea677c5",
"metadata": {},
"source": [
"\n",
@@ -13,7 +13,7 @@
},
{
"cell_type": "markdown",
- "id": "60de0dff",
+ "id": "67b83771",
"metadata": {},
"source": [
"# Growth in Dynamic Linear Economies\n",
@@ -27,7 +27,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d02c42a9",
+ "id": "bd6a4a55",
"metadata": {
"hide-output": false
},
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "d54dfcd7",
+ "id": "6e33d019",
"metadata": {},
"source": [
"This lecture describes several complete market economies having a\n",
@@ -55,7 +55,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7b64f526",
+ "id": "363699ce",
"metadata": {
"hide-output": false
},
@@ -68,7 +68,7 @@
},
{
"cell_type": "markdown",
- "id": "59622683",
+ "id": "ee736471",
"metadata": {},
"source": [
"## Common Structure\n",
@@ -132,7 +132,7 @@
},
{
"cell_type": "markdown",
- "id": "d6dc171a",
+ "id": "ffdd5f59",
"metadata": {},
"source": [
"## A Planning Problem\n",
@@ -215,7 +215,7 @@
},
{
"cell_type": "markdown",
- "id": "dccd5c28",
+ "id": "1a7a3cf5",
"metadata": {},
"source": [
"## Example Economies\n",
@@ -300,7 +300,7 @@
},
{
"cell_type": "markdown",
- "id": "2f129045",
+ "id": "dc41d76a",
"metadata": {},
"source": [
"### Example 1: Hall (1978)\n",
@@ -333,7 +333,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2f7cad21",
+ "id": "aac75fa7",
"metadata": {
"hide-output": false
},
@@ -376,7 +376,7 @@
},
{
"cell_type": "markdown",
- "id": "e79fd6c7",
+ "id": "4d782512",
"metadata": {},
"source": [
"These parameter values are used to define an economy of the DLE class."
@@ -385,7 +385,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "51170cc7",
+ "id": "bc508377",
"metadata": {
"hide-output": false
},
@@ -396,7 +396,7 @@
},
{
"cell_type": "markdown",
- "id": "05402c16",
+ "id": "2ee1ef9a",
"metadata": {},
"source": [
"We can then simulate the economy for a chosen length of time, from our\n",
@@ -406,7 +406,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9e78db36",
+ "id": "030b8f91",
"metadata": {
"hide-output": false
},
@@ -417,7 +417,7 @@
},
{
"cell_type": "markdown",
- "id": "12280004",
+ "id": "307d2097",
"metadata": {},
"source": [
"The economy stores the simulated values for each variable. Below we plot\n",
@@ -427,7 +427,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0ff63037",
+ "id": "55c3664d",
"metadata": {
"hide-output": false
},
@@ -442,7 +442,7 @@
},
{
"cell_type": "markdown",
- "id": "7f62195c",
+ "id": "22cb2404",
"metadata": {},
"source": [
"Inspection of the plot shows that the sample paths of consumption and\n",
@@ -455,7 +455,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "012c186f",
+ "id": "ad8ede5a",
"metadata": {
"hide-output": false
},
@@ -466,7 +466,7 @@
},
{
"cell_type": "markdown",
- "id": "0bcb73a8",
+ "id": "746842f7",
"metadata": {},
"source": [
"The endogenous eigenvalue that appears to be unity reflects the random\n",
@@ -479,7 +479,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2dedfabb",
+ "id": "e19cafb3",
"metadata": {
"hide-output": false
},
@@ -490,7 +490,7 @@
},
{
"cell_type": "markdown",
- "id": "75200f53",
+ "id": "dd168ecd",
"metadata": {},
"source": [
"The fact that the largest endogenous eigenvalue is strictly less than\n",
@@ -501,7 +501,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a2d1621e",
+ "id": "cbef39bd",
"metadata": {
"hide-output": false
},
@@ -514,7 +514,7 @@
},
{
"cell_type": "markdown",
- "id": "2ba68ebe",
+ "id": "5a471961",
"metadata": {},
"source": [
"However, the near-unity endogenous eigenvalue means that these steady\n",
@@ -523,7 +523,7 @@
},
{
"cell_type": "markdown",
- "id": "61544634",
+ "id": "f3351159",
"metadata": {},
"source": [
"### Example 2: Altered Growth Condition\n",
@@ -557,7 +557,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0761c0f9",
+ "id": "40a42800",
"metadata": {
"hide-output": false
},
@@ -576,7 +576,7 @@
},
{
"cell_type": "markdown",
- "id": "eb25f019",
+ "id": "318c83b3",
"metadata": {},
"source": [
"Creating the DLE class and then simulating gives the following plot for\n",
@@ -586,7 +586,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8010c77c",
+ "id": "6f773220",
"metadata": {
"hide-output": false
},
@@ -604,7 +604,7 @@
},
{
"cell_type": "markdown",
- "id": "bbea1224",
+ "id": "630c8df1",
"metadata": {},
"source": [
"Simulating our new economy shows that consumption grows quickly in the\n",
@@ -617,7 +617,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "24075c5f",
+ "id": "42f3e915",
"metadata": {
"hide-output": false
},
@@ -629,7 +629,7 @@
},
{
"cell_type": "markdown",
- "id": "5c874e2e",
+ "id": "dde9c4a4",
"metadata": {},
"source": [
"The economy converges faster to this level than in Example 1 because the\n",
@@ -640,7 +640,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7bcb4b86",
+ "id": "089fe4ac",
"metadata": {
"hide-output": false
},
@@ -651,7 +651,7 @@
},
{
"cell_type": "markdown",
- "id": "06c203a0",
+ "id": "b3585cc1",
"metadata": {},
"source": [
"### Example 3: A Jones-Manuelli (1990) Economy\n",
@@ -699,7 +699,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "eeaff1f6",
+ "id": "34586274",
"metadata": {
"hide-output": false
},
@@ -712,7 +712,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "65d1edd7",
+ "id": "f9df1294",
"metadata": {
"hide-output": false
},
@@ -723,7 +723,7 @@
},
{
"cell_type": "markdown",
- "id": "4df48246",
+ "id": "c924f347",
"metadata": {},
"source": [
"We simulate this economy from the original state vector"
@@ -732,7 +732,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d375de52",
+ "id": "ef67d2ac",
"metadata": {
"hide-output": false
},
@@ -749,7 +749,7 @@
},
{
"cell_type": "markdown",
- "id": "ba7db600",
+ "id": "cc29ca15",
"metadata": {},
"source": [
"Thus, adding habit persistence to the Hall model of Example 1 is enough\n",
@@ -762,7 +762,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f19e97f9",
+ "id": "6c10c323",
"metadata": {
"hide-output": false
},
@@ -773,7 +773,7 @@
},
{
"cell_type": "markdown",
- "id": "1967f5ef",
+ "id": "4157058a",
"metadata": {},
"source": [
"We now have two unit endogenous eigenvalues. One stems from satisfying\n",
@@ -787,7 +787,7 @@
},
{
"cell_type": "markdown",
- "id": "78e5a2a3",
+ "id": "ee816850",
"metadata": {},
"source": [
"### Example 3.1: Varying Sensitivity\n",
@@ -798,7 +798,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "61666003",
+ "id": "e8cdab38",
"metadata": {
"hide-output": false
},
@@ -819,7 +819,7 @@
},
{
"cell_type": "markdown",
- "id": "d61574d2",
+ "id": "be4221df",
"metadata": {},
"source": [
"We no longer achieve sustained growth if $ \\lambda $ is raised from -1 to -0.7.\n",
@@ -831,7 +831,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e3f0817b",
+ "id": "e36e39dc",
"metadata": {
"hide-output": false
},
@@ -842,7 +842,7 @@
},
{
"cell_type": "markdown",
- "id": "807e696a",
+ "id": "05976117",
"metadata": {},
"source": [
"### Example 3.2: More Impatience\n",
@@ -853,7 +853,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "763e437d",
+ "id": "4b33e2d2",
"metadata": {
"hide-output": false
},
@@ -874,7 +874,7 @@
},
{
"cell_type": "markdown",
- "id": "0f9bfbe3",
+ "id": "5ada550a",
"metadata": {},
"source": [
"Growth also fails if we lower $ \\beta $, since we now have\n",
@@ -891,7 +891,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c8cc77b9",
+ "id": "530770e9",
"metadata": {
"hide-output": false
},
@@ -902,7 +902,7 @@
}
],
"metadata": {
- "date": 1723011582.0021672,
+ "date": 1723517847.9962149,
"filename": "growth_in_dles.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/hs_invertibility_example.ipynb b/_notebooks/hs_invertibility_example.ipynb
index 71f05e83..d9046f09 100644
--- a/_notebooks/hs_invertibility_example.ipynb
+++ b/_notebooks/hs_invertibility_example.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "fdcc1726",
+ "id": "b6235f3e",
"metadata": {},
"source": [
"\n",
@@ -13,7 +13,7 @@
},
{
"cell_type": "markdown",
- "id": "4ed74f77",
+ "id": "9af4447e",
"metadata": {},
"source": [
"# Shock Non Invertibility"
@@ -21,7 +21,7 @@
},
{
"cell_type": "markdown",
- "id": "d49bdc0e",
+ "id": "06e9ab1d",
"metadata": {},
"source": [
"## Overview\n",
@@ -35,7 +35,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0b5e541e",
+ "id": "008b3df9",
"metadata": {
"hide-output": false
},
@@ -46,7 +46,7 @@
},
{
"cell_type": "markdown",
- "id": "cfcb3e2a",
+ "id": "246c3940",
"metadata": {},
"source": [
"We’ll make these imports:"
@@ -55,7 +55,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "dae1ae08",
+ "id": "b1591713",
"metadata": {
"hide-output": false
},
@@ -70,7 +70,7 @@
},
{
"cell_type": "markdown",
- "id": "d0b20e26",
+ "id": "91fe14a7",
"metadata": {},
"source": [
"This lecture describes an early contribution to what is now often called\n",
@@ -96,7 +96,7 @@
},
{
"cell_type": "markdown",
- "id": "438b0db7",
+ "id": "ec6fa233",
"metadata": {},
"source": [
"## Model\n",
@@ -191,7 +191,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "89c1a2d4",
+ "id": "be1f2372",
"metadata": {
"hide-output": false
},
@@ -229,7 +229,7 @@
},
{
"cell_type": "markdown",
- "id": "1dd59318",
+ "id": "9a4ea1a9",
"metadata": {},
"source": [
"We define the household’s net of interest deficit as $ c_t - d_t $.\n",
@@ -300,7 +300,7 @@
},
{
"cell_type": "markdown",
- "id": "787bd3f4",
+ "id": "871e75f9",
"metadata": {},
"source": [
"## Code\n",
@@ -312,7 +312,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "824c639b",
+ "id": "baea6cb4",
"metadata": {
"hide-output": false
},
@@ -340,7 +340,7 @@
},
{
"cell_type": "markdown",
- "id": "139ac2a3",
+ "id": "44051a87",
"metadata": {},
"source": [
"The above figure displays the impulse response of consumption and the\n",
@@ -360,7 +360,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a1b2ca1d",
+ "id": "30fe4e13",
"metadata": {
"hide-output": false
},
@@ -410,7 +410,7 @@
},
{
"cell_type": "markdown",
- "id": "ec7acd3e",
+ "id": "628f2c94",
"metadata": {},
"source": [
"The above figure displays the impulse response of consumption and the\n",
@@ -430,7 +430,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "21cef038",
+ "id": "42345288",
"metadata": {
"hide-output": false
},
@@ -467,7 +467,7 @@
},
{
"cell_type": "markdown",
- "id": "0befc526",
+ "id": "bf2e48bc",
"metadata": {},
"source": [
"The above figure displays the impulse responses of $ u_t $ to\n",
@@ -488,7 +488,7 @@
}
],
"metadata": {
- "date": 1723011582.0193183,
+ "date": 1723517848.0135906,
"filename": "hs_invertibility_example.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/hs_recursive_models.ipynb b/_notebooks/hs_recursive_models.ipynb
index 77bcede0..180232ab 100644
--- a/_notebooks/hs_recursive_models.ipynb
+++ b/_notebooks/hs_recursive_models.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "7404618b",
+ "id": "2bb3bd87",
"metadata": {},
"source": [
"\n",
@@ -13,7 +13,7 @@
},
{
"cell_type": "markdown",
- "id": "5c26223b",
+ "id": "58006cc6",
"metadata": {},
"source": [
"# Recursive Models of Dynamic Linear Economies\n",
@@ -29,7 +29,7 @@
},
{
"cell_type": "markdown",
- "id": "7afca7e0",
+ "id": "8cf8f921",
"metadata": {},
"source": [
"## A Suite of Models\n",
@@ -52,7 +52,7 @@
},
{
"cell_type": "markdown",
- "id": "6e0f6267",
+ "id": "10688a1c",
"metadata": {},
"source": [
"### Overview of the Models\n",
@@ -123,7 +123,7 @@
},
{
"cell_type": "markdown",
- "id": "78b68dd3",
+ "id": "7884f858",
"metadata": {},
"source": [
"### Forecasting?\n",
@@ -140,7 +140,7 @@
},
{
"cell_type": "markdown",
- "id": "b3aa536e",
+ "id": "0afc08af",
"metadata": {},
"source": [
"### Theory and Econometrics\n",
@@ -165,7 +165,7 @@
},
{
"cell_type": "markdown",
- "id": "cde47bea",
+ "id": "8aa7a1e8",
"metadata": {},
"source": [
"### More Details\n",
@@ -248,7 +248,7 @@
},
{
"cell_type": "markdown",
- "id": "16d48808",
+ "id": "4f94305a",
"metadata": {},
"source": [
"### Stochastic Model of Information Flows and Outcomes\n",
@@ -290,7 +290,7 @@
},
{
"cell_type": "markdown",
- "id": "5ea0fca6",
+ "id": "0085be1b",
"metadata": {},
"source": [
"### Information Sets\n",
@@ -304,7 +304,7 @@
},
{
"cell_type": "markdown",
- "id": "1c7406d5",
+ "id": "25f81a28",
"metadata": {},
"source": [
"### Prediction Theory\n",
@@ -380,7 +380,7 @@
},
{
"cell_type": "markdown",
- "id": "6486b52e",
+ "id": "bf1c594e",
"metadata": {},
"source": [
"### Orthogonal Decomposition\n",
@@ -413,7 +413,7 @@
},
{
"cell_type": "markdown",
- "id": "9a716f73",
+ "id": "4c613dfc",
"metadata": {},
"source": [
"### Taste and Technology Shocks\n",
@@ -454,7 +454,7 @@
},
{
"cell_type": "markdown",
- "id": "ab01b79d",
+ "id": "cf16d2d9",
"metadata": {},
"source": [
"### Production Technology\n",
@@ -479,7 +479,7 @@
},
{
"cell_type": "markdown",
- "id": "4ba12eb6",
+ "id": "cdc59fda",
"metadata": {},
"source": [
"### Household Technology\n",
@@ -506,7 +506,7 @@
},
{
"cell_type": "markdown",
- "id": "40b86774",
+ "id": "8de10150",
"metadata": {},
"source": [
"### Preferences\n",
@@ -536,7 +536,7 @@
},
{
"cell_type": "markdown",
- "id": "e944a086",
+ "id": "5c8e2d07",
"metadata": {},
"source": [
"### Endowment Economy\n",
@@ -584,7 +584,7 @@
},
{
"cell_type": "markdown",
- "id": "e2ac81b6",
+ "id": "8868ed3f",
"metadata": {},
"source": [
"### Single-Period Adjustment Costs\n",
@@ -898,7 +898,7 @@
},
{
"cell_type": "markdown",
- "id": "550a1188",
+ "id": "73dc2740",
"metadata": {},
"source": [
"### Optimal Resource Allocation\n",
@@ -951,7 +951,7 @@
},
{
"cell_type": "markdown",
- "id": "ae94b228",
+ "id": "8bd71079",
"metadata": {},
"source": [
"### Lagrangian Formulation\n",
@@ -1070,7 +1070,7 @@
},
{
"cell_type": "markdown",
- "id": "a1da7c86",
+ "id": "1d32b274",
"metadata": {},
"source": [
"### Dynamic Programming\n",
@@ -1286,7 +1286,7 @@
},
{
"cell_type": "markdown",
- "id": "5b345384",
+ "id": "fced01ec",
"metadata": {},
"source": [
"### Other mathematical infrastructure\n",
@@ -1315,7 +1315,7 @@
},
{
"cell_type": "markdown",
- "id": "b3a9e9fc",
+ "id": "4fef42a5",
"metadata": {},
"source": [
"### Representative Household\n",
@@ -1352,7 +1352,7 @@
},
{
"cell_type": "markdown",
- "id": "d22eef5d",
+ "id": "c2d9c4e3",
"metadata": {},
"source": [
"### Type I Firm\n",
@@ -1382,7 +1382,7 @@
},
{
"cell_type": "markdown",
- "id": "378bc4b8",
+ "id": "f3138fe2",
"metadata": {},
"source": [
"### Type II Firm\n",
@@ -1410,7 +1410,7 @@
},
{
"cell_type": "markdown",
- "id": "517d6671",
+ "id": "2076be34",
"metadata": {},
"source": [
"### Competitive Equilibrium: Definition\n",
@@ -1473,7 +1473,7 @@
},
{
"cell_type": "markdown",
- "id": "1f596056",
+ "id": "219512cf",
"metadata": {},
"source": [
"### Asset pricing\n",
@@ -1521,7 +1521,7 @@
},
{
"cell_type": "markdown",
- "id": "9cdc8ebf",
+ "id": "704dcc97",
"metadata": {},
"source": [
"### Re-Opening Markets\n",
@@ -1567,7 +1567,7 @@
},
{
"cell_type": "markdown",
- "id": "d3bc9356",
+ "id": "331bc0f1",
"metadata": {},
"source": [
"## Econometrics\n",
@@ -1680,7 +1680,7 @@
},
{
"cell_type": "markdown",
- "id": "5429e52a",
+ "id": "8f9de5e1",
"metadata": {},
"source": [
"### Factorization of Likelihood Function\n",
@@ -1707,7 +1707,7 @@
},
{
"cell_type": "markdown",
- "id": "9b998269",
+ "id": "e6266a90",
"metadata": {},
"source": [
"### Covariance Generating Functions\n",
@@ -1720,7 +1720,7 @@
},
{
"cell_type": "markdown",
- "id": "51c3e2d2",
+ "id": "2884fd09",
"metadata": {},
"source": [
"### Spectral Factorization Identity\n",
@@ -1764,7 +1764,7 @@
},
{
"cell_type": "markdown",
- "id": "4e732417",
+ "id": "cf50225a",
"metadata": {},
"source": [
"### Wold and Vector Autoregressive Representations\n",
@@ -1806,7 +1806,7 @@
},
{
"cell_type": "markdown",
- "id": "bee32f02",
+ "id": "c2bc908b",
"metadata": {},
"source": [
"## Dynamic Demand Curves and Canonical Household Technologies"
@@ -1814,7 +1814,7 @@
},
{
"cell_type": "markdown",
- "id": "c35d41c0",
+ "id": "7cdf3c18",
"metadata": {},
"source": [
"### Canonical Household Technologies\n",
@@ -1862,7 +1862,7 @@
},
{
"cell_type": "markdown",
- "id": "ca2bec70",
+ "id": "050f130b",
"metadata": {},
"source": [
"### Dynamic Demand Functions\n",
@@ -1915,7 +1915,7 @@
},
{
"cell_type": "markdown",
- "id": "ffc06119",
+ "id": "f05cd082",
"metadata": {},
"source": [
"## Gorman Aggregation and Engel Curves\n",
@@ -1945,7 +1945,7 @@
},
{
"cell_type": "markdown",
- "id": "0acbde52",
+ "id": "e4bd2971",
"metadata": {},
"source": [
"### Re-Opened Markets\n",
@@ -1989,7 +1989,7 @@
},
{
"cell_type": "markdown",
- "id": "4e404f2d",
+ "id": "e6056ed8",
"metadata": {},
"source": [
"### Dynamic Demand\n",
@@ -2017,7 +2017,7 @@
},
{
"cell_type": "markdown",
- "id": "62a99953",
+ "id": "c03cf937",
"metadata": {},
"source": [
"### Attaining a Canonical Household Technology\n",
@@ -2043,7 +2043,7 @@
},
{
"cell_type": "markdown",
- "id": "6b1cfe00",
+ "id": "e17fdaab",
"metadata": {},
"source": [
"## Partial Equilibrium\n",
@@ -2113,7 +2113,7 @@
},
{
"cell_type": "markdown",
- "id": "1850818b",
+ "id": "06e63e32",
"metadata": {},
"source": [
"## Equilibrium Investment Under Uncertainty\n",
@@ -2150,7 +2150,7 @@
},
{
"cell_type": "markdown",
- "id": "b5f6d75f",
+ "id": "ce465765",
"metadata": {},
"source": [
"## A Rosen-Topel Housing Model\n",
@@ -2199,7 +2199,7 @@
},
{
"cell_type": "markdown",
- "id": "0e3feeb2",
+ "id": "6c79232e",
"metadata": {},
"source": [
"## Cattle Cycles\n",
@@ -2269,7 +2269,7 @@
},
{
"cell_type": "markdown",
- "id": "c710a7e8",
+ "id": "6d4842c0",
"metadata": {},
"source": [
"## Models of Occupational Choice and Pay\n",
@@ -2282,7 +2282,7 @@
},
{
"cell_type": "markdown",
- "id": "5ef293e4",
+ "id": "20852628",
"metadata": {},
"source": [
"### Market for Engineers\n",
@@ -2359,7 +2359,7 @@
},
{
"cell_type": "markdown",
- "id": "f57fdcf7",
+ "id": "9c07c187",
"metadata": {},
"source": [
"### Skilled and Unskilled Workers\n",
@@ -2422,7 +2422,7 @@
},
{
"cell_type": "markdown",
- "id": "8a24a989",
+ "id": "253c11ef",
"metadata": {},
"source": [
"## Permanent Income Models\n",
@@ -2500,7 +2500,7 @@
},
{
"cell_type": "markdown",
- "id": "b747b2ee",
+ "id": "11826feb",
"metadata": {},
"source": [
"## Gorman Heterogeneous Households\n",
@@ -2600,7 +2600,7 @@
},
{
"cell_type": "markdown",
- "id": "f1fa7496",
+ "id": "e849fd2c",
"metadata": {},
"source": [
"## Non-Gorman Heterogeneous Households\n",
@@ -2784,7 +2784,7 @@
}
],
"metadata": {
- "date": 1723011582.3153026,
+ "date": 1723517848.0885496,
"filename": "hs_recursive_models.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/intro.ipynb b/_notebooks/intro.ipynb
index 9e7eb684..7300a038 100644
--- a/_notebooks/intro.ipynb
+++ b/_notebooks/intro.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "19595b03",
+ "id": "97348f90",
"metadata": {},
"source": [
"# Advanced Quantitative Economics with Python\n",
@@ -12,7 +12,7 @@
},
{
"cell_type": "markdown",
- "id": "dcb3a5a8",
+ "id": "e313de09",
"metadata": {},
"source": [
"# Tools and Techniques\n",
@@ -25,7 +25,7 @@
},
{
"cell_type": "markdown",
- "id": "81caa974",
+ "id": "7c44ddf0",
"metadata": {},
"source": [
"# LQ Control\n",
@@ -42,7 +42,7 @@
},
{
"cell_type": "markdown",
- "id": "2512a8f9",
+ "id": "f7b571ae",
"metadata": {},
"source": [
"# Multiple Agent Models\n",
@@ -54,7 +54,7 @@
},
{
"cell_type": "markdown",
- "id": "8073a292",
+ "id": "2e88be3d",
"metadata": {},
"source": [
"# Dynamic Linear Economies\n",
@@ -71,7 +71,7 @@
},
{
"cell_type": "markdown",
- "id": "f6b80cf7",
+ "id": "699cd0cd",
"metadata": {},
"source": [
"# Risk, Model Uncertainty, and Robustness\n",
@@ -84,7 +84,7 @@
},
{
"cell_type": "markdown",
- "id": "ce11473f",
+ "id": "8a40d26e",
"metadata": {},
"source": [
"# Time Series Models\n",
@@ -99,7 +99,7 @@
},
{
"cell_type": "markdown",
- "id": "928fcf70",
+ "id": "a79e6e3a",
"metadata": {},
"source": [
"# Asset Pricing and Finance\n",
@@ -113,7 +113,7 @@
},
{
"cell_type": "markdown",
- "id": "68ad524a",
+ "id": "149d1d6c",
"metadata": {},
"source": [
"# Dynamic Programming Squared\n",
@@ -132,7 +132,7 @@
},
{
"cell_type": "markdown",
- "id": "bb8aee61",
+ "id": "f57090c1",
"metadata": {},
"source": [
"# Other\n",
@@ -144,7 +144,7 @@
}
],
"metadata": {
- "date": 1723011582.3491473,
+ "date": 1723517848.3325682,
"filename": "intro.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/irfs_in_hall_model.ipynb b/_notebooks/irfs_in_hall_model.ipynb
index bfce7544..8e140277 100644
--- a/_notebooks/irfs_in_hall_model.ipynb
+++ b/_notebooks/irfs_in_hall_model.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "ebf30747",
+ "id": "4de653a6",
"metadata": {},
"source": [
"\n",
@@ -13,7 +13,7 @@
},
{
"cell_type": "markdown",
- "id": "d24cd979",
+ "id": "88b4fb8f",
"metadata": {},
"source": [
"# IRFs in Hall Models\n",
@@ -27,7 +27,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d9bc8a94",
+ "id": "8e6df55d",
"metadata": {
"hide-output": false
},
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "bcc96659",
+ "id": "ff7da492",
"metadata": {},
"source": [
"We’ll make these imports:"
@@ -47,7 +47,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "08b391df",
+ "id": "4e22b86a",
"metadata": {
"hide-output": false
},
@@ -60,7 +60,7 @@
},
{
"cell_type": "markdown",
- "id": "4c35eb19",
+ "id": "2afb3631",
"metadata": {},
"source": [
"This lecture shows how the DLE class can be used to create impulse\n",
@@ -74,7 +74,7 @@
},
{
"cell_type": "markdown",
- "id": "6c8e5934",
+ "id": "75b812b1",
"metadata": {},
"source": [
"## Example 1: Hall (1978)\n",
@@ -110,7 +110,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e4b7f9ce",
+ "id": "27feec91",
"metadata": {
"hide-output": false
},
@@ -147,7 +147,7 @@
},
{
"cell_type": "markdown",
- "id": "353d1928",
+ "id": "f32393bf",
"metadata": {},
"source": [
"These parameter values are used to define an economy of the DLE class.\n",
@@ -162,7 +162,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e1b70779",
+ "id": "3ea178ad",
"metadata": {
"hide-output": false
},
@@ -180,7 +180,7 @@
},
{
"cell_type": "markdown",
- "id": "1548195c",
+ "id": "5171e6dc",
"metadata": {},
"source": [
"The DLE class can be used to create impulse response functions for each\n",
@@ -197,7 +197,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "59e4fdf9",
+ "id": "c13a5240",
"metadata": {
"hide-output": false
},
@@ -213,7 +213,7 @@
},
{
"cell_type": "markdown",
- "id": "30e49493",
+ "id": "97629229",
"metadata": {},
"source": [
"It can be seen that the endowment shock has permanent effects on the\n",
@@ -226,7 +226,7 @@
},
{
"cell_type": "markdown",
- "id": "4942f859",
+ "id": "645e8254",
"metadata": {},
"source": [
"## Example 2: Higher Adjustment Costs\n",
@@ -242,7 +242,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "40fbe535",
+ "id": "67489b75",
"metadata": {
"hide-output": false
},
@@ -265,7 +265,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "570e29d7",
+ "id": "b45b7e8e",
"metadata": {
"hide-output": false
},
@@ -282,7 +282,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c53e585a",
+ "id": "30d793f2",
"metadata": {
"hide-output": false
},
@@ -294,7 +294,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4450c719",
+ "id": "b2f1e459",
"metadata": {
"hide-output": false
},
@@ -306,7 +306,7 @@
},
{
"cell_type": "markdown",
- "id": "d3b84268",
+ "id": "cd228dac",
"metadata": {},
"source": [
"The first graph shows that there seems to be a downward trend in both\n",
@@ -329,7 +329,7 @@
},
{
"cell_type": "markdown",
- "id": "6526ea8a",
+ "id": "7236e6d0",
"metadata": {},
"source": [
"## Example 3: Durable Consumption Goods\n",
@@ -370,7 +370,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e0ef3e9e",
+ "id": "eaeccb39",
"metadata": {
"hide-output": false
},
@@ -402,7 +402,7 @@
},
{
"cell_type": "markdown",
- "id": "44109ffd",
+ "id": "05757122",
"metadata": {},
"source": [
"In contrast to Hall’s original model of Example 1, it is now investment\n",
@@ -415,7 +415,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5e77d265",
+ "id": "20d16a44",
"metadata": {
"hide-output": false
},
@@ -431,7 +431,7 @@
},
{
"cell_type": "markdown",
- "id": "b8dbb950",
+ "id": "cfab0c51",
"metadata": {},
"source": [
"The impulse response functions confirm that consumption is now much more\n",
@@ -444,7 +444,7 @@
}
],
"metadata": {
- "date": 1723011582.3637125,
+ "date": 1723517848.3468506,
"filename": "irfs_in_hall_model.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/knowing_forecasts_of_others.ipynb b/_notebooks/knowing_forecasts_of_others.ipynb
index 59996e5d..8bcc213b 100644
--- a/_notebooks/knowing_forecasts_of_others.ipynb
+++ b/_notebooks/knowing_forecasts_of_others.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "1b821d68",
+ "id": "4facbf46",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "7a3a1ad5",
+ "id": "f0bdef66",
"metadata": {},
"source": [
"# Knowing the Forecasts of Others\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cfdd392f",
+ "id": "a52e801d",
"metadata": {
"hide-output": false
},
@@ -34,7 +34,7 @@
},
{
"cell_type": "markdown",
- "id": "0bc6f84b",
+ "id": "ee34bcf9",
"metadata": {},
"source": [
"## Introduction\n",
@@ -102,7 +102,7 @@
},
{
"cell_type": "markdown",
- "id": "6474abbb",
+ "id": "caac6fb4",
"metadata": {},
"source": [
"### A Sequence of Models\n",
@@ -135,7 +135,7 @@
},
{
"cell_type": "markdown",
- "id": "45f8ba91",
+ "id": "0b8c1203",
"metadata": {},
"source": [
"## The Setting\n",
@@ -222,7 +222,7 @@
},
{
"cell_type": "markdown",
- "id": "a0d4e19b",
+ "id": "abdf08b6",
"metadata": {},
"source": [
"## Tactics\n",
@@ -322,7 +322,7 @@
},
{
"cell_type": "markdown",
- "id": "b8ca41f9",
+ "id": "1a442fc4",
"metadata": {},
"source": [
"## Equilibrium Conditions\n",
@@ -417,7 +417,7 @@
},
{
"cell_type": "markdown",
- "id": "fe348248",
+ "id": "81f6155e",
"metadata": {},
"source": [
"### Equilibrium under perfect foresight\n",
@@ -497,7 +497,7 @@
},
{
"cell_type": "markdown",
- "id": "01e50ffb",
+ "id": "b9ee9aa9",
"metadata": {},
"source": [
"## Equilibrium with $ \\theta_t $ stochastic but observed at $ t $\n",
@@ -562,7 +562,7 @@
},
{
"cell_type": "markdown",
- "id": "2bca8da5",
+ "id": "5ebba541",
"metadata": {},
"source": [
"### Filtering"
@@ -570,7 +570,7 @@
},
{
"cell_type": "markdown",
- "id": "c3762c4a",
+ "id": "111ad19a",
"metadata": {},
"source": [
"#### One noisy signal\n",
@@ -642,7 +642,7 @@
},
{
"cell_type": "markdown",
- "id": "4b28920f",
+ "id": "d21cc213",
"metadata": {},
"source": [
"#### State-reconstruction error\n",
@@ -721,7 +721,7 @@
},
{
"cell_type": "markdown",
- "id": "b8488fb8",
+ "id": "1b3abbd3",
"metadata": {},
"source": [
"### A new state variable\n",
@@ -760,7 +760,7 @@
},
{
"cell_type": "markdown",
- "id": "cd98bc8d",
+ "id": "366bd38d",
"metadata": {},
"source": [
"### Two Noisy Signals\n",
@@ -853,7 +853,7 @@
},
{
"cell_type": "markdown",
- "id": "a4eb4f7f",
+ "id": "6e135948",
"metadata": {},
"source": [
"## Guess-and-Verify Tactic\n",
@@ -884,7 +884,7 @@
},
{
"cell_type": "markdown",
- "id": "e90fed77",
+ "id": "177149bc",
"metadata": {},
"source": [
"## Equilibrium with One Noisy Signal on $ \\theta_t $"
@@ -892,7 +892,7 @@
},
{
"cell_type": "markdown",
- "id": "0c4da3c5",
+ "id": "6fdbe4ad",
"metadata": {},
"source": [
"### Step 1: Solve for $ \\tilde{\\lambda} $ and $ \\lambda $\n",
@@ -911,7 +911,7 @@
},
{
"cell_type": "markdown",
- "id": "5454861b",
+ "id": "ac9a5883",
"metadata": {},
"source": [
"### Step 2: Solve for $ p $\n",
@@ -944,7 +944,7 @@
},
{
"cell_type": "markdown",
- "id": "e31e8b5b",
+ "id": "91a6dda9",
"metadata": {},
"source": [
"### Step 3: Represent the system using `quantecon.LinearStateSpace`\n",
@@ -1026,7 +1026,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "594fd429",
+ "id": "0ac67476",
"metadata": {
"hide-output": false
},
@@ -1045,7 +1045,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1d4a44d7",
+ "id": "99708cf8",
"metadata": {
"hide-output": false
},
@@ -1061,7 +1061,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1119c3e2",
+ "id": "4fedb8e4",
"metadata": {
"hide-output": false
},
@@ -1077,7 +1077,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3b868823",
+ "id": "79e6e356",
"metadata": {
"hide-output": false
},
@@ -1091,7 +1091,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b8d77bbc",
+ "id": "7bacbe55",
"metadata": {
"hide-output": false
},
@@ -1110,7 +1110,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5f3ae3f6",
+ "id": "d2ad1a63",
"metadata": {
"hide-output": false
},
@@ -1124,7 +1124,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "27975248",
+ "id": "9958f7e1",
"metadata": {
"hide-output": false
},
@@ -1157,7 +1157,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "de3acdcd",
+ "id": "bde45589",
"metadata": {
"hide-output": false
},
@@ -1171,7 +1171,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cb6f59fe",
+ "id": "2086bad3",
"metadata": {
"hide-output": false
},
@@ -1184,7 +1184,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d1a7f865",
+ "id": "bc627c31",
"metadata": {
"hide-output": false
},
@@ -1196,7 +1196,7 @@
},
{
"cell_type": "markdown",
- "id": "93a1d5fa",
+ "id": "bc6bbfa5",
"metadata": {},
"source": [
"### Step 4: Compute impulse response functions\n",
@@ -1208,7 +1208,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3681c75e",
+ "id": "85f2c83a",
"metadata": {
"hide-output": false
},
@@ -1231,7 +1231,7 @@
},
{
"cell_type": "markdown",
- "id": "fd3dca09",
+ "id": "fe08c40b",
"metadata": {},
"source": [
"### Step 5: Compute stationary covariance matrices and population regressions\n",
@@ -1265,7 +1265,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9232c0fa",
+ "id": "f76dbdc2",
"metadata": {
"hide-output": false
},
@@ -1290,7 +1290,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "baf2fdcd",
+ "id": "db5cfc17",
"metadata": {
"hide-output": false
},
@@ -1304,7 +1304,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "41fffd7b",
+ "id": "2daefdb8",
"metadata": {
"hide-output": false
},
@@ -1319,7 +1319,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "134bb0f9",
+ "id": "4acff875",
"metadata": {
"hide-output": false
},
@@ -1332,7 +1332,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "dda22c91",
+ "id": "89e9ea06",
"metadata": {
"hide-output": false
},
@@ -1346,7 +1346,7 @@
},
{
"cell_type": "markdown",
- "id": "69e90be7",
+ "id": "46803875",
"metadata": {},
"source": [
"## Equilibrium with Two Noisy Signals on $ \\theta_t $\n",
@@ -1450,7 +1450,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e933403f",
+ "id": "6f8e6a95",
"metadata": {
"hide-output": false
},
@@ -1469,7 +1469,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1fc072e6",
+ "id": "deb0a8e5",
"metadata": {
"hide-output": false
},
@@ -1483,7 +1483,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "30e90e20",
+ "id": "94fc8c06",
"metadata": {
"hide-output": false
},
@@ -1523,7 +1523,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f63beb82",
+ "id": "067cac46",
"metadata": {
"hide-output": false
},
@@ -1537,7 +1537,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "14d2b17b",
+ "id": "48467c1b",
"metadata": {
"hide-output": false
},
@@ -1550,7 +1550,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ab2483e0",
+ "id": "f6d8a068",
"metadata": {
"hide-output": false
},
@@ -1562,7 +1562,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "287edd15",
+ "id": "fcbc1df6",
"metadata": {
"hide-output": false
},
@@ -1586,7 +1586,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ec5cfb9d",
+ "id": "285895ad",
"metadata": {
"hide-output": false
},
@@ -1611,7 +1611,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fcbd864e",
+ "id": "1ffb8b11",
"metadata": {
"hide-output": false
},
@@ -1625,7 +1625,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0ea2eb9e",
+ "id": "c9894902",
"metadata": {
"hide-output": false
},
@@ -1640,7 +1640,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "66a2a95e",
+ "id": "15078298",
"metadata": {
"hide-output": false
},
@@ -1653,7 +1653,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f839fa2c",
+ "id": "458ba362",
"metadata": {
"hide-output": false
},
@@ -1679,7 +1679,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "101d1150",
+ "id": "e7713520",
"metadata": {
"hide-output": false
},
@@ -1692,7 +1692,7 @@
},
{
"cell_type": "markdown",
- "id": "a41fbd6e",
+ "id": "dfe21da3",
"metadata": {},
"source": [
"## Key Step\n",
@@ -1710,7 +1710,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4c453bf8",
+ "id": "94c449ab",
"metadata": {
"hide-output": false
},
@@ -1729,7 +1729,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3062e2f9",
+ "id": "89b1ea92",
"metadata": {
"hide-output": false
},
@@ -1740,7 +1740,7 @@
},
{
"cell_type": "markdown",
- "id": "23a5fe76",
+ "id": "6272a29f",
"metadata": {},
"source": [
"The $ R^2 $ in this regression equals $ 1 $.\n",
@@ -1753,7 +1753,7 @@
},
{
"cell_type": "markdown",
- "id": "f83a3922",
+ "id": "8b7a1006",
"metadata": {},
"source": [
"## An observed common shock benchmark\n",
@@ -1816,7 +1816,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "32e46698",
+ "id": "a3c4cdaf",
"metadata": {
"hide-output": false
},
@@ -1833,7 +1833,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "30b7f4c0",
+ "id": "b12f1ae8",
"metadata": {
"hide-output": false
},
@@ -1846,7 +1846,7 @@
},
{
"cell_type": "markdown",
- "id": "57eebb71",
+ "id": "565a6e6d",
"metadata": {},
"source": [
"Now let’s form and plot an impulse response function of $ k_t^i $ to shocks $ v_t $ to $ \\theta_{t+1} $"
@@ -1855,7 +1855,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "66cbd547",
+ "id": "4232ad6e",
"metadata": {
"hide-output": false
},
@@ -1877,7 +1877,7 @@
},
{
"cell_type": "markdown",
- "id": "9eb60d1a",
+ "id": "c1c7fc88",
"metadata": {},
"source": [
"## Comparison of All Signal Structures\n",
@@ -1892,7 +1892,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2dca1a29",
+ "id": "9326dd66",
"metadata": {
"hide-output": false
},
@@ -1916,7 +1916,7 @@
},
{
"cell_type": "markdown",
- "id": "25131b18",
+ "id": "145180af",
"metadata": {},
"source": [
"The three panels in the graph above show that\n",
@@ -1943,7 +1943,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8add4d00",
+ "id": "f26aa991",
"metadata": {
"hide-output": false
},
@@ -1956,7 +1956,7 @@
},
{
"cell_type": "markdown",
- "id": "01c98bc6",
+ "id": "e4204cd7",
"metadata": {},
"source": [
"Kalman gains for the two\n",
@@ -1966,7 +1966,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "758667d7",
+ "id": "be60fcf2",
"metadata": {
"hide-output": false
},
@@ -1979,7 +1979,7 @@
},
{
"cell_type": "markdown",
- "id": "caa9c553",
+ "id": "6957253c",
"metadata": {},
"source": [
"Another lesson that comes from the preceding three-panel graph is that the presence of iid noise\n",
@@ -1988,7 +1988,7 @@
},
{
"cell_type": "markdown",
- "id": "e1c94171",
+ "id": "8e28ced1",
"metadata": {},
"source": [
"## Notes on History of the Problem\n",
@@ -2048,7 +2048,7 @@
},
{
"cell_type": "markdown",
- "id": "d277fd32",
+ "id": "50983852",
"metadata": {},
"source": [
"### Further historical remarks\n",
@@ -2116,7 +2116,7 @@
}
],
"metadata": {
- "date": 1723011582.4512587,
+ "date": 1723517848.442678,
"filename": "knowing_forecasts_of_others.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/lqramsey.ipynb b/_notebooks/lqramsey.ipynb
index 5f98283e..5d0bc68b 100644
--- a/_notebooks/lqramsey.ipynb
+++ b/_notebooks/lqramsey.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "a174a8e0",
+ "id": "690df557",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "f216006c",
+ "id": "fd6d7b98",
"metadata": {},
"source": [
"# Optimal Taxation in an LQ Economy\n",
@@ -24,7 +24,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "348cc16d",
+ "id": "3b6fd453",
"metadata": {
"hide-output": false
},
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "5daf67b6",
+ "id": "41a2689a",
"metadata": {},
"source": [
"## Overview\n",
@@ -73,7 +73,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "af680342",
+ "id": "6e0ff6f7",
"metadata": {
"hide-output": false
},
@@ -91,7 +91,7 @@
},
{
"cell_type": "markdown",
- "id": "819db734",
+ "id": "171e55f7",
"metadata": {},
"source": [
"### Model Features\n",
@@ -104,7 +104,7 @@
},
{
"cell_type": "markdown",
- "id": "ce3e35c8",
+ "id": "e98316b8",
"metadata": {},
"source": [
"## The Ramsey Problem\n",
@@ -114,7 +114,7 @@
},
{
"cell_type": "markdown",
- "id": "7dcb72a8",
+ "id": "d84ed7e0",
"metadata": {},
"source": [
"### Technology\n",
@@ -130,7 +130,7 @@
},
{
"cell_type": "markdown",
- "id": "e0d37d8e",
+ "id": "4e7527fa",
"metadata": {},
"source": [
"### Households\n",
@@ -186,7 +186,7 @@
},
{
"cell_type": "markdown",
- "id": "368c479a",
+ "id": "f2d86a15",
"metadata": {},
"source": [
"### Government\n",
@@ -202,7 +202,7 @@
},
{
"cell_type": "markdown",
- "id": "32f20551",
+ "id": "d7321ccc",
"metadata": {},
"source": [
"### Exogenous Variables\n",
@@ -229,7 +229,7 @@
},
{
"cell_type": "markdown",
- "id": "3516d914",
+ "id": "9298cbf2",
"metadata": {},
"source": [
"### Feasibility\n",
@@ -247,7 +247,7 @@
},
{
"cell_type": "markdown",
- "id": "a8bffdc2",
+ "id": "e7fec7f0",
"metadata": {},
"source": [
"### Government Budget Constraint\n",
@@ -264,7 +264,7 @@
},
{
"cell_type": "markdown",
- "id": "09666dc8",
+ "id": "5321ba56",
"metadata": {},
"source": [
"### Equilibrium\n",
@@ -298,7 +298,7 @@
},
{
"cell_type": "markdown",
- "id": "4e657d98",
+ "id": "b6cc0915",
"metadata": {},
"source": [
"### Solution\n",
@@ -419,7 +419,7 @@
},
{
"cell_type": "markdown",
- "id": "7da247f7",
+ "id": "53fe5e88",
"metadata": {},
"source": [
"### Computing the Quadratic Term\n",
@@ -492,7 +492,7 @@
},
{
"cell_type": "markdown",
- "id": "0f332efb",
+ "id": "23876417",
"metadata": {},
"source": [
"### Finite State Markov Case\n",
@@ -534,7 +534,7 @@
},
{
"cell_type": "markdown",
- "id": "7abce316",
+ "id": "d4af0bbb",
"metadata": {},
"source": [
"### Other Variables\n",
@@ -608,7 +608,7 @@
},
{
"cell_type": "markdown",
- "id": "2f5eb5c8",
+ "id": "36581c53",
"metadata": {},
"source": [
"### A Martingale\n",
@@ -672,7 +672,7 @@
},
{
"cell_type": "markdown",
- "id": "d23be1db",
+ "id": "d6faf75e",
"metadata": {},
"source": [
"## Implementation\n",
@@ -689,7 +689,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cae77329",
+ "id": "ee0a2990",
"metadata": {
"hide-output": false
},
@@ -957,7 +957,7 @@
},
{
"cell_type": "markdown",
- "id": "cfa3d54a",
+ "id": "0b4db824",
"metadata": {},
"source": [
"### Comments on the Code\n",
@@ -985,7 +985,7 @@
},
{
"cell_type": "markdown",
- "id": "74475c3f",
+ "id": "40a31278",
"metadata": {},
"source": [
"## Examples\n",
@@ -998,7 +998,7 @@
},
{
"cell_type": "markdown",
- "id": "f7c45135",
+ "id": "d8cf4a08",
"metadata": {},
"source": [
"### The Continuous Case\n",
@@ -1025,7 +1025,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2a647d01",
+ "id": "e98d07ed",
"metadata": {
"hide-output": false
},
@@ -1053,7 +1053,7 @@
},
{
"cell_type": "markdown",
- "id": "35108d37",
+ "id": "763e9791",
"metadata": {},
"source": [
"The legends on the figures indicate the variables being tracked.\n",
@@ -1065,7 +1065,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "45040b98",
+ "id": "182e0312",
"metadata": {
"hide-output": false
},
@@ -1076,7 +1076,7 @@
},
{
"cell_type": "markdown",
- "id": "81b59ff0",
+ "id": "b2b52b84",
"metadata": {},
"source": [
"### The Discrete Case\n",
@@ -1087,7 +1087,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "786b6333",
+ "id": "340392cc",
"metadata": {
"hide-output": false
},
@@ -1122,7 +1122,7 @@
},
{
"cell_type": "markdown",
- "id": "e1cb41d4",
+ "id": "770c0ffb",
"metadata": {},
"source": [
"The call `gen_fig_2(path)` generates"
@@ -1131,7 +1131,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "868dae06",
+ "id": "81c6b383",
"metadata": {
"hide-output": false
},
@@ -1142,7 +1142,7 @@
},
{
"cell_type": "markdown",
- "id": "30f6afab",
+ "id": "21855573",
"metadata": {},
"source": [
"## Exercises\n",
@@ -1153,7 +1153,7 @@
},
{
"cell_type": "markdown",
- "id": "7fa455e1",
+ "id": "284a8df3",
"metadata": {},
"source": [
"## Exercise 12.1\n",
@@ -1171,7 +1171,7 @@
},
{
"cell_type": "markdown",
- "id": "346bdccc",
+ "id": "e1f64097",
"metadata": {},
"source": [
"## Solution to[ Exercise 12.1](https://python-advanced.quantecon.org/#lq_ex1)"
@@ -1180,7 +1180,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "94a60f1a",
+ "id": "ea926b9a",
"metadata": {
"hide-output": false
},
@@ -1214,7 +1214,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d7f271c0",
+ "id": "e86f8f3b",
"metadata": {
"hide-output": false
},
@@ -1225,7 +1225,7 @@
}
],
"metadata": {
- "date": 1723011582.490169,
+ "date": 1723517848.4833317,
"filename": "lqramsey.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/lu_tricks.ipynb b/_notebooks/lu_tricks.ipynb
index d696d134..86953294 100644
--- a/_notebooks/lu_tricks.ipynb
+++ b/_notebooks/lu_tricks.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "4495b227",
+ "id": "7bb0ccaf",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "4830937d",
+ "id": "6919139c",
"metadata": {},
"source": [
"# Classical Control with Linear Algebra"
@@ -19,7 +19,7 @@
},
{
"cell_type": "markdown",
- "id": "129f94fd",
+ "id": "405bd0f1",
"metadata": {},
"source": [
"## Overview\n",
@@ -60,7 +60,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6322c5df",
+ "id": "8948f350",
"metadata": {
"hide-output": false
},
@@ -72,7 +72,7 @@
},
{
"cell_type": "markdown",
- "id": "8686a54c",
+ "id": "0257dcc3",
"metadata": {},
"source": [
"### References\n",
@@ -82,7 +82,7 @@
},
{
"cell_type": "markdown",
- "id": "774b6dcd",
+ "id": "7a135048",
"metadata": {},
"source": [
"## A Control Problem\n",
@@ -123,7 +123,7 @@
},
{
"cell_type": "markdown",
- "id": "6ef58432",
+ "id": "9697d98b",
"metadata": {},
"source": [
"### Example\n",
@@ -165,7 +165,7 @@
},
{
"cell_type": "markdown",
- "id": "d81c9222",
+ "id": "b8440ab0",
"metadata": {},
"source": [
"## Finite Horizon Theory\n",
@@ -295,7 +295,7 @@
},
{
"cell_type": "markdown",
- "id": "a2191996",
+ "id": "c7b51bdd",
"metadata": {},
"source": [
"### Matrix Methods\n",
@@ -305,7 +305,7 @@
},
{
"cell_type": "markdown",
- "id": "9e7f6e45",
+ "id": "8e885691",
"metadata": {},
"source": [
"#### A Single Lag Term\n",
@@ -404,7 +404,7 @@
},
{
"cell_type": "markdown",
- "id": "ca99d3d3",
+ "id": "48cb8eee",
"metadata": {},
"source": [
"#### An Alternative Representation\n",
@@ -497,7 +497,7 @@
},
{
"cell_type": "markdown",
- "id": "54069917",
+ "id": "8585b0bb",
"metadata": {},
"source": [
"#### Additional Lag Terms\n",
@@ -616,7 +616,7 @@
},
{
"cell_type": "markdown",
- "id": "7a07805d",
+ "id": "45c261ca",
"metadata": {},
"source": [
"## Infinite Horizon Limit\n",
@@ -846,7 +846,7 @@
},
{
"cell_type": "markdown",
- "id": "c2f99f1f",
+ "id": "9014458b",
"metadata": {},
"source": [
"## Undiscounted Problems\n",
@@ -888,7 +888,7 @@
},
{
"cell_type": "markdown",
- "id": "59e8c3b8",
+ "id": "c0893dc9",
"metadata": {},
"source": [
"### Transforming Discounted to Undiscounted Problem\n",
@@ -973,7 +973,7 @@
},
{
"cell_type": "markdown",
- "id": "ee82c04e",
+ "id": "d0d54547",
"metadata": {},
"source": [
"## Implementation\n",
@@ -985,7 +985,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "847d65b9",
+ "id": "d014ead8",
"metadata": {
"hide-output": false
},
@@ -1301,7 +1301,7 @@
},
{
"cell_type": "markdown",
- "id": "76916250",
+ "id": "74cddf0a",
"metadata": {},
"source": [
"### Example\n",
@@ -1334,7 +1334,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f5d8ae29",
+ "id": "634ba7b6",
"metadata": {
"hide-output": false
},
@@ -1374,7 +1374,7 @@
},
{
"cell_type": "markdown",
- "id": "6fb8e3d9",
+ "id": "71bef2fd",
"metadata": {},
"source": [
"Here’s what happens when we change $ \\gamma $ to 5.0"
@@ -1383,7 +1383,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5329f299",
+ "id": "4a13b2fb",
"metadata": {
"hide-output": false
},
@@ -1394,7 +1394,7 @@
},
{
"cell_type": "markdown",
- "id": "30e4a36d",
+ "id": "c350f389",
"metadata": {},
"source": [
"And here’s $ \\gamma = 10 $"
@@ -1403,7 +1403,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e9669fbf",
+ "id": "fa7d7fdf",
"metadata": {
"hide-output": false
},
@@ -1414,7 +1414,7 @@
},
{
"cell_type": "markdown",
- "id": "160a05e1",
+ "id": "e4413ac8",
"metadata": {},
"source": [
"## Exercises"
@@ -1422,7 +1422,7 @@
},
{
"cell_type": "markdown",
- "id": "e57dbd73",
+ "id": "843a12d9",
"metadata": {},
"source": [
"## Exercise 31.1\n",
@@ -1468,7 +1468,7 @@
},
{
"cell_type": "markdown",
- "id": "63700671",
+ "id": "2b43390b",
"metadata": {},
"source": [
"## Exercise 31.2\n",
@@ -1492,7 +1492,7 @@
},
{
"cell_type": "markdown",
- "id": "e223dcef",
+ "id": "8db97143",
"metadata": {},
"source": [
"## Exercise 31.3\n",
@@ -1513,7 +1513,7 @@
},
{
"cell_type": "markdown",
- "id": "4fa07411",
+ "id": "4c6bfffe",
"metadata": {},
"source": [
"## Exercise 31.4\n",
@@ -1533,7 +1533,7 @@
}
],
"metadata": {
- "date": 1723011582.537286,
+ "date": 1723517848.5337548,
"filename": "lu_tricks.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/lucas_asset_pricing_dles.ipynb b/_notebooks/lucas_asset_pricing_dles.ipynb
index 5428e50e..8cc6dc67 100644
--- a/_notebooks/lucas_asset_pricing_dles.ipynb
+++ b/_notebooks/lucas_asset_pricing_dles.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "93ae9de3",
+ "id": "4fa3b627",
"metadata": {},
"source": [
"\n",
@@ -13,7 +13,7 @@
},
{
"cell_type": "markdown",
- "id": "d33197bd",
+ "id": "63aee182",
"metadata": {},
"source": [
"# Lucas Asset Pricing Using DLE\n",
@@ -27,7 +27,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3d7f9318",
+ "id": "3aeb2d34",
"metadata": {
"hide-output": false
},
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "ed15498b",
+ "id": "4c98868b",
"metadata": {},
"source": [
"This lecture uses the DLE class to price payout\n",
@@ -58,7 +58,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1749a50e",
+ "id": "1981c4e4",
"metadata": {
"hide-output": false
},
@@ -71,7 +71,7 @@
},
{
"cell_type": "markdown",
- "id": "947f1b3c",
+ "id": "8f9edb2b",
"metadata": {},
"source": [
"We use a linear-quadratic version of an economy that Lucas (1978) [[Lucas, 1978](https://python-advanced.quantecon.org/zreferences.html#id174)] used\n",
@@ -155,7 +155,7 @@
},
{
"cell_type": "markdown",
- "id": "4f75c5ca",
+ "id": "8b473663",
"metadata": {},
"source": [
"## Asset Pricing Equations\n",
@@ -189,7 +189,7 @@
},
{
"cell_type": "markdown",
- "id": "469b14bd",
+ "id": "9219bd73",
"metadata": {},
"source": [
"## Asset Pricing Simulations"
@@ -198,7 +198,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fadc485a",
+ "id": "12e72a52",
"metadata": {
"hide-output": false
},
@@ -235,7 +235,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "03fd2f20",
+ "id": "d131ca14",
"metadata": {
"hide-output": false
},
@@ -246,7 +246,7 @@
},
{
"cell_type": "markdown",
- "id": "1290a90c",
+ "id": "a5bcd47b",
"metadata": {},
"source": [
"After specifying a “Pay” matrix, we simulate the economy.\n",
@@ -258,7 +258,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b5326551",
+ "id": "77b94840",
"metadata": {
"hide-output": false
},
@@ -269,7 +269,7 @@
},
{
"cell_type": "markdown",
- "id": "ccdb1788",
+ "id": "22671f55",
"metadata": {},
"source": [
"The graph below plots the price of this claim over time:"
@@ -278,7 +278,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3c85b6e4",
+ "id": "14420447",
"metadata": {
"hide-output": false
},
@@ -292,7 +292,7 @@
},
{
"cell_type": "markdown",
- "id": "a36942bd",
+ "id": "565450e5",
"metadata": {},
"source": [
"The next plot displays the realized gross rate of return on this “Lucas\n",
@@ -302,7 +302,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6bad6098",
+ "id": "7e330c5b",
"metadata": {
"hide-output": false
},
@@ -318,7 +318,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6f8c9d72",
+ "id": "fa144f48",
"metadata": {
"hide-output": false
},
@@ -329,7 +329,7 @@
},
{
"cell_type": "markdown",
- "id": "d1babcaf",
+ "id": "9cc2d4a1",
"metadata": {},
"source": [
"Above we have also calculated the correlation coefficient between these\n",
@@ -343,7 +343,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c45db7f4",
+ "id": "39b7b266",
"metadata": {
"hide-output": false
},
@@ -358,7 +358,7 @@
},
{
"cell_type": "markdown",
- "id": "bb140670",
+ "id": "dde5e219",
"metadata": {},
"source": [
"From the above plot, we can see the tendency of the term structure to\n",
@@ -376,7 +376,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "df2b5ad2",
+ "id": "f0c02984",
"metadata": {
"hide-output": false
},
@@ -394,7 +394,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bd569ada",
+ "id": "ec1e97c6",
"metadata": {
"hide-output": false
},
@@ -410,7 +410,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f87b6c6c",
+ "id": "07131935",
"metadata": {
"hide-output": false
},
@@ -421,7 +421,7 @@
},
{
"cell_type": "markdown",
- "id": "d974d759",
+ "id": "0b188a19",
"metadata": {},
"source": [
"The correlation between these two gross rates is now more negative.\n",
@@ -433,7 +433,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "493b786a",
+ "id": "eef49482",
"metadata": {
"hide-output": false
},
@@ -448,7 +448,7 @@
},
{
"cell_type": "markdown",
- "id": "9d127a20",
+ "id": "816c2e01",
"metadata": {},
"source": [
"We can see the tendency of the term structure to slope up when rates are\n",
@@ -458,7 +458,7 @@
}
],
"metadata": {
- "date": 1723011582.7654545,
+ "date": 1723517848.5495057,
"filename": "lucas_asset_pricing_dles.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/lucas_model.ipynb b/_notebooks/lucas_model.ipynb
index c272c111..590ac0a3 100644
--- a/_notebooks/lucas_model.ipynb
+++ b/_notebooks/lucas_model.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "34bde94c",
+ "id": "9833ebcc",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "9df6694b",
+ "id": "1d381859",
"metadata": {},
"source": [
"# Asset Pricing II: The Lucas Asset Pricing Model\n",
@@ -22,7 +22,7 @@
},
{
"cell_type": "markdown",
- "id": "883c321d",
+ "id": "4afc051c",
"metadata": {},
"source": [
"## Overview\n",
@@ -45,7 +45,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6ae22c5a",
+ "id": "d9bad3ad",
"metadata": {
"hide-output": false
},
@@ -59,7 +59,7 @@
},
{
"cell_type": "markdown",
- "id": "44ab4cee",
+ "id": "b4edf0c8",
"metadata": {},
"source": [
"## The Lucas Model\n",
@@ -81,7 +81,7 @@
},
{
"cell_type": "markdown",
- "id": "59dbe4ff",
+ "id": "172098b6",
"metadata": {},
"source": [
"### Basic Setup\n",
@@ -91,7 +91,7 @@
},
{
"cell_type": "markdown",
- "id": "5c59420f",
+ "id": "ac09c19b",
"metadata": {},
"source": [
"#### Assets\n",
@@ -121,7 +121,7 @@
},
{
"cell_type": "markdown",
- "id": "ccaa6978",
+ "id": "15ac5c2a",
"metadata": {},
"source": [
"#### Consumers\n",
@@ -145,7 +145,7 @@
},
{
"cell_type": "markdown",
- "id": "77157071",
+ "id": "4e4fcec1",
"metadata": {},
"source": [
"### Pricing a Lucas Tree\n",
@@ -184,7 +184,7 @@
},
{
"cell_type": "markdown",
- "id": "091e07c0",
+ "id": "717d036d",
"metadata": {},
"source": [
"#### The Dynamic Program\n",
@@ -242,7 +242,7 @@
},
{
"cell_type": "markdown",
- "id": "f83ba824",
+ "id": "e3e6a6e9",
"metadata": {},
"source": [
"#### Next Steps\n",
@@ -261,7 +261,7 @@
},
{
"cell_type": "markdown",
- "id": "27269dab",
+ "id": "ca60fdba",
"metadata": {},
"source": [
"#### Equilibrium Constraints\n",
@@ -280,7 +280,7 @@
},
{
"cell_type": "markdown",
- "id": "6dce910f",
+ "id": "e8fef6e4",
"metadata": {},
"source": [
"#### The Equilibrium Price Function\n",
@@ -326,7 +326,7 @@
},
{
"cell_type": "markdown",
- "id": "ebe23130",
+ "id": "82aff839",
"metadata": {},
"source": [
"### Solving the Model\n",
@@ -342,7 +342,7 @@
},
{
"cell_type": "markdown",
- "id": "7e7680aa",
+ "id": "ea4c120a",
"metadata": {},
"source": [
"#### Setting up the Problem\n",
@@ -392,7 +392,7 @@
},
{
"cell_type": "markdown",
- "id": "e1e36320",
+ "id": "81860bc0",
"metadata": {},
"source": [
"#### A Little Fixed Point Theory\n",
@@ -454,7 +454,7 @@
},
{
"cell_type": "markdown",
- "id": "14ffb071",
+ "id": "fb2b790c",
"metadata": {},
"source": [
"### Computation – An Example\n",
@@ -475,7 +475,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5ed643e3",
+ "id": "6e876870",
"metadata": {
"hide-output": false
},
@@ -514,7 +514,7 @@
},
{
"cell_type": "markdown",
- "id": "c2781d6c",
+ "id": "db31ca38",
"metadata": {},
"source": [
"The following function takes an instance of the `LucasTree` and generates a\n",
@@ -524,7 +524,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "97d7fbc0",
+ "id": "ee415248",
"metadata": {
"hide-output": false
},
@@ -566,7 +566,7 @@
},
{
"cell_type": "markdown",
- "id": "1c451f6e",
+ "id": "a8f77b22",
"metadata": {},
"source": [
"To solve the model, we write a function that iterates using the Lucas operator\n",
@@ -576,7 +576,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "83f46f31",
+ "id": "5fe055b9",
"metadata": {
"hide-output": false
},
@@ -612,7 +612,7 @@
},
{
"cell_type": "markdown",
- "id": "4e3ed67e",
+ "id": "c7589292",
"metadata": {},
"source": [
"Solving the model and plotting the resulting price function"
@@ -621,7 +621,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a448de49",
+ "id": "d40f1222",
"metadata": {
"hide-output": false
},
@@ -640,7 +640,7 @@
},
{
"cell_type": "markdown",
- "id": "23d67d56",
+ "id": "cb7ba843",
"metadata": {},
"source": [
"We see that the price is increasing, even if we remove all serial correlation from the endowment process.\n",
@@ -666,7 +666,7 @@
},
{
"cell_type": "markdown",
- "id": "a1eadf83",
+ "id": "0521540d",
"metadata": {},
"source": [
"## Exercises\n",
@@ -677,7 +677,7 @@
},
{
"cell_type": "markdown",
- "id": "6a9db49a",
+ "id": "ead7ce3f",
"metadata": {},
"source": [
"## Exercise 34.1\n",
@@ -687,7 +687,7 @@
},
{
"cell_type": "markdown",
- "id": "bd67b53e",
+ "id": "029e1047",
"metadata": {},
"source": [
"## Solution to[ Exercise 34.1](https://python-advanced.quantecon.org/#lucas_ex1)"
@@ -696,7 +696,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "29dd190c",
+ "id": "55491fd7",
"metadata": {
"hide-output": false
},
@@ -718,7 +718,7 @@
}
],
"metadata": {
- "date": 1723011582.7893145,
+ "date": 1723517848.5744672,
"filename": "lucas_model.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/markov_jump_lq.ipynb b/_notebooks/markov_jump_lq.ipynb
index 88b4c068..e0275725 100644
--- a/_notebooks/markov_jump_lq.ipynb
+++ b/_notebooks/markov_jump_lq.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "5768879d",
+ "id": "c37267e5",
"metadata": {},
"source": [
"\n",
@@ -13,7 +13,7 @@
},
{
"cell_type": "markdown",
- "id": "b19bb330",
+ "id": "1249a0bc",
"metadata": {},
"source": [
"# Markov Jump Linear Quadratic Dynamic Programming\n",
@@ -24,7 +24,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7ef18b96",
+ "id": "7cf9badb",
"metadata": {
"hide-output": false
},
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "2df5fab8",
+ "id": "c9f7039d",
"metadata": {},
"source": [
"## Overview\n",
@@ -75,7 +75,7 @@
},
{
"cell_type": "markdown",
- "id": "a93c6337",
+ "id": "b295a0e8",
"metadata": {},
"source": [
"## Review of useful LQ dynamic programming formulas\n",
@@ -149,7 +149,7 @@
},
{
"cell_type": "markdown",
- "id": "763098a2",
+ "id": "4d69c0f4",
"metadata": {},
"source": [
"## Linked Riccati equations for Markov LQ dynamic programming\n",
@@ -262,7 +262,7 @@
},
{
"cell_type": "markdown",
- "id": "9f5fb81c",
+ "id": "4b289e73",
"metadata": {},
"source": [
"## Applications\n",
@@ -275,7 +275,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0e548814",
+ "id": "261d031d",
"metadata": {
"hide-output": false
},
@@ -290,7 +290,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "74bfa7b1",
+ "id": "a22dc604",
"metadata": {
"hide-output": false
},
@@ -302,7 +302,7 @@
},
{
"cell_type": "markdown",
- "id": "8b345972",
+ "id": "5e96c7fc",
"metadata": {},
"source": [
"## Example 1\n",
@@ -372,7 +372,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0efb6896",
+ "id": "66ff49eb",
"metadata": {
"hide-output": false
},
@@ -417,7 +417,7 @@
},
{
"cell_type": "markdown",
- "id": "0716e3f4",
+ "id": "3196e17d",
"metadata": {},
"source": [
"The continuous part of the state $ x_t $ consists of two variables,\n",
@@ -427,7 +427,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0d6d53a9",
+ "id": "d0f31612",
"metadata": {
"hide-output": false
},
@@ -438,7 +438,7 @@
},
{
"cell_type": "markdown",
- "id": "e3a6b31a",
+ "id": "2ee7a28e",
"metadata": {},
"source": [
"We start with a Markov transition matrix that makes the Markov state be\n",
@@ -478,7 +478,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "38bf66f9",
+ "id": "cd46d402",
"metadata": {
"hide-output": false
},
@@ -492,7 +492,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cf3d7cbc",
+ "id": "1d80cfc8",
"metadata": {
"hide-output": false
},
@@ -505,7 +505,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d811e43b",
+ "id": "2e170e40",
"metadata": {
"hide-output": false
},
@@ -519,7 +519,7 @@
},
{
"cell_type": "markdown",
- "id": "f6d9de2d",
+ "id": "ca923d98",
"metadata": {},
"source": [
"Let’s look at the value function matrices and the decision rules for\n",
@@ -529,7 +529,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b2ad2795",
+ "id": "5f543834",
"metadata": {
"hide-output": false
},
@@ -542,7 +542,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ce08f369",
+ "id": "cebb2f01",
"metadata": {
"hide-output": false
},
@@ -555,7 +555,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7705b5c6",
+ "id": "97f2f027",
"metadata": {
"hide-output": false
},
@@ -567,7 +567,7 @@
},
{
"cell_type": "markdown",
- "id": "5a682bde",
+ "id": "b4eb0663",
"metadata": {},
"source": [
"Now we’ll plot the decision rules and see if they make sense"
@@ -576,7 +576,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4c6a158f",
+ "id": "1d69d9ff",
"metadata": {
"hide-output": false
},
@@ -608,7 +608,7 @@
},
{
"cell_type": "markdown",
- "id": "00506129",
+ "id": "39b75646",
"metadata": {},
"source": [
"The above graph plots $ k_{t+1}= k_t + u_t = k_t - F x_t $ as an affine\n",
@@ -634,7 +634,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1d7737b6",
+ "id": "b018ee46",
"metadata": {
"hide-output": false
},
@@ -655,7 +655,7 @@
},
{
"cell_type": "markdown",
- "id": "78625f73",
+ "id": "88a908a9",
"metadata": {},
"source": [
"Now we’ll depart from the preceding transition matrix that made the\n",
@@ -674,7 +674,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d214ee70",
+ "id": "90e1ffdd",
"metadata": {
"hide-output": false
},
@@ -692,7 +692,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "30f7feb8",
+ "id": "1f696094",
"metadata": {
"hide-output": false
},
@@ -709,7 +709,7 @@
},
{
"cell_type": "markdown",
- "id": "26558532",
+ "id": "0006f0f8",
"metadata": {},
"source": [
"We can plot optimal decision rules associated with different\n",
@@ -719,7 +719,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "41bbc955",
+ "id": "2e7192a8",
"metadata": {
"hide-output": false
},
@@ -742,7 +742,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d25427d0",
+ "id": "52fc774c",
"metadata": {
"hide-output": false
},
@@ -762,7 +762,7 @@
},
{
"cell_type": "markdown",
- "id": "bb9dcec0",
+ "id": "6a7dd8da",
"metadata": {},
"source": [
"Notice how the decision rules’ constants and slopes behave as functions\n",
@@ -787,7 +787,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5cb238fe",
+ "id": "2ab7758f",
"metadata": {
"hide-output": false
},
@@ -804,7 +804,7 @@
},
{
"cell_type": "markdown",
- "id": "a0feacdc",
+ "id": "c56d94d5",
"metadata": {},
"source": [
"We can plot optimal decision rules for different $ \\lambda $ and\n",
@@ -814,7 +814,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "564cba68",
+ "id": "a50f38a9",
"metadata": {
"hide-output": false
},
@@ -844,7 +844,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c75bdb50",
+ "id": "a57fb53e",
"metadata": {
"hide-output": false
},
@@ -866,7 +866,7 @@
},
{
"cell_type": "markdown",
- "id": "6185e977",
+ "id": "779a4086",
"metadata": {},
"source": [
"The following code defines a wrapper function that computes optimal\n",
@@ -876,7 +876,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "71c67eb9",
+ "id": "3ec0a41f",
"metadata": {
"hide-output": false
},
@@ -977,7 +977,7 @@
},
{
"cell_type": "markdown",
- "id": "19b863ac",
+ "id": "f484dfbe",
"metadata": {},
"source": [
"To illustrate the code with another example, we shall set\n",
@@ -1029,7 +1029,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "12a53e17",
+ "id": "eb5362e5",
"metadata": {
"hide-output": false
},
@@ -1040,7 +1040,7 @@
},
{
"cell_type": "markdown",
- "id": "cddd8961",
+ "id": "8bfcc353",
"metadata": {},
"source": [
"Set $ f_{1,{s_t}} $ and $ d_{s_t} $ as constant functions and\n",
@@ -1053,7 +1053,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "80a3261d",
+ "id": "d35ba263",
"metadata": {
"hide-output": false
},
@@ -1064,7 +1064,7 @@
},
{
"cell_type": "markdown",
- "id": "3a95eae8",
+ "id": "f6401b7e",
"metadata": {},
"source": [
"## Example 2\n",
@@ -1134,7 +1134,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "74bd47e1",
+ "id": "7d739a34",
"metadata": {
"hide-output": false
},
@@ -1187,7 +1187,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cee5e419",
+ "id": "9655e781",
"metadata": {
"hide-output": false
},
@@ -1198,7 +1198,7 @@
},
{
"cell_type": "markdown",
- "id": "75ead5b6",
+ "id": "1304a227",
"metadata": {},
"source": [
"Only $ d_{s_t} $ depends on $ s_t $."
@@ -1207,7 +1207,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e7ce5545",
+ "id": "e64ab84e",
"metadata": {
"hide-output": false
},
@@ -1218,7 +1218,7 @@
},
{
"cell_type": "markdown",
- "id": "7a1d2fcd",
+ "id": "cd9714a3",
"metadata": {},
"source": [
"Only $ f_{1,{s_t}} $ depends on $ s_t $."
@@ -1227,7 +1227,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e14426d1",
+ "id": "73b0d179",
"metadata": {
"hide-output": false
},
@@ -1238,7 +1238,7 @@
},
{
"cell_type": "markdown",
- "id": "2ee7b33e",
+ "id": "650551cf",
"metadata": {},
"source": [
"Only $ f_{2,{s_t}} $ depends on $ s_t $."
@@ -1247,7 +1247,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "42a48ad4",
+ "id": "77ed613c",
"metadata": {
"hide-output": false
},
@@ -1258,7 +1258,7 @@
},
{
"cell_type": "markdown",
- "id": "cc173250",
+ "id": "08fa4f46",
"metadata": {},
"source": [
"Only $ \\alpha_0(s_t) $ depends on $ s_t $."
@@ -1267,7 +1267,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "77a37b66",
+ "id": "89d849a3",
"metadata": {
"hide-output": false
},
@@ -1278,7 +1278,7 @@
},
{
"cell_type": "markdown",
- "id": "c5bcca7b",
+ "id": "ae2ed4c0",
"metadata": {},
"source": [
"Only $ \\rho_{s_t} $ depends on $ s_t $."
@@ -1287,7 +1287,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a9df7a77",
+ "id": "b9bb3d09",
"metadata": {
"hide-output": false
},
@@ -1298,7 +1298,7 @@
},
{
"cell_type": "markdown",
- "id": "469523b1",
+ "id": "2e70842c",
"metadata": {},
"source": [
"Only $ \\sigma_{s_t} $ depends on $ s_t $."
@@ -1307,7 +1307,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "debf315d",
+ "id": "7f5637cb",
"metadata": {
"hide-output": false
},
@@ -1318,7 +1318,7 @@
},
{
"cell_type": "markdown",
- "id": "1dec6fc5",
+ "id": "5cd4fcec",
"metadata": {},
"source": [
"## More examples\n",
@@ -1333,7 +1333,7 @@
}
],
"metadata": {
- "date": 1723011582.8311577,
+ "date": 1723517848.6165621,
"filename": "markov_jump_lq.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/matsuyama.ipynb b/_notebooks/matsuyama.ipynb
index 2f71ac28..e2f17bc2 100644
--- a/_notebooks/matsuyama.ipynb
+++ b/_notebooks/matsuyama.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "88a901d2",
+ "id": "2e3ba0ae",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "cf7b2141",
+ "id": "b3120d9c",
"metadata": {},
"source": [
"# Globalization and Cycles"
@@ -19,7 +19,7 @@
},
{
"cell_type": "markdown",
- "id": "9a79cf23",
+ "id": "3e126508",
"metadata": {},
"source": [
"## Overview\n",
@@ -44,7 +44,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "03384489",
+ "id": "4bbd9fb4",
"metadata": {
"hide-output": false
},
@@ -58,7 +58,7 @@
},
{
"cell_type": "markdown",
- "id": "5f0b17e3",
+ "id": "047c8515",
"metadata": {},
"source": [
"### Background\n",
@@ -74,7 +74,7 @@
},
{
"cell_type": "markdown",
- "id": "2d745605",
+ "id": "c47dd3bd",
"metadata": {},
"source": [
"## Key Ideas\n",
@@ -84,7 +84,7 @@
},
{
"cell_type": "markdown",
- "id": "a0ecbefb",
+ "id": "42a26429",
"metadata": {},
"source": [
"### Innovation Cycles\n",
@@ -112,7 +112,7 @@
},
{
"cell_type": "markdown",
- "id": "4e285cf1",
+ "id": "406a87b1",
"metadata": {},
"source": [
"### Synchronization\n",
@@ -128,7 +128,7 @@
},
{
"cell_type": "markdown",
- "id": "8c6df7ad",
+ "id": "c75c1486",
"metadata": {},
"source": [
"## Model\n",
@@ -176,7 +176,7 @@
},
{
"cell_type": "markdown",
- "id": "86b31f4d",
+ "id": "21fb3d42",
"metadata": {},
"source": [
"### Prices\n",
@@ -266,7 +266,7 @@
},
{
"cell_type": "markdown",
- "id": "fb95617a",
+ "id": "440cd1ae",
"metadata": {},
"source": [
"### New Varieties\n",
@@ -298,7 +298,7 @@
},
{
"cell_type": "markdown",
- "id": "bb6b5908",
+ "id": "c3dd0a33",
"metadata": {},
"source": [
"### Law of Motion\n",
@@ -377,7 +377,7 @@
},
{
"cell_type": "markdown",
- "id": "746bae50",
+ "id": "356ffa01",
"metadata": {},
"source": [
"## Simulation\n",
@@ -404,7 +404,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "33962199",
+ "id": "4b91a1c7",
"metadata": {
"hide-output": false
},
@@ -717,7 +717,7 @@
},
{
"cell_type": "markdown",
- "id": "9a0ce0a8",
+ "id": "ae040dce",
"metadata": {},
"source": [
"### Time Series of Firm Measures\n",
@@ -734,7 +734,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6cbe4599",
+ "id": "9dc71a35",
"metadata": {
"hide-output": false
},
@@ -774,7 +774,7 @@
},
{
"cell_type": "markdown",
- "id": "36782165",
+ "id": "7dd03424",
"metadata": {},
"source": [
"In the first case, innovation in the two countries does not synchronize.\n",
@@ -785,7 +785,7 @@
},
{
"cell_type": "markdown",
- "id": "ed60e3af",
+ "id": "966db403",
"metadata": {},
"source": [
"### Basin of Attraction\n",
@@ -820,7 +820,7 @@
},
{
"cell_type": "markdown",
- "id": "44058d4b",
+ "id": "aa707ef4",
"metadata": {},
"source": [
"## Exercises"
@@ -828,7 +828,7 @@
},
{
"cell_type": "markdown",
- "id": "7e2a8e7a",
+ "id": "4c367a87",
"metadata": {},
"source": [
"## Exercise 14.1\n",
@@ -838,7 +838,7 @@
},
{
"cell_type": "markdown",
- "id": "23baf340",
+ "id": "2d3aa945",
"metadata": {},
"source": [
"## Solution to[ Exercise 14.1](https://python-advanced.quantecon.org/#matsuyama_ex1)"
@@ -847,7 +847,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4b1aab45",
+ "id": "ef11c3f3",
"metadata": {
"hide-output": false
},
@@ -903,7 +903,7 @@
},
{
"cell_type": "markdown",
- "id": "be224093",
+ "id": "f47c6276",
"metadata": {},
"source": [
"Additionally, instead of just seeing 4 plots at once, we might want to\n",
@@ -916,7 +916,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1715548c",
+ "id": "fd94c463",
"metadata": {
"hide-output": false
},
@@ -943,7 +943,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1ae622e1",
+ "id": "65989cf6",
"metadata": {
"hide-output": false
},
@@ -957,7 +957,7 @@
}
],
"metadata": {
- "date": 1723011582.8532298,
+ "date": 1723517848.8948047,
"filename": "matsuyama.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/muth_kalman.ipynb b/_notebooks/muth_kalman.ipynb
index a8510dda..9cc0f7dc 100644
--- a/_notebooks/muth_kalman.ipynb
+++ b/_notebooks/muth_kalman.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "149c85ef",
+ "id": "c97c29c3",
"metadata": {},
"source": [
"\n",
@@ -13,7 +13,7 @@
},
{
"cell_type": "markdown",
- "id": "edd649df",
+ "id": "6aca6129",
"metadata": {},
"source": [
"# Reverse Engineering a la Muth\n",
@@ -24,7 +24,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c41f1e02",
+ "id": "f9835494",
"metadata": {
"hide-output": false
},
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "864d68ff",
+ "id": "50b62a6f",
"metadata": {},
"source": [
"We’ll also need the following imports:"
@@ -44,7 +44,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "767dcd5b",
+ "id": "44e9d88f",
"metadata": {
"hide-output": false
},
@@ -60,7 +60,7 @@
},
{
"cell_type": "markdown",
- "id": "a83c0e03",
+ "id": "08f11aef",
"metadata": {},
"source": [
"This lecture uses the Kalman filter to reformulate John F. Muth’s first\n",
@@ -73,7 +73,7 @@
},
{
"cell_type": "markdown",
- "id": "151af35e",
+ "id": "9eef315c",
"metadata": {},
"source": [
"## Friedman (1956) and Muth (1960)\n",
@@ -124,7 +124,7 @@
},
{
"cell_type": "markdown",
- "id": "081508e2",
+ "id": "a1cb5a4a",
"metadata": {},
"source": [
"## A Process for Which Adaptive Expectations are Optimal\n",
@@ -192,7 +192,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cbf83b09",
+ "id": "b5f6e860",
"metadata": {
"hide-output": false
},
@@ -225,7 +225,7 @@
},
{
"cell_type": "markdown",
- "id": "1f1916fe",
+ "id": "f123a591",
"metadata": {},
"source": [
"## Some Useful State-Space Math\n",
@@ -282,7 +282,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0133fb2e",
+ "id": "2fa681aa",
"metadata": {
"hide-output": false
},
@@ -315,7 +315,7 @@
},
{
"cell_type": "markdown",
- "id": "8bcae517",
+ "id": "19c9af16",
"metadata": {},
"source": [
"Now that we have simulated our joint system, we have $ x_t $,\n",
@@ -327,7 +327,7 @@
},
{
"cell_type": "markdown",
- "id": "6f6c3f2f",
+ "id": "2f85191a",
"metadata": {},
"source": [
"## Estimates of Unobservables\n",
@@ -340,7 +340,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8720c839",
+ "id": "d428da7d",
"metadata": {
"hide-output": false
},
@@ -357,7 +357,7 @@
},
{
"cell_type": "markdown",
- "id": "748e654e",
+ "id": "4d4d211c",
"metadata": {},
"source": [
"Note how $ x_t $ and $ \\hat{x_t} $ differ.\n",
@@ -368,7 +368,7 @@
},
{
"cell_type": "markdown",
- "id": "919a41b0",
+ "id": "392b542a",
"metadata": {},
"source": [
"## Relationship of Unobservables to Observables\n",
@@ -381,7 +381,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9eb09493",
+ "id": "f9344fcb",
"metadata": {
"hide-output": false
},
@@ -398,7 +398,7 @@
},
{
"cell_type": "markdown",
- "id": "1eda023e",
+ "id": "f2a46f0b",
"metadata": {},
"source": [
"We see above that $ y $ seems to look like white noise around the\n",
@@ -407,7 +407,7 @@
},
{
"cell_type": "markdown",
- "id": "6a2cba50",
+ "id": "7c3a4826",
"metadata": {},
"source": [
"### Innovations\n",
@@ -419,7 +419,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "778b59af",
+ "id": "abc92b1d",
"metadata": {
"hide-output": false
},
@@ -435,7 +435,7 @@
},
{
"cell_type": "markdown",
- "id": "25264646",
+ "id": "da4d0f15",
"metadata": {},
"source": [
"## MA and AR Representations\n",
@@ -456,7 +456,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a2b9e2a2",
+ "id": "5df630ad",
"metadata": {
"hide-output": false
},
@@ -482,7 +482,7 @@
},
{
"cell_type": "markdown",
- "id": "3de2c038",
+ "id": "0dacf8c3",
"metadata": {},
"source": [
"The **moving average** coefficients in the top panel show tell-tale\n",
@@ -499,7 +499,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7d753b6b",
+ "id": "a7269cc6",
"metadata": {
"hide-output": false
},
@@ -510,7 +510,7 @@
}
],
"metadata": {
- "date": 1723011582.874031,
+ "date": 1723517848.9146514,
"filename": "muth_kalman.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/opt_tax_recur.ipynb b/_notebooks/opt_tax_recur.ipynb
index 7d1bdc6a..a8f3ceee 100644
--- a/_notebooks/opt_tax_recur.ipynb
+++ b/_notebooks/opt_tax_recur.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "209ad4aa",
+ "id": "a6775d2a",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "346545c8",
+ "id": "b9986833",
"metadata": {},
"source": [
"# Optimal Taxation with State-Contingent Debt\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ef3c2a49",
+ "id": "49bf2c2d",
"metadata": {
"hide-output": false
},
@@ -33,7 +33,7 @@
},
{
"cell_type": "markdown",
- "id": "5ecf9057",
+ "id": "074f8ed4",
"metadata": {},
"source": [
"## Overview\n",
@@ -74,7 +74,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "57c87067",
+ "id": "132e9911",
"metadata": {
"hide-output": false
},
@@ -91,7 +91,7 @@
},
{
"cell_type": "markdown",
- "id": "5616c575",
+ "id": "e954ecbf",
"metadata": {},
"source": [
"## A Competitive Equilibrium with Distorting Taxes\n",
@@ -208,7 +208,7 @@
},
{
"cell_type": "markdown",
- "id": "cf1b11d5",
+ "id": "1d5a4579",
"metadata": {},
"source": [
"### Arrow-Debreu Version of Price System\n",
@@ -236,7 +236,7 @@
},
{
"cell_type": "markdown",
- "id": "d0856c1c",
+ "id": "c3591c4d",
"metadata": {},
"source": [
"### Primal Approach\n",
@@ -268,7 +268,7 @@
},
{
"cell_type": "markdown",
- "id": "31f9d42f",
+ "id": "250de7e9",
"metadata": {},
"source": [
"### The Implementability Constraint\n",
@@ -344,7 +344,7 @@
},
{
"cell_type": "markdown",
- "id": "0967395b",
+ "id": "bc46bbe2",
"metadata": {},
"source": [
"### Solution Details\n",
@@ -486,7 +486,7 @@
},
{
"cell_type": "markdown",
- "id": "fb3abc93",
+ "id": "7e8cbc66",
"metadata": {},
"source": [
"### The Ramsey Allocation for a Given Multiplier\n",
@@ -522,7 +522,7 @@
},
{
"cell_type": "markdown",
- "id": "bc10e14c",
+ "id": "ebbc29ef",
"metadata": {},
"source": [
"### Further Specialization\n",
@@ -544,7 +544,7 @@
},
{
"cell_type": "markdown",
- "id": "7d9368d5",
+ "id": "77f74f0b",
"metadata": {},
"source": [
"### Determining the Lagrange Multiplier\n",
@@ -680,7 +680,7 @@
},
{
"cell_type": "markdown",
- "id": "97a861ff",
+ "id": "4690425a",
"metadata": {},
"source": [
"### Time Inconsistency\n",
@@ -711,7 +711,7 @@
},
{
"cell_type": "markdown",
- "id": "6891bc1a",
+ "id": "7c68e0c2",
"metadata": {},
"source": [
"### Specification with CRRA Utility\n",
@@ -796,7 +796,7 @@
},
{
"cell_type": "markdown",
- "id": "2088e789",
+ "id": "190f81a1",
"metadata": {},
"source": [
"### Sequence Implementation\n",
@@ -807,7 +807,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "704c17cd",
+ "id": "b6715240",
"metadata": {
"hide-output": false
},
@@ -1015,7 +1015,7 @@
},
{
"cell_type": "markdown",
- "id": "4e5fca3b",
+ "id": "c2e24e7d",
"metadata": {},
"source": [
"## Recursive Formulation of the Ramsey Problem\n",
@@ -1032,7 +1032,7 @@
},
{
"cell_type": "markdown",
- "id": "3a6e94e3",
+ "id": "450828db",
"metadata": {},
"source": [
"### Intertemporal Delegation\n",
@@ -1081,7 +1081,7 @@
},
{
"cell_type": "markdown",
- "id": "44d727d1",
+ "id": "33ed0533",
"metadata": {},
"source": [
"### Two Bellman Equations\n",
@@ -1100,7 +1100,7 @@
},
{
"cell_type": "markdown",
- "id": "242a4c44",
+ "id": "4ede52ec",
"metadata": {},
"source": [
"### The Continuation Ramsey Problem\n",
@@ -1145,7 +1145,7 @@
},
{
"cell_type": "markdown",
- "id": "df91bb1e",
+ "id": "bb67d226",
"metadata": {},
"source": [
"### The Ramsey Problem\n",
@@ -1198,7 +1198,7 @@
},
{
"cell_type": "markdown",
- "id": "7ad37ad8",
+ "id": "90ef4b0b",
"metadata": {},
"source": [
"### First-Order Conditions\n",
@@ -1282,7 +1282,7 @@
},
{
"cell_type": "markdown",
- "id": "6c6b1c66",
+ "id": "70917e91",
"metadata": {},
"source": [
"### State Variable Degeneracy\n",
@@ -1310,7 +1310,7 @@
},
{
"cell_type": "markdown",
- "id": "ef757499",
+ "id": "7bcdfb9c",
"metadata": {},
"source": [
"### Manifestations of Time Inconsistency\n",
@@ -1360,7 +1360,7 @@
},
{
"cell_type": "markdown",
- "id": "9b845cad",
+ "id": "6279323e",
"metadata": {},
"source": [
"### Recursive Implementation\n",
@@ -1371,7 +1371,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a93fa75e",
+ "id": "2723e0fc",
"metadata": {
"hide-output": false
},
@@ -1625,7 +1625,7 @@
},
{
"cell_type": "markdown",
- "id": "a3af99f6",
+ "id": "37b9d752",
"metadata": {},
"source": [
"## Examples\n",
@@ -1635,7 +1635,7 @@
},
{
"cell_type": "markdown",
- "id": "bead6f1d",
+ "id": "8a5918ed",
"metadata": {},
"source": [
"### Anticipated One-Period War\n",
@@ -1691,7 +1691,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a135c324",
+ "id": "79c0f233",
"metadata": {
"hide-output": false
},
@@ -1747,7 +1747,7 @@
},
{
"cell_type": "markdown",
- "id": "5ffa1180",
+ "id": "f71f91ce",
"metadata": {},
"source": [
"We set initial government debt $ b_0 = 1 $.\n",
@@ -1761,7 +1761,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d235a9ba",
+ "id": "9762be15",
"metadata": {
"hide-output": false
},
@@ -1802,7 +1802,7 @@
},
{
"cell_type": "markdown",
- "id": "a6f76adc",
+ "id": "ec7fa2ba",
"metadata": {},
"source": [
"**Tax smoothing**\n",
@@ -1848,7 +1848,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c430f832",
+ "id": "e95d9476",
"metadata": {
"hide-output": false
},
@@ -1863,7 +1863,7 @@
},
{
"cell_type": "markdown",
- "id": "3a585fd5",
+ "id": "fd61b6c4",
"metadata": {},
"source": [
"### Government Saving\n",
@@ -1899,7 +1899,7 @@
},
{
"cell_type": "markdown",
- "id": "2b581cba",
+ "id": "50667519",
"metadata": {},
"source": [
"### Time 0 Manipulation of Interest Rate\n",
@@ -1917,7 +1917,7 @@
},
{
"cell_type": "markdown",
- "id": "56a82a12",
+ "id": "bb0a098e",
"metadata": {},
"source": [
"### Time 0 and Time-Inconsistency\n",
@@ -1937,7 +1937,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "af80ec07",
+ "id": "ef10d994",
"metadata": {
"hide-output": false
},
@@ -1971,7 +1971,7 @@
},
{
"cell_type": "markdown",
- "id": "a5bf9e64",
+ "id": "d0bee249",
"metadata": {},
"source": [
"The figure indicates that if the government enters with positive debt, it sets\n",
@@ -2021,7 +2021,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "53d92b82",
+ "id": "abe8ec78",
"metadata": {
"hide-output": false
},
@@ -2051,7 +2051,7 @@
},
{
"cell_type": "markdown",
- "id": "3de64b8e",
+ "id": "8fb5716d",
"metadata": {},
"source": [
"The tax rates in the figure are equal for only two values of initial government debt."
@@ -2059,7 +2059,7 @@
},
{
"cell_type": "markdown",
- "id": "64a37cb4",
+ "id": "17e87da2",
"metadata": {},
"source": [
"### Tax Smoothing and non-CRRA Preferences\n",
@@ -2096,7 +2096,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "742c81b0",
+ "id": "315f9af5",
"metadata": {
"hide-output": false
},
@@ -2142,7 +2142,7 @@
},
{
"cell_type": "markdown",
- "id": "5563d1ca",
+ "id": "0d6e8903",
"metadata": {},
"source": [
"Also, suppose that $ g_t $ follows a two-state IID process with equal\n",
@@ -2156,7 +2156,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3e1a9f39",
+ "id": "7634ede0",
"metadata": {
"hide-output": false
},
@@ -2198,7 +2198,7 @@
},
{
"cell_type": "markdown",
- "id": "41e83d76",
+ "id": "b2199cf1",
"metadata": {},
"source": [
"As should be expected, the recursive and sequential solutions produce almost\n",
@@ -2211,7 +2211,7 @@
},
{
"cell_type": "markdown",
- "id": "23e98336",
+ "id": "2d70ef23",
"metadata": {},
"source": [
"### Further Comments\n",
@@ -2232,7 +2232,7 @@
}
],
"metadata": {
- "date": 1723011582.944608,
+ "date": 1723517848.9845448,
"filename": "opt_tax_recur.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/orth_proj.ipynb b/_notebooks/orth_proj.ipynb
index 27172b72..0f2741cb 100644
--- a/_notebooks/orth_proj.ipynb
+++ b/_notebooks/orth_proj.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "e8c84ec9",
+ "id": "3042364b",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "7162447c",
+ "id": "405995ad",
"metadata": {},
"source": [
"# Orthogonal Projections and Their Applications\n",
@@ -22,7 +22,7 @@
},
{
"cell_type": "markdown",
- "id": "29639753",
+ "id": "8434da21",
"metadata": {},
"source": [
"## Overview\n",
@@ -51,7 +51,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5b3d5cb3",
+ "id": "0b5aaba8",
"metadata": {
"hide-output": false
},
@@ -63,7 +63,7 @@
},
{
"cell_type": "markdown",
- "id": "1d23ef96",
+ "id": "5c501a93",
"metadata": {},
"source": [
"### Further Reading\n",
@@ -79,7 +79,7 @@
},
{
"cell_type": "markdown",
- "id": "bc557ba3",
+ "id": "5382a1e0",
"metadata": {},
"source": [
"## Key Definitions\n",
@@ -143,7 +143,7 @@
},
{
"cell_type": "markdown",
- "id": "f59dafed",
+ "id": "50ba5139",
"metadata": {},
"source": [
"### Linear Independence vs Orthogonality\n",
@@ -157,7 +157,7 @@
},
{
"cell_type": "markdown",
- "id": "b2babb18",
+ "id": "3e8b1ca9",
"metadata": {},
"source": [
"## The Orthogonal Projection Theorem\n",
@@ -188,7 +188,7 @@
},
{
"cell_type": "markdown",
- "id": "fe430c75",
+ "id": "8f2b5ce2",
"metadata": {},
"source": [
"### Proof of Sufficiency\n",
@@ -214,7 +214,7 @@
},
{
"cell_type": "markdown",
- "id": "2624d087",
+ "id": "7f8ec3fe",
"metadata": {},
"source": [
"### Orthogonal Projection as a Mapping\n",
@@ -255,7 +255,7 @@
},
{
"cell_type": "markdown",
- "id": "eee73d7d",
+ "id": "1c28f173",
"metadata": {},
"source": [
"#### Orthogonal Complement\n",
@@ -296,7 +296,7 @@
},
{
"cell_type": "markdown",
- "id": "0c2dd684",
+ "id": "fa4a3eea",
"metadata": {},
"source": [
"## Orthonormal Basis\n",
@@ -342,7 +342,7 @@
},
{
"cell_type": "markdown",
- "id": "52cd03e9",
+ "id": "8e78196b",
"metadata": {},
"source": [
"### Projection onto an Orthonormal Basis\n",
@@ -380,7 +380,7 @@
},
{
"cell_type": "markdown",
- "id": "f41b8bd7",
+ "id": "a985a313",
"metadata": {},
"source": [
"## Projection Via Matrix Algebra\n",
@@ -442,7 +442,7 @@
},
{
"cell_type": "markdown",
- "id": "8dee1ef5",
+ "id": "2cb4a662",
"metadata": {},
"source": [
"### Starting with the Basis\n",
@@ -464,7 +464,7 @@
},
{
"cell_type": "markdown",
- "id": "6b0ebbf8",
+ "id": "99153e79",
"metadata": {},
"source": [
"### The Orthonormal Case\n",
@@ -495,7 +495,7 @@
},
{
"cell_type": "markdown",
- "id": "4cb4dc31",
+ "id": "23477475",
"metadata": {},
"source": [
"### Application: Overdetermined Systems of Equations\n",
@@ -552,7 +552,7 @@
},
{
"cell_type": "markdown",
- "id": "e99182a4",
+ "id": "0dd6ce53",
"metadata": {},
"source": [
"## Least Squares Regression\n",
@@ -566,7 +566,7 @@
},
{
"cell_type": "markdown",
- "id": "289c2159",
+ "id": "5c0dd140",
"metadata": {},
"source": [
"### Squared Risk Measures\n",
@@ -604,7 +604,7 @@
},
{
"cell_type": "markdown",
- "id": "2050876a",
+ "id": "56441f1e",
"metadata": {},
"source": [
"### Solution\n",
@@ -713,7 +713,7 @@
},
{
"cell_type": "markdown",
- "id": "1e1397cc",
+ "id": "22fd45f6",
"metadata": {},
"source": [
"## Orthogonalization and Decomposition\n",
@@ -730,7 +730,7 @@
},
{
"cell_type": "markdown",
- "id": "fb40a91c",
+ "id": "78d98d11",
"metadata": {},
"source": [
"### Gram-Schmidt Orthogonalization\n",
@@ -763,7 +763,7 @@
},
{
"cell_type": "markdown",
- "id": "b1668183",
+ "id": "a15f94c9",
"metadata": {},
"source": [
"### QR Decomposition\n",
@@ -795,7 +795,7 @@
},
{
"cell_type": "markdown",
- "id": "3abc3123",
+ "id": "712930c6",
"metadata": {},
"source": [
"### Linear Regression via QR Decomposition\n",
@@ -820,7 +820,7 @@
},
{
"cell_type": "markdown",
- "id": "1dcdff3f",
+ "id": "7a3bc307",
"metadata": {},
"source": [
"## Exercises"
@@ -828,7 +828,7 @@
},
{
"cell_type": "markdown",
- "id": "13e07d57",
+ "id": "46a64211",
"metadata": {},
"source": [
"## Exercise 1.1\n",
@@ -838,7 +838,7 @@
},
{
"cell_type": "markdown",
- "id": "f1ddc6be",
+ "id": "d0dd1684",
"metadata": {},
"source": [
"## Solution to[ Exercise 1.1](https://python-advanced.quantecon.org/#op_ex1)\n",
@@ -849,7 +849,7 @@
},
{
"cell_type": "markdown",
- "id": "5952beee",
+ "id": "2e28847a",
"metadata": {},
"source": [
"## Exercise 1.2\n",
@@ -861,7 +861,7 @@
},
{
"cell_type": "markdown",
- "id": "7e29c379",
+ "id": "68563db5",
"metadata": {},
"source": [
"## Solution to[ Exercise 1.2](https://python-advanced.quantecon.org/#op_ex2)\n",
@@ -877,7 +877,7 @@
},
{
"cell_type": "markdown",
- "id": "92172734",
+ "id": "17bc7546",
"metadata": {},
"source": [
"## Exercise 1.3\n",
@@ -912,7 +912,7 @@
},
{
"cell_type": "markdown",
- "id": "47ed1b0b",
+ "id": "747021ea",
"metadata": {},
"source": [
"## Solution to[ Exercise 1.3](https://python-advanced.quantecon.org/#op_ex3)\n",
@@ -924,7 +924,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3a93c73c",
+ "id": "ab9d32bb",
"metadata": {
"hide-output": false
},
@@ -970,7 +970,7 @@
},
{
"cell_type": "markdown",
- "id": "a6ed7254",
+ "id": "3f66a098",
"metadata": {},
"source": [
"Here are the arrays we’ll work with"
@@ -979,7 +979,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fa6d9c4d",
+ "id": "03e6597d",
"metadata": {
"hide-output": false
},
@@ -996,7 +996,7 @@
},
{
"cell_type": "markdown",
- "id": "0baec4f7",
+ "id": "77a43071",
"metadata": {},
"source": [
"First, let’s try projection of $ y $ onto the column space of\n",
@@ -1006,7 +1006,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "74a989a1",
+ "id": "99569080",
"metadata": {
"hide-output": false
},
@@ -1018,7 +1018,7 @@
},
{
"cell_type": "markdown",
- "id": "81fdb42b",
+ "id": "1a4d8d28",
"metadata": {},
"source": [
"Now let’s do the same using an orthonormal basis created from our\n",
@@ -1028,7 +1028,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1c46d588",
+ "id": "22d3e992",
"metadata": {
"hide-output": false
},
@@ -1041,7 +1041,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1b606148",
+ "id": "0962c318",
"metadata": {
"hide-output": false
},
@@ -1053,7 +1053,7 @@
},
{
"cell_type": "markdown",
- "id": "4cf7f225",
+ "id": "4029ae1e",
"metadata": {},
"source": [
"This is the same answer. So far so good. Finally, let’s try the same\n",
@@ -1063,7 +1063,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "571cb28d",
+ "id": "f50c2ba4",
"metadata": {
"hide-output": false
},
@@ -1076,7 +1076,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4d4c1cc2",
+ "id": "8429a649",
"metadata": {
"hide-output": false
},
@@ -1088,7 +1088,7 @@
},
{
"cell_type": "markdown",
- "id": "18ea6e78",
+ "id": "54455448",
"metadata": {},
"source": [
"Again, we obtain the same answer."
@@ -1096,7 +1096,7 @@
}
],
"metadata": {
- "date": 1723011582.9845464,
+ "date": 1723517849.0265186,
"filename": "orth_proj.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/permanent_income_dles.ipynb b/_notebooks/permanent_income_dles.ipynb
index 944a9888..06a00683 100644
--- a/_notebooks/permanent_income_dles.ipynb
+++ b/_notebooks/permanent_income_dles.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "3d623563",
+ "id": "7371c61d",
"metadata": {},
"source": [
"\n",
@@ -13,7 +13,7 @@
},
{
"cell_type": "markdown",
- "id": "adf622be",
+ "id": "5a4bd726",
"metadata": {},
"source": [
"# Permanent Income Model using the DLE Class\n",
@@ -27,7 +27,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "775e9bcc",
+ "id": "43ca516f",
"metadata": {
"hide-output": false
},
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "c9d1a1b7",
+ "id": "779bbc77",
"metadata": {},
"source": [
"This lecture adds a third solution method for the\n",
@@ -59,7 +59,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "188bdda5",
+ "id": "bd3740d8",
"metadata": {
"hide-output": false
},
@@ -74,7 +74,7 @@
},
{
"cell_type": "markdown",
- "id": "6aeea410",
+ "id": "a24ea60b",
"metadata": {},
"source": [
"## The Permanent Income Model\n",
@@ -174,7 +174,7 @@
},
{
"cell_type": "markdown",
- "id": "8efc59cd",
+ "id": "1d3d1c17",
"metadata": {},
"source": [
"### Solution with the DLE Class\n",
@@ -233,7 +233,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "03bd89c1",
+ "id": "3fe6815f",
"metadata": {
"hide-output": false
},
@@ -273,7 +273,7 @@
},
{
"cell_type": "markdown",
- "id": "cd7b7e49",
+ "id": "91bf25d6",
"metadata": {},
"source": [
"To check the solution of this model with that from the **LQ** problem,\n",
@@ -290,7 +290,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3aede370",
+ "id": "2a469ec5",
"metadata": {
"hide-output": false
},
@@ -301,7 +301,7 @@
},
{
"cell_type": "markdown",
- "id": "85f81d2d",
+ "id": "cbdf5718",
"metadata": {},
"source": [
"The state vector in the DLE class is:\n",
@@ -331,7 +331,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3707ed9b",
+ "id": "34db73f9",
"metadata": {
"hide-output": false
},
@@ -357,7 +357,7 @@
}
],
"metadata": {
- "date": 1723011583.0005496,
+ "date": 1723517849.043094,
"filename": "permanent_income_dles.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/rob_markov_perf.ipynb b/_notebooks/rob_markov_perf.ipynb
index 48460bf9..bbe7dfc6 100644
--- a/_notebooks/rob_markov_perf.ipynb
+++ b/_notebooks/rob_markov_perf.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "67760e41",
+ "id": "dfc2f879",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "532a20d1",
+ "id": "5bcdc61c",
"metadata": {},
"source": [
"# Robust Markov Perfect Equilibrium\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a1779e22",
+ "id": "4896c52a",
"metadata": {
"hide-output": false
},
@@ -33,7 +33,7 @@
},
{
"cell_type": "markdown",
- "id": "0d0df582",
+ "id": "e36bf2f9",
"metadata": {},
"source": [
"## Overview\n",
@@ -60,7 +60,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fc05172f",
+ "id": "1a842767",
"metadata": {
"hide-output": false
},
@@ -74,7 +74,7 @@
},
{
"cell_type": "markdown",
- "id": "6041597d",
+ "id": "f3f763d6",
"metadata": {},
"source": [
"### Basic Setup\n",
@@ -108,7 +108,7 @@
},
{
"cell_type": "markdown",
- "id": "be762ff1",
+ "id": "78310dd6",
"metadata": {},
"source": [
"## Linear Markov Perfect Equilibria with Robust Agents\n",
@@ -123,7 +123,7 @@
},
{
"cell_type": "markdown",
- "id": "a0dc30e1",
+ "id": "3046b554",
"metadata": {},
"source": [
"### Modified Coupled Linear Regulator Problems\n",
@@ -200,7 +200,7 @@
},
{
"cell_type": "markdown",
- "id": "c275f77a",
+ "id": "48219a74",
"metadata": {},
"source": [
"### Computing Equilibrium\n",
@@ -317,7 +317,7 @@
},
{
"cell_type": "markdown",
- "id": "8f31bd47",
+ "id": "1f9f23c0",
"metadata": {},
"source": [
"### Key Insight\n",
@@ -337,7 +337,7 @@
},
{
"cell_type": "markdown",
- "id": "0d65b9a6",
+ "id": "9eefa9a1",
"metadata": {},
"source": [
"### Worst-case Shocks\n",
@@ -357,7 +357,7 @@
},
{
"cell_type": "markdown",
- "id": "c9b3b78d",
+ "id": "b4612f83",
"metadata": {},
"source": [
"### Infinite Horizon\n",
@@ -371,7 +371,7 @@
},
{
"cell_type": "markdown",
- "id": "55166091",
+ "id": "0a44534c",
"metadata": {},
"source": [
"### Implementation\n",
@@ -383,7 +383,7 @@
},
{
"cell_type": "markdown",
- "id": "e94a382d",
+ "id": "34a5f7eb",
"metadata": {},
"source": [
"## Application\n",
@@ -394,7 +394,7 @@
},
{
"cell_type": "markdown",
- "id": "e2245547",
+ "id": "24760002",
"metadata": {},
"source": [
"### A Duopoly Model\n",
@@ -524,7 +524,7 @@
},
{
"cell_type": "markdown",
- "id": "888b8f12",
+ "id": "59fbf575",
"metadata": {},
"source": [
"### Parameters and Solution\n",
@@ -543,7 +543,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e516e286",
+ "id": "f3618dcf",
"metadata": {
"hide-output": false
},
@@ -589,7 +589,7 @@
},
{
"cell_type": "markdown",
- "id": "c7d2dbb0",
+ "id": "9d824c8c",
"metadata": {},
"source": [
"#### Markov Perfect Equilibrium with Robustness\n",
@@ -608,7 +608,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "60235df5",
+ "id": "b2f1468e",
"metadata": {
"hide-output": false
},
@@ -780,7 +780,7 @@
},
{
"cell_type": "markdown",
- "id": "2b1f381e",
+ "id": "a10d241e",
"metadata": {},
"source": [
"### Some Details\n",
@@ -854,7 +854,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3c8186ee",
+ "id": "9af60eb4",
"metadata": {
"hide-output": false
},
@@ -887,7 +887,7 @@
},
{
"cell_type": "markdown",
- "id": "0a96121e",
+ "id": "643aa00d",
"metadata": {},
"source": [
"#### Consistency Check\n",
@@ -899,7 +899,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4df40caa",
+ "id": "d8d146d1",
"metadata": {
"hide-output": false
},
@@ -923,7 +923,7 @@
},
{
"cell_type": "markdown",
- "id": "4deda07c",
+ "id": "891a05d5",
"metadata": {},
"source": [
"We can see that the results are consistent across the two functions."
@@ -931,7 +931,7 @@
},
{
"cell_type": "markdown",
- "id": "cc0d64b2",
+ "id": "86f630b1",
"metadata": {},
"source": [
"#### Comparative Dynamics under Baseline Transition Dynamics\n",
@@ -975,7 +975,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d0ada675",
+ "id": "e3ada672",
"metadata": {
"hide-output": false
},
@@ -1046,7 +1046,7 @@
},
{
"cell_type": "markdown",
- "id": "77ce7b3d",
+ "id": "8ec945fa",
"metadata": {},
"source": [
"The following code prepares graphs that compare market-wide output $ q_{1t} + q_{2t} $ and the price of the good\n",
@@ -1060,7 +1060,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "241fcb6c",
+ "id": "7283ea54",
"metadata": {
"hide-output": false
},
@@ -1084,7 +1084,7 @@
},
{
"cell_type": "markdown",
- "id": "be383f08",
+ "id": "6f713d9b",
"metadata": {},
"source": [
"Under the dynamics associated with the baseline model, the price path is higher with the Markov perfect equilibrium robust decision rules\n",
@@ -1100,7 +1100,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "45d9dc12",
+ "id": "495decfd",
"metadata": {
"hide-output": false
},
@@ -1124,7 +1124,7 @@
},
{
"cell_type": "markdown",
- "id": "d14795dc",
+ "id": "65b2ac06",
"metadata": {},
"source": [
"Evidently, firm 1’s output path is substantially lower when firms are robust firms while\n",
@@ -1147,7 +1147,7 @@
},
{
"cell_type": "markdown",
- "id": "f4536145",
+ "id": "b20f8d53",
"metadata": {},
"source": [
"#### Heterogeneous Beliefs\n",
@@ -1178,7 +1178,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "75f101bd",
+ "id": "d7d04fd7",
"metadata": {
"hide-output": false
},
@@ -1194,7 +1194,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "be41b4b3",
+ "id": "3a32e675",
"metadata": {
"hide-output": false
},
@@ -1225,7 +1225,7 @@
},
{
"cell_type": "markdown",
- "id": "85158ee7",
+ "id": "917a2ae6",
"metadata": {},
"source": [
"We see from the above graph that under robustness concerns, player 1 and\n",
@@ -1245,7 +1245,7 @@
}
],
"metadata": {
- "date": 1723011583.0330455,
+ "date": 1723517849.0774796,
"filename": "rob_markov_perf.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/robustness.ipynb b/_notebooks/robustness.ipynb
index 06a43faf..585c60b0 100644
--- a/_notebooks/robustness.ipynb
+++ b/_notebooks/robustness.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "517e0bae",
+ "id": "6a0637cd",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "4b6641a1",
+ "id": "821b4f0e",
"metadata": {},
"source": [
"# Robustness\n",
@@ -24,7 +24,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f95b14f4",
+ "id": "36d4a061",
"metadata": {
"hide-output": false
},
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "0b888a68",
+ "id": "eed04cbc",
"metadata": {},
"source": [
"## Overview\n",
@@ -84,7 +84,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4ef203da",
+ "id": "6c7cb971",
"metadata": {
"hide-output": false
},
@@ -99,7 +99,7 @@
},
{
"cell_type": "markdown",
- "id": "3d2988c7",
+ "id": "9f2014fe",
"metadata": {},
"source": [
"\n",
@@ -108,7 +108,7 @@
},
{
"cell_type": "markdown",
- "id": "8095d7d0",
+ "id": "01ae0238",
"metadata": {},
"source": [
"### Sets of Models Imply Sets Of Values\n",
@@ -175,7 +175,7 @@
},
{
"cell_type": "markdown",
- "id": "9776b7c8",
+ "id": "6b186fd5",
"metadata": {},
"source": [
"### Inspiring Video\n",
@@ -185,7 +185,7 @@
},
{
"cell_type": "markdown",
- "id": "040b97e7",
+ "id": "53c73111",
"metadata": {},
"source": [
"### Other References\n",
@@ -198,7 +198,7 @@
},
{
"cell_type": "markdown",
- "id": "f4b8b9e8",
+ "id": "306a8da2",
"metadata": {},
"source": [
"## The Model\n",
@@ -252,7 +252,7 @@
},
{
"cell_type": "markdown",
- "id": "b3900973",
+ "id": "f6687fde",
"metadata": {},
"source": [
"## Constructing More Robust Policies\n",
@@ -301,7 +301,7 @@
},
{
"cell_type": "markdown",
- "id": "3ab0d598",
+ "id": "d5dea253",
"metadata": {},
"source": [
"### Analyzing the Bellman Equation\n",
@@ -407,7 +407,7 @@
},
{
"cell_type": "markdown",
- "id": "712fb471",
+ "id": "06e40cc8",
"metadata": {},
"source": [
"## Robustness as Outcome of a Two-Person Zero-Sum Game\n",
@@ -428,7 +428,7 @@
},
{
"cell_type": "markdown",
- "id": "7c5691a2",
+ "id": "ad54f31d",
"metadata": {},
"source": [
"### Agent 2’s Problem\n",
@@ -535,7 +535,7 @@
},
{
"cell_type": "markdown",
- "id": "43ac65e8",
+ "id": "6841747e",
"metadata": {},
"source": [
"### Using Agent 2’s Problem to Construct Bounds on the Value Sets"
@@ -543,7 +543,7 @@
},
{
"cell_type": "markdown",
- "id": "6b697579",
+ "id": "44d70469",
"metadata": {},
"source": [
"#### The Lower Bound\n",
@@ -602,7 +602,7 @@
},
{
"cell_type": "markdown",
- "id": "bba99d67",
+ "id": "73e3b4b3",
"metadata": {},
"source": [
"#### The Upper Bound\n",
@@ -665,7 +665,7 @@
},
{
"cell_type": "markdown",
- "id": "146b855d",
+ "id": "9be83232",
"metadata": {},
"source": [
"#### Reshaping the Set of Values\n",
@@ -675,7 +675,7 @@
},
{
"cell_type": "markdown",
- "id": "f77518c9",
+ "id": "a91c3cb2",
"metadata": {},
"source": [
"### Agent 1’s Problem\n",
@@ -722,7 +722,7 @@
},
{
"cell_type": "markdown",
- "id": "130d4a29",
+ "id": "26f03522",
"metadata": {},
"source": [
"### Nash Equilibrium\n",
@@ -756,7 +756,7 @@
},
{
"cell_type": "markdown",
- "id": "6b990b0e",
+ "id": "8d391b32",
"metadata": {},
"source": [
"## The Stochastic Case\n",
@@ -805,7 +805,7 @@
},
{
"cell_type": "markdown",
- "id": "ba18b03f",
+ "id": "7aa8a819",
"metadata": {},
"source": [
"### Solving the Model\n",
@@ -903,7 +903,7 @@
},
{
"cell_type": "markdown",
- "id": "0b6bbdd2",
+ "id": "8f1ab62e",
"metadata": {},
"source": [
"### Computing Other Quantities\n",
@@ -913,7 +913,7 @@
},
{
"cell_type": "markdown",
- "id": "0b2b5986",
+ "id": "a81ec981",
"metadata": {},
"source": [
"#### Worst-Case Value of a Policy\n",
@@ -971,7 +971,7 @@
},
{
"cell_type": "markdown",
- "id": "6922894e",
+ "id": "a9338b54",
"metadata": {},
"source": [
"## Implementation\n",
@@ -997,7 +997,7 @@
},
{
"cell_type": "markdown",
- "id": "4a855320",
+ "id": "c687a0f5",
"metadata": {},
"source": [
"## Application\n",
@@ -1097,7 +1097,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4485302a",
+ "id": "fdb16976",
"metadata": {
"hide-output": false
},
@@ -1274,7 +1274,7 @@
},
{
"cell_type": "markdown",
- "id": "9ae83604",
+ "id": "e93f4cad",
"metadata": {},
"source": [
"Here’s another such figure, with $ \\theta = 0.002 $ instead of $ 0.02 $\n",
@@ -1290,7 +1290,7 @@
},
{
"cell_type": "markdown",
- "id": "4bca3471",
+ "id": "58844cd1",
"metadata": {},
"source": [
"## Appendix\n",
@@ -1364,7 +1364,7 @@
}
],
"metadata": {
- "date": 1723011583.3028057,
+ "date": 1723517849.1248803,
"filename": "robustness.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/rosen_schooling_model.ipynb b/_notebooks/rosen_schooling_model.ipynb
index 57b56a2e..518df1b3 100644
--- a/_notebooks/rosen_schooling_model.ipynb
+++ b/_notebooks/rosen_schooling_model.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "11abfeab",
+ "id": "e74a5d4a",
"metadata": {},
"source": [
"\n",
@@ -13,7 +13,7 @@
},
{
"cell_type": "markdown",
- "id": "b7146b0e",
+ "id": "8302e213",
"metadata": {},
"source": [
"# Rosen Schooling Model\n",
@@ -27,7 +27,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fa1c3586",
+ "id": "d80d1dec",
"metadata": {
"hide-output": false
},
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "8befb393",
+ "id": "2445848a",
"metadata": {},
"source": [
"We’ll also need the following imports:"
@@ -47,7 +47,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "314f58ab",
+ "id": "7a398e01",
"metadata": {
"hide-output": false
},
@@ -61,7 +61,7 @@
},
{
"cell_type": "markdown",
- "id": "a798408e",
+ "id": "6304ecb8",
"metadata": {},
"source": [
"## A One-Occupation Model\n",
@@ -109,7 +109,7 @@
},
{
"cell_type": "markdown",
- "id": "22156d4b",
+ "id": "b6785104",
"metadata": {},
"source": [
"## Mapping into HS2013 Framework\n",
@@ -124,7 +124,7 @@
},
{
"cell_type": "markdown",
- "id": "a66bcdaf",
+ "id": "959f9519",
"metadata": {},
"source": [
"### Preferences\n",
@@ -156,7 +156,7 @@
},
{
"cell_type": "markdown",
- "id": "52cd3eb2",
+ "id": "c38411ef",
"metadata": {},
"source": [
"### Technology\n",
@@ -177,7 +177,7 @@
},
{
"cell_type": "markdown",
- "id": "dc0059be",
+ "id": "977e2503",
"metadata": {},
"source": [
"### Information\n",
@@ -210,7 +210,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cdac857c",
+ "id": "84308187",
"metadata": {
"hide-output": false
},
@@ -223,7 +223,7 @@
},
{
"cell_type": "markdown",
- "id": "22cb35ff",
+ "id": "091821cf",
"metadata": {},
"source": [
"### Effects of Changes in Education Technology and Demand\n",
@@ -242,7 +242,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "952890ac",
+ "id": "2c8104cc",
"metadata": {
"hide-output": false
},
@@ -297,7 +297,7 @@
},
{
"cell_type": "markdown",
- "id": "bb819622",
+ "id": "8d915c30",
"metadata": {},
"source": [
"We create three other instances by:\n",
@@ -310,7 +310,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "633bb8f7",
+ "id": "497e0674",
"metadata": {
"hide-output": false
},
@@ -357,7 +357,7 @@
},
{
"cell_type": "markdown",
- "id": "47a39f8c",
+ "id": "a77b6721",
"metadata": {},
"source": [
"The first figure plots the impulse response of $ n_t $ (on the left)\n",
@@ -385,7 +385,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5d57514a",
+ "id": "8d807638",
"metadata": {
"hide-output": false
},
@@ -406,7 +406,7 @@
},
{
"cell_type": "markdown",
- "id": "3f9ac194",
+ "id": "cc2156df",
"metadata": {},
"source": [
"The next figure plots the impulse response of $ n_t $ (on the left)\n",
@@ -417,7 +417,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3f52d9eb",
+ "id": "94e57276",
"metadata": {
"hide-output": false
},
@@ -440,7 +440,7 @@
},
{
"cell_type": "markdown",
- "id": "560a748b",
+ "id": "daf555fe",
"metadata": {},
"source": [
"Both panels in the above figure show that raising $ k $ lowers the effect of\n",
@@ -454,7 +454,7 @@
}
],
"metadata": {
- "date": 1723011583.3198574,
+ "date": 1723517849.1409554,
"filename": "rosen_schooling_model.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/smoothing.ipynb b/_notebooks/smoothing.ipynb
index a782452f..bf2f4698 100644
--- a/_notebooks/smoothing.ipynb
+++ b/_notebooks/smoothing.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "27ec404b",
+ "id": "7b444905",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "2504280d",
+ "id": "b456f890",
"metadata": {},
"source": [
"# Consumption Smoothing with Complete and Incomplete Markets\n",
@@ -24,7 +24,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8037db9b",
+ "id": "a672d652",
"metadata": {
"hide-output": false
},
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "ac4addc4",
+ "id": "2c37af9d",
"metadata": {},
"source": [
"## Overview\n",
@@ -87,7 +87,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ffda8df3",
+ "id": "740ee0ea",
"metadata": {
"hide-output": false
},
@@ -101,7 +101,7 @@
},
{
"cell_type": "markdown",
- "id": "63a6b27b",
+ "id": "81541c25",
"metadata": {},
"source": [
"### Relationship to Other Lectures\n",
@@ -113,7 +113,7 @@
},
{
"cell_type": "markdown",
- "id": "4ffacadc",
+ "id": "51710c2a",
"metadata": {},
"source": [
"## Background\n",
@@ -148,7 +148,7 @@
},
{
"cell_type": "markdown",
- "id": "b77bb25b",
+ "id": "c79e7298",
"metadata": {},
"source": [
"## Linear State Space Version of Complete Markets Model\n",
@@ -309,7 +309,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6f240355",
+ "id": "b56ae595",
"metadata": {
"hide-output": false
},
@@ -392,7 +392,7 @@
},
{
"cell_type": "markdown",
- "id": "300fb0c6",
+ "id": "5e2753de",
"metadata": {},
"source": [
"### Interpretation of Graph\n",
@@ -410,7 +410,7 @@
},
{
"cell_type": "markdown",
- "id": "1c0d41a4",
+ "id": "3a4326b7",
"metadata": {},
"source": [
"### Incomplete Markets Version\n",
@@ -423,7 +423,7 @@
},
{
"cell_type": "markdown",
- "id": "f91ad9d8",
+ "id": "aaa3afca",
"metadata": {},
"source": [
"### Finite State Markov Income Process\n",
@@ -474,7 +474,7 @@
},
{
"cell_type": "markdown",
- "id": "f5854798",
+ "id": "cabde6ce",
"metadata": {},
"source": [
"### Market Structure\n",
@@ -493,7 +493,7 @@
},
{
"cell_type": "markdown",
- "id": "b3c07631",
+ "id": "28acc28c",
"metadata": {},
"source": [
"## Model 1 (Complete Markets)\n",
@@ -672,7 +672,7 @@
},
{
"cell_type": "markdown",
- "id": "330fd7d6",
+ "id": "93364dc8",
"metadata": {},
"source": [
"### Key Outcomes\n",
@@ -700,7 +700,7 @@
},
{
"cell_type": "markdown",
- "id": "f4cdf431",
+ "id": "55a50ffc",
"metadata": {},
"source": [
"### Code\n",
@@ -714,7 +714,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4a0d9ab7",
+ "id": "e542baca",
"metadata": {
"hide-output": false
},
@@ -844,7 +844,7 @@
},
{
"cell_type": "markdown",
- "id": "e05ef638",
+ "id": "2913ae40",
"metadata": {},
"source": [
"Let’s test by checking that $ \\bar c $ and $ b_2 $ satisfy the budget constraint"
@@ -853,7 +853,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "40086964",
+ "id": "71457f47",
"metadata": {
"hide-output": false
},
@@ -866,7 +866,7 @@
},
{
"cell_type": "markdown",
- "id": "17da4d7c",
+ "id": "847c5c45",
"metadata": {},
"source": [
"Below, we’ll take the outcomes produced by this code – in particular the implied\n",
@@ -876,7 +876,7 @@
},
{
"cell_type": "markdown",
- "id": "a3ac8285",
+ "id": "782923af",
"metadata": {},
"source": [
"## Model 2 (One-Period Risk-Free Debt Only)\n",
@@ -1005,7 +1005,7 @@
},
{
"cell_type": "markdown",
- "id": "013a7a78",
+ "id": "375aacfa",
"metadata": {},
"source": [
"### Summary of Outcomes\n",
@@ -1027,7 +1027,7 @@
},
{
"cell_type": "markdown",
- "id": "2640feed",
+ "id": "bfdf8877",
"metadata": {},
"source": [
"### The Incomplete Markets Model\n",
@@ -1044,7 +1044,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cead1d3b",
+ "id": "c815a8da",
"metadata": {
"hide-output": false
},
@@ -1082,7 +1082,7 @@
},
{
"cell_type": "markdown",
- "id": "7d811246",
+ "id": "2ca47066",
"metadata": {},
"source": [
"In the graph on the left, for the same sample path of nonfinancial\n",
@@ -1097,7 +1097,7 @@
},
{
"cell_type": "markdown",
- "id": "48ab23b3",
+ "id": "54316971",
"metadata": {},
"source": [
"### A sequel\n",
@@ -1108,7 +1108,7 @@
}
],
"metadata": {
- "date": 1723011583.3565788,
+ "date": 1723517849.363196,
"filename": "smoothing.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/smoothing_tax.ipynb b/_notebooks/smoothing_tax.ipynb
index 68c8ab48..ea99d861 100644
--- a/_notebooks/smoothing_tax.ipynb
+++ b/_notebooks/smoothing_tax.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "4b680051",
+ "id": "a799158d",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "4e1f2e50",
+ "id": "769af08c",
"metadata": {},
"source": [
"# Tax Smoothing with Complete and Incomplete Markets\n",
@@ -24,7 +24,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e4259c0f",
+ "id": "22e16e09",
"metadata": {
"hide-output": false
},
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "d47c7ab9",
+ "id": "cf210ec2",
"metadata": {},
"source": [
"## Overview\n",
@@ -73,7 +73,7 @@
},
{
"cell_type": "markdown",
- "id": "c00fa380",
+ "id": "ba94114c",
"metadata": {},
"source": [
"### Isomorphism between Consumption and Tax Smoothing\n",
@@ -99,7 +99,7 @@
},
{
"cell_type": "markdown",
- "id": "5b9519a4",
+ "id": "fa38ec87",
"metadata": {},
"source": [
"#### Link to History\n",
@@ -113,7 +113,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "14b67a21",
+ "id": "e1ab9937",
"metadata": {
"hide-output": false
},
@@ -126,7 +126,7 @@
},
{
"cell_type": "markdown",
- "id": "e2e96b92",
+ "id": "b4b9f412",
"metadata": {},
"source": [
"To exploit the isomorphism between consumption-smoothing and tax-smoothing models, we simply use code from [Consumption Smoothing with Complete and Incomplete Markets](https://python-advanced.quantecon.org/smoothing.html)"
@@ -134,7 +134,7 @@
},
{
"cell_type": "markdown",
- "id": "45a41049",
+ "id": "d2006586",
"metadata": {},
"source": [
"### Code\n",
@@ -148,7 +148,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d409cf1e",
+ "id": "7cdb0b09",
"metadata": {
"hide-output": false
},
@@ -278,7 +278,7 @@
},
{
"cell_type": "markdown",
- "id": "9b9c1eb9",
+ "id": "ee2c9c08",
"metadata": {},
"source": [
"### Revisiting the consumption-smoothing model\n",
@@ -295,7 +295,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f0a561b1",
+ "id": "214c49d4",
"metadata": {
"hide-output": false
},
@@ -331,7 +331,7 @@
},
{
"cell_type": "markdown",
- "id": "054ba475",
+ "id": "e9de2271",
"metadata": {},
"source": [
"In the graph on the left, for the same sample path of nonfinancial\n",
@@ -346,7 +346,7 @@
},
{
"cell_type": "markdown",
- "id": "b9fe6459",
+ "id": "c0812400",
"metadata": {},
"source": [
"#### Relabeling variables to create tax-smoothing models\n",
@@ -357,7 +357,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5fbc090c",
+ "id": "e73977d2",
"metadata": {
"hide-output": false
},
@@ -386,7 +386,7 @@
},
{
"cell_type": "markdown",
- "id": "1630d8a4",
+ "id": "94774dba",
"metadata": {},
"source": [
"## Tax Smoothing with Complete Markets\n",
@@ -437,7 +437,7 @@
},
{
"cell_type": "markdown",
- "id": "e9e551a5",
+ "id": "cfe82411",
"metadata": {},
"source": [
"## Returns on State-Contingent Debt\n",
@@ -469,7 +469,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d54c0401",
+ "id": "44baa8cf",
"metadata": {
"hide-output": false
},
@@ -509,7 +509,7 @@
},
{
"cell_type": "markdown",
- "id": "76fb6c7f",
+ "id": "cbc150e9",
"metadata": {},
"source": [
"### An Example of Tax Smoothing\n",
@@ -538,7 +538,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d746df14",
+ "id": "70f8be6f",
"metadata": {
"hide-output": false
},
@@ -617,7 +617,7 @@
},
{
"cell_type": "markdown",
- "id": "eaa474f0",
+ "id": "41e75255",
"metadata": {},
"source": [
"### Explanation\n",
@@ -643,7 +643,7 @@
},
{
"cell_type": "markdown",
- "id": "03e1a2a9",
+ "id": "aaf760ed",
"metadata": {},
"source": [
"### Exercise 7.1\n",
@@ -664,7 +664,7 @@
},
{
"cell_type": "markdown",
- "id": "e1ef5e72",
+ "id": "20669dc7",
"metadata": {},
"source": [
"## More Finite Markov Chain Tax-Smoothing Examples\n",
@@ -682,7 +682,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "44b520a4",
+ "id": "9f60be3d",
"metadata": {
"hide-output": false
},
@@ -801,7 +801,7 @@
},
{
"cell_type": "markdown",
- "id": "9a2ec382",
+ "id": "be2fb455",
"metadata": {},
"source": [
"### Parameters"
@@ -810,7 +810,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "61de5549",
+ "id": "7ec2e93d",
"metadata": {
"hide-output": false
},
@@ -829,7 +829,7 @@
},
{
"cell_type": "markdown",
- "id": "09975006",
+ "id": "e762d872",
"metadata": {},
"source": [
"### Example 1\n",
@@ -861,7 +861,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e3d55973",
+ "id": "822e2f50",
"metadata": {
"hide-output": false
},
@@ -878,7 +878,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5ea09de9",
+ "id": "214b0a06",
"metadata": {
"hide-output": false
},
@@ -891,7 +891,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "79c2abd1",
+ "id": "9b5fa47d",
"metadata": {
"hide-output": false
},
@@ -905,7 +905,7 @@
},
{
"cell_type": "markdown",
- "id": "f7477e0c",
+ "id": "a5391a50",
"metadata": {},
"source": [
"### Example 2\n",
@@ -931,7 +931,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ce520451",
+ "id": "b0020320",
"metadata": {
"hide-output": false
},
@@ -948,7 +948,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "34dbb891",
+ "id": "eec30211",
"metadata": {
"hide-output": false
},
@@ -960,7 +960,7 @@
},
{
"cell_type": "markdown",
- "id": "64235103",
+ "id": "d19af046",
"metadata": {},
"source": [
"### Example 3\n",
@@ -989,7 +989,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "10cb65d4",
+ "id": "1f3f5a3c",
"metadata": {
"hide-output": false
},
@@ -1007,7 +1007,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e6435235",
+ "id": "7b4e637e",
"metadata": {
"hide-output": false
},
@@ -1019,7 +1019,7 @@
},
{
"cell_type": "markdown",
- "id": "3de44fcb",
+ "id": "c99318d5",
"metadata": {},
"source": [
"### Example 4\n",
@@ -1046,7 +1046,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "19c6a1c4",
+ "id": "ef54ce45",
"metadata": {
"hide-output": false
},
@@ -1065,7 +1065,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a1e26b7a",
+ "id": "b1a041c8",
"metadata": {
"hide-output": false
},
@@ -1077,7 +1077,7 @@
},
{
"cell_type": "markdown",
- "id": "9e66cb67",
+ "id": "3486fc34",
"metadata": {},
"source": [
"### Example 5\n",
@@ -1109,7 +1109,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2053c0fb",
+ "id": "065b4805",
"metadata": {
"hide-output": false
},
@@ -1130,7 +1130,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "25349abd",
+ "id": "86b48648",
"metadata": {
"hide-output": false
},
@@ -1142,7 +1142,7 @@
},
{
"cell_type": "markdown",
- "id": "c7d23fa5",
+ "id": "5635e05d",
"metadata": {},
"source": [
"### Continuous-State Gaussian Model\n",
@@ -1192,7 +1192,7 @@
},
{
"cell_type": "markdown",
- "id": "863b9794",
+ "id": "ea99c7ba",
"metadata": {},
"source": [
"#### Related Lectures\n",
@@ -1218,7 +1218,7 @@
}
],
"metadata": {
- "date": 1723011583.3944843,
+ "date": 1723517849.3995714,
"filename": "smoothing_tax.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/stationary_densities.ipynb b/_notebooks/stationary_densities.ipynb
index fb3a9041..eb038d70 100644
--- a/_notebooks/stationary_densities.ipynb
+++ b/_notebooks/stationary_densities.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "19f007eb",
+ "id": "b66b67f9",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "7e9467f3",
+ "id": "3c9d58af",
"metadata": {},
"source": [
"# Continuous State Markov Chains\n",
@@ -24,7 +24,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "69ef3195",
+ "id": "e40c46d9",
"metadata": {
"hide-output": false
},
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "d1ecc91f",
+ "id": "a4027b39",
"metadata": {},
"source": [
"## Overview\n",
@@ -83,7 +83,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "be895e5d",
+ "id": "3184fd0e",
"metadata": {
"hide-output": false
},
@@ -98,7 +98,7 @@
},
{
"cell_type": "markdown",
- "id": "a49a5327",
+ "id": "98471c10",
"metadata": {},
"source": [
"\n",
@@ -107,7 +107,7 @@
},
{
"cell_type": "markdown",
- "id": "f3dca5e3",
+ "id": "e39aee50",
"metadata": {},
"source": [
"## The Density Case\n",
@@ -127,7 +127,7 @@
},
{
"cell_type": "markdown",
- "id": "3c299ac0",
+ "id": "cbae9f13",
"metadata": {},
"source": [
"### Definitions and Basic Properties\n",
@@ -205,7 +205,7 @@
},
{
"cell_type": "markdown",
- "id": "31f5669d",
+ "id": "643f0510",
"metadata": {},
"source": [
"### Connection to Stochastic Difference Equations\n",
@@ -327,7 +327,7 @@
},
{
"cell_type": "markdown",
- "id": "9f2e459e",
+ "id": "de3e73b0",
"metadata": {},
"source": [
"### Distribution Dynamics\n",
@@ -414,7 +414,7 @@
},
{
"cell_type": "markdown",
- "id": "c92bea56",
+ "id": "3aeed251",
"metadata": {},
"source": [
"### Computation\n",
@@ -495,7 +495,7 @@
},
{
"cell_type": "markdown",
- "id": "393f2053",
+ "id": "cd06e01c",
"metadata": {},
"source": [
"### Implementation\n",
@@ -520,7 +520,7 @@
},
{
"cell_type": "markdown",
- "id": "57e9b494",
+ "id": "4b6829bb",
"metadata": {},
"source": [
"### Example\n",
@@ -534,7 +534,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a0458b37",
+ "id": "c1e86a68",
"metadata": {
"hide-output": false
},
@@ -584,7 +584,7 @@
},
{
"cell_type": "markdown",
- "id": "91ac51c9",
+ "id": "cc039447",
"metadata": {},
"source": [
"The figure shows part of the density sequence $ \\{\\psi_t\\} $, with each\n",
@@ -599,7 +599,7 @@
},
{
"cell_type": "markdown",
- "id": "8642857e",
+ "id": "9537a6c6",
"metadata": {},
"source": [
"## Beyond Densities\n",
@@ -621,7 +621,7 @@
},
{
"cell_type": "markdown",
- "id": "402e3012",
+ "id": "0baa8e00",
"metadata": {},
"source": [
"### Example and Definitions\n",
@@ -678,7 +678,7 @@
},
{
"cell_type": "markdown",
- "id": "bf9042ea",
+ "id": "3d68a209",
"metadata": {},
"source": [
"### Computation\n",
@@ -693,7 +693,7 @@
},
{
"cell_type": "markdown",
- "id": "498f96e5",
+ "id": "14341d4e",
"metadata": {},
"source": [
"## Stability\n",
@@ -709,7 +709,7 @@
},
{
"cell_type": "markdown",
- "id": "181b8121",
+ "id": "c65f0e52",
"metadata": {},
"source": [
"### Theoretical Results\n",
@@ -792,7 +792,7 @@
},
{
"cell_type": "markdown",
- "id": "a0404fd3",
+ "id": "5e047bb8",
"metadata": {},
"source": [
"### An Example of Stability\n",
@@ -819,7 +819,7 @@
},
{
"cell_type": "markdown",
- "id": "2464798c",
+ "id": "c9562169",
"metadata": {},
"source": [
"### Computing Stationary Densities\n",
@@ -871,7 +871,7 @@
},
{
"cell_type": "markdown",
- "id": "389ac9bd",
+ "id": "7ecf2e25",
"metadata": {},
"source": [
"## Exercises\n",
@@ -882,7 +882,7 @@
},
{
"cell_type": "markdown",
- "id": "88936987",
+ "id": "40941700",
"metadata": {},
"source": [
"## Exercise 2.1\n",
@@ -937,7 +937,7 @@
},
{
"cell_type": "markdown",
- "id": "461b76f7",
+ "id": "a32710ad",
"metadata": {},
"source": [
"## Solution to[ Exercise 2.1](https://python-advanced.quantecon.org/#sd_ex1)\n",
@@ -957,7 +957,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0ba1fb35",
+ "id": "0be6e8be",
"metadata": {
"hide-output": false
},
@@ -996,7 +996,7 @@
},
{
"cell_type": "markdown",
- "id": "669bacc8",
+ "id": "5e1e7a08",
"metadata": {},
"source": [
"\n",
@@ -1005,7 +1005,7 @@
},
{
"cell_type": "markdown",
- "id": "7243cfe0",
+ "id": "e3eeb1be",
"metadata": {},
"source": [
"## Exercise 2.2\n",
@@ -1024,7 +1024,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1d1c227d",
+ "id": "2958d1c2",
"metadata": {
"hide-output": false
},
@@ -1035,7 +1035,7 @@
},
{
"cell_type": "markdown",
- "id": "aa2c7d5a",
+ "id": "faf27e25",
"metadata": {},
"source": [
"## Solution to[ Exercise 2.2](https://python-advanced.quantecon.org/#sd_ex2)\n",
@@ -1046,7 +1046,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4173af32",
+ "id": "ccc2b35b",
"metadata": {
"hide-output": false
},
@@ -1098,7 +1098,7 @@
},
{
"cell_type": "markdown",
- "id": "4c95bcb3",
+ "id": "f2e61708",
"metadata": {},
"source": [
"\n",
@@ -1107,7 +1107,7 @@
},
{
"cell_type": "markdown",
- "id": "f58e15d6",
+ "id": "f2d6f7b8",
"metadata": {},
"source": [
"## Exercise 2.3\n",
@@ -1131,7 +1131,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1b6b133c",
+ "id": "81d9143f",
"metadata": {
"hide-output": false
},
@@ -1153,7 +1153,7 @@
},
{
"cell_type": "markdown",
- "id": "c43ca29a",
+ "id": "8b5b92d8",
"metadata": {},
"source": [
"Each data set is represented by a box, where the top and bottom of the box are the third and first quartiles of the data, and the red line in the center is the median.\n",
@@ -1179,7 +1179,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b8aaf524",
+ "id": "66b391dd",
"metadata": {
"hide-output": false
},
@@ -1190,7 +1190,7 @@
},
{
"cell_type": "markdown",
- "id": "534fd055",
+ "id": "aef936af",
"metadata": {},
"source": [
"For each $ X_0 $ in this set,\n",
@@ -1204,7 +1204,7 @@
},
{
"cell_type": "markdown",
- "id": "c2a093ab",
+ "id": "d05b39f3",
"metadata": {},
"source": [
"## Solution to[ Exercise 2.3](https://python-advanced.quantecon.org/#sd_ex3)\n",
@@ -1218,7 +1218,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1b344810",
+ "id": "e5b8a215",
"metadata": {
"hide-output": false
},
@@ -1252,7 +1252,7 @@
},
{
"cell_type": "markdown",
- "id": "2efce9d3",
+ "id": "6ebfbfb2",
"metadata": {},
"source": [
"## Appendix\n",
@@ -1272,7 +1272,7 @@
}
],
"metadata": {
- "date": 1723011583.4483817,
+ "date": 1723517849.451061,
"filename": "stationary_densities.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/status.ipynb b/_notebooks/status.ipynb
index bee401f2..36704b50 100644
--- a/_notebooks/status.ipynb
+++ b/_notebooks/status.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "2d4a4301",
+ "id": "d33511fe",
"metadata": {},
"source": [
"# Execution Statistics\n",
@@ -11,65 +11,65 @@
"\n",
"[](https://python-advanced.quantecon.org/BCG_complete_mkts.html)[](https://python-advanced.quantecon.org/BCG_incomplete_mkts.html)[](https://python-advanced.quantecon.org/additive_functionals.html)[](https://python-advanced.quantecon.org/amss.html)[](https://python-advanced.quantecon.org/amss2.html)[](https://python-advanced.quantecon.org/amss3.html)[](https://python-advanced.quantecon.org/arellano.html)[](https://python-advanced.quantecon.org/arma.html)[](https://python-advanced.quantecon.org/asset_pricing_lph.html)[](https://python-advanced.quantecon.org/black_litterman.html)[](https://python-advanced.quantecon.org/calvo.html)[](https://python-advanced.quantecon.org/calvo_machine_learn.html)[](https://python-advanced.quantecon.org/cattle_cycles.html)[](https://python-advanced.quantecon.org/chang_credible.html)[](https://python-advanced.quantecon.org/chang_ramsey.html)[](https://python-advanced.quantecon.org/classical_filtering.html)[](https://python-advanced.quantecon.org/coase.html)[](https://python-advanced.quantecon.org/cons_news.html)[](https://python-advanced.quantecon.org/discrete_dp.html)[](https://python-advanced.quantecon.org/dyn_stack.html)[](https://python-advanced.quantecon.org/entropy.html)[](https://python-advanced.quantecon.org/estspec.html)[](https://python-advanced.quantecon.org/five_preferences.html)[](https://python-advanced.quantecon.org/growth_in_dles.html)[](https://python-advanced.quantecon.org/hs_invertibility_example.html)[](https://python-advanced.quantecon.org/hs_recursive_models.html)[](https://python-advanced.quantecon.org/intro.html)[](https://python-advanced.quantecon.org/irfs_in_hall_model.html)[](https://python-advanced.quantecon.org/knowing_forecasts_of_others.html)[](https://python-advanced.quantecon.org/lqramsey.html)[](https://python-advanced.quantecon.org/lu_tricks.html)[](https://python-advanced.quantecon.org/lucas_asset_pricing_dles.html)[](https://python-advanced.quantecon.org/lucas_model.html)[](https://python-advanced.quantecon.org/markov_jump_lq.html)[](https://python-advanced.quantecon.org/matsuyama.html)[](https://python-advanced.quantecon.org/muth_kalman.html)[](https://python-advanced.quantecon.org/opt_tax_recur.html)[](https://python-advanced.quantecon.org/orth_proj.html)[](https://python-advanced.quantecon.org/permanent_income_dles.html)[](https://python-advanced.quantecon.org/rob_markov_perf.html)[](https://python-advanced.quantecon.org/robustness.html)[](https://python-advanced.quantecon.org/rosen_schooling_model.html)[](https://python-advanced.quantecon.org/smoothing.html)[](https://python-advanced.quantecon.org/smoothing_tax.html)[](https://python-advanced.quantecon.org/stationary_densities.html)[](https://python-advanced.quantecon.org/.html)[](https://python-advanced.quantecon.org/tax_smoothing_1.html)[](https://python-advanced.quantecon.org/tax_smoothing_2.html)[](https://python-advanced.quantecon.org/tax_smoothing_3.html)[](https://python-advanced.quantecon.org/troubleshooting.html)[](https://python-advanced.quantecon.org/un_insure.html)[](https://python-advanced.quantecon.org/zreferences.html)|Document|Modified|Method|Run Time (s)|Status|\n",
"|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|\n",
- "|BCG_complete_mkts|2024-08-07 02:06|cache|52.69|✅|\n",
- "|BCG_incomplete_mkts|2024-08-07 02:07|cache|91.31|✅|\n",
- "|additive_functionals|2024-08-07 02:08|cache|14.59|✅|\n",
- "|amss|2024-08-07 02:12|cache|288.73|✅|\n",
- "|amss2|2024-08-07 02:13|cache|55.36|✅|\n",
- "|amss3|2024-08-07 02:17|cache|244.02|✅|\n",
- "|arellano|2024-08-07 02:19|cache|86.37|✅|\n",
- "|arma|2024-08-07 02:19|cache|9.1|✅|\n",
- "|asset_pricing_lph|2024-08-07 02:19|cache|2.6|✅|\n",
- "|black_litterman|2024-08-07 02:20|cache|32.41|✅|\n",
- "|calvo|2024-08-07 02:20|cache|13.31|✅|\n",
- "|calvo_machine_learn|2024-08-07 02:20|cache|23.95|✅|\n",
- "|cattle_cycles|2024-08-07 02:20|cache|5.91|✅|\n",
- "|chang_credible|2024-08-07 02:23|cache|172.5|✅|\n",
- "|chang_ramsey|2024-08-07 02:29|cache|338.19|✅|\n",
- "|classical_filtering|2024-08-07 02:29|cache|1.3|✅|\n",
- "|coase|2024-08-07 02:29|cache|3.65|✅|\n",
- "|cons_news|2024-08-07 02:29|cache|6.24|✅|\n",
- "|discrete_dp|2024-08-07 02:30|cache|31.49|✅|\n",
- "|dyn_stack|2024-08-07 02:30|cache|7.63|✅|\n",
- "|entropy|2024-08-07 02:30|cache|0.84|✅|\n",
- "|estspec|2024-08-07 02:30|cache|6.6|✅|\n",
- "|five_preferences|2024-08-07 02:30|cache|39.01|✅|\n",
- "|growth_in_dles|2024-08-07 02:31|cache|5.66|✅|\n",
- "|hs_invertibility_example|2024-08-07 02:31|cache|6.08|✅|\n",
- "|hs_recursive_models|2024-08-07 02:31|cache|0.78|✅|\n",
- "|intro|2024-08-07 02:31|cache|0.78|✅|\n",
- "|irfs_in_hall_model|2024-08-07 02:31|cache|5.95|✅|\n",
- "|knowing_forecasts_of_others|2024-08-07 02:31|cache|26.04|✅|\n",
- "|lqramsey|2024-08-07 02:31|cache|7.42|✅|\n",
- "|lu_tricks|2024-08-07 02:31|cache|2.29|✅|\n",
- "|lucas_asset_pricing_dles|2024-08-07 02:31|cache|5.82|✅|\n",
- "|lucas_model|2024-08-07 02:32|cache|16.91|✅|\n",
- "|markov_jump_lq|2024-08-07 02:33|cache|74.99|✅|\n",
- "|matsuyama|2024-08-07 04:33|cache|7206.94|✅|\n",
- "|muth_kalman|2024-08-07 04:33|cache|6.19|✅|\n",
- "|opt_tax_recur|2024-08-07 04:35|cache|111.82|✅|\n",
- "|orth_proj|2024-08-07 04:35|cache|1.17|✅|\n",
- "|permanent_income_dles|2024-08-07 04:35|cache|5.74|✅|\n",
- "|rob_markov_perf|2024-08-07 04:35|cache|5.73|✅|\n",
- "|robustness|2024-08-07 04:35|cache|7.07|✅|\n",
- "|rosen_schooling_model|2024-08-07 04:36|cache|5.87|✅|\n",
- "|smoothing|2024-08-07 04:36|cache|6.15|✅|\n",
- "|smoothing_tax|2024-08-07 04:36|cache|8.64|✅|\n",
- "|stationary_densities|2024-08-07 04:36|cache|10.48|✅|\n",
- "|status|2024-08-07 02:31|cache|0.78|✅|\n",
- "|tax_smoothing_1|2024-08-07 04:36|cache|12.25|✅|\n",
- "|tax_smoothing_2|2024-08-07 04:36|cache|6.6|✅|\n",
- "|tax_smoothing_3|2024-08-07 04:36|cache|6.48|✅|\n",
- "|troubleshooting|2024-08-07 02:31|cache|0.78|✅|\n",
- "|un_insure|2024-08-07 04:37|cache|11.39|✅|\n",
- "|zreferences|2024-08-07 02:31|cache|0.78|✅|\n",
+ "|BCG_complete_mkts|2024-08-11 19:47|cache|47.2|✅|\n",
+ "|BCG_incomplete_mkts|2024-08-11 19:49|cache|87.14|✅|\n",
+ "|additive_functionals|2024-08-11 19:49|cache|14.03|✅|\n",
+ "|amss|2024-08-11 19:54|cache|280.82|✅|\n",
+ "|amss2|2024-08-11 19:54|cache|55.24|✅|\n",
+ "|amss3|2024-08-11 19:59|cache|246.99|✅|\n",
+ "|arellano|2024-08-11 20:00|cache|85.52|✅|\n",
+ "|arma|2024-08-11 20:00|cache|8.23|✅|\n",
+ "|asset_pricing_lph|2024-08-11 20:00|cache|2.39|✅|\n",
+ "|black_litterman|2024-08-11 20:01|cache|31.97|✅|\n",
+ "|calvo|2024-08-11 20:01|cache|12.08|✅|\n",
+ "|calvo_machine_learn|2024-08-11 20:01|cache|22.2|✅|\n",
+ "|cattle_cycles|2024-08-11 20:01|cache|5.48|✅|\n",
+ "|chang_credible|2024-08-11 20:04|cache|168.21|✅|\n",
+ "|chang_ramsey|2024-08-11 20:10|cache|334.02|✅|\n",
+ "|classical_filtering|2024-08-11 20:10|cache|1.42|✅|\n",
+ "|coase|2024-08-11 20:10|cache|3.66|✅|\n",
+ "|cons_news|2024-08-11 20:10|cache|5.68|✅|\n",
+ "|discrete_dp|2024-08-11 20:11|cache|30.72|✅|\n",
+ "|dyn_stack|2024-08-11 20:11|cache|7.3|✅|\n",
+ "|entropy|2024-08-11 20:11|cache|0.87|✅|\n",
+ "|estspec|2024-08-11 20:11|cache|6.2|✅|\n",
+ "|five_preferences|2024-08-11 20:11|cache|37.74|✅|\n",
+ "|growth_in_dles|2024-08-11 20:11|cache|5.5|✅|\n",
+ "|hs_invertibility_example|2024-08-11 20:12|cache|5.44|✅|\n",
+ "|hs_recursive_models|2024-08-11 20:12|cache|0.79|✅|\n",
+ "|intro|2024-08-11 20:12|cache|0.79|✅|\n",
+ "|irfs_in_hall_model|2024-08-11 20:12|cache|5.52|✅|\n",
+ "|knowing_forecasts_of_others|2024-08-11 20:12|cache|44.8|✅|\n",
+ "|lqramsey|2024-08-11 20:13|cache|6.96|✅|\n",
+ "|lu_tricks|2024-08-11 20:13|cache|2.09|✅|\n",
+ "|lucas_asset_pricing_dles|2024-08-11 20:13|cache|5.5|✅|\n",
+ "|lucas_model|2024-08-11 20:13|cache|16.39|✅|\n",
+ "|markov_jump_lq|2024-08-11 20:14|cache|73.73|✅|\n",
+ "|matsuyama|2024-08-11 22:14|cache|7206.61|✅|\n",
+ "|muth_kalman|2024-08-11 22:14|cache|5.77|✅|\n",
+ "|opt_tax_recur|2024-08-11 22:16|cache|107.83|✅|\n",
+ "|orth_proj|2024-08-11 22:16|cache|0.94|✅|\n",
+ "|permanent_income_dles|2024-08-11 22:16|cache|5.39|✅|\n",
+ "|rob_markov_perf|2024-08-11 22:16|cache|5.39|✅|\n",
+ "|robustness|2024-08-11 22:17|cache|6.69|✅|\n",
+ "|rosen_schooling_model|2024-08-11 22:17|cache|5.47|✅|\n",
+ "|smoothing|2024-08-11 22:17|cache|5.93|✅|\n",
+ "|smoothing_tax|2024-08-11 22:17|cache|7.95|✅|\n",
+ "|stationary_densities|2024-08-11 22:17|cache|10.0|✅|\n",
+ "|status|2024-08-11 20:12|cache|0.79|✅|\n",
+ "|tax_smoothing_1|2024-08-11 22:17|cache|11.83|✅|\n",
+ "|tax_smoothing_2|2024-08-11 22:17|cache|5.99|✅|\n",
+ "|tax_smoothing_3|2024-08-11 22:17|cache|5.77|✅|\n",
+ "|troubleshooting|2024-08-11 20:12|cache|0.79|✅|\n",
+ "|un_insure|2024-08-11 22:18|cache|11.25|✅|\n",
+ "|zreferences|2024-08-11 20:12|cache|0.79|✅|\n",
"These lectures are built on `linux` instances through `github actions` so are\n",
"executed using the following [hardware specifications](https://docs.github.com/en/actions/reference/specifications-for-github-hosted-runners#supported-runners-and-hardware-resources)"
]
}
],
"metadata": {
- "date": 1723011583.4708538,
+ "date": 1723517849.4731183,
"filename": "status.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/tax_smoothing_1.ipynb b/_notebooks/tax_smoothing_1.ipynb
index d2c44ebe..8bf9d496 100644
--- a/_notebooks/tax_smoothing_1.ipynb
+++ b/_notebooks/tax_smoothing_1.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "b61ed7a7",
+ "id": "62e6e0f5",
"metadata": {},
"source": [
"\n",
@@ -13,7 +13,7 @@
},
{
"cell_type": "markdown",
- "id": "c1192347",
+ "id": "e6e7d518",
"metadata": {},
"source": [
"# How to Pay for a War: Part 1\n",
@@ -24,7 +24,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "39da5214",
+ "id": "c7cd41ec",
"metadata": {
"hide-output": false
},
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "8966e32d",
+ "id": "761389d3",
"metadata": {},
"source": [
"## Reader’s Guide\n",
@@ -46,7 +46,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "49bba91b",
+ "id": "cc82a6ba",
"metadata": {
"hide-output": false
},
@@ -59,7 +59,7 @@
},
{
"cell_type": "markdown",
- "id": "80f7ca15",
+ "id": "b8775931",
"metadata": {},
"source": [
"This lecture uses the method of **Markov jump linear quadratic dynamic programming** that is described in lecture\n",
@@ -163,7 +163,7 @@
},
{
"cell_type": "markdown",
- "id": "00955d1a",
+ "id": "24ffa492",
"metadata": {},
"source": [
"## Public Finance Questions\n",
@@ -208,7 +208,7 @@
},
{
"cell_type": "markdown",
- "id": "313c36ac",
+ "id": "02af331d",
"metadata": {},
"source": [
"## Barro (1979) Model\n",
@@ -325,7 +325,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5842387c",
+ "id": "ddadc112",
"metadata": {
"hide-output": false
},
@@ -370,7 +370,7 @@
},
{
"cell_type": "markdown",
- "id": "714830d7",
+ "id": "0a7d3854",
"metadata": {},
"source": [
"We can now create an instance of `LQ`:"
@@ -379,7 +379,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ba13c3af",
+ "id": "cb7370b6",
"metadata": {
"hide-output": false
},
@@ -392,7 +392,7 @@
},
{
"cell_type": "markdown",
- "id": "792072e6",
+ "id": "2dd6ce00",
"metadata": {},
"source": [
"We can see the isomorphism by noting that consumption is a martingale in\n",
@@ -432,7 +432,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ed87a94f",
+ "id": "85b20a69",
"metadata": {
"hide-output": false
},
@@ -443,7 +443,7 @@
},
{
"cell_type": "markdown",
- "id": "8fed3ab2",
+ "id": "7e743fef",
"metadata": {},
"source": [
"This explains the fanning out of the conditional empirical distribution of taxation across time, computing\n",
@@ -454,7 +454,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "555cb804",
+ "id": "5d4328e0",
"metadata": {
"hide-output": false
},
@@ -471,7 +471,7 @@
},
{
"cell_type": "markdown",
- "id": "50620b55",
+ "id": "9a409ec4",
"metadata": {},
"source": [
"We can see a similar, but a smoother pattern, if we plot government debt\n",
@@ -481,7 +481,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "80b8a167",
+ "id": "11dbb8f5",
"metadata": {
"hide-output": false
},
@@ -498,7 +498,7 @@
},
{
"cell_type": "markdown",
- "id": "3144e248",
+ "id": "68d6235e",
"metadata": {},
"source": [
"## Python Class to Solve Markov Jump Linear Quadratic Control Problems\n",
@@ -527,7 +527,7 @@
},
{
"cell_type": "markdown",
- "id": "cbc17b53",
+ "id": "95f0f465",
"metadata": {},
"source": [
"## Barro Model with a Time-varying Interest Rate\n",
@@ -569,7 +569,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ad317ec2",
+ "id": "d9885f38",
"metadata": {
"hide-output": false
},
@@ -601,7 +601,7 @@
},
{
"cell_type": "markdown",
- "id": "f07d76b0",
+ "id": "f844c774",
"metadata": {},
"source": [
"The decision rules are now dependent on the Markov state:"
@@ -610,7 +610,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "09551a3d",
+ "id": "706dc7e1",
"metadata": {
"hide-output": false
},
@@ -622,7 +622,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "57faef42",
+ "id": "dc29bc0b",
"metadata": {
"hide-output": false
},
@@ -633,7 +633,7 @@
},
{
"cell_type": "markdown",
- "id": "e30e1488",
+ "id": "a6b9f451",
"metadata": {},
"source": [
"Simulating a large number of such economies over time reveals\n",
@@ -646,7 +646,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c3401b52",
+ "id": "a306c1e3",
"metadata": {
"hide-output": false
},
@@ -664,7 +664,7 @@
}
],
"metadata": {
- "date": 1723011583.500223,
+ "date": 1723517849.5030415,
"filename": "tax_smoothing_1.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/tax_smoothing_2.ipynb b/_notebooks/tax_smoothing_2.ipynb
index 897f1032..2ef0a48a 100644
--- a/_notebooks/tax_smoothing_2.ipynb
+++ b/_notebooks/tax_smoothing_2.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "967152d2",
+ "id": "9151bed4",
"metadata": {},
"source": [
"\n",
@@ -13,7 +13,7 @@
},
{
"cell_type": "markdown",
- "id": "b9661545",
+ "id": "7ca8d0b7",
"metadata": {},
"source": [
"# How to Pay for a War: Part 2\n",
@@ -24,7 +24,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9b68af52",
+ "id": "94eea565",
"metadata": {
"hide-output": false
},
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "56b5b01b",
+ "id": "e034ff26",
"metadata": {},
"source": [
"## An Application of Markov Jump Linear Quadratic Dynamic Programming\n",
@@ -83,7 +83,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bd553650",
+ "id": "4aa023a8",
"metadata": {
"hide-output": false
},
@@ -96,7 +96,7 @@
},
{
"cell_type": "markdown",
- "id": "859186bb",
+ "id": "29f85d9a",
"metadata": {},
"source": [
"## Two example specifications\n",
@@ -113,7 +113,7 @@
},
{
"cell_type": "markdown",
- "id": "c2b99bd6",
+ "id": "678cd865",
"metadata": {},
"source": [
"## One- and Two-period Bonds but No Restructuring\n",
@@ -186,7 +186,7 @@
},
{
"cell_type": "markdown",
- "id": "2e8d484d",
+ "id": "be1b361c",
"metadata": {},
"source": [
"## Mapping into an LQ Markov Jump Problem\n",
@@ -351,7 +351,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "56ceccda",
+ "id": "565b17bc",
"metadata": {
"hide-output": false
},
@@ -412,7 +412,7 @@
},
{
"cell_type": "markdown",
- "id": "87a450b4",
+ "id": "866d0ca5",
"metadata": {},
"source": [
"With the above function, we can proceed to solve the model in two steps:\n",
@@ -426,7 +426,7 @@
},
{
"cell_type": "markdown",
- "id": "ae918db6",
+ "id": "842af821",
"metadata": {},
"source": [
"## Penalty on Different Issuance Across Maturities\n",
@@ -479,7 +479,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d9dd2a69",
+ "id": "4c16a139",
"metadata": {
"hide-output": false
},
@@ -533,7 +533,7 @@
},
{
"cell_type": "markdown",
- "id": "32e81555",
+ "id": "1a6b89f3",
"metadata": {},
"source": [
"The above simulations show that when no penalty is imposed on different\n",
@@ -550,7 +550,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a890d8de",
+ "id": "5a157e8d",
"metadata": {
"hide-output": false
},
@@ -594,7 +594,7 @@
},
{
"cell_type": "markdown",
- "id": "47ddefb1",
+ "id": "cf1fa8c5",
"metadata": {},
"source": [
"## A Model with Restructuring\n",
@@ -771,7 +771,7 @@
},
{
"cell_type": "markdown",
- "id": "db71da49",
+ "id": "bb769f04",
"metadata": {},
"source": [
"## Restructuring as a Markov Jump Linear Quadratic Control Problem\n",
@@ -784,7 +784,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b58f04da",
+ "id": "749a79a4",
"metadata": {
"hide-output": false
},
@@ -839,7 +839,7 @@
},
{
"cell_type": "markdown",
- "id": "15b9b582",
+ "id": "1e94d86b",
"metadata": {},
"source": [
"### Example with Restructuring\n",
@@ -870,7 +870,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "44586a20",
+ "id": "c25027f5",
"metadata": {
"hide-output": false
},
@@ -915,7 +915,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4cba06c3",
+ "id": "21d9a6c4",
"metadata": {
"hide-output": false
},
@@ -943,7 +943,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c045fad2",
+ "id": "fd35a4ef",
"metadata": {
"hide-output": false
},
@@ -960,7 +960,7 @@
}
],
"metadata": {
- "date": 1723011583.525245,
+ "date": 1723517849.5289707,
"filename": "tax_smoothing_2.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/tax_smoothing_3.ipynb b/_notebooks/tax_smoothing_3.ipynb
index 91292c57..ca88df95 100644
--- a/_notebooks/tax_smoothing_3.ipynb
+++ b/_notebooks/tax_smoothing_3.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "eae43c49",
+ "id": "2b853ad7",
"metadata": {},
"source": [
"\n",
@@ -13,7 +13,7 @@
},
{
"cell_type": "markdown",
- "id": "3024eff6",
+ "id": "f55bf453",
"metadata": {},
"source": [
"# How to Pay for a War: Part 3\n",
@@ -24,7 +24,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bcd64bdf",
+ "id": "8769f137",
"metadata": {
"hide-output": false
},
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "8fba4baf",
+ "id": "d8861320",
"metadata": {},
"source": [
"## Another Application of Markov Jump Linear Quadratic Dynamic Programming\n",
@@ -64,7 +64,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "31281518",
+ "id": "3a11a1ce",
"metadata": {
"hide-output": false
},
@@ -77,7 +77,7 @@
},
{
"cell_type": "markdown",
- "id": "f0760b35",
+ "id": "6436813f",
"metadata": {},
"source": [
"## Roll-Over Risk\n",
@@ -129,7 +129,7 @@
},
{
"cell_type": "markdown",
- "id": "e568c8ec",
+ "id": "a94267b5",
"metadata": {},
"source": [
"## A Dead End\n",
@@ -167,7 +167,7 @@
},
{
"cell_type": "markdown",
- "id": "fdb73a38",
+ "id": "96c9236f",
"metadata": {},
"source": [
"## Better Representation of Roll-Over Risk\n",
@@ -221,7 +221,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "61245e39",
+ "id": "79ff4b67",
"metadata": {
"hide-output": false
},
@@ -281,7 +281,7 @@
},
{
"cell_type": "markdown",
- "id": "3e4a0558",
+ "id": "5136c3b8",
"metadata": {},
"source": [
"This model is simulated below, using the same process for $ G_t $ as\n",
@@ -304,7 +304,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3db19301",
+ "id": "96a57598",
"metadata": {
"hide-output": false
},
@@ -332,7 +332,7 @@
},
{
"cell_type": "markdown",
- "id": "d547670d",
+ "id": "52b5f7b4",
"metadata": {},
"source": [
"We can adjust the model so that, rather than having debt fluctuate\n",
@@ -346,7 +346,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a34deefe",
+ "id": "5070b462",
"metadata": {
"hide-output": false
},
@@ -387,7 +387,7 @@
},
{
"cell_type": "markdown",
- "id": "7477a2f1",
+ "id": "57f41346",
"metadata": {},
"source": [
"With a lower interest rate, the government has an incentive to\n",
@@ -403,7 +403,7 @@
}
],
"metadata": {
- "date": 1723011583.539983,
+ "date": 1723517849.5434592,
"filename": "tax_smoothing_3.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/troubleshooting.ipynb b/_notebooks/troubleshooting.ipynb
index 1bdad675..b0de6b4e 100644
--- a/_notebooks/troubleshooting.ipynb
+++ b/_notebooks/troubleshooting.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "a66ce247",
+ "id": "5565ac3b",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "ac92818d",
+ "id": "6181f994",
"metadata": {},
"source": [
"# Troubleshooting\n",
@@ -21,7 +21,7 @@
},
{
"cell_type": "markdown",
- "id": "f1b9445c",
+ "id": "2dbb94a8",
"metadata": {},
"source": [
"## Fixing Your Local Environment\n",
@@ -63,7 +63,7 @@
},
{
"cell_type": "markdown",
- "id": "c2bc18e7",
+ "id": "5a088326",
"metadata": {},
"source": [
"## Reporting an Issue\n",
@@ -80,7 +80,7 @@
}
],
"metadata": {
- "date": 1723011583.5446067,
+ "date": 1723517849.547474,
"filename": "troubleshooting.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/un_insure.ipynb b/_notebooks/un_insure.ipynb
index 8aaf284f..c369be62 100644
--- a/_notebooks/un_insure.ipynb
+++ b/_notebooks/un_insure.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "452cb78e",
+ "id": "4d197987",
"metadata": {},
"source": [
"# Optimal Unemployment Insurance"
@@ -10,7 +10,7 @@
},
{
"cell_type": "markdown",
- "id": "318702f0",
+ "id": "f8d667cb",
"metadata": {},
"source": [
"## Overview\n",
@@ -28,7 +28,7 @@
},
{
"cell_type": "markdown",
- "id": "9de9af06",
+ "id": "4e053857",
"metadata": {},
"source": [
"## Shavell and Weiss’s Model\n",
@@ -88,7 +88,7 @@
},
{
"cell_type": "markdown",
- "id": "d76276c8",
+ "id": "dd4f8cac",
"metadata": {},
"source": [
"### Autarky\n",
@@ -160,7 +160,7 @@
},
{
"cell_type": "markdown",
- "id": "b5e9fea9",
+ "id": "2270158f",
"metadata": {},
"source": [
"### Full Information\n",
@@ -274,7 +274,7 @@
},
{
"cell_type": "markdown",
- "id": "4fe52eee",
+ "id": "5113e814",
"metadata": {},
"source": [
"### Incentive Problem\n",
@@ -340,7 +340,7 @@
},
{
"cell_type": "markdown",
- "id": "eadf3cc8",
+ "id": "fca560d4",
"metadata": {},
"source": [
"## Private Information\n",
@@ -445,7 +445,7 @@
},
{
"cell_type": "markdown",
- "id": "54f89ef2",
+ "id": "f27387a8",
"metadata": {},
"source": [
"### Computational Details\n",
@@ -534,7 +534,7 @@
},
{
"cell_type": "markdown",
- "id": "6e8ec14d",
+ "id": "876ec1d2",
"metadata": {},
"source": [
"### Python Computations\n",
@@ -547,7 +547,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cb0afd39",
+ "id": "26a4adcd",
"metadata": {
"hide-output": false
},
@@ -560,7 +560,7 @@
},
{
"cell_type": "markdown",
- "id": "c47c33dc",
+ "id": "485489f4",
"metadata": {},
"source": [
"We first create a class to set up a particular parametrization."
@@ -569,7 +569,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e07cafb1",
+ "id": "b5e2d057",
"metadata": {
"hide-output": false
},
@@ -592,7 +592,7 @@
},
{
"cell_type": "markdown",
- "id": "717fcc21",
+ "id": "712367b1",
"metadata": {},
"source": [
"### Parameter Values\n",
@@ -607,7 +607,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2a8b8d21",
+ "id": "23efb8b3",
"metadata": {
"hide-output": false
},
@@ -633,7 +633,7 @@
},
{
"cell_type": "markdown",
- "id": "13b000eb",
+ "id": "cf518561",
"metadata": {},
"source": [
"Recall that under autarky the value for an unemployed worker\n",
@@ -672,7 +672,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fac0a3d5",
+ "id": "3fa64ea8",
"metadata": {
"hide-output": false
},
@@ -691,7 +691,7 @@
},
{
"cell_type": "markdown",
- "id": "5855f673",
+ "id": "449e3f19",
"metadata": {},
"source": [
"Since the calibration exercise is to match the hazard rate under autarky to the data, we must find an interest rate $ r $ to match `p(a,r) = 0.1`.\n",
@@ -704,7 +704,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6a4fb9ff",
+ "id": "ffb3c6c1",
"metadata": {
"hide-output": false
},
@@ -722,7 +722,7 @@
},
{
"cell_type": "markdown",
- "id": "d597ec64",
+ "id": "a9c7b452",
"metadata": {},
"source": [
"Now, let us create an instance of the model with our parametrization"
@@ -731,7 +731,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3ac9846f",
+ "id": "74e13a8e",
"metadata": {
"hide-output": false
},
@@ -745,7 +745,7 @@
},
{
"cell_type": "markdown",
- "id": "6f43eead",
+ "id": "6644dd10",
"metadata": {},
"source": [
"We want to compute an $ r $ that is consistent with the hazard rate 0.1 in autarky.\n",
@@ -756,7 +756,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2cd0dab5",
+ "id": "0b36bed6",
"metadata": {
"hide-output": false
},
@@ -773,7 +773,7 @@
},
{
"cell_type": "markdown",
- "id": "aad65c57",
+ "id": "2681aca4",
"metadata": {},
"source": [
"Now that we have calibrated our interest rate $ r $, we can continue with solving the model with private information."
@@ -781,7 +781,7 @@
},
{
"cell_type": "markdown",
- "id": "60dc8357",
+ "id": "251ba17c",
"metadata": {},
"source": [
"### Computation under Private Information\n",
@@ -806,7 +806,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a720ad4e",
+ "id": "46ff367c",
"metadata": {
"hide-output": false
},
@@ -836,7 +836,7 @@
},
{
"cell_type": "markdown",
- "id": "5ccd4d80",
+ "id": "b9fdbcbb",
"metadata": {},
"source": [
"With these analytical solutions for optimal $ c $ and $ a $ in hand, we can reduce the minimization to [(39.12)](#equation-eq-hugo23) in the single variable\n",
@@ -847,7 +847,7 @@
},
{
"cell_type": "markdown",
- "id": "aa4c35a7",
+ "id": "d7acc99d",
"metadata": {},
"source": [
"### Algorithm\n",
@@ -866,7 +866,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "68773b7b",
+ "id": "d3f56aa6",
"metadata": {
"hide-output": false
},
@@ -919,7 +919,7 @@
},
{
"cell_type": "markdown",
- "id": "10566abd",
+ "id": "abc2e043",
"metadata": {},
"source": [
"The below code executes steps 4 and 5 in the Algorithm until convergence to a function $ C^*(V) $."
@@ -928,7 +928,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "97d83089",
+ "id": "5a4458bf",
"metadata": {
"hide-output": false
},
@@ -956,7 +956,7 @@
},
{
"cell_type": "markdown",
- "id": "fdaea53f",
+ "id": "a32a7ab2",
"metadata": {},
"source": [
"## Outcomes\n",
@@ -967,7 +967,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4410981c",
+ "id": "29b472d7",
"metadata": {
"hide-output": false
},
@@ -993,7 +993,7 @@
},
{
"cell_type": "markdown",
- "id": "65966112",
+ "id": "c1dff72f",
"metadata": {},
"source": [
"### Replacement Ratios and Continuation Values\n",
@@ -1008,7 +1008,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "040aa7d4",
+ "id": "f1f01523",
"metadata": {
"hide-output": false
},
@@ -1028,7 +1028,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0375576c",
+ "id": "06a6dfb0",
"metadata": {
"hide-output": false
},
@@ -1045,7 +1045,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c3933275",
+ "id": "232fb4f6",
"metadata": {
"hide-output": false
},
@@ -1081,7 +1081,7 @@
},
{
"cell_type": "markdown",
- "id": "0e34f309",
+ "id": "b935a57d",
"metadata": {},
"source": [
"For an initial promised value $ V^u = V_{\\rm aut} $, the planner chooses the autarky level of $ 0 $ for the replacement ratio and instructs the worker to search at the autarky search intensity, regardless of the duration of unemployment\n",
@@ -1091,7 +1091,7 @@
},
{
"cell_type": "markdown",
- "id": "fe7cc8fb",
+ "id": "b7bb6f07",
"metadata": {},
"source": [
"### Interpretations\n",
@@ -1145,7 +1145,7 @@
}
],
"metadata": {
- "date": 1723011583.8332434,
+ "date": 1723517849.5894141,
"filename": "un_insure.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_notebooks/zreferences.ipynb b/_notebooks/zreferences.ipynb
index a9922d98..c9260ab2 100644
--- a/_notebooks/zreferences.ipynb
+++ b/_notebooks/zreferences.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "5e9b054a",
+ "id": "da145b7b",
"metadata": {},
"source": [
"\n",
@@ -11,7 +11,7 @@
},
{
"cell_type": "markdown",
- "id": "09f9da81",
+ "id": "a90887a3",
"metadata": {},
"source": [
"# References\n",
@@ -325,7 +325,7 @@
}
],
"metadata": {
- "date": 1723011583.8656945,
+ "date": 1723517849.6177776,
"filename": "zreferences.md",
"kernelspec": {
"display_name": "Python",
diff --git a/_pdf/quantecon-python-advanced.pdf b/_pdf/quantecon-python-advanced.pdf
index 2655fcdd..1329f83f 100644
Binary files a/_pdf/quantecon-python-advanced.pdf and b/_pdf/quantecon-python-advanced.pdf differ
diff --git a/_sources/BCG_complete_mkts.ipynb b/_sources/BCG_complete_mkts.ipynb
index 4f43fbea..3f1b1dab 100644
--- a/_sources/BCG_complete_mkts.ipynb
+++ b/_sources/BCG_complete_mkts.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "779acb85",
+ "id": "749339a8",
"metadata": {},
"source": [
"(bcg_complete_mkts_final)=\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f8c74d16",
+ "id": "a83fa03e",
"metadata": {
"tags": [
"hide-output"
@@ -36,7 +36,7 @@
},
{
"cell_type": "markdown",
- "id": "18f7bb1e",
+ "id": "f4fd4aba",
"metadata": {},
"source": [
"## Introduction\n",
@@ -875,7 +875,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "81f800b8",
+ "id": "4e44b88d",
"metadata": {},
"outputs": [],
"source": [
@@ -889,7 +889,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1aa4b0ab",
+ "id": "acad2b36",
"metadata": {},
"outputs": [],
"source": [
@@ -1082,7 +1082,7 @@
},
{
"cell_type": "markdown",
- "id": "9bf102b9",
+ "id": "b4e97bad",
"metadata": {},
"source": [
"### Examples\n",
@@ -1105,7 +1105,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f7daac4a",
+ "id": "6d5562fd",
"metadata": {},
"outputs": [],
"source": [
@@ -1116,7 +1116,7 @@
},
{
"cell_type": "markdown",
- "id": "0630b976",
+ "id": "5a7bc3b7",
"metadata": {},
"source": [
"Let’s plot the agents’ time-1 endowments with respect to shocks to see\n",
@@ -1126,7 +1126,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "20a2fc2e",
+ "id": "f26ebc1f",
"metadata": {},
"outputs": [],
"source": [
@@ -1161,7 +1161,7 @@
},
{
"cell_type": "markdown",
- "id": "7b0fd273",
+ "id": "bbb1f5da",
"metadata": {},
"source": [
"Let’s also compare the optimal capital stock, $k$, and optimal\n",
@@ -1171,7 +1171,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f175bfbd",
+ "id": "5293c1e9",
"metadata": {},
"outputs": [],
"source": [
@@ -1192,7 +1192,7 @@
},
{
"cell_type": "markdown",
- "id": "87c7e7ca",
+ "id": "e0f94d09",
"metadata": {},
"source": [
"#### 2nd example\n",
@@ -1207,7 +1207,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "985f353b",
+ "id": "3b07ac6e",
"metadata": {},
"outputs": [],
"source": [
@@ -1237,7 +1237,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "905231dd",
+ "id": "3e258a63",
"metadata": {},
"outputs": [],
"source": [
@@ -1248,7 +1248,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6ab89070",
+ "id": "5dda0e74",
"metadata": {},
"outputs": [],
"source": [
@@ -1260,7 +1260,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f248698e",
+ "id": "b5671ff5",
"metadata": {},
"outputs": [],
"source": [
diff --git a/_sources/BCG_incomplete_mkts.ipynb b/_sources/BCG_incomplete_mkts.ipynb
index 93878189..31488169 100644
--- a/_sources/BCG_incomplete_mkts.ipynb
+++ b/_sources/BCG_incomplete_mkts.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "de1add4d",
+ "id": "d8ad31de",
"metadata": {},
"source": [
"(bcg_incomplete_final)=\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "594d5349",
+ "id": "d5ff7d93",
"metadata": {
"tags": [
"hide-output"
@@ -36,7 +36,7 @@
},
{
"cell_type": "markdown",
- "id": "1a535621",
+ "id": "b1c9c964",
"metadata": {},
"source": [
"## Introduction\n",
@@ -711,7 +711,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0b404259",
+ "id": "d539cea5",
"metadata": {},
"outputs": [],
"source": [
@@ -724,7 +724,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d9d89698",
+ "id": "4e8bac26",
"metadata": {},
"outputs": [],
"source": [
@@ -1215,7 +1215,7 @@
},
{
"cell_type": "markdown",
- "id": "71515d6d",
+ "id": "85f8840b",
"metadata": {},
"source": [
"## Examples\n",
@@ -1231,7 +1231,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "66a11d75",
+ "id": "90f1bf33",
"metadata": {
"tags": [
"hide-output"
@@ -1246,7 +1246,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "93b26633",
+ "id": "f326fe6c",
"metadata": {},
"outputs": [],
"source": [
@@ -1257,7 +1257,7 @@
},
{
"cell_type": "markdown",
- "id": "60b378a4",
+ "id": "25edbe98",
"metadata": {},
"source": [
"Python reports to us that the equilibrium firm value is $V=0.101$,\n",
@@ -1274,7 +1274,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "84c15ed0",
+ "id": "44564834",
"metadata": {},
"outputs": [],
"source": [
@@ -1286,7 +1286,7 @@
},
{
"cell_type": "markdown",
- "id": "2ac4d392",
+ "id": "05632a2d",
"metadata": {},
"source": [
"Up to the approximation involved in using a discrete grid, these numbers\n",
@@ -1303,7 +1303,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "86bb1b7c",
+ "id": "d8691d58",
"metadata": {},
"outputs": [],
"source": [
@@ -1342,7 +1342,7 @@
},
{
"cell_type": "markdown",
- "id": "d40f7581",
+ "id": "386cd465",
"metadata": {},
"source": [
"#### A Modigliani-Miller theorem?\n",
@@ -1436,7 +1436,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a7954aea",
+ "id": "39402312",
"metadata": {},
"outputs": [],
"source": [
@@ -1658,7 +1658,7 @@
},
{
"cell_type": "markdown",
- "id": "2eead774",
+ "id": "54d4e969",
"metadata": {},
"source": [
"Here is our strategy for checking *stability* of an equilibrium.\n",
@@ -1684,7 +1684,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "baa52bb3",
+ "id": "cd10cfdf",
"metadata": {},
"outputs": [],
"source": [
@@ -1730,7 +1730,7 @@
},
{
"cell_type": "markdown",
- "id": "2920e2d9",
+ "id": "ce321d03",
"metadata": {},
"source": [
"In the above 3D surface of prospective firm valuations, the perturbed\n",
@@ -1748,7 +1748,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d3f942c1",
+ "id": "d788af52",
"metadata": {},
"outputs": [],
"source": [
@@ -1793,7 +1793,7 @@
},
{
"cell_type": "markdown",
- "id": "9b790d8d",
+ "id": "4069ff02",
"metadata": {},
"source": [
"In contrast to $(k^*,b^* - e)$, the 3D surface for\n",
@@ -1813,7 +1813,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b3d0f0fc",
+ "id": "c82567c4",
"metadata": {},
"outputs": [],
"source": [
@@ -1822,7 +1822,7 @@
},
{
"cell_type": "markdown",
- "id": "30bf1454",
+ "id": "26af5a43",
"metadata": {},
"source": [
"Our two *stability experiments* suggest that the equilibrium capital\n",
@@ -1843,7 +1843,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0d0a3eb2",
+ "id": "155031e5",
"metadata": {},
"outputs": [],
"source": [
@@ -1879,7 +1879,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e3768799",
+ "id": "055d9050",
"metadata": {},
"outputs": [],
"source": [
@@ -1914,7 +1914,7 @@
},
{
"cell_type": "markdown",
- "id": "69e7490d",
+ "id": "5368d859",
"metadata": {},
"source": [
"### Comments on equilibrium pricing functions\n",
@@ -1950,7 +1950,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ca080300",
+ "id": "97d892b0",
"metadata": {
"tags": [
"hide-output"
@@ -2007,7 +2007,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b37f6f7b",
+ "id": "4e350bf3",
"metadata": {},
"outputs": [],
"source": [
@@ -2044,7 +2044,7 @@
},
{
"cell_type": "markdown",
- "id": "96993cb6",
+ "id": "cd8c3713",
"metadata": {},
"source": [
"## A picture worth a thousand words\n",
@@ -2064,7 +2064,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "185b2033",
+ "id": "1eb8f1b8",
"metadata": {},
"outputs": [],
"source": [
@@ -2094,7 +2094,7 @@
},
{
"cell_type": "markdown",
- "id": "69c8bb7c",
+ "id": "a7a41356",
"metadata": {},
"source": [
"It is rewarding to stare at the above plots too.\n",
diff --git a/_sources/additive_functionals.ipynb b/_sources/additive_functionals.ipynb
index 47daf0bf..0df009e7 100644
--- a/_sources/additive_functionals.ipynb
+++ b/_sources/additive_functionals.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "1e24a6e5",
+ "id": "26e87da7",
"metadata": {},
"source": [
"(additive_functionals)=\n",
@@ -25,7 +25,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ea936ddc",
+ "id": "87e475bd",
"metadata": {
"tags": [
"hide-output"
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "5c18957c",
+ "id": "597e29b4",
"metadata": {},
"source": [
"## Overview\n",
@@ -81,7 +81,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6e436d16",
+ "id": "284c3c70",
"metadata": {},
"outputs": [],
"source": [
@@ -94,7 +94,7 @@
},
{
"cell_type": "markdown",
- "id": "47677740",
+ "id": "e4aa390c",
"metadata": {},
"source": [
"## A Particular Additive Functional\n",
@@ -263,7 +263,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b59ef329",
+ "id": "4563e2b3",
"metadata": {},
"outputs": [],
"source": [
@@ -421,7 +421,7 @@
},
{
"cell_type": "markdown",
- "id": "a6002908",
+ "id": "0dec838e",
"metadata": {},
"source": [
"#### Plotting\n",
@@ -432,7 +432,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1575036a",
+ "id": "a8583b03",
"metadata": {
"tags": [
"collapse-20"
@@ -717,7 +717,7 @@
},
{
"cell_type": "markdown",
- "id": "f549bc41",
+ "id": "60deda43",
"metadata": {},
"source": [
"For now, we just plot $y_t$ and $x_t$, postponing until later a description of exactly how we compute them.\n",
@@ -728,7 +728,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "859121c8",
+ "id": "f7af44c7",
"metadata": {},
"outputs": [],
"source": [
@@ -765,7 +765,7 @@
},
{
"cell_type": "markdown",
- "id": "7fbca530",
+ "id": "39f9f7cb",
"metadata": {},
"source": [
"Notice the irregular but persistent growth in $y_t$.\n",
@@ -918,7 +918,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d7d3bcc5",
+ "id": "63f5200d",
"metadata": {},
"outputs": [],
"source": [
@@ -928,7 +928,7 @@
},
{
"cell_type": "markdown",
- "id": "36befdd7",
+ "id": "12249c0c",
"metadata": {},
"source": [
"When we plot multiple realizations of a component in the 2nd, 3rd, and 4th panels, we also plot the population 95% probability coverage sets computed using the LinearStateSpace class.\n",
@@ -986,7 +986,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ff8ddf20",
+ "id": "a21eb9b2",
"metadata": {},
"outputs": [],
"source": [
@@ -996,7 +996,7 @@
},
{
"cell_type": "markdown",
- "id": "37c0a81c",
+ "id": "e83e4e6e",
"metadata": {},
"source": [
"As before, when we plotted multiple realizations of a component in the 2nd, 3rd, and 4th panels, we also plotted population 95% confidence bands computed using the LinearStateSpace class.\n",
@@ -1032,7 +1032,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e2b23822",
+ "id": "945f355f",
"metadata": {},
"outputs": [],
"source": [
@@ -1043,7 +1043,7 @@
},
{
"cell_type": "markdown",
- "id": "2eb72e45",
+ "id": "79421901",
"metadata": {},
"source": [
"The dotted line in the above graph is the mean $E \\tilde M_t = 1$ of the martingale.\n",
@@ -1088,7 +1088,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "06fe64c0",
+ "id": "49befe4d",
"metadata": {},
"outputs": [],
"source": [
@@ -1198,7 +1198,7 @@
},
{
"cell_type": "markdown",
- "id": "19fd06c3",
+ "id": "eea5e5ac",
"metadata": {},
"source": [
"The heavy lifting is done inside the `AMF_LSS_VAR` class.\n",
@@ -1209,7 +1209,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b2cb13e7",
+ "id": "2853e402",
"metadata": {},
"outputs": [],
"source": [
@@ -1257,7 +1257,7 @@
},
{
"cell_type": "markdown",
- "id": "438fa761",
+ "id": "a4477d3c",
"metadata": {},
"source": [
"Now that we have these functions in our toolkit, let's apply them to run some\n",
@@ -1267,7 +1267,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d871e66a",
+ "id": "e3809ddb",
"metadata": {},
"outputs": [],
"source": [
@@ -1308,7 +1308,7 @@
},
{
"cell_type": "markdown",
- "id": "a7ee7f70",
+ "id": "2927b9cd",
"metadata": {},
"source": [
"Let's plot the probability density functions for $\\log {\\widetilde M}_t$ for\n",
@@ -1334,7 +1334,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9c1d74b0",
+ "id": "7fcfb814",
"metadata": {},
"outputs": [],
"source": [
@@ -1387,7 +1387,7 @@
},
{
"cell_type": "markdown",
- "id": "e8565b20",
+ "id": "f3f01893",
"metadata": {},
"source": [
"These probability density functions help us understand mechanics underlying the **peculiar property** of our multiplicative martingale\n",
diff --git a/_sources/amss.ipynb b/_sources/amss.ipynb
index 59ebff1d..18bbae8b 100644
--- a/_sources/amss.ipynb
+++ b/_sources/amss.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "fa2358c5",
+ "id": "e03205a2",
"metadata": {},
"source": [
"(opt_tax_amss)=\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2a8778d6",
+ "id": "c97ac204",
"metadata": {
"tags": [
"hide-output"
@@ -36,7 +36,7 @@
},
{
"cell_type": "markdown",
- "id": "92bc0805",
+ "id": "e598ead2",
"metadata": {},
"source": [
"## Overview\n",
@@ -47,7 +47,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fca561a4",
+ "id": "40e92476",
"metadata": {},
"outputs": [],
"source": [
@@ -62,7 +62,7 @@
},
{
"cell_type": "markdown",
- "id": "5ea712c5",
+ "id": "a4745a1f",
"metadata": {},
"source": [
"In {doc}`an earlier lecture `, we described a model of\n",
@@ -423,7 +423,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fa01dc69",
+ "id": "33ac16de",
"metadata": {
"load": "_static/lecture_specific/opt_tax_recur/sequential_allocation.py",
"tags": [
@@ -634,7 +634,7 @@
},
{
"cell_type": "markdown",
- "id": "a4928817",
+ "id": "aee5afff",
"metadata": {},
"source": [
"To analyze the AMSS model, we find it useful to adopt a recursive formulation\n",
@@ -913,7 +913,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a52563b2",
+ "id": "c75541b5",
"metadata": {
"load": "_static/lecture_specific/amss/recursive_allocation.py",
"tags": [
@@ -1138,7 +1138,7 @@
},
{
"cell_type": "markdown",
- "id": "b8ae9cc0",
+ "id": "c9443b9e",
"metadata": {},
"source": [
"## Examples\n",
@@ -1207,7 +1207,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "394706f4",
+ "id": "2e420811",
"metadata": {
"load": "_static/lecture_specific/opt_tax_recur/crra_utility.py"
},
@@ -1263,7 +1263,7 @@
},
{
"cell_type": "markdown",
- "id": "3a7bcb4b",
+ "id": "a173f69e",
"metadata": {},
"source": [
"The following figure plots Ramsey plans under complete and incomplete\n",
@@ -1279,7 +1279,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7d0cf48a",
+ "id": "ed74421f",
"metadata": {},
"outputs": [],
"source": [
@@ -1313,7 +1313,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "45de144b",
+ "id": "64f0f3a2",
"metadata": {},
"outputs": [],
"source": [
@@ -1333,7 +1333,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8705379a",
+ "id": "97a9261c",
"metadata": {
"tags": [
"scroll-output"
@@ -1349,7 +1349,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "340e34f3",
+ "id": "4fc7cd77",
"metadata": {},
"outputs": [],
"source": [
@@ -1360,7 +1360,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "12d4463d",
+ "id": "f1681094",
"metadata": {},
"outputs": [],
"source": [
@@ -1392,7 +1392,7 @@
},
{
"cell_type": "markdown",
- "id": "4a6e8195",
+ "id": "5d5acba8",
"metadata": {},
"source": [
"How a Ramsey planner responds to war depends on the structure of the asset market.\n",
@@ -1453,7 +1453,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6b30daa2",
+ "id": "350b8331",
"metadata": {
"load": "_static/lecture_specific/opt_tax_recur/log_utility.py"
},
@@ -1499,7 +1499,7 @@
},
{
"cell_type": "markdown",
- "id": "05a919c4",
+ "id": "dd29378a",
"metadata": {},
"source": [
"With these preferences, Ramsey tax rates will vary even in the Lucas-Stokey\n",
@@ -1513,7 +1513,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "167fab1d",
+ "id": "fb24ae27",
"metadata": {},
"outputs": [],
"source": [
@@ -1548,7 +1548,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e74816a4",
+ "id": "c0d13f71",
"metadata": {
"tags": [
"scroll-output"
@@ -1565,7 +1565,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5caea7c7",
+ "id": "f21a0b63",
"metadata": {},
"outputs": [],
"source": [
@@ -1575,7 +1575,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f2f03da3",
+ "id": "e0c37af3",
"metadata": {},
"outputs": [],
"source": [
@@ -1605,7 +1605,7 @@
},
{
"cell_type": "markdown",
- "id": "033a10c0",
+ "id": "9828a35b",
"metadata": {},
"source": [
"When the government experiences a prolonged period of peace, it is able to reduce\n",
@@ -1627,7 +1627,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1605ec33",
+ "id": "e6c97a3e",
"metadata": {},
"outputs": [],
"source": [
@@ -1641,7 +1641,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f3a2d448",
+ "id": "aeb0dbb9",
"metadata": {},
"outputs": [],
"source": [
@@ -1667,7 +1667,7 @@
},
{
"cell_type": "markdown",
- "id": "3a0f92af",
+ "id": "06603420",
"metadata": {},
"source": [
"[^fn_a]: In an allocation that solves the Ramsey problem and that levies distorting\n",
diff --git a/_sources/amss2.ipynb b/_sources/amss2.ipynb
index ecc2937b..272a537f 100644
--- a/_sources/amss2.ipynb
+++ b/_sources/amss2.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "f4f77419",
+ "id": "1a7e8746",
"metadata": {},
"source": [
"(amss2)=\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f4ed42fc",
+ "id": "02f630fc",
"metadata": {
"tags": [
"hide-output"
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "d38b0489",
+ "id": "45850cc8",
"metadata": {},
"source": [
"## Overview\n",
@@ -96,7 +96,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d4aee38e",
+ "id": "ba3a81ff",
"metadata": {},
"outputs": [],
"source": [
@@ -106,7 +106,7 @@
},
{
"cell_type": "markdown",
- "id": "04635bf9",
+ "id": "312a1262",
"metadata": {},
"source": [
"## Forces at Work\n",
@@ -265,7 +265,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "56543598",
+ "id": "269f9af8",
"metadata": {
"load": "_static/lecture_specific/amss2/crra_utility.py"
},
@@ -313,7 +313,7 @@
},
{
"cell_type": "markdown",
- "id": "9148475e",
+ "id": "5a5e5017",
"metadata": {},
"source": [
"## Example Economy\n",
@@ -347,7 +347,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4b9dcb7c",
+ "id": "4b3df325",
"metadata": {
"load": "_static/lecture_specific/amss2/sequential_allocation.py",
"tags": [
@@ -519,7 +519,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "817ecae6",
+ "id": "85a61bea",
"metadata": {
"load": "_static/lecture_specific/amss2/recursive_allocation.py",
"tags": [
@@ -831,7 +831,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2687b2fc",
+ "id": "25dafc71",
"metadata": {
"load": "_static/lecture_specific/amss2/utilities.py",
"tags": [
@@ -913,7 +913,7 @@
},
{
"cell_type": "markdown",
- "id": "8ed1545f",
+ "id": "59a5d4ae",
"metadata": {},
"source": [
"## Reverse Engineering Strategy\n",
@@ -969,7 +969,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "501925a9",
+ "id": "46d31725",
"metadata": {},
"outputs": [],
"source": [
@@ -1013,7 +1013,7 @@
},
{
"cell_type": "markdown",
- "id": "cd6818fc",
+ "id": "70d83da0",
"metadata": {},
"source": [
"To recover and print out $\\bar b$"
@@ -1022,7 +1022,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c98bfb81",
+ "id": "9c6afb1f",
"metadata": {},
"outputs": [],
"source": [
@@ -1032,7 +1032,7 @@
},
{
"cell_type": "markdown",
- "id": "de80beb1",
+ "id": "2bfdb104",
"metadata": {},
"source": [
"To complete the reverse engineering exercise by jointly determining $c_0, b_0$, we\n",
@@ -1042,7 +1042,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c0dfb707",
+ "id": "4d592d13",
"metadata": {},
"outputs": [],
"source": [
@@ -1067,7 +1067,7 @@
},
{
"cell_type": "markdown",
- "id": "786cbdaa",
+ "id": "b1553f05",
"metadata": {},
"source": [
"To solve the equations for $c_0, b_0$, we use SciPy's fsolve function"
@@ -1076,7 +1076,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2515b609",
+ "id": "8fc855b1",
"metadata": {},
"outputs": [],
"source": [
@@ -1087,7 +1087,7 @@
},
{
"cell_type": "markdown",
- "id": "0397a388",
+ "id": "419506c4",
"metadata": {},
"source": [
"Thus, we have reverse engineered an initial $b0 = -1.038698407551764$ that ought to render the AMSS measurability constraints slack.\n",
@@ -1103,7 +1103,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cca6f276",
+ "id": "e67a16ac",
"metadata": {
"tags": [
"scroll-output"
@@ -1153,7 +1153,7 @@
},
{
"cell_type": "markdown",
- "id": "8bd36b76",
+ "id": "934f3710",
"metadata": {},
"source": [
"The Ramsey allocations and Ramsey outcomes are **identical** for the Lucas-Stokey and AMSS economies.\n",
@@ -1193,7 +1193,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2b8c20f4",
+ "id": "fa4c8501",
"metadata": {},
"outputs": [],
"source": [
@@ -1219,7 +1219,7 @@
},
{
"cell_type": "markdown",
- "id": "bfed32b6",
+ "id": "f78fc07c",
"metadata": {},
"source": [
"### Remarks about Long Simulation\n",
@@ -1363,7 +1363,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c556cefd",
+ "id": "9d566833",
"metadata": {},
"outputs": [],
"source": [
@@ -1383,7 +1383,7 @@
},
{
"cell_type": "markdown",
- "id": "56e673f9",
+ "id": "37d031bc",
"metadata": {},
"source": [
"Now let's form the two random variables ${\\mathcal R}, {\\mathcal X}$ appearing in the BEGS approximating formulas"
@@ -1392,7 +1392,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "908bd75f",
+ "id": "901c9f8e",
"metadata": {},
"outputs": [],
"source": [
@@ -1416,7 +1416,7 @@
},
{
"cell_type": "markdown",
- "id": "b3af9679",
+ "id": "2b907e78",
"metadata": {},
"source": [
"Now let's compute the ingredient of the approximating limit and the approximating rate of convergence"
@@ -1425,7 +1425,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "37bfd7db",
+ "id": "84d9db86",
"metadata": {},
"outputs": [],
"source": [
@@ -1437,7 +1437,7 @@
},
{
"cell_type": "markdown",
- "id": "fc9f1e8f",
+ "id": "7261ddac",
"metadata": {},
"source": [
"Print out $\\hat b$ and $\\bar b$"
@@ -1446,7 +1446,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1eb3eefa",
+ "id": "d7bf5bea",
"metadata": {},
"outputs": [],
"source": [
@@ -1455,7 +1455,7 @@
},
{
"cell_type": "markdown",
- "id": "371db272",
+ "id": "2f9b51ce",
"metadata": {},
"source": [
"So we have"
@@ -1464,7 +1464,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6cc1f817",
+ "id": "03272f0d",
"metadata": {},
"outputs": [],
"source": [
@@ -1473,7 +1473,7 @@
},
{
"cell_type": "markdown",
- "id": "37dba9e6",
+ "id": "5c3c133f",
"metadata": {},
"source": [
"These outcomes show that $\\hat b$ does a remarkably good job of approximating $\\bar b$.\n",
@@ -1484,7 +1484,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0c3820e8",
+ "id": "21993766",
"metadata": {},
"outputs": [],
"source": [
@@ -1494,7 +1494,7 @@
},
{
"cell_type": "markdown",
- "id": "d22929c0",
+ "id": "20abd5a5",
"metadata": {},
"source": [
"This is *machine zero*, a verification that $\\hat b$ succeeds in minimizing the nonnegative fiscal cost criterion $J ( {\\mathcal B}^*)$ defined in\n",
@@ -1506,7 +1506,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "38a3c4a2",
+ "id": "889948fb",
"metadata": {},
"outputs": [],
"source": [
@@ -1517,7 +1517,7 @@
},
{
"cell_type": "markdown",
- "id": "b16c0ca9",
+ "id": "2ce6f527",
"metadata": {},
"source": [
"Now let's compute the implied meantime to get to within 0.01 of the limit"
@@ -1526,7 +1526,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "dd58af0d",
+ "id": "c9751db4",
"metadata": {},
"outputs": [],
"source": [
@@ -1536,7 +1536,7 @@
},
{
"cell_type": "markdown",
- "id": "1eaaefd9",
+ "id": "83685fc7",
"metadata": {},
"source": [
"The slow rate of convergence and the implied time of getting within one percent of the limiting value do a good job of approximating\n",
diff --git a/_sources/amss3.ipynb b/_sources/amss3.ipynb
index 5b27734c..ebad9843 100644
--- a/_sources/amss3.ipynb
+++ b/_sources/amss3.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "a8379ff2",
+ "id": "95533143",
"metadata": {},
"source": [
"(amss3)=\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c8934b19",
+ "id": "76bac312",
"metadata": {
"tags": [
"hide-output"
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "475f72c8",
+ "id": "05af20e3",
"metadata": {},
"source": [
"## Overview\n",
@@ -81,7 +81,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "11cf2d60",
+ "id": "3b4eae96",
"metadata": {},
"outputs": [],
"source": [
@@ -91,7 +91,7 @@
},
{
"cell_type": "markdown",
- "id": "d5990e14",
+ "id": "ee1fd6c3",
"metadata": {},
"source": [
"## The Economy\n",
@@ -136,7 +136,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "20f68e1d",
+ "id": "6fd0e7d6",
"metadata": {
"load": "_static/lecture_specific/amss2/crra_utility.py"
},
@@ -184,7 +184,7 @@
},
{
"cell_type": "markdown",
- "id": "1b8880f1",
+ "id": "f379ab3b",
"metadata": {},
"source": [
"### First and Second Moments\n",
@@ -197,7 +197,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "86084738",
+ "id": "63f6f4b7",
"metadata": {},
"outputs": [],
"source": [
@@ -217,7 +217,7 @@
},
{
"cell_type": "markdown",
- "id": "b12b8bc4",
+ "id": "93aa683b",
"metadata": {},
"source": [
"## Long Simulation\n",
@@ -232,7 +232,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e8f8b742",
+ "id": "dd5c5e54",
"metadata": {
"load": "_static/lecture_specific/amss2/sequential_allocation.py",
"tags": [
@@ -404,7 +404,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8b6fcb8f",
+ "id": "812bea3c",
"metadata": {
"load": "_static/lecture_specific/amss2/recursive_allocation.py",
"tags": [
@@ -716,7 +716,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f8e2744e",
+ "id": "7699755e",
"metadata": {
"load": "_static/lecture_specific/amss2/utilities.py",
"tags": [
@@ -798,7 +798,7 @@
},
{
"cell_type": "markdown",
- "id": "da048c58",
+ "id": "fd8fcf69",
"metadata": {},
"source": [
"Next, we show the code that we use to generate a very long simulation starting from initial\n",
@@ -810,7 +810,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "17c9749f",
+ "id": "9a4cc7ca",
"metadata": {
"tags": [
"scroll-output"
@@ -853,7 +853,7 @@
},
{
"cell_type": "markdown",
- "id": "74bc0768",
+ "id": "c243f728",
"metadata": {},
"source": [
"```{figure} /_static/lecture_specific/amss3/amss3_g1.png\n",
@@ -886,7 +886,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8494282c",
+ "id": "345d437b",
"metadata": {},
"outputs": [],
"source": [
@@ -912,7 +912,7 @@
},
{
"cell_type": "markdown",
- "id": "38f0ac4d",
+ "id": "bbe00db3",
"metadata": {},
"source": [
"```{figure} /_static/lecture_specific/amss3/amss3_g2.png\n",
@@ -1200,7 +1200,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2009fcc2",
+ "id": "f227d0ed",
"metadata": {},
"outputs": [],
"source": [
@@ -1222,7 +1222,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3bfe0522",
+ "id": "96fbb63f",
"metadata": {},
"outputs": [],
"source": [
@@ -1231,7 +1231,7 @@
},
{
"cell_type": "markdown",
- "id": "38ef7d09",
+ "id": "b893b62d",
"metadata": {},
"source": [
"#### Step 2"
@@ -1240,7 +1240,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ff38164a",
+ "id": "0423f0ea",
"metadata": {},
"outputs": [],
"source": [
@@ -1249,7 +1249,7 @@
},
{
"cell_type": "markdown",
- "id": "28f16c3f",
+ "id": "631f9b4f",
"metadata": {},
"source": [
"### Note about Code\n",
@@ -1274,7 +1274,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ab44acb6",
+ "id": "34ba0900",
"metadata": {},
"outputs": [],
"source": [
@@ -1291,7 +1291,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ad6389c9",
+ "id": "743a3782",
"metadata": {},
"outputs": [],
"source": [
@@ -1301,7 +1301,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f27e90b6",
+ "id": "97c53d22",
"metadata": {},
"outputs": [],
"source": [
@@ -1310,7 +1310,7 @@
},
{
"cell_type": "markdown",
- "id": "61aecf8a",
+ "id": "667abbe7",
"metadata": {},
"source": [
"We only want unconditional expectations because we are in an IID case.\n",
@@ -1322,7 +1322,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4d5a0bb4",
+ "id": "0498adce",
"metadata": {},
"outputs": [],
"source": [
@@ -1333,7 +1333,7 @@
},
{
"cell_type": "markdown",
- "id": "b74447c2",
+ "id": "93dd8baa",
"metadata": {},
"source": [
"Let's look at the random variables ${\\mathcal R}, {\\mathcal X}$"
@@ -1342,7 +1342,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a93014a1",
+ "id": "4363b13d",
"metadata": {},
"outputs": [],
"source": [
@@ -1352,7 +1352,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c3dd5d93",
+ "id": "791c759a",
"metadata": {},
"outputs": [],
"source": [
@@ -1362,7 +1362,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "df6374a0",
+ "id": "c5be8cb5",
"metadata": {},
"outputs": [],
"source": [
@@ -1372,7 +1372,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "017ff3fc",
+ "id": "9c7b669f",
"metadata": {},
"outputs": [],
"source": [
@@ -1382,7 +1382,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "467d5613",
+ "id": "99a5f80e",
"metadata": {},
"outputs": [],
"source": [
@@ -1391,7 +1391,7 @@
},
{
"cell_type": "markdown",
- "id": "49dfc7d2",
+ "id": "751c125a",
"metadata": {},
"source": [
"#### Step 3"
@@ -1400,7 +1400,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "133facfd",
+ "id": "7785a1e7",
"metadata": {},
"outputs": [],
"source": [
@@ -1411,7 +1411,7 @@
},
{
"cell_type": "markdown",
- "id": "223de16d",
+ "id": "eae70e34",
"metadata": {},
"source": [
"Note that $B$ is a scalar.\n",
@@ -1422,7 +1422,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8faf28d1",
+ "id": "abbec7a1",
"metadata": {},
"outputs": [],
"source": [
@@ -1435,7 +1435,7 @@
},
{
"cell_type": "markdown",
- "id": "5f97a433",
+ "id": "78a6ddb1",
"metadata": {},
"source": [
"In the above cell, B is fixed at 1 and $\\tau$ is to be computed as\n",
@@ -1450,7 +1450,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "919c0073",
+ "id": "97520325",
"metadata": {},
"outputs": [],
"source": [
@@ -1464,7 +1464,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "54a90118",
+ "id": "09e7600b",
"metadata": {},
"outputs": [],
"source": [
@@ -1473,7 +1473,7 @@
},
{
"cell_type": "markdown",
- "id": "b9ad4107",
+ "id": "4e1381a7",
"metadata": {},
"source": [
"#### Step 6"
@@ -1482,7 +1482,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f58722fd",
+ "id": "bed62f05",
"metadata": {},
"outputs": [],
"source": [
@@ -1493,7 +1493,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d9b6bf5e",
+ "id": "ee4506ab",
"metadata": {},
"outputs": [],
"source": [
@@ -1503,7 +1503,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b1a4a74a",
+ "id": "1ee87400",
"metadata": {},
"outputs": [],
"source": [
@@ -1515,7 +1515,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b0d25afd",
+ "id": "ac741228",
"metadata": {},
"outputs": [],
"source": [
@@ -1526,7 +1526,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1103031e",
+ "id": "f744ecc5",
"metadata": {},
"outputs": [],
"source": [
@@ -1537,7 +1537,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "20e238f3",
+ "id": "e8e6a8b2",
"metadata": {},
"outputs": [],
"source": [
@@ -1548,7 +1548,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "368903ef",
+ "id": "ded35a67",
"metadata": {},
"outputs": [],
"source": [
@@ -1559,7 +1559,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f5210d64",
+ "id": "b83fff64",
"metadata": {},
"outputs": [],
"source": [
diff --git a/_sources/arellano.ipynb b/_sources/arellano.ipynb
index 25244bcd..eb6d0655 100644
--- a/_sources/arellano.ipynb
+++ b/_sources/arellano.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "f68624cf",
+ "id": "8fdc243f",
"metadata": {},
"source": [
"(arellano)=\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0d573b34",
+ "id": "7c43b257",
"metadata": {
"tags": [
"hide-output"
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "9ddc2cff",
+ "id": "0b446d41",
"metadata": {},
"source": [
"## Overview\n",
@@ -85,7 +85,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "41d622cf",
+ "id": "37cad224",
"metadata": {},
"outputs": [],
"source": [
@@ -97,7 +97,7 @@
},
{
"cell_type": "markdown",
- "id": "e6119461",
+ "id": "d0ca04cb",
"metadata": {},
"source": [
"## Structure\n",
@@ -365,7 +365,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5f827d77",
+ "id": "dfde75de",
"metadata": {},
"outputs": [],
"source": [
@@ -410,7 +410,7 @@
},
{
"cell_type": "markdown",
- "id": "0bcf052f",
+ "id": "6a823348",
"metadata": {},
"source": [
"Notice how the class returns the data it stores as simple numerical values and\n",
@@ -426,7 +426,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "08eba63e",
+ "id": "aac2756c",
"metadata": {},
"outputs": [],
"source": [
@@ -437,7 +437,7 @@
},
{
"cell_type": "markdown",
- "id": "3714ab77",
+ "id": "887454be",
"metadata": {},
"source": [
"Here is a function to compute the bond price at each state, given $v_c$ and\n",
@@ -447,7 +447,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0ad039b9",
+ "id": "00a742a7",
"metadata": {},
"outputs": [],
"source": [
@@ -472,7 +472,7 @@
},
{
"cell_type": "markdown",
- "id": "c7ab08b1",
+ "id": "f79db8ee",
"metadata": {},
"source": [
"Next we introduce Bellman operators that updated $v_d$ and $v_c$."
@@ -481,7 +481,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "05f2207f",
+ "id": "48d644c7",
"metadata": {},
"outputs": [],
"source": [
@@ -531,7 +531,7 @@
},
{
"cell_type": "markdown",
- "id": "c7273117",
+ "id": "7210f5c2",
"metadata": {},
"source": [
"Here is a fast function that calls these operators in the right sequence."
@@ -540,7 +540,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "316d10be",
+ "id": "c8ef68a3",
"metadata": {},
"outputs": [],
"source": [
@@ -575,7 +575,7 @@
},
{
"cell_type": "markdown",
- "id": "4ff00946",
+ "id": "9a1d2544",
"metadata": {},
"source": [
"We can now write a function that will use the `Arellano_Economy` class and the\n",
@@ -592,7 +592,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a3e04769",
+ "id": "7f4b0d27",
"metadata": {},
"outputs": [],
"source": [
@@ -634,7 +634,7 @@
},
{
"cell_type": "markdown",
- "id": "84de91f8",
+ "id": "2fc3be6a",
"metadata": {},
"source": [
"Finally, we write a function that will allow us to simulate the economy once\n",
@@ -644,7 +644,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "77fc0646",
+ "id": "5144f326",
"metadata": {},
"outputs": [],
"source": [
@@ -712,7 +712,7 @@
},
{
"cell_type": "markdown",
- "id": "b8f9c774",
+ "id": "157ad4ed",
"metadata": {},
"source": [
"## Results\n",
@@ -808,7 +808,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e45e2593",
+ "id": "7050bce0",
"metadata": {},
"outputs": [],
"source": [
@@ -818,7 +818,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "eef41e3a",
+ "id": "40ce25c5",
"metadata": {},
"outputs": [],
"source": [
@@ -827,7 +827,7 @@
},
{
"cell_type": "markdown",
- "id": "44478997",
+ "id": "02ac1891",
"metadata": {},
"source": [
"Compute the bond price schedule as seen in figure 3 of Arellano (2008)"
@@ -836,7 +836,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cd9842da",
+ "id": "fc32f1c7",
"metadata": {},
"outputs": [],
"source": [
@@ -870,7 +870,7 @@
},
{
"cell_type": "markdown",
- "id": "f06f4224",
+ "id": "e7e4d607",
"metadata": {},
"source": [
"Draw a plot of the value functions"
@@ -879,7 +879,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "05c131eb",
+ "id": "b3305fc9",
"metadata": {},
"outputs": [],
"source": [
@@ -897,7 +897,7 @@
},
{
"cell_type": "markdown",
- "id": "9379bd69",
+ "id": "5a601cdc",
"metadata": {},
"source": [
"Draw a heat map for default probability"
@@ -906,7 +906,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "23c3e760",
+ "id": "534abe0e",
"metadata": {},
"outputs": [],
"source": [
@@ -929,7 +929,7 @@
},
{
"cell_type": "markdown",
- "id": "88689ac3",
+ "id": "83fbead1",
"metadata": {},
"source": [
"Plot a time series of major variables simulated from the model"
@@ -938,7 +938,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8fef58ef",
+ "id": "57e6f2e8",
"metadata": {},
"outputs": [],
"source": [
@@ -985,7 +985,7 @@
},
{
"cell_type": "markdown",
- "id": "477646ed",
+ "id": "b45f163a",
"metadata": {},
"source": [
"```{solution-end}\n",
diff --git a/_sources/arma.ipynb b/_sources/arma.ipynb
index 4c77f551..da20ddf0 100644
--- a/_sources/arma.ipynb
+++ b/_sources/arma.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "1e6290d4",
+ "id": "645631c0",
"metadata": {},
"source": [
"(arma)=\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d1d847dd",
+ "id": "6c966de7",
"metadata": {
"tags": [
"hide-output"
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "348e4175",
+ "id": "2506a4ce",
"metadata": {},
"source": [
"## Overview\n",
@@ -101,7 +101,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "79e8c8a2",
+ "id": "35da0be6",
"metadata": {},
"outputs": [],
"source": [
@@ -112,7 +112,7 @@
},
{
"cell_type": "markdown",
- "id": "f2e2dc95",
+ "id": "3c12bb54",
"metadata": {},
"source": [
"## Introduction\n",
@@ -256,7 +256,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bfe0581a",
+ "id": "5235768f",
"metadata": {},
"outputs": [],
"source": [
@@ -278,7 +278,7 @@
},
{
"cell_type": "markdown",
- "id": "c0ea5737",
+ "id": "90b394b2",
"metadata": {},
"source": [
"Another very simple process is the MA(1) process (here MA means \"moving average\")\n",
@@ -502,7 +502,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7d966d38",
+ "id": "a2eb8356",
"metadata": {},
"outputs": [],
"source": [
@@ -527,7 +527,7 @@
},
{
"cell_type": "markdown",
- "id": "b854d7fb",
+ "id": "fdbebbbe",
"metadata": {},
"source": [
"These spectral densities correspond to the autocovariance functions for the\n",
@@ -561,7 +561,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f3997a27",
+ "id": "ae02eef6",
"metadata": {},
"outputs": [],
"source": [
@@ -602,7 +602,7 @@
},
{
"cell_type": "markdown",
- "id": "f151ebb4",
+ "id": "c082e09c",
"metadata": {},
"source": [
"On the other hand, if we evaluate $f(\\omega)$ at $\\omega = \\pi / 3$, then the cycles are\n",
@@ -613,7 +613,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "10d55e15",
+ "id": "6dc59f78",
"metadata": {},
"outputs": [],
"source": [
@@ -654,7 +654,7 @@
},
{
"cell_type": "markdown",
- "id": "30c5e90c",
+ "id": "da74da59",
"metadata": {},
"source": [
"In summary, the spectral density is large at frequencies $\\omega$ where the autocovariance function exhibits damped cycles.\n",
@@ -784,7 +784,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c079fed5",
+ "id": "304eda34",
"metadata": {},
"outputs": [],
"source": [
@@ -843,7 +843,7 @@
},
{
"cell_type": "markdown",
- "id": "66370264",
+ "id": "ceacd6ea",
"metadata": {},
"source": [
"Now let's call these functions to generate plots.\n",
@@ -854,7 +854,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "16a527f3",
+ "id": "f327a2f6",
"metadata": {},
"outputs": [],
"source": [
@@ -866,7 +866,7 @@
},
{
"cell_type": "markdown",
- "id": "5b0fd08c",
+ "id": "30ae1a95",
"metadata": {},
"source": [
"If we look carefully, things look good: the spectrum is the flat line at $10^0$ at the very top of the spectrum graphs,\n",
@@ -887,7 +887,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a22e5895",
+ "id": "103a28c7",
"metadata": {},
"outputs": [],
"source": [
@@ -899,7 +899,7 @@
},
{
"cell_type": "markdown",
- "id": "60d4f820",
+ "id": "771e1377",
"metadata": {},
"source": [
"Ljungqvist and Sargent's second model is $X_t = .9 X_{t-1} + \\epsilon_t$"
@@ -908,7 +908,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9d532598",
+ "id": "a2184c2b",
"metadata": {},
"outputs": [],
"source": [
@@ -920,7 +920,7 @@
},
{
"cell_type": "markdown",
- "id": "c4f51af0",
+ "id": "a29f6e7e",
"metadata": {},
"source": [
"Ljungqvist and Sargent's third model is $X_t = .8 X_{t-4} + \\epsilon_t$"
@@ -929,7 +929,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f17ef028",
+ "id": "2cd990a4",
"metadata": {},
"outputs": [],
"source": [
@@ -941,7 +941,7 @@
},
{
"cell_type": "markdown",
- "id": "77921156",
+ "id": "e1b6a5fb",
"metadata": {},
"source": [
"Ljungqvist and Sargent's fourth model is $X_t = .98 X_{t-1} + \\epsilon_t -.7 \\epsilon_{t-1}$"
@@ -950,7 +950,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f06d6ae8",
+ "id": "6c5ff002",
"metadata": {},
"outputs": [],
"source": [
@@ -962,7 +962,7 @@
},
{
"cell_type": "markdown",
- "id": "fbca8634",
+ "id": "a9ccc7f9",
"metadata": {},
"source": [
"### Explanation\n",
diff --git a/_sources/asset_pricing_lph.ipynb b/_sources/asset_pricing_lph.ipynb
index 5de99dd7..4e3ad891 100644
--- a/_sources/asset_pricing_lph.ipynb
+++ b/_sources/asset_pricing_lph.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "0cba2890",
+ "id": "ff5c5a53",
"metadata": {},
"source": [
"# Elementary Asset Pricing Theory\n",
@@ -347,7 +347,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "20bf2c5d",
+ "id": "f7cd119d",
"metadata": {},
"outputs": [],
"source": [
@@ -393,7 +393,7 @@
},
{
"cell_type": "markdown",
- "id": "fa26440a",
+ "id": "57e38965",
"metadata": {},
"source": [
"The figure shows two straight lines, the blue upper one being the locus of $( \\sigma(R^i), E(R^i)$ pairs that are on\n",
@@ -484,7 +484,7 @@
},
{
"cell_type": "markdown",
- "id": "b6607c59",
+ "id": "8ee5962f",
"metadata": {},
"source": [
"## Multi-factor Models\n",
@@ -543,7 +543,7 @@
},
{
"cell_type": "markdown",
- "id": "fb056cb5",
+ "id": "3287d693",
"metadata": {},
"source": [
"**Testing strategies:**\n",
@@ -596,7 +596,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "660fb48a",
+ "id": "05c0a36e",
"metadata": {},
"outputs": [],
"source": [
@@ -607,7 +607,7 @@
},
{
"cell_type": "markdown",
- "id": "d6c035bd",
+ "id": "9fb62206",
"metadata": {},
"source": [
"Lots of our calculations will involve computing population and sample OLS regressions.\n",
@@ -618,7 +618,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b56e3882",
+ "id": "83ddda71",
"metadata": {},
"outputs": [],
"source": [
@@ -638,7 +638,7 @@
},
{
"cell_type": "markdown",
- "id": "54bb64a4",
+ "id": "2b7de87e",
"metadata": {},
"source": [
"```{exercise-start}\n",
@@ -763,7 +763,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "73c0ea54",
+ "id": "8c349591",
"metadata": {},
"outputs": [],
"source": [
@@ -781,7 +781,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d3cc7df4",
+ "id": "c4f01fe7",
"metadata": {},
"outputs": [],
"source": [
@@ -794,7 +794,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b365fd05",
+ "id": "b1b489eb",
"metadata": {},
"outputs": [],
"source": [
@@ -807,7 +807,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "871f3d02",
+ "id": "c2ab6ca7",
"metadata": {},
"outputs": [],
"source": [
@@ -826,7 +826,7 @@
},
{
"cell_type": "markdown",
- "id": "983d9fa4",
+ "id": "b9b6cebd",
"metadata": {},
"source": [
"Now that we have a panel of data, we'd like to solve the inverse problem by assuming the theory specified above and estimating the coefficients given above."
@@ -835,7 +835,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ea7ceb29",
+ "id": "3779d94a",
"metadata": {},
"outputs": [],
"source": [
@@ -844,7 +844,7 @@
},
{
"cell_type": "markdown",
- "id": "0860d014",
+ "id": "f4b4f41a",
"metadata": {},
"source": [
"**Inverse Problem:**\n",
@@ -857,7 +857,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d5e21667",
+ "id": "b63ea9bb",
"metadata": {},
"outputs": [],
"source": [
@@ -867,7 +867,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "47ae3035",
+ "id": "ccfba536",
"metadata": {},
"outputs": [],
"source": [
@@ -876,7 +876,7 @@
},
{
"cell_type": "markdown",
- "id": "9c337408",
+ "id": "68a0c8c6",
"metadata": {},
"source": [
"Let's compare these with the _true_ population parameter values."
@@ -885,7 +885,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "43dce0a1",
+ "id": "babe9760",
"metadata": {},
"outputs": [],
"source": [
@@ -894,7 +894,7 @@
},
{
"cell_type": "markdown",
- "id": "5b5fb255",
+ "id": "b9fab451",
"metadata": {},
"source": [
"2. $\\xi$ and $\\lambda$"
@@ -903,7 +903,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "aac65f87",
+ "id": "61495e3e",
"metadata": {},
"outputs": [],
"source": [
@@ -913,7 +913,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7836b459",
+ "id": "636be7bf",
"metadata": {},
"outputs": [],
"source": [
@@ -923,7 +923,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a6e3ac70",
+ "id": "142d3ecc",
"metadata": {},
"outputs": [],
"source": [
@@ -932,7 +932,7 @@
},
{
"cell_type": "markdown",
- "id": "29aebd90",
+ "id": "6fe6d793",
"metadata": {},
"source": [
"3. $\\beta_{i, R^m}$ and $\\sigma_i$"
@@ -941,7 +941,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "632797d4",
+ "id": "b5ca0ee6",
"metadata": {},
"outputs": [],
"source": [
@@ -955,7 +955,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b91e358d",
+ "id": "41290d9c",
"metadata": {},
"outputs": [],
"source": [
@@ -965,7 +965,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d341a167",
+ "id": "4d1c53cc",
"metadata": {},
"outputs": [],
"source": [
@@ -974,7 +974,7 @@
},
{
"cell_type": "markdown",
- "id": "cae003a3",
+ "id": "909c7fda",
"metadata": {},
"source": [
"Q: How close did your estimates come to the parameters we specified?\n",
@@ -1013,7 +1013,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ef2110b1",
+ "id": "ebe59f3e",
"metadata": {},
"outputs": [],
"source": [
@@ -1034,7 +1034,7 @@
},
{
"cell_type": "markdown",
- "id": "b62890a2",
+ "id": "8a1ffedb",
"metadata": {},
"source": [
"Let's try to solve $a$ and $b$ using the actual model parameters."
@@ -1043,7 +1043,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "92c5c678",
+ "id": "88b49179",
"metadata": {},
"outputs": [],
"source": [
@@ -1053,7 +1053,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cbb1ea7d",
+ "id": "3286ff6c",
"metadata": {},
"outputs": [],
"source": [
@@ -1062,7 +1062,7 @@
},
{
"cell_type": "markdown",
- "id": "b3ee1cb6",
+ "id": "19973a02",
"metadata": {},
"source": [
"```{solution-end}\n",
@@ -1087,7 +1087,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "608920f4",
+ "id": "9b697d2d",
"metadata": {},
"outputs": [],
"source": [
@@ -1097,7 +1097,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7f1c2d87",
+ "id": "66711ab2",
"metadata": {},
"outputs": [],
"source": [
@@ -1106,7 +1106,7 @@
},
{
"cell_type": "markdown",
- "id": "f61454dd",
+ "id": "c072f62e",
"metadata": {},
"source": [
"```{solution-end}\n",
diff --git a/_sources/black_litterman.ipynb b/_sources/black_litterman.ipynb
index a7b51351..b150cf06 100644
--- a/_sources/black_litterman.ipynb
+++ b/_sources/black_litterman.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "353de149",
+ "id": "d35cb867",
"metadata": {},
"source": [
"(black_litterman)=\n",
@@ -79,7 +79,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f717138e",
+ "id": "dd77780a",
"metadata": {},
"outputs": [],
"source": [
@@ -91,7 +91,7 @@
},
{
"cell_type": "markdown",
- "id": "2c2447b9",
+ "id": "53949343",
"metadata": {},
"source": [
"## Mean-Variance Portfolio Choice\n",
@@ -179,7 +179,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0832c42e",
+ "id": "d0af3391",
"metadata": {},
"outputs": [],
"source": [
@@ -230,7 +230,7 @@
},
{
"cell_type": "markdown",
- "id": "96adb548",
+ "id": "fc3d539d",
"metadata": {},
"source": [
"Black and Litterman's responded to this situation in the following way:\n",
@@ -322,7 +322,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c6fed18f",
+ "id": "1dc0eba6",
"metadata": {},
"outputs": [],
"source": [
@@ -355,7 +355,7 @@
},
{
"cell_type": "markdown",
- "id": "3b3fef01",
+ "id": "c385a921",
"metadata": {},
"source": [
"## Adding Views\n",
@@ -418,7 +418,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "640fa42a",
+ "id": "c018aab8",
"metadata": {},
"outputs": [],
"source": [
@@ -480,7 +480,7 @@
},
{
"cell_type": "markdown",
- "id": "313210c4",
+ "id": "50190b24",
"metadata": {},
"source": [
"## Bayesian Interpretation\n",
@@ -653,7 +653,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ccc73279",
+ "id": "905770e5",
"metadata": {},
"outputs": [],
"source": [
@@ -729,7 +729,7 @@
},
{
"cell_type": "markdown",
- "id": "e3e741e1",
+ "id": "4c0b9ebe",
"metadata": {},
"source": [
"Note that the line that connects the two points\n",
@@ -750,7 +750,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b5cc9a49",
+ "id": "9b2cdd39",
"metadata": {},
"outputs": [],
"source": [
@@ -798,7 +798,7 @@
},
{
"cell_type": "markdown",
- "id": "f4e95499",
+ "id": "fc3b581f",
"metadata": {},
"source": [
"## Black-Litterman Recommendation as Regularization\n",
@@ -1317,7 +1317,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "72a43f38",
+ "id": "ed0e093e",
"metadata": {},
"outputs": [],
"source": [
@@ -1346,7 +1346,7 @@
},
{
"cell_type": "markdown",
- "id": "3606b86c",
+ "id": "2474797a",
"metadata": {},
"source": [
"## Frequency and the Mean Estimator\n",
@@ -1428,7 +1428,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7b9cd8c8",
+ "id": "0d93fdfe",
"metadata": {},
"outputs": [],
"source": [
@@ -1454,7 +1454,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "abab23c5",
+ "id": "b8eeb957",
"metadata": {},
"outputs": [],
"source": [
@@ -1498,7 +1498,7 @@
},
{
"cell_type": "markdown",
- "id": "f2668e3a",
+ "id": "863b41c0",
"metadata": {},
"source": [
"The above figure illustrates the relationship between the asymptotic\n",
diff --git a/_sources/calvo.ipynb b/_sources/calvo.ipynb
index 904d1bd2..c927292b 100644
--- a/_sources/calvo.ipynb
+++ b/_sources/calvo.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "32bd945b",
+ "id": "444358eb",
"metadata": {},
"source": [
"(calvo)=\n",
@@ -25,7 +25,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3ddef781",
+ "id": "af69fb14",
"metadata": {
"tags": [
"hide-output"
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "b6ae53ea",
+ "id": "c577b7ea",
"metadata": {},
"source": [
"## Overview\n",
@@ -85,7 +85,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d7817d18",
+ "id": "7adb5973",
"metadata": {
"tags": [
"hide-output"
@@ -98,7 +98,7 @@
},
{
"cell_type": "markdown",
- "id": "3b47dc22",
+ "id": "9db8e8ad",
"metadata": {},
"source": [
"We'll start with some imports:"
@@ -107,7 +107,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6ffdcdd2",
+ "id": "eab2bc7b",
"metadata": {},
"outputs": [],
"source": [
@@ -121,7 +121,7 @@
},
{
"cell_type": "markdown",
- "id": "6a567a61",
+ "id": "aa07c1f5",
"metadata": {},
"source": [
"## Model components\n",
@@ -930,7 +930,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "eff3b62b",
+ "id": "1a9271a3",
"metadata": {},
"outputs": [],
"source": [
@@ -1049,7 +1049,7 @@
},
{
"cell_type": "markdown",
- "id": "1c623067",
+ "id": "a86c8122",
"metadata": {},
"source": [
"Let's create an instance of ChangLQ with the following parameters:"
@@ -1058,7 +1058,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "509d7c53",
+ "id": "3b823d82",
"metadata": {},
"outputs": [],
"source": [
@@ -1067,7 +1067,7 @@
},
{
"cell_type": "markdown",
- "id": "d1e85ab8",
+ "id": "f0667beb",
"metadata": {},
"source": [
"The following code plots value functions for a continuation Ramsey\n",
@@ -1077,7 +1077,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fde871ba",
+ "id": "b08af211",
"metadata": {
"tags": [
"hide-input"
@@ -1149,7 +1149,7 @@
},
{
"cell_type": "markdown",
- "id": "755354bf",
+ "id": "b6b45ee4",
"metadata": {},
"source": [
"The dotted line in the above graph is the 45-degree line.\n",
@@ -1183,7 +1183,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b40e76ac",
+ "id": "dc745a92",
"metadata": {
"tags": [
"hide-input"
@@ -1226,7 +1226,7 @@
},
{
"cell_type": "markdown",
- "id": "b46544fc",
+ "id": "f782ceb9",
"metadata": {},
"source": [
"In the above graph, notice that $\\theta^* < \\theta_\\infty^R < \\theta^{CR} < \\theta_0^R < \\theta^{MPE} .$\n",
@@ -1264,7 +1264,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "57132b77",
+ "id": "5e21a410",
"metadata": {},
"outputs": [],
"source": [
@@ -1275,7 +1275,7 @@
},
{
"cell_type": "markdown",
- "id": "a9898d83",
+ "id": "ecdc878e",
"metadata": {},
"source": [
"So our claim that $J(\\theta_\\infty^R) = V^{CR}(\\theta_\\infty^R)$is verified numerically.\n",
@@ -1300,7 +1300,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c0aa43b4",
+ "id": "25307bf8",
"metadata": {
"tags": [
"hide-input"
@@ -1416,7 +1416,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "24368dd3",
+ "id": "49b7c190",
"metadata": {},
"outputs": [],
"source": [
@@ -1431,7 +1431,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e4efe126",
+ "id": "b505536a",
"metadata": {},
"outputs": [],
"source": [
@@ -1440,7 +1440,7 @@
},
{
"cell_type": "markdown",
- "id": "6be9bd87",
+ "id": "300ebc7f",
"metadata": {},
"source": [
"The above graphs and table convey many useful things.\n",
@@ -1472,7 +1472,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f0d6b7ce",
+ "id": "6e304f13",
"metadata": {},
"outputs": [],
"source": [
@@ -1487,7 +1487,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1f597083",
+ "id": "6a4d1057",
"metadata": {},
"outputs": [],
"source": [
@@ -1496,7 +1496,7 @@
},
{
"cell_type": "markdown",
- "id": "f16ec335",
+ "id": "4f0e019a",
"metadata": {},
"source": [
"The above table and figures show how \n",
@@ -1514,7 +1514,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4ed0c0d0",
+ "id": "1daabdd6",
"metadata": {},
"outputs": [],
"source": [
@@ -1528,7 +1528,7 @@
},
{
"cell_type": "markdown",
- "id": "c8205efb",
+ "id": "b5859d99",
"metadata": {},
"source": [
"The above graphs indicate that as $c$ approaches zero, $\\theta_\\infty^R, \\theta_0^R, \\theta^{CR}$,\n",
@@ -1552,7 +1552,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9f8303c2",
+ "id": "ef13c21a",
"metadata": {
"tags": [
"hide-input"
@@ -1621,7 +1621,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5af8c98d",
+ "id": "6e931b0a",
"metadata": {},
"outputs": [],
"source": [
@@ -1633,7 +1633,7 @@
},
{
"cell_type": "markdown",
- "id": "78d02e69",
+ "id": "fe93eed6",
"metadata": {},
"source": [
"Notice how $d_1$ changes as we raise the discount factor parameter $\\beta$.\n",
@@ -1644,7 +1644,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9193dd15",
+ "id": "c1ea4550",
"metadata": {},
"outputs": [],
"source": [
@@ -1657,7 +1657,7 @@
},
{
"cell_type": "markdown",
- "id": "bf3fbda9",
+ "id": "a76bb430",
"metadata": {},
"source": [
"Evidently, increasing $c$ causes the decay factor $d_1$ to increase.\n",
@@ -1670,7 +1670,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "36ae406a",
+ "id": "0c8bc6f5",
"metadata": {},
"outputs": [],
"source": [
@@ -1683,7 +1683,7 @@
},
{
"cell_type": "markdown",
- "id": "c1e92ee2",
+ "id": "d8af95d6",
"metadata": {},
"source": [
"The above panels for an $\\alpha = 4$ setting indicate that $\\alpha$ and $c$ affect outcomes \n",
@@ -1969,7 +1969,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "36d8052f",
+ "id": "5d030560",
"metadata": {
"tags": [
"hide-input"
@@ -2029,7 +2029,7 @@
},
{
"cell_type": "markdown",
- "id": "3fd0478e",
+ "id": "07bb2e8f",
"metadata": {},
"source": [
"To confirm that the plan $\\vec \\mu^A$ is **self-enforcing**, we\n",
@@ -2052,7 +2052,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ce0144ec",
+ "id": "cfd9ee04",
"metadata": {},
"outputs": [],
"source": [
@@ -2061,7 +2061,7 @@
},
{
"cell_type": "markdown",
- "id": "e7a977ac",
+ "id": "a34811d2",
"metadata": {},
"source": [
"Given that plan $\\vec \\mu^A$ is self-enforcing, we can check that\n",
@@ -2075,7 +2075,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a607ef35",
+ "id": "5d3eae73",
"metadata": {},
"outputs": [],
"source": [
@@ -2094,7 +2094,7 @@
},
{
"cell_type": "markdown",
- "id": "bf348b5f",
+ "id": "119adf94",
"metadata": {},
"source": [
"### Recursive representation of a sustainable plan\n",
@@ -2165,7 +2165,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5fbc4da8",
+ "id": "323c6d83",
"metadata": {},
"outputs": [],
"source": [
@@ -2175,7 +2175,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "02345dc8",
+ "id": "e5ad79af",
"metadata": {},
"outputs": [],
"source": [
@@ -2185,7 +2185,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ab2cf315",
+ "id": "bcaf1f03",
"metadata": {},
"outputs": [],
"source": [
@@ -2194,7 +2194,7 @@
},
{
"cell_type": "markdown",
- "id": "4be388c1",
+ "id": "74ec336a",
"metadata": {},
"source": [
"We have also computed **credible plans** for a government or sequence\n",
diff --git a/_sources/calvo_machine_learn.ipynb b/_sources/calvo_machine_learn.ipynb
index b939785e..3f21e97f 100644
--- a/_sources/calvo_machine_learn.ipynb
+++ b/_sources/calvo_machine_learn.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "c3adab2c",
+ "id": "f7b65bcc",
"metadata": {},
"source": [
"# Machine Learning a Ramsey Plan\n",
@@ -383,7 +383,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "27e4fe1e",
+ "id": "a548e851",
"metadata": {
"tags": [
"hide-output"
@@ -399,7 +399,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "23b5e7df",
+ "id": "dd2fea87",
"metadata": {},
"outputs": [],
"source": [
@@ -414,7 +414,7 @@
},
{
"cell_type": "markdown",
- "id": "8d369166",
+ "id": "a9dd4c64",
"metadata": {},
"source": [
"First, because we'll want to compare the results we obtain here with those obtained with another, more structured, approach, we copy the class `ChangLQ` to solve the LQ Chang model in this quantecon lecture {doc}`calvo`.\n",
@@ -425,7 +425,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5adc0dc3",
+ "id": "5bb657af",
"metadata": {
"tags": [
"hide-input"
@@ -548,7 +548,7 @@
},
{
"cell_type": "markdown",
- "id": "cb6c6a3b",
+ "id": "0becb39a",
"metadata": {},
"source": [
"Now we compute the value of $V$ under this setup, and compare it against those obtained in {ref}`compute_lq`."
@@ -557,7 +557,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "66f939ee",
+ "id": "b36c83ba",
"metadata": {},
"outputs": [],
"source": [
@@ -569,7 +569,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2be31152",
+ "id": "65536c5d",
"metadata": {},
"outputs": [],
"source": [
@@ -625,7 +625,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7b9579db",
+ "id": "0b0e8877",
"metadata": {},
"outputs": [],
"source": [
@@ -637,7 +637,7 @@
},
{
"cell_type": "markdown",
- "id": "0529f6dd",
+ "id": "2b93a161",
"metadata": {},
"source": [
"Now we want to maximize the function $V$ by choice of $\\mu$.\n",
@@ -648,7 +648,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3554af0c",
+ "id": "9575502c",
"metadata": {},
"outputs": [],
"source": [
@@ -686,7 +686,7 @@
},
{
"cell_type": "markdown",
- "id": "5f0d905f",
+ "id": "2723567d",
"metadata": {},
"source": [
"Here we use automatic differentiation functionality in JAX with `grad`."
@@ -695,7 +695,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9cf90b54",
+ "id": "5989fc24",
"metadata": {
"tags": [
"scroll-output"
@@ -714,7 +714,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3f7c2bcb",
+ "id": "3de35ed6",
"metadata": {},
"outputs": [],
"source": [
@@ -729,7 +729,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cc79cf02",
+ "id": "98399bb6",
"metadata": {},
"outputs": [],
"source": [
@@ -739,7 +739,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e3c123dc",
+ "id": "be4f564c",
"metadata": {},
"outputs": [],
"source": [
@@ -749,7 +749,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "32c7afcf",
+ "id": "0662e751",
"metadata": {},
"outputs": [],
"source": [
@@ -759,7 +759,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "607daf76",
+ "id": "5d5a4471",
"metadata": {},
"outputs": [],
"source": [
@@ -768,7 +768,7 @@
},
{
"cell_type": "markdown",
- "id": "8165ca54",
+ "id": "fd6ba402",
"metadata": {},
"source": [
" \n",
@@ -788,7 +788,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "56fb72a1",
+ "id": "e5a134a2",
"metadata": {},
"outputs": [],
"source": [
@@ -807,7 +807,7 @@
},
{
"cell_type": "markdown",
- "id": "982b0c1b",
+ "id": "80f899b2",
"metadata": {},
"source": [
"Compare it to $\\mu^{CR}$ in {doc}`calvo`, we again obtained a close estimate."
@@ -816,7 +816,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ca46d3b3",
+ "id": "1e6b7361",
"metadata": {},
"outputs": [],
"source": [
@@ -826,7 +826,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1f7ff94b",
+ "id": "c78162a6",
"metadata": {},
"outputs": [],
"source": [
@@ -837,7 +837,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "865b1e75",
+ "id": "39e644ed",
"metadata": {},
"outputs": [],
"source": [
@@ -846,7 +846,7 @@
},
{
"cell_type": "markdown",
- "id": "1ab70434",
+ "id": "c7a47b81",
"metadata": {},
"source": [
"## A more structured ML algorithm\n",
@@ -933,7 +933,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7cc88f51",
+ "id": "72791de0",
"metadata": {},
"outputs": [],
"source": [
@@ -950,7 +950,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6fcc668f",
+ "id": "7db28c8a",
"metadata": {},
"outputs": [],
"source": [
@@ -962,7 +962,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b5e7ce89",
+ "id": "11342fc6",
"metadata": {},
"outputs": [],
"source": [
@@ -974,7 +974,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "330ccd21",
+ "id": "bd1fc508",
"metadata": {},
"outputs": [],
"source": [
@@ -983,7 +983,7 @@
},
{
"cell_type": "markdown",
- "id": "57b6d0c8",
+ "id": "7be1f22c",
"metadata": {},
"source": [
"As before, the Ramsey planner's criterion is\n",
@@ -1072,7 +1072,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8bcb3350",
+ "id": "b71592af",
"metadata": {},
"outputs": [],
"source": [
@@ -1098,7 +1098,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0a65965e",
+ "id": "61c58e09",
"metadata": {},
"outputs": [],
"source": [
@@ -1113,7 +1113,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c12bc8d8",
+ "id": "9ca544de",
"metadata": {},
"outputs": [],
"source": [
@@ -1128,7 +1128,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3e4ef167",
+ "id": "2befe95a",
"metadata": {},
"outputs": [],
"source": [
@@ -1138,7 +1138,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "269609ac",
+ "id": "d2e76752",
"metadata": {},
"outputs": [],
"source": [
@@ -1148,7 +1148,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5f977709",
+ "id": "0652d04f",
"metadata": {},
"outputs": [],
"source": [
@@ -1158,7 +1158,7 @@
},
{
"cell_type": "markdown",
- "id": "5124c2e0",
+ "id": "e9da6b84",
"metadata": {},
"source": [
"We find that by exploiting more knowledge about the structure of the problem, we can significantly speed up our computation.\n",
@@ -1169,7 +1169,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ad9f5f6d",
+ "id": "cf42990e",
"metadata": {},
"outputs": [],
"source": [
@@ -1194,7 +1194,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "16b5315d",
+ "id": "14f93cdd",
"metadata": {},
"outputs": [],
"source": [
@@ -1204,7 +1204,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a56b735f",
+ "id": "40b95a14",
"metadata": {},
"outputs": [],
"source": [
@@ -1214,7 +1214,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3717586e",
+ "id": "e9cc7f44",
"metadata": {},
"outputs": [],
"source": [
@@ -1223,7 +1223,7 @@
},
{
"cell_type": "markdown",
- "id": "2579f750",
+ "id": "4ec89a40",
"metadata": {},
"source": [
"We can check the gradient of the analytical solution against the `JAX` computed version"
@@ -1232,7 +1232,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "29bb03eb",
+ "id": "d1912e1d",
"metadata": {},
"outputs": [],
"source": [
@@ -1258,7 +1258,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "86369b82",
+ "id": "e617f287",
"metadata": {},
"outputs": [],
"source": [
@@ -1268,7 +1268,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "946f76dd",
+ "id": "aaae2260",
"metadata": {},
"outputs": [],
"source": [
@@ -1278,7 +1278,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "856fbcf3",
+ "id": "a0c1f2a9",
"metadata": {},
"outputs": [],
"source": [
@@ -1287,7 +1287,7 @@
},
{
"cell_type": "markdown",
- "id": "8a7d8034",
+ "id": "0683b3cc",
"metadata": {},
"source": [
"## Some Exploratory Regressions\n",
@@ -1320,7 +1320,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "39bbb982",
+ "id": "57c12a21",
"metadata": {},
"outputs": [],
"source": [
@@ -1340,7 +1340,7 @@
},
{
"cell_type": "markdown",
- "id": "292e80af",
+ "id": "2e16668b",
"metadata": {},
"source": [
"We notice that $\\theta_t$ is less than $\\mu_t$for low $t$'s but that it eventually converges to\n",
@@ -1358,7 +1358,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c4180963",
+ "id": "8043adb5",
"metadata": {},
"outputs": [],
"source": [
@@ -1374,7 +1374,7 @@
},
{
"cell_type": "markdown",
- "id": "842fbff5",
+ "id": "2e9ce3c0",
"metadata": {},
"source": [
"Our regression tells us that along the Ramsey outcome $\\vec \\mu, \\vec \\theta$ the linear function\n",
@@ -1396,7 +1396,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c15c7d24",
+ "id": "9a67ede1",
"metadata": {},
"outputs": [],
"source": [
@@ -1410,7 +1410,7 @@
},
{
"cell_type": "markdown",
- "id": "5f5dd3be",
+ "id": "459cd667",
"metadata": {},
"source": [
"The time $0$ pair $(\\theta_0, \\mu_0)$ appears as the point on the upper right. \n",
@@ -1426,7 +1426,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "df65a538",
+ "id": "4add57f6",
"metadata": {},
"outputs": [],
"source": [
@@ -1444,7 +1444,7 @@
},
{
"cell_type": "markdown",
- "id": "077352c2",
+ "id": "48bfb4d8",
"metadata": {},
"source": [
"We find that the regression line fits perfectly and thus discover the affine relationship\n",
@@ -1461,7 +1461,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bb45131b",
+ "id": "b8e3f165",
"metadata": {},
"outputs": [],
"source": [
@@ -1477,7 +1477,7 @@
},
{
"cell_type": "markdown",
- "id": "1cda109a",
+ "id": "d7f1840c",
"metadata": {},
"source": [
"Points for succeeding times appear further and further to the lower left and eventually converge to\n",
@@ -1505,7 +1505,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "835468ee",
+ "id": "0b13d26e",
"metadata": {},
"outputs": [],
"source": [
@@ -1540,7 +1540,7 @@
},
{
"cell_type": "markdown",
- "id": "a674d1ec",
+ "id": "af439705",
"metadata": {},
"source": [
"The initial continuation value $v_0$ should equals the optimized value of the Ramsey planner's criterion $V$ defined\n",
@@ -1553,7 +1553,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "44964af8",
+ "id": "d1cc2967",
"metadata": {},
"outputs": [],
"source": [
@@ -1562,7 +1562,7 @@
},
{
"cell_type": "markdown",
- "id": "8bc24b36",
+ "id": "ded4e93a",
"metadata": {},
"source": [
"We can also verify approximate equality by inspecting a graph of $v_t$ against $t$ for $t=0, \\ldots, T$ along with the value attained by a restricted Ramsey planner $V^{CR}$ and the optimized value of the ordinary Ramsey planner $V^R$"
@@ -1571,7 +1571,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "557acf44",
+ "id": "9a5dce6b",
"metadata": {
"mystnb": {
"figure": {
@@ -1603,7 +1603,7 @@
},
{
"cell_type": "markdown",
- "id": "d0585cca",
+ "id": "0547723c",
"metadata": {},
"source": [
"Figure {numref}`continuation_values` shows several striking patterns:\n",
@@ -1630,7 +1630,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3551d492",
+ "id": "99752ddc",
"metadata": {},
"outputs": [],
"source": [
@@ -1647,7 +1647,7 @@
},
{
"cell_type": "markdown",
- "id": "c61ed3ba",
+ "id": "62c92508",
"metadata": {},
"source": [
"The regression has an $R^2$ equal to $1$ and so fits perfectly.\n",
@@ -1661,7 +1661,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8a266dd1",
+ "id": "01f248c2",
"metadata": {},
"outputs": [],
"source": [
@@ -1670,7 +1670,7 @@
},
{
"cell_type": "markdown",
- "id": "aacfb0d5",
+ "id": "5f8dc183",
"metadata": {},
"source": [
"Let's plot $v_t$ against $\\theta_t$ along with the nonlinear regression line."
@@ -1679,7 +1679,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b829d1fa",
+ "id": "1cbefde0",
"metadata": {},
"outputs": [],
"source": [
@@ -1704,7 +1704,7 @@
},
{
"cell_type": "markdown",
- "id": "dff31d79",
+ "id": "b647f567",
"metadata": {},
"source": [
"The highest continuation value $v_0$ at $t=0$ appears at the peak of the function quadratic function\n",
@@ -1805,7 +1805,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e67a7ec3",
+ "id": "79cd3370",
"metadata": {},
"outputs": [],
"source": [
@@ -1814,7 +1814,7 @@
},
{
"cell_type": "markdown",
- "id": "74773c79",
+ "id": "4aab6725",
"metadata": {},
"source": [
"Now let's print out the decision rule for $\\mu_t$ uncovered by applying dynamic programming squared."
@@ -1823,7 +1823,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "28b4885a",
+ "id": "d617d0a6",
"metadata": {},
"outputs": [],
"source": [
@@ -1833,7 +1833,7 @@
},
{
"cell_type": "markdown",
- "id": "a2c80174",
+ "id": "94072e23",
"metadata": {},
"source": [
"Now let's print out the decision rule for $\\theta_{t+1} $ uncovered by applying dynamic programming squared."
@@ -1842,7 +1842,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9e7a44c8",
+ "id": "bf16560f",
"metadata": {},
"outputs": [],
"source": [
@@ -1852,7 +1852,7 @@
},
{
"cell_type": "markdown",
- "id": "f918de7a",
+ "id": "d742fcf5",
"metadata": {},
"source": [
"Evidently, these agree with the relationships that we discovered by running regressions on the Ramsey outcomes $\\vec \\mu^R, \\vec \\theta^R$ that we constructed with either of our machine learning algorithms.\n",
diff --git a/_sources/cattle_cycles.ipynb b/_sources/cattle_cycles.ipynb
index 3bff4639..925b5b70 100644
--- a/_sources/cattle_cycles.ipynb
+++ b/_sources/cattle_cycles.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "912de34c",
+ "id": "81aeb8c5",
"metadata": {},
"source": [
"(cattle_cycles)=\n",
@@ -28,7 +28,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b85a5e29",
+ "id": "22c5ce58",
"metadata": {
"tags": [
"hide-output"
@@ -41,7 +41,7 @@
},
{
"cell_type": "markdown",
- "id": "6760e17e",
+ "id": "471c8b20",
"metadata": {},
"source": [
"This lecture uses the DLE class to construct instances of the \"Cattle Cycles\" model\n",
@@ -56,7 +56,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8f14e65c",
+ "id": "a32a7437",
"metadata": {},
"outputs": [],
"source": [
@@ -69,7 +69,7 @@
},
{
"cell_type": "markdown",
- "id": "e36415b5",
+ "id": "25749843",
"metadata": {},
"source": [
"## The Model\n",
@@ -219,7 +219,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8aebb62c",
+ "id": "49fa51e1",
"metadata": {},
"outputs": [],
"source": [
@@ -233,7 +233,7 @@
},
{
"cell_type": "markdown",
- "id": "adbdfbaa",
+ "id": "2ea4385f",
"metadata": {},
"source": [
"We set parameters to those used by {cite}`rosen1994cattle`"
@@ -242,7 +242,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "58526141",
+ "id": "78ef0834",
"metadata": {},
"outputs": [],
"source": [
@@ -314,7 +314,7 @@
},
{
"cell_type": "markdown",
- "id": "8633b0f5",
+ "id": "5193f381",
"metadata": {},
"source": [
"Notice that we have set $\\rho_1 = \\rho_2 = 0$, so $h_t$ and\n",
@@ -331,7 +331,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0884018e",
+ "id": "278719cd",
"metadata": {},
"outputs": [],
"source": [
@@ -362,7 +362,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bcad1e28",
+ "id": "97e00bc6",
"metadata": {},
"outputs": [],
"source": [
@@ -379,7 +379,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "881f9f2d",
+ "id": "2a79632a",
"metadata": {},
"outputs": [],
"source": [
@@ -388,7 +388,7 @@
},
{
"cell_type": "markdown",
- "id": "1c793da4",
+ "id": "7a0156cb",
"metadata": {},
"source": [
"{cite}`rosen1994cattle` use the model to understand the\n",
@@ -401,7 +401,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d42f1f0b",
+ "id": "9da3c59d",
"metadata": {},
"outputs": [],
"source": [
@@ -416,7 +416,7 @@
},
{
"cell_type": "markdown",
- "id": "5746764b",
+ "id": "be47376a",
"metadata": {},
"source": [
"In their Figure 3, {cite}`rosen1994cattle` plot the impulse response functions\n",
@@ -429,7 +429,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "92a984ca",
+ "id": "20918464",
"metadata": {},
"outputs": [],
"source": [
@@ -456,7 +456,7 @@
},
{
"cell_type": "markdown",
- "id": "5e1334bb",
+ "id": "70922671",
"metadata": {},
"source": [
"The above figures show how consumption patterns differ markedly,\n",
@@ -478,7 +478,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "349729a3",
+ "id": "b5f4309a",
"metadata": {},
"outputs": [],
"source": [
@@ -498,7 +498,7 @@
},
{
"cell_type": "markdown",
- "id": "e0199696",
+ "id": "3318f41e",
"metadata": {},
"source": [
"The fact that $y_t$ is a weighted moving average of $x_t$\n",
diff --git a/_sources/chang_credible.ipynb b/_sources/chang_credible.ipynb
index 8e9803cf..c68180ec 100644
--- a/_sources/chang_credible.ipynb
+++ b/_sources/chang_credible.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "f5e1f52f",
+ "id": "63d1d482",
"metadata": {},
"source": [
"(chang_credible)=\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a3e2ba53",
+ "id": "f2aa2d41",
"metadata": {
"tags": [
"hide-output"
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "48141169",
+ "id": "3b890904",
"metadata": {},
"source": [
"## Overview\n",
@@ -93,7 +93,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f8863ba9",
+ "id": "fa5d557f",
"metadata": {},
"outputs": [],
"source": [
@@ -104,7 +104,7 @@
},
{
"cell_type": "markdown",
- "id": "f660bded",
+ "id": "e874f29b",
"metadata": {},
"source": [
"## The Setting\n",
@@ -247,11 +247,9 @@
"\n",
"y_t = f(x_t)\n",
"```\n",
- "\n",
- "where $f: \\mathbb{R}\\rightarrow \\mathbb{R}$ satisfies $f(x) > 0$,\n",
- "is twice continuously differentiable, $f''(x) < 0$, and\n",
- "$f(x) = f(-x)$ for all $x \\in\n",
- "\\mathbb{R}$, so that subsidies and taxes are equally distorting.\n",
+ "where $f: \\mathbb{R}\\rightarrow \\mathbb{R}$ satisfies $f(x) > 0$, $f(x)$\n",
+ "is twice continuously differentiable, $f''(x) < 0$, $f'(0) = 0$, and\n",
+ "$f(x) = f(-x)$ for all $x \\in \\mathbb{R}$, so that subsidies and taxes are equally distorting.\n",
"\n",
"The purpose is not to model the causes of tax distortions in any detail but simply to summarize\n",
"the *outcome* of those distortions via the function $f(x)$.\n",
@@ -798,7 +796,7 @@
"following functional forms:\n",
"\n",
"$$\n",
- "u(c) = log(c)\n",
+ "u(c) = \\log(c)\n",
"$$\n",
"\n",
"$$\n",
@@ -826,7 +824,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "85977b5e",
+ "id": "e60a43e3",
"metadata": {
"load": "_static/lecture_specific/chang_credible/changecon.py",
"tags": [
@@ -1337,7 +1335,7 @@
},
{
"cell_type": "markdown",
- "id": "3c016c6f",
+ "id": "74c3b357",
"metadata": {},
"source": [
"### Comparison of Sets\n",
@@ -1352,7 +1350,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a1d0b261",
+ "id": "fa210b09",
"metadata": {},
"outputs": [],
"source": [
@@ -1362,7 +1360,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9bb976d5",
+ "id": "6a9ce69d",
"metadata": {},
"outputs": [],
"source": [
@@ -1371,7 +1369,7 @@
},
{
"cell_type": "markdown",
- "id": "a442a823",
+ "id": "7065df9a",
"metadata": {},
"source": [
"The following plot shows both the set of $w,\\theta$ pairs associated with competitive equilibria (in red)\n",
@@ -1381,7 +1379,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0f7b8993",
+ "id": "f88d9a6a",
"metadata": {},
"outputs": [],
"source": [
@@ -1421,7 +1419,7 @@
},
{
"cell_type": "markdown",
- "id": "f9408915",
+ "id": "f44f04b5",
"metadata": {},
"source": [
"Evidently, the Ramsey plan, denoted by the $R$, is not sustainable.\n",
@@ -1432,7 +1430,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e3e0b1aa",
+ "id": "f3f126ef",
"metadata": {},
"outputs": [],
"source": [
@@ -1443,7 +1441,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e0ce0d7c",
+ "id": "8ca72302",
"metadata": {},
"outputs": [],
"source": [
@@ -1452,7 +1450,7 @@
},
{
"cell_type": "markdown",
- "id": "ee990e3a",
+ "id": "c9eb4b46",
"metadata": {},
"source": [
"Let's plot both sets"
@@ -1461,7 +1459,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bfd5af94",
+ "id": "18a92fca",
"metadata": {},
"outputs": [],
"source": [
@@ -1470,7 +1468,7 @@
},
{
"cell_type": "markdown",
- "id": "d7701d83",
+ "id": "37110c35",
"metadata": {},
"source": [
"Evidently, the Ramsey plan is now sustainable."
@@ -1495,18 +1493,18 @@
30,
83,
87,
- 804,
- 809,
- 819,
+ 802,
+ 807,
+ 817,
+ 821,
823,
- 825,
- 830,
- 863,
- 869,
+ 828,
+ 861,
+ 867,
+ 872,
874,
- 876,
- 880,
- 882
+ 878,
+ 880
]
},
"nbformat": 4,
diff --git a/_sources/chang_credible.md b/_sources/chang_credible.md
index 0340aa4f..42cc9156 100644
--- a/_sources/chang_credible.md
+++ b/_sources/chang_credible.md
@@ -226,11 +226,9 @@ assumption about outcomes for per capita output:
y_t = f(x_t)
```
-
-where $f: \mathbb{R}\rightarrow \mathbb{R}$ satisfies $f(x) > 0$,
-is twice continuously differentiable, $f''(x) < 0$, and
-$f(x) = f(-x)$ for all $x \in
-\mathbb{R}$, so that subsidies and taxes are equally distorting.
+where $f: \mathbb{R}\rightarrow \mathbb{R}$ satisfies $f(x) > 0$, $f(x)$
+is twice continuously differentiable, $f''(x) < 0$, $f'(0) = 0$, and
+$f(x) = f(-x)$ for all $x \in \mathbb{R}$, so that subsidies and taxes are equally distorting.
The purpose is not to model the causes of tax distortions in any detail but simply to summarize
the *outcome* of those distortions via the function $f(x)$.
@@ -777,7 +775,7 @@ We have created a Python class that solves the model assuming the
following functional forms:
$$
-u(c) = log(c)
+u(c) = \log(c)
$$
$$
diff --git a/_sources/chang_ramsey.ipynb b/_sources/chang_ramsey.ipynb
index 8af34ad8..d190a9f2 100644
--- a/_sources/chang_ramsey.ipynb
+++ b/_sources/chang_ramsey.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "937e28b4",
+ "id": "440fd6dd",
"metadata": {},
"source": [
"(chang_ramsey)=\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b95be5f1",
+ "id": "27f500ca",
"metadata": {
"tags": [
"hide-output"
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "5a4f6393",
+ "id": "52e81c93",
"metadata": {},
"source": [
"## Overview\n",
@@ -81,7 +81,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8f5a3104",
+ "id": "3c9d14e4",
"metadata": {},
"outputs": [],
"source": [
@@ -92,7 +92,7 @@
},
{
"cell_type": "markdown",
- "id": "7b85bdf2",
+ "id": "ba25c324",
"metadata": {},
"source": [
"### The Setting\n",
@@ -146,7 +146,7 @@
"effects into account in designing a plan of government actions for\n",
"$t \\geq 0$.\n",
"\n",
- "## Setting\n",
+ "## Decisions\n",
"\n",
"### The Household’s Problem\n",
"\n",
@@ -154,7 +154,7 @@
"$\\vec q$ and sequences $\\vec y, \\vec x$ of income and total\n",
"tax collections, respectively.\n",
"\n",
- "The household chooses nonnegative\n",
+ "Facing vector $\\vec q$ as a price taker, the representative household chooses nonnegative\n",
"sequences $\\vec c, \\vec M$ of consumption and nominal balances,\n",
"respectively, to maximize\n",
"\n",
@@ -195,8 +195,8 @@
"Inequality {eq}`eqn_chang_ramsey2` is the household’s time $t$ budget constraint.\n",
"\n",
"It tells how real balances $q_t M_t$ carried out of period $t$ depend\n",
- "on income, consumption, taxes, and real balances $q_t M_{t-1}$\n",
- "carried into the period.\n",
+ "on real balances $q_t M_{t-1}$\n",
+ "carried into period $t$, income, consumption, taxes.\n",
"\n",
"Equation {eq}`eqn_chang_ramsey3` imposes an exogenous upper bound\n",
"$\\bar m$ on the household's choice of real balances, where\n",
@@ -210,13 +210,35 @@
"[ \\underline \\pi, \\overline \\pi]$, where\n",
"$0 < \\underline \\pi < 1 < { 1 \\over \\beta } \\leq \\overline \\pi$.\n",
"\n",
- "The government faces a sequence of budget constraints with time\n",
- "$t$ component\n",
+ "The government purchases no goods.\n",
+ "\n",
+ "It taxes only to acquire paper currency that it will withdraw from circulation (e.g., by burning it).\n",
+ "\n",
+ "Let $p_t $ be the price level at time $t$, measured as time $t$ dollars per unit of the consumption good.\n",
+ "\n",
+ "Evidently, the value of paper currency meassured in units of the consumption good at time $t$ is \n",
"\n",
"$$\n",
- "-x_t = q_t (M_t - M_{t-1})\n",
+ "q_t = \\frac{1}{p_t} .\n",
+ "$$\n",
+ "\n",
+ "The government faces a sequence of budget constraints with time $t$ component \n",
+ "\n",
+ "$$\n",
+ "x_t + \\frac{M_{t} - M_{t-1}}{p_t} = 0,\n",
"$$\n",
"\n",
+ "where $x_t$ is the real value of revenue that the government raises from taxes and $\\frac{M_{t} - M_{t-1}}{p_t}$ is\n",
+ "the real value of revenue that the government raises by printing new paper currency. \n",
+ "\n",
+ "Evidently, this budget constraint can be rewritten as\n",
+ "\n",
+ "\n",
+ "\n",
+ "$$\n",
+ "-x_t = q_t (M_t - M_{t-1})\n",
+ "$$ \n",
+ "\n",
"which by using the definitions of $m_t$ and $h_t$ can also\n",
"be expressed as\n",
"\n",
@@ -226,7 +248,8 @@
"-x_t = m_t (1-h_t)\n",
"```\n",
"\n",
- "The restrictions $m_t \\in [0, \\bar m]$ and $h_t \\in \\Pi$ evidently\n",
+ "\n",
+ "The restrictions $m_t \\in [0, \\bar m]$ and $h_t \\in \\Pi = [\\underline \\pi, \\overline \\pi]$ evidently\n",
"imply that $x_t \\in X \\equiv [(\\underline \\pi -1)\\bar m,\n",
"(\\overline \\pi -1) \\bar m]$.\n",
"\n",
@@ -242,10 +265,27 @@
"y_t = f(x_t),\n",
"```\n",
"\n",
- "where $f: \\mathbb{R}\\rightarrow \\mathbb{R}$ satisfies $f(x) > 0$,\n",
- "is twice continuously differentiable, $f''(x) < 0$, and\n",
- "$f(x) = f(-x)$ for all $x \\in\n",
- "\\mathbb{R}$, so that subsidies and taxes are equally distorting.\n",
+ "where $f: \\mathbb{R}\\rightarrow \\mathbb{R}$ satisfies $f(x) > 0$, $f(x)$\n",
+ "is twice continuously differentiable, $f''(x) < 0$, $f'(0) = 0$, and\n",
+ "$f(x) = f(-x)$ for all $x \\in \\mathbb{R}$, so that subsidies and taxes are equally distorting.\n",
+ "\n",
+ "**Example parameterizations**\n",
+ "\n",
+ "In some of our Python code deployed later in this lecture, we'll assume the following functional forms:\n",
+ "\n",
+ "$$\n",
+ "u(c) = \\log(c)\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "v(m) = \\frac{1}{500}(m \\bar m - 0.5m^2)^{0.5}\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "f(x) = 180 - (0.4x)^2\n",
+ "$$\n",
+ "\n",
+ "**The tax distortion function** \n",
"\n",
"Calvo's and Chang's purpose is not to model the causes of tax distortions in\n",
"any detail but simply to summarize\n",
@@ -876,7 +916,7 @@
"following functional forms:\n",
"\n",
"$$\n",
- "u(c) = log(c)\n",
+ "u(c) = \\log(c)\n",
"$$\n",
"\n",
"$$\n",
@@ -901,7 +941,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "65a05b7b",
+ "id": "1841b2ae",
"metadata": {
"load": "_static/lecture_specific/chang_credible/changecon.py"
},
@@ -1410,7 +1450,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f93bcffe",
+ "id": "5924787b",
"metadata": {},
"outputs": [],
"source": [
@@ -1421,7 +1461,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e6dc6344",
+ "id": "37a66c4a",
"metadata": {},
"outputs": [],
"source": [
@@ -1460,7 +1500,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "54966ff6",
+ "id": "b1a3d478",
"metadata": {},
"outputs": [],
"source": [
@@ -1472,7 +1512,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f1b2593c",
+ "id": "fcdbbf33",
"metadata": {},
"outputs": [],
"source": [
@@ -1481,7 +1521,7 @@
},
{
"cell_type": "markdown",
- "id": "bcc3ff9b",
+ "id": "cd93d58d",
"metadata": {},
"source": [
"## Solving a Continuation Ramsey Planner's Bellman Equation\n",
@@ -1541,7 +1581,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a678f20e",
+ "id": "bc96edd4",
"metadata": {},
"outputs": [],
"source": [
@@ -1554,7 +1594,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bfe2b01c",
+ "id": "7dc225bc",
"metadata": {},
"outputs": [],
"source": [
@@ -1564,7 +1604,7 @@
},
{
"cell_type": "markdown",
- "id": "804a5e6d",
+ "id": "4267a606",
"metadata": {},
"source": [
"First, a quick check that our approximations of the value functions are\n",
@@ -1576,7 +1616,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6273ef3c",
+ "id": "3425756f",
"metadata": {},
"outputs": [],
"source": [
@@ -1585,7 +1625,7 @@
},
{
"cell_type": "markdown",
- "id": "c0dfb9ae",
+ "id": "8bf1d83a",
"metadata": {},
"source": [
"The value functions plotted below trace out the right edges of the sets\n",
@@ -1595,7 +1635,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "88cf8618",
+ "id": "5fff2dfa",
"metadata": {},
"outputs": [],
"source": [
@@ -1612,7 +1652,7 @@
},
{
"cell_type": "markdown",
- "id": "c021b2d1",
+ "id": "a8981b1d",
"metadata": {},
"source": [
"The next figure plots the optimal policy functions; values of\n",
@@ -1622,7 +1662,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8cef9af0",
+ "id": "8e6809d4",
"metadata": {},
"outputs": [],
"source": [
@@ -1645,7 +1685,7 @@
},
{
"cell_type": "markdown",
- "id": "91efd604",
+ "id": "9588015c",
"metadata": {},
"source": [
"With the first set of parameter values, the value of $\\theta'$ chosen by the Ramsey\n",
@@ -1666,7 +1706,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ad906cf6",
+ "id": "62ed1b8c",
"metadata": {},
"outputs": [],
"source": [
@@ -1683,7 +1723,7 @@
},
{
"cell_type": "markdown",
- "id": "010ef62a",
+ "id": "e2786d12",
"metadata": {},
"source": [
"Subproblem 2 is equivalent to the planner choosing the initial value of\n",
@@ -1699,7 +1739,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f7d3c065",
+ "id": "330b3206",
"metadata": {},
"outputs": [],
"source": [
@@ -1720,7 +1760,7 @@
},
{
"cell_type": "markdown",
- "id": "35d0b2f4",
+ "id": "9785c4fc",
"metadata": {},
"source": [
"### Next Steps\n",
@@ -1753,25 +1793,25 @@
30,
71,
75,
- 879,
- 883,
- 888,
- 921,
- 927,
- 929,
- 984,
- 991,
- 994,
- 1001,
- 1003,
- 1008,
- 1018,
- 1023,
- 1039,
- 1055,
- 1065,
- 1076,
- 1090
+ 919,
+ 923,
+ 928,
+ 961,
+ 967,
+ 969,
+ 1024,
+ 1031,
+ 1034,
+ 1041,
+ 1043,
+ 1048,
+ 1058,
+ 1063,
+ 1079,
+ 1095,
+ 1105,
+ 1116,
+ 1130
]
},
"nbformat": 4,
diff --git a/_sources/chang_ramsey.md b/_sources/chang_ramsey.md
index 792e6550..dbf111d8 100644
--- a/_sources/chang_ramsey.md
+++ b/_sources/chang_ramsey.md
@@ -125,7 +125,7 @@ time $0$ Ramsey planner takes these
effects into account in designing a plan of government actions for
$t \geq 0$.
-## Setting
+## Decisions
### The Household’s Problem
@@ -133,7 +133,7 @@ A representative household faces a nonnegative value of money sequence
$\vec q$ and sequences $\vec y, \vec x$ of income and total
tax collections, respectively.
-The household chooses nonnegative
+Facing vector $\vec q$ as a price taker, the representative household chooses nonnegative
sequences $\vec c, \vec M$ of consumption and nominal balances,
respectively, to maximize
@@ -174,8 +174,8 @@ The household carries real balances out of a period equal to $m_t = q_t M_t$.
Inequality {eq}`eqn_chang_ramsey2` is the household’s time $t$ budget constraint.
It tells how real balances $q_t M_t$ carried out of period $t$ depend
-on income, consumption, taxes, and real balances $q_t M_{t-1}$
-carried into the period.
+on real balances $q_t M_{t-1}$
+carried into period $t$, income, consumption, taxes.
Equation {eq}`eqn_chang_ramsey3` imposes an exogenous upper bound
$\bar m$ on the household's choice of real balances, where
@@ -189,13 +189,35 @@ $h_t \equiv {M_{t-1}\over M_t} \in \Pi \equiv
[ \underline \pi, \overline \pi]$, where
$0 < \underline \pi < 1 < { 1 \over \beta } \leq \overline \pi$.
-The government faces a sequence of budget constraints with time
-$t$ component
+The government purchases no goods.
+
+It taxes only to acquire paper currency that it will withdraw from circulation (e.g., by burning it).
+
+Let $p_t $ be the price level at time $t$, measured as time $t$ dollars per unit of the consumption good.
+
+Evidently, the value of paper currency meassured in units of the consumption good at time $t$ is
$$
--x_t = q_t (M_t - M_{t-1})
+q_t = \frac{1}{p_t} .
+$$
+
+The government faces a sequence of budget constraints with time $t$ component
+
+$$
+x_t + \frac{M_{t} - M_{t-1}}{p_t} = 0,
$$
+where $x_t$ is the real value of revenue that the government raises from taxes and $\frac{M_{t} - M_{t-1}}{p_t}$ is
+the real value of revenue that the government raises by printing new paper currency.
+
+Evidently, this budget constraint can be rewritten as
+
+
+
+$$
+-x_t = q_t (M_t - M_{t-1})
+$$
+
which by using the definitions of $m_t$ and $h_t$ can also
be expressed as
@@ -205,7 +227,8 @@ be expressed as
-x_t = m_t (1-h_t)
```
-The restrictions $m_t \in [0, \bar m]$ and $h_t \in \Pi$ evidently
+
+The restrictions $m_t \in [0, \bar m]$ and $h_t \in \Pi = [\underline \pi, \overline \pi]$ evidently
imply that $x_t \in X \equiv [(\underline \pi -1)\bar m,
(\overline \pi -1) \bar m]$.
@@ -221,10 +244,27 @@ assumption about outcomes for per capita output:
y_t = f(x_t),
```
-where $f: \mathbb{R}\rightarrow \mathbb{R}$ satisfies $f(x) > 0$,
-is twice continuously differentiable, $f''(x) < 0$, and
-$f(x) = f(-x)$ for all $x \in
-\mathbb{R}$, so that subsidies and taxes are equally distorting.
+where $f: \mathbb{R}\rightarrow \mathbb{R}$ satisfies $f(x) > 0$, $f(x)$
+is twice continuously differentiable, $f''(x) < 0$, $f'(0) = 0$, and
+$f(x) = f(-x)$ for all $x \in \mathbb{R}$, so that subsidies and taxes are equally distorting.
+
+**Example parameterizations**
+
+In some of our Python code deployed later in this lecture, we'll assume the following functional forms:
+
+$$
+u(c) = \log(c)
+$$
+
+$$
+v(m) = \frac{1}{500}(m \bar m - 0.5m^2)^{0.5}
+$$
+
+$$
+f(x) = 180 - (0.4x)^2
+$$
+
+**The tax distortion function**
Calvo's and Chang's purpose is not to model the causes of tax distortions in
any detail but simply to summarize
@@ -855,7 +895,7 @@ We have created a Python class that solves the model assuming the
following functional forms:
$$
-u(c) = log(c)
+u(c) = \log(c)
$$
$$
diff --git a/_sources/classical_filtering.ipynb b/_sources/classical_filtering.ipynb
index 0251bf68..87b6fd6b 100644
--- a/_sources/classical_filtering.ipynb
+++ b/_sources/classical_filtering.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "9c431fa1",
+ "id": "06af96bd",
"metadata": {},
"source": [
"(classical_filtering)=\n",
@@ -64,7 +64,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c3635455",
+ "id": "524d35c0",
"metadata": {},
"outputs": [],
"source": [
@@ -73,7 +73,7 @@
},
{
"cell_type": "markdown",
- "id": "531a602c",
+ "id": "a706f8de",
"metadata": {},
"source": [
"### References\n",
@@ -233,7 +233,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d69a44a9",
+ "id": "1f78ce8a",
"metadata": {
"load": "_static/lecture_specific/lu_tricks/control_and_filter.py"
},
@@ -549,7 +549,7 @@
},
{
"cell_type": "markdown",
- "id": "a11b1ede",
+ "id": "fcbcfb97",
"metadata": {},
"source": [
"Let's use this code to tackle two interesting examples.\n",
@@ -574,7 +574,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8d25d9a9",
+ "id": "103cae88",
"metadata": {},
"outputs": [],
"source": [
@@ -588,7 +588,7 @@
},
{
"cell_type": "markdown",
- "id": "0ca2dcce",
+ "id": "83aa0b62",
"metadata": {},
"source": [
"The Wold representation is computed by `example.coeffs_of_c()`.\n",
@@ -599,7 +599,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "520df49b",
+ "id": "eff23291",
"metadata": {},
"outputs": [],
"source": [
@@ -609,7 +609,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d3f0f37e",
+ "id": "db35bcf0",
"metadata": {},
"outputs": [],
"source": [
@@ -618,7 +618,7 @@
},
{
"cell_type": "markdown",
- "id": "e6c88806",
+ "id": "8a3399eb",
"metadata": {},
"source": [
"Now let's form the covariance matrix of a time series vector of length $N$\n",
@@ -631,7 +631,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "77550c2a",
+ "id": "89a69936",
"metadata": {},
"outputs": [],
"source": [
@@ -641,7 +641,7 @@
},
{
"cell_type": "markdown",
- "id": "88856d93",
+ "id": "4a3daccb",
"metadata": {},
"source": [
"Notice how the lower rows of the \"moving average representations\" are converging to the appropriate infinite history Wold representation\n",
@@ -651,7 +651,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "592daaac",
+ "id": "580b7a35",
"metadata": {},
"outputs": [],
"source": [
@@ -661,7 +661,7 @@
},
{
"cell_type": "markdown",
- "id": "bea13066",
+ "id": "3313a896",
"metadata": {},
"source": [
"Notice how the lower rows of the \"autoregressive representations\" are converging to the appropriate infinite-history\n",
@@ -671,7 +671,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7cdbcd59",
+ "id": "a7b1430c",
"metadata": {},
"outputs": [],
"source": [
@@ -681,7 +681,7 @@
},
{
"cell_type": "markdown",
- "id": "986a8c93",
+ "id": "0e28d082",
"metadata": {},
"source": [
"### Example 2\n",
@@ -708,7 +708,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "63d18b28",
+ "id": "cdfe027c",
"metadata": {},
"outputs": [],
"source": [
@@ -724,7 +724,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "056ac86b",
+ "id": "ee724f0c",
"metadata": {},
"outputs": [],
"source": [
@@ -734,7 +734,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c3c6a089",
+ "id": "0f1ab736",
"metadata": {},
"outputs": [],
"source": [
@@ -745,7 +745,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "428e24f5",
+ "id": "2d2a6257",
"metadata": {},
"outputs": [],
"source": [
@@ -756,7 +756,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ed0ca468",
+ "id": "9ae9e91e",
"metadata": {},
"outputs": [],
"source": [
@@ -766,7 +766,7 @@
},
{
"cell_type": "markdown",
- "id": "78b8d1b1",
+ "id": "8cae18cc",
"metadata": {},
"source": [
"### Prediction\n",
diff --git a/_sources/coase.ipynb b/_sources/coase.ipynb
index 21930cbc..4307354a 100644
--- a/_sources/coase.ipynb
+++ b/_sources/coase.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "af8f75cb",
+ "id": "7c884de5",
"metadata": {},
"source": [
"(coase)=\n",
@@ -44,7 +44,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8a0cedc6",
+ "id": "ea20760b",
"metadata": {},
"outputs": [],
"source": [
@@ -55,7 +55,7 @@
},
{
"cell_type": "markdown",
- "id": "6cca0b05",
+ "id": "3ee52c30",
"metadata": {},
"source": [
"### Why Firms Exist\n",
@@ -444,7 +444,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9c0b6cb1",
+ "id": "434d4864",
"metadata": {},
"outputs": [],
"source": [
@@ -461,7 +461,7 @@
},
{
"cell_type": "markdown",
- "id": "c70fc2ca",
+ "id": "ee6e5268",
"metadata": {},
"source": [
"Now let's implement and iterate with $T$ until convergence.\n",
@@ -473,7 +473,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d50d4899",
+ "id": "1187e084",
"metadata": {},
"outputs": [],
"source": [
@@ -510,7 +510,7 @@
},
{
"cell_type": "markdown",
- "id": "f216c895",
+ "id": "be07e900",
"metadata": {},
"source": [
"The next function computes optimal choice of upstream boundary and range of\n",
@@ -520,7 +520,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0c6b5494",
+ "id": "ec22e858",
"metadata": {},
"outputs": [],
"source": [
@@ -545,7 +545,7 @@
},
{
"cell_type": "markdown",
- "id": "6dae2689",
+ "id": "351481fa",
"metadata": {},
"source": [
"The allocation of firms can be computed by recursively stepping through firms' choices of\n",
@@ -557,7 +557,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a9a2b578",
+ "id": "566c1fa4",
"metadata": {},
"outputs": [],
"source": [
@@ -572,7 +572,7 @@
},
{
"cell_type": "markdown",
- "id": "a58abfdd",
+ "id": "6e437b4b",
"metadata": {},
"source": [
"Let's try this at the default parameters.\n",
@@ -584,7 +584,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "788bad8a",
+ "id": "1cb13ce7",
"metadata": {},
"outputs": [],
"source": [
@@ -605,7 +605,7 @@
},
{
"cell_type": "markdown",
- "id": "f0d61564",
+ "id": "6ecabbe4",
"metadata": {},
"source": [
"Here's the function $\\ell^*$, which shows how large a firm with\n",
@@ -615,7 +615,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9ee1ca54",
+ "id": "e0d4580c",
"metadata": {},
"outputs": [],
"source": [
@@ -632,7 +632,7 @@
},
{
"cell_type": "markdown",
- "id": "620ed944",
+ "id": "4c855843",
"metadata": {},
"source": [
"Note that downstream firms choose to be larger, a point we return to below.\n",
@@ -661,7 +661,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a282e3d5",
+ "id": "13642013",
"metadata": {},
"outputs": [],
"source": [
@@ -676,7 +676,7 @@
},
{
"cell_type": "markdown",
- "id": "3a24b65c",
+ "id": "d20a0421",
"metadata": {},
"source": [
"```{solution-end}\n",
@@ -718,7 +718,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cf4e9e9f",
+ "id": "8017c79c",
"metadata": {},
"outputs": [],
"source": [
@@ -740,7 +740,7 @@
},
{
"cell_type": "markdown",
- "id": "90c60ca1",
+ "id": "5871cda4",
"metadata": {},
"source": [
"```{solution-end}\n",
diff --git a/_sources/cons_news.ipynb b/_sources/cons_news.ipynb
index 401811d7..42c398be 100644
--- a/_sources/cons_news.ipynb
+++ b/_sources/cons_news.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "87067e1d",
+ "id": "f73dcb87",
"metadata": {},
"source": [
"(information_consumption_smoothing-v3)=\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "31857e8d",
+ "id": "751a5d2f",
"metadata": {
"tags": [
"hide-output"
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "b1a60416",
+ "id": "7f43bb39",
"metadata": {},
"source": [
"## Overview\n",
@@ -612,7 +612,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "89610fd8",
+ "id": "8c5ed14f",
"metadata": {},
"outputs": [],
"source": [
@@ -624,7 +624,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c212ceea",
+ "id": "5ff8b7cd",
"metadata": {},
"outputs": [],
"source": [
@@ -644,7 +644,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6ae32bef",
+ "id": "8f5f4411",
"metadata": {},
"outputs": [],
"source": [
@@ -663,7 +663,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1c00cd0f",
+ "id": "38e40cb4",
"metadata": {},
"outputs": [],
"source": [
@@ -673,7 +673,7 @@
},
{
"cell_type": "markdown",
- "id": "7c382be9",
+ "id": "c8d21a83",
"metadata": {},
"source": [
"Evidently, optimal consumption and debt decision rules for the consumer\n",
@@ -692,7 +692,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "49210823",
+ "id": "f0f0736c",
"metadata": {},
"outputs": [],
"source": [
@@ -710,7 +710,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "be7d4d14",
+ "id": "f28e47db",
"metadata": {},
"outputs": [],
"source": [
@@ -719,7 +719,7 @@
},
{
"cell_type": "markdown",
- "id": "3e1b9c57",
+ "id": "5a21cf4e",
"metadata": {},
"source": [
"For a consumer having access only to the information associated with the\n",
@@ -772,7 +772,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "af093d48",
+ "id": "a534b6d2",
"metadata": {},
"outputs": [],
"source": [
@@ -790,7 +790,7 @@
},
{
"cell_type": "markdown",
- "id": "9311437a",
+ "id": "a730b8ea",
"metadata": {},
"source": [
"The following code computes impulse response functions of\n",
@@ -800,7 +800,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0670196f",
+ "id": "806ebb56",
"metadata": {},
"outputs": [],
"source": [
@@ -818,7 +818,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "536125ea",
+ "id": "dbf18e98",
"metadata": {},
"outputs": [],
"source": [
@@ -828,7 +828,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "276b5587",
+ "id": "8d776038",
"metadata": {},
"outputs": [],
"source": [
@@ -840,7 +840,7 @@
},
{
"cell_type": "markdown",
- "id": "432948c6",
+ "id": "2a0d09d2",
"metadata": {},
"source": [
"The above two impulse response functions show that when the consumer has\n",
@@ -856,7 +856,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ed2bfbfe",
+ "id": "6af1ed1e",
"metadata": {},
"outputs": [],
"source": [
@@ -866,7 +866,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "257442c0",
+ "id": "d813e848",
"metadata": {},
"outputs": [],
"source": [
@@ -879,7 +879,7 @@
},
{
"cell_type": "markdown",
- "id": "f57b80d1",
+ "id": "4efb215a",
"metadata": {},
"source": [
"The above impulse responses show that when the consumer has only the\n",
@@ -903,7 +903,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bca0f5cf",
+ "id": "f464a9f8",
"metadata": {},
"outputs": [],
"source": [
@@ -914,7 +914,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f46e4e88",
+ "id": "d6e85f17",
"metadata": {},
"outputs": [],
"source": [
@@ -929,7 +929,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4c2bfaec",
+ "id": "6664f48f",
"metadata": {},
"outputs": [],
"source": [
@@ -943,7 +943,7 @@
},
{
"cell_type": "markdown",
- "id": "bb5d7da3",
+ "id": "dd75ec53",
"metadata": {},
"source": [
"## Simulating Income Process and Two Associated Shock Processes\n",
diff --git a/_sources/discrete_dp.ipynb b/_sources/discrete_dp.ipynb
index 31eafe1a..ee886189 100644
--- a/_sources/discrete_dp.ipynb
+++ b/_sources/discrete_dp.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "c1d5a483",
+ "id": "fff53ad1",
"metadata": {},
"source": [
"(discrete_dp)=\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ba765a93",
+ "id": "2c32839a",
"metadata": {
"tags": [
"hide-output"
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "c9f65998",
+ "id": "07fbd544",
"metadata": {},
"source": [
"## Overview\n",
@@ -72,7 +72,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9ae56028",
+ "id": "33944873",
"metadata": {},
"outputs": [],
"source": [
@@ -86,7 +86,7 @@
},
{
"cell_type": "markdown",
- "id": "f5d297fb",
+ "id": "695c5a73",
"metadata": {},
"source": [
"### How to Read this Lecture\n",
@@ -467,7 +467,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b6014c31",
+ "id": "3a233750",
"metadata": {},
"outputs": [],
"source": [
@@ -516,7 +516,7 @@
},
{
"cell_type": "markdown",
- "id": "af864b0a",
+ "id": "98349f97",
"metadata": {},
"source": [
"Let's run this code and create an instance of `SimpleOG`."
@@ -525,7 +525,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2bc6bfb9",
+ "id": "3db774b8",
"metadata": {},
"outputs": [],
"source": [
@@ -534,7 +534,7 @@
},
{
"cell_type": "markdown",
- "id": "7cde5da8",
+ "id": "d07cdaab",
"metadata": {},
"source": [
"Instances of `DiscreteDP` are created using the signature `DiscreteDP(R, Q, β)`.\n",
@@ -545,7 +545,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "446b859b",
+ "id": "6933f27c",
"metadata": {},
"outputs": [],
"source": [
@@ -554,7 +554,7 @@
},
{
"cell_type": "markdown",
- "id": "aa2dff7d",
+ "id": "356f22d6",
"metadata": {},
"source": [
"Now that we have an instance `ddp` of `DiscreteDP` we can solve it as follows"
@@ -563,7 +563,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6ad3ed1b",
+ "id": "784c50cd",
"metadata": {},
"outputs": [],
"source": [
@@ -572,7 +572,7 @@
},
{
"cell_type": "markdown",
- "id": "edae7371",
+ "id": "7c8d5939",
"metadata": {},
"source": [
"Let's see what we've got here"
@@ -581,7 +581,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "389afe3b",
+ "id": "6ce81380",
"metadata": {},
"outputs": [],
"source": [
@@ -590,7 +590,7 @@
},
{
"cell_type": "markdown",
- "id": "15eba211",
+ "id": "c9ab1e3d",
"metadata": {},
"source": [
"(In IPython version 4.0 and above you can also type `results.` and hit the tab key)\n",
@@ -601,7 +601,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "922a931c",
+ "id": "0b765a12",
"metadata": {},
"outputs": [],
"source": [
@@ -611,7 +611,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6e97104c",
+ "id": "f058d3bd",
"metadata": {},
"outputs": [],
"source": [
@@ -620,7 +620,7 @@
},
{
"cell_type": "markdown",
- "id": "6fecfa4f",
+ "id": "b8ff158a",
"metadata": {},
"source": [
"Since we've used policy iteration, these results will be exact unless we hit the iteration bound `max_iter`.\n",
@@ -631,7 +631,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f4cda746",
+ "id": "c1832ce2",
"metadata": {},
"outputs": [],
"source": [
@@ -641,7 +641,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "718b3df6",
+ "id": "9d555012",
"metadata": {},
"outputs": [],
"source": [
@@ -650,7 +650,7 @@
},
{
"cell_type": "markdown",
- "id": "90a755e8",
+ "id": "bcc48942",
"metadata": {},
"source": [
"Another interesting object is `results.mc`, which is the controlled chain defined by $Q_{\\sigma^*}$, where $\\sigma^*$ is the optimal policy.\n",
@@ -664,7 +664,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "863b9dea",
+ "id": "6e561773",
"metadata": {},
"outputs": [],
"source": [
@@ -673,7 +673,7 @@
},
{
"cell_type": "markdown",
- "id": "265caa95",
+ "id": "2f67c7a7",
"metadata": {},
"source": [
"Here's the same information in a bar graph\n",
@@ -688,7 +688,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "211e0b54",
+ "id": "10d3b542",
"metadata": {},
"outputs": [],
"source": [
@@ -699,7 +699,7 @@
},
{
"cell_type": "markdown",
- "id": "a201d57d",
+ "id": "3e2b28cb",
"metadata": {},
"source": [
"If we look at the bar graph we can see the rightward shift in probability mass\n",
@@ -728,7 +728,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "072e2d1d",
+ "id": "795dd576",
"metadata": {},
"outputs": [],
"source": [
@@ -759,7 +759,7 @@
},
{
"cell_type": "markdown",
- "id": "251d4e81",
+ "id": "5f0a65fe",
"metadata": {},
"source": [
"For larger problems, you might need to write this code more efficiently by vectorizing or using Numba.\n",
@@ -783,7 +783,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "14960fbe",
+ "id": "8591698c",
"metadata": {},
"outputs": [],
"source": [
@@ -795,7 +795,7 @@
},
{
"cell_type": "markdown",
- "id": "481b7c78",
+ "id": "341ac17e",
"metadata": {},
"source": [
"Here we want to solve a finite state version of the continuous state model above.\n",
@@ -806,7 +806,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5257ae18",
+ "id": "82d3bcd2",
"metadata": {},
"outputs": [],
"source": [
@@ -817,7 +817,7 @@
},
{
"cell_type": "markdown",
- "id": "5a0f093c",
+ "id": "8a07f737",
"metadata": {},
"source": [
"We choose the action to be the amount of capital to save for the next\n",
@@ -846,7 +846,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "663d50cb",
+ "id": "5c6e6863",
"metadata": {},
"outputs": [],
"source": [
@@ -866,7 +866,7 @@
},
{
"cell_type": "markdown",
- "id": "d690106e",
+ "id": "53eb276a",
"metadata": {},
"source": [
"Reward vector `R` (of length `L`):"
@@ -875,7 +875,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2174f0b1",
+ "id": "fd2607e5",
"metadata": {},
"outputs": [],
"source": [
@@ -884,7 +884,7 @@
},
{
"cell_type": "markdown",
- "id": "039d4d78",
+ "id": "38041923",
"metadata": {},
"source": [
"(Degenerate) transition probability matrix `Q` (of shape `(L, grid_size)`), where we choose the [scipy.sparse.lil_matrix](http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html) format, while any format will do (internally it will be converted to the csr format):"
@@ -893,7 +893,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "737191a1",
+ "id": "f911f896",
"metadata": {},
"outputs": [],
"source": [
@@ -903,7 +903,7 @@
},
{
"cell_type": "markdown",
- "id": "6d631e69",
+ "id": "e96b281a",
"metadata": {},
"source": [
"(If you are familiar with the data structure of [scipy.sparse.csr_matrix](http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html), the following is the most efficient way to create the `Q` matrix in\n",
@@ -913,7 +913,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4b60f243",
+ "id": "92523482",
"metadata": {},
"outputs": [],
"source": [
@@ -924,7 +924,7 @@
},
{
"cell_type": "markdown",
- "id": "67f52acb",
+ "id": "61d9f456",
"metadata": {},
"source": [
"Discrete growth model:"
@@ -933,7 +933,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5fa29bd3",
+ "id": "84bbf239",
"metadata": {},
"outputs": [],
"source": [
@@ -942,7 +942,7 @@
},
{
"cell_type": "markdown",
- "id": "8ff96d07",
+ "id": "25fd3ab1",
"metadata": {},
"source": [
"**Notes**\n",
@@ -959,7 +959,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ce5fb67a",
+ "id": "acf548c4",
"metadata": {},
"outputs": [],
"source": [
@@ -970,7 +970,7 @@
},
{
"cell_type": "markdown",
- "id": "9e9c5d48",
+ "id": "eb17155b",
"metadata": {},
"source": [
"Note that `sigma` contains the *indices* of the optimal *capital\n",
@@ -981,7 +981,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "faf92c34",
+ "id": "053dd492",
"metadata": {},
"outputs": [],
"source": [
@@ -1002,7 +1002,7 @@
},
{
"cell_type": "markdown",
- "id": "183b0c76",
+ "id": "18d08a9c",
"metadata": {},
"source": [
"Let us compare the solution of the discrete model with that of the\n",
@@ -1012,7 +1012,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c03d1a4a",
+ "id": "62302cd3",
"metadata": {},
"outputs": [],
"source": [
@@ -1039,7 +1039,7 @@
},
{
"cell_type": "markdown",
- "id": "844b2bf3",
+ "id": "7f23c017",
"metadata": {},
"source": [
"The outcomes appear very close to those of the continuous version.\n",
@@ -1050,7 +1050,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a86d728e",
+ "id": "677aa3eb",
"metadata": {},
"outputs": [],
"source": [
@@ -1060,7 +1060,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4dbb3456",
+ "id": "aca2953d",
"metadata": {},
"outputs": [],
"source": [
@@ -1069,7 +1069,7 @@
},
{
"cell_type": "markdown",
- "id": "fa830855",
+ "id": "ad9190e0",
"metadata": {},
"source": [
"The optimal consumption functions are close as well:"
@@ -1078,7 +1078,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "dc8e338b",
+ "id": "cce942d0",
"metadata": {},
"outputs": [],
"source": [
@@ -1087,7 +1087,7 @@
},
{
"cell_type": "markdown",
- "id": "4f59b5fa",
+ "id": "c8b1b9ba",
"metadata": {},
"source": [
"In fact, the optimal consumption obtained in the discrete version is not\n",
@@ -1097,7 +1097,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cdf501e6",
+ "id": "1faa6761",
"metadata": {},
"outputs": [],
"source": [
@@ -1108,7 +1108,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a5d7ee84",
+ "id": "243f2dfb",
"metadata": {},
"outputs": [],
"source": [
@@ -1119,7 +1119,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9971ace0",
+ "id": "29b3b437",
"metadata": {},
"outputs": [],
"source": [
@@ -1128,7 +1128,7 @@
},
{
"cell_type": "markdown",
- "id": "5bb65408",
+ "id": "5411be95",
"metadata": {},
"source": [
"The value function is monotone:"
@@ -1137,7 +1137,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2bcd77a9",
+ "id": "4891201e",
"metadata": {},
"outputs": [],
"source": [
@@ -1146,7 +1146,7 @@
},
{
"cell_type": "markdown",
- "id": "716503b9",
+ "id": "292c1fb4",
"metadata": {},
"source": [
"### Comparison of the Solution Methods\n",
@@ -1159,7 +1159,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6713504e",
+ "id": "b7fefba4",
"metadata": {},
"outputs": [],
"source": [
@@ -1172,7 +1172,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ac5f0b03",
+ "id": "da902014",
"metadata": {},
"outputs": [],
"source": [
@@ -1181,7 +1181,7 @@
},
{
"cell_type": "markdown",
- "id": "162ecbbe",
+ "id": "19a33759",
"metadata": {},
"source": [
"#### Modified Policy Iteration"
@@ -1190,7 +1190,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b621312d",
+ "id": "e612ab94",
"metadata": {},
"outputs": [],
"source": [
@@ -1201,7 +1201,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6069b687",
+ "id": "67cfa316",
"metadata": {},
"outputs": [],
"source": [
@@ -1210,7 +1210,7 @@
},
{
"cell_type": "markdown",
- "id": "d1435a03",
+ "id": "022c930c",
"metadata": {},
"source": [
"#### Speed Comparison"
@@ -1219,7 +1219,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bb432c4a",
+ "id": "9a8a88d8",
"metadata": {},
"outputs": [],
"source": [
@@ -1230,7 +1230,7 @@
},
{
"cell_type": "markdown",
- "id": "e564cddf",
+ "id": "1aa774fb",
"metadata": {},
"source": [
"As is often the case, policy iteration and modified policy iteration are\n",
@@ -1250,7 +1250,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1db6fadb",
+ "id": "53d7f7c9",
"metadata": {},
"outputs": [],
"source": [
@@ -1273,7 +1273,7 @@
},
{
"cell_type": "markdown",
- "id": "c9b7dfed",
+ "id": "802ea8e6",
"metadata": {},
"source": [
"We next plot the consumption policies along with the value iteration"
@@ -1282,7 +1282,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b0645e18",
+ "id": "fcdf0516",
"metadata": {},
"outputs": [],
"source": [
@@ -1313,7 +1313,7 @@
},
{
"cell_type": "markdown",
- "id": "432db4d2",
+ "id": "1da07974",
"metadata": {},
"source": [
"#### Dynamics of the Capital Stock\n",
@@ -1328,7 +1328,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "022863a7",
+ "id": "6ddebd68",
"metadata": {},
"outputs": [],
"source": [
@@ -1361,7 +1361,7 @@
},
{
"cell_type": "markdown",
- "id": "5c6e9b82",
+ "id": "5d895277",
"metadata": {},
"source": [
"(ddp_algorithms)=\n",
diff --git a/_sources/dyn_stack.ipynb b/_sources/dyn_stack.ipynb
index 689c39e5..89d8f087 100644
--- a/_sources/dyn_stack.ipynb
+++ b/_sources/dyn_stack.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "63ae96e3",
+ "id": "0729d8af",
"metadata": {},
"source": [
"(dyn_stack)=\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5c84a4dd",
+ "id": "7d6ab478",
"metadata": {
"tags": [
"hide-output"
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "484675cd",
+ "id": "cf38c570",
"metadata": {},
"source": [
"## Overview\n",
@@ -60,7 +60,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8708a591",
+ "id": "b33605c7",
"metadata": {},
"outputs": [],
"source": [
@@ -73,7 +73,7 @@
},
{
"cell_type": "markdown",
- "id": "8808df5a",
+ "id": "caaa0e9e",
"metadata": {},
"source": [
"## Duopoly\n",
@@ -968,7 +968,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ffb578ac",
+ "id": "5e8f2f12",
"metadata": {},
"outputs": [],
"source": [
@@ -990,7 +990,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d142dd53",
+ "id": "abd444f4",
"metadata": {},
"outputs": [],
"source": [
@@ -1048,7 +1048,7 @@
},
{
"cell_type": "markdown",
- "id": "6d5e99a4",
+ "id": "e63f9ccf",
"metadata": {},
"source": [
"## Time Series for Price and Quantities\n",
@@ -1061,7 +1061,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "52a9ac0a",
+ "id": "53f34d33",
"metadata": {},
"outputs": [],
"source": [
@@ -1082,7 +1082,7 @@
},
{
"cell_type": "markdown",
- "id": "bf54f940",
+ "id": "38b975e0",
"metadata": {},
"source": [
"### Value of Stackelberg Leader\n",
@@ -1097,7 +1097,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d295f2a8",
+ "id": "3e481d76",
"metadata": {},
"outputs": [],
"source": [
@@ -1113,7 +1113,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7fc3cf13",
+ "id": "2f5dac98",
"metadata": {},
"outputs": [],
"source": [
@@ -1125,7 +1125,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fd0328af",
+ "id": "9ab3c481",
"metadata": {},
"outputs": [],
"source": [
@@ -1138,7 +1138,7 @@
},
{
"cell_type": "markdown",
- "id": "d891c2c3",
+ "id": "8ce953c7",
"metadata": {},
"source": [
"## Time Inconsistency of Stackelberg Plan\n",
@@ -1157,7 +1157,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2d31dcd2",
+ "id": "6ac91c53",
"metadata": {},
"outputs": [],
"source": [
@@ -1176,7 +1176,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "95cc613e",
+ "id": "af8d2b24",
"metadata": {},
"outputs": [],
"source": [
@@ -1203,7 +1203,7 @@
},
{
"cell_type": "markdown",
- "id": "1f2338f4",
+ "id": "4880664b",
"metadata": {},
"source": [
"The figure above shows\n",
@@ -1226,7 +1226,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0e208ad4",
+ "id": "606acd57",
"metadata": {},
"outputs": [],
"source": [
@@ -1252,7 +1252,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c4718105",
+ "id": "9bec5460",
"metadata": {},
"outputs": [],
"source": [
@@ -1267,7 +1267,7 @@
},
{
"cell_type": "markdown",
- "id": "aaa0ebe5",
+ "id": "11dcd64b",
"metadata": {},
"source": [
"Note: Variables with `_tilde` are obtained from solving the follower's\n",
@@ -1277,7 +1277,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "15ccc73b",
+ "id": "597415af",
"metadata": {},
"outputs": [],
"source": [
@@ -1289,7 +1289,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ee3a6def",
+ "id": "7d2ac7d4",
"metadata": {},
"outputs": [],
"source": [
@@ -1299,7 +1299,7 @@
},
{
"cell_type": "markdown",
- "id": "cfeba79e",
+ "id": "608bd979",
"metadata": {},
"source": [
"### Explanation of Alignment\n",
@@ -1319,7 +1319,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "55cc3e1a",
+ "id": "fb8e1f46",
"metadata": {},
"outputs": [],
"source": [
@@ -1330,7 +1330,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "19d8fa60",
+ "id": "25d132de",
"metadata": {},
"outputs": [],
"source": [
@@ -1341,7 +1341,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5495f614",
+ "id": "ddc32e65",
"metadata": {},
"outputs": [],
"source": [
@@ -1352,7 +1352,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bcde2478",
+ "id": "6992ff73",
"metadata": {},
"outputs": [],
"source": [
@@ -1363,7 +1363,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0ab5540d",
+ "id": "6276c951",
"metadata": {},
"outputs": [],
"source": [
@@ -1380,7 +1380,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8486c0e7",
+ "id": "113b19a6",
"metadata": {},
"outputs": [],
"source": [
@@ -1391,7 +1391,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "be609941",
+ "id": "efbda16b",
"metadata": {},
"outputs": [],
"source": [
@@ -1402,7 +1402,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7adb0511",
+ "id": "5b8dd53a",
"metadata": {},
"outputs": [],
"source": [
@@ -1443,7 +1443,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "281b9551",
+ "id": "298c489d",
"metadata": {},
"outputs": [],
"source": [
@@ -1467,7 +1467,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "390da07b",
+ "id": "c8ff40c2",
"metadata": {},
"outputs": [],
"source": [
@@ -1477,7 +1477,7 @@
},
{
"cell_type": "markdown",
- "id": "68cf7816",
+ "id": "f35d6815",
"metadata": {},
"source": [
"## Markov Perfect Equilibrium\n",
@@ -1517,7 +1517,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "865d392d",
+ "id": "f9b24d31",
"metadata": {},
"outputs": [],
"source": [
@@ -1558,7 +1558,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cfa25ed9",
+ "id": "3bddddfa",
"metadata": {},
"outputs": [],
"source": [
@@ -1579,7 +1579,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cc4db7fb",
+ "id": "872097b4",
"metadata": {},
"outputs": [],
"source": [
@@ -1590,7 +1590,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e1efc114",
+ "id": "cbace0b8",
"metadata": {},
"outputs": [],
"source": [
@@ -1616,7 +1616,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0a9a4822",
+ "id": "039034a0",
"metadata": {},
"outputs": [],
"source": [
@@ -1632,7 +1632,7 @@
},
{
"cell_type": "markdown",
- "id": "8e3753f5",
+ "id": "8d2f8f76",
"metadata": {},
"source": [
"## Comparing Markov Perfect Equilibrium and Stackelberg Outcome\n",
@@ -1649,7 +1649,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e1e8da01",
+ "id": "fd39f500",
"metadata": {},
"outputs": [],
"source": [
@@ -1673,7 +1673,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6301823a",
+ "id": "896eea1e",
"metadata": {},
"outputs": [],
"source": [
@@ -1687,7 +1687,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "87a5f560",
+ "id": "2b33b1f1",
"metadata": {},
"outputs": [],
"source": [
diff --git a/_sources/entropy.ipynb b/_sources/entropy.ipynb
index 624d9ef2..7bb100f6 100644
--- a/_sources/entropy.ipynb
+++ b/_sources/entropy.ipynb
@@ -3,14 +3,14 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "50096e8f",
+ "id": "60000d2c",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
- "id": "f1dccd60",
+ "id": "fc17fefb",
"metadata": {},
"source": [
"# Etymology of Entropy\n",
diff --git a/_sources/estspec.ipynb b/_sources/estspec.ipynb
index d68a5cbe..b45315fc 100644
--- a/_sources/estspec.ipynb
+++ b/_sources/estspec.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "647722ba",
+ "id": "3c99fbfa",
"metadata": {},
"source": [
"(estspec)=\n",
@@ -25,7 +25,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "387c0e28",
+ "id": "bc46cd45",
"metadata": {
"tags": [
"hide-output"
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "dba57738",
+ "id": "8abab764",
"metadata": {},
"source": [
"## Overview\n",
@@ -65,7 +65,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8134b262",
+ "id": "6ff460fd",
"metadata": {},
"outputs": [],
"source": [
@@ -76,7 +76,7 @@
},
{
"cell_type": "markdown",
- "id": "c53de35b",
+ "id": "c195704e",
"metadata": {},
"source": [
"(periodograms)=\n",
@@ -245,7 +245,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cde1e63d",
+ "id": "3a0921c7",
"metadata": {},
"outputs": [],
"source": [
@@ -265,7 +265,7 @@
},
{
"cell_type": "markdown",
- "id": "402e877d",
+ "id": "74b28d43",
"metadata": {},
"source": [
"This estimate looks rather disappointing, but the data size is only 40, so\n",
@@ -333,7 +333,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ccbd6952",
+ "id": "42f286d3",
"metadata": {},
"outputs": [],
"source": [
@@ -353,7 +353,7 @@
},
{
"cell_type": "markdown",
- "id": "fb84e25f",
+ "id": "ffce6904",
"metadata": {},
"source": [
"### Estimation with Smoothing\n",
@@ -533,7 +533,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e673c3aa",
+ "id": "06f48db6",
"metadata": {},
"outputs": [],
"source": [
@@ -564,7 +564,7 @@
},
{
"cell_type": "markdown",
- "id": "3fc0814e",
+ "id": "acb62d0e",
"metadata": {},
"source": [
"```{solution-end}\n",
@@ -594,7 +594,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "03758f52",
+ "id": "a09478ce",
"metadata": {},
"outputs": [],
"source": [
@@ -626,7 +626,7 @@
},
{
"cell_type": "markdown",
- "id": "50070ecf",
+ "id": "2686e64d",
"metadata": {},
"source": [
"```{solution-end}\n",
diff --git a/_sources/five_preferences.ipynb b/_sources/five_preferences.ipynb
index 0e43dce7..64741a55 100644
--- a/_sources/five_preferences.ipynb
+++ b/_sources/five_preferences.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "6645d09a",
+ "id": "7625ad92",
"metadata": {},
"source": [
"# Risk and Model Uncertainty\n",
@@ -50,7 +50,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1197e379",
+ "id": "360fb71b",
"metadata": {},
"outputs": [],
"source": [
@@ -70,7 +70,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "869859ff",
+ "id": "2d99c875",
"metadata": {
"tags": [
"hide-input"
@@ -100,7 +100,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0278e0c3",
+ "id": "711712dc",
"metadata": {
"tags": [
"hide-input"
@@ -160,7 +160,7 @@
},
{
"cell_type": "markdown",
- "id": "21724223",
+ "id": "6a927deb",
"metadata": {},
"source": [
"## Basic objects\n",
@@ -227,7 +227,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "48a109a5",
+ "id": "19a4dca6",
"metadata": {
"tags": [
"hide-input"
@@ -261,7 +261,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "eb454b08",
+ "id": "d949b13f",
"metadata": {
"mystnb": {
"figure": {
@@ -284,7 +284,7 @@
},
{
"cell_type": "markdown",
- "id": "e33aa288",
+ "id": "48d9aa25",
"metadata": {},
"source": [
"The heat maps in the next two figures vary both $\\hat{\\pi}_1$ and $\\pi_1$.\n",
@@ -295,7 +295,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9ea1b6a9",
+ "id": "96ee2185",
"metadata": {
"tags": [
"hide-input"
@@ -326,7 +326,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ac2c4b9b",
+ "id": "f25651f6",
"metadata": {
"tags": [
"hide-input"
@@ -346,7 +346,7 @@
},
{
"cell_type": "markdown",
- "id": "4ef38a6b",
+ "id": "40907979",
"metadata": {},
"source": [
"The next figure plots the logarithm of entropy."
@@ -355,7 +355,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2d0a27ac",
+ "id": "9b838e4e",
"metadata": {
"tags": [
"hide-input"
@@ -372,7 +372,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ce8772d8",
+ "id": "15e7f01c",
"metadata": {
"tags": [
"hide-input"
@@ -391,7 +391,7 @@
},
{
"cell_type": "markdown",
- "id": "d10712cf",
+ "id": "8680ccdd",
"metadata": {},
"source": [
"## Five preference specifications\n",
@@ -606,7 +606,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0e310b17",
+ "id": "50c6beab",
"metadata": {
"tags": [
"hide-input"
@@ -640,7 +640,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cb781b0f",
+ "id": "38a38680",
"metadata": {
"tags": [
"hide-input"
@@ -658,7 +658,7 @@
},
{
"cell_type": "markdown",
- "id": "da34145e",
+ "id": "a3c56403",
"metadata": {},
"source": [
"For large values of $\\theta$, ${\\sf T} u(c)$ is approximately linear in the probability $\\pi_1$, but for lower values of $\\theta$, ${\\sf T} u(c)$ has considerable curvature as a function of $\\pi_1$.\n",
@@ -673,7 +673,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ca7e4858",
+ "id": "d46adcde",
"metadata": {
"tags": [
"hide-input"
@@ -718,7 +718,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cc17fc5c",
+ "id": "2ee4e687",
"metadata": {
"tags": [
"hide-input"
@@ -763,7 +763,7 @@
},
{
"cell_type": "markdown",
- "id": "5bdfd912",
+ "id": "d9a72e98",
"metadata": {},
"source": [
"The panel on the right portrays how the transformation $\\exp\\left(\\frac{-u\\left(c\\right)}{\\theta}\\right)$ sends $u\\left(c\\right)$ to a new function by (i) flipping the sign, and (ii) increasing curvature in proportion to $\\theta$.\n",
@@ -859,7 +859,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "02e8ed6b",
+ "id": "23a3ee2c",
"metadata": {
"tags": [
"hide-input"
@@ -891,7 +891,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bb0c4b4a",
+ "id": "a50777d1",
"metadata": {
"tags": [
"hide-input"
@@ -912,7 +912,7 @@
},
{
"cell_type": "markdown",
- "id": "e328156f",
+ "id": "759ee886",
"metadata": {},
"source": [
"The next figure shows the function $\\sum_{i=1}^I \\pi_i m_i [ u(c_i) + \\theta \\log m_i ]$ that is to be\n",
@@ -924,7 +924,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1f35df6f",
+ "id": "7662ed88",
"metadata": {
"tags": [
"hide-input"
@@ -954,7 +954,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9bfc87e2",
+ "id": "22f4a203",
"metadata": {
"tags": [
"hide-input"
@@ -994,7 +994,7 @@
},
{
"cell_type": "markdown",
- "id": "8b50a304",
+ "id": "f0efc200",
"metadata": {},
"source": [
"Evidently, from this figure and also from formula {eq}`tom12`, lower values of $\\theta$ lead to lower,\n",
@@ -1111,7 +1111,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d8f3d6bd",
+ "id": "87c38e78",
"metadata": {
"tags": [
"hide-input"
@@ -1234,7 +1234,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0bfdd9dc",
+ "id": "33381966",
"metadata": {
"tags": [
"hide-input"
@@ -1284,7 +1284,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b894e375",
+ "id": "b93876a3",
"metadata": {
"tags": [
"hide-input"
@@ -1314,7 +1314,7 @@
},
{
"cell_type": "markdown",
- "id": "8ee6688d",
+ "id": "97f8547f",
"metadata": {},
"source": [
"**Kink at 45 degree line**\n",
@@ -1384,7 +1384,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c26ac736",
+ "id": "0fc9a36e",
"metadata": {
"tags": [
"hide-input"
@@ -1435,7 +1435,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d6555f39",
+ "id": "d7f2e9bb",
"metadata": {
"tags": [
"hide-input"
@@ -1465,7 +1465,7 @@
},
{
"cell_type": "markdown",
- "id": "f971c618",
+ "id": "4c0465b2",
"metadata": {},
"source": [
"Note that all three lines of the left graph intersect at (1, 3). While the intersection at (3, 1) is hard-coded, the intersection at (1,3) arises from the computation, which confirms that the code seems to be\n",
@@ -1536,7 +1536,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3d3dc947",
+ "id": "810bb3bf",
"metadata": {
"tags": [
"hide-input"
@@ -1568,7 +1568,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c3db4bc4",
+ "id": "bb2d50cf",
"metadata": {
"tags": [
"hide-input"
@@ -1593,7 +1593,7 @@
},
{
"cell_type": "markdown",
- "id": "a8955e36",
+ "id": "b376d4f2",
"metadata": {},
"source": [
"Because budget constraints are linear, asset prices are identical under\n",
@@ -1621,7 +1621,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "85142755",
+ "id": "174cca24",
"metadata": {
"tags": [
"hide-input"
@@ -1655,7 +1655,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "723f3fa9",
+ "id": "55355056",
"metadata": {
"tags": [
"hide-input"
@@ -1694,7 +1694,7 @@
},
{
"cell_type": "markdown",
- "id": "ab7e7145",
+ "id": "22014b60",
"metadata": {},
"source": [
"The figure indicates that the certainty equivalent\n",
@@ -1751,7 +1751,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "462c489c",
+ "id": "a18bf322",
"metadata": {
"tags": [
"hide-input"
@@ -1802,7 +1802,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5e0b88cd",
+ "id": "7a160a7c",
"metadata": {
"tags": [
"hide-input"
@@ -1879,7 +1879,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3a1f9e31",
+ "id": "335a18da",
"metadata": {
"tags": [
"hide-input"
@@ -1895,7 +1895,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d6adfd7a",
+ "id": "7f677165",
"metadata": {
"tags": [
"hide-input"
@@ -1910,7 +1910,7 @@
},
{
"cell_type": "markdown",
- "id": "d6c9fc0b",
+ "id": "3af0467c",
"metadata": {},
"source": [
"## Bounds on expected utility\n",
@@ -1972,7 +1972,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7450f7d9",
+ "id": "25845864",
"metadata": {
"tags": [
"hide-input"
@@ -2040,7 +2040,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "653c1bf6",
+ "id": "5ae38623",
"metadata": {
"tags": [
"hide-input"
@@ -2069,7 +2069,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "397ab656",
+ "id": "2bcbd42f",
"metadata": {
"tags": [
"hide-input"
@@ -2087,7 +2087,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "eb61155b",
+ "id": "1f748310",
"metadata": {
"tags": [
"hide-input"
@@ -2106,7 +2106,7 @@
},
{
"cell_type": "markdown",
- "id": "1c7fce39",
+ "id": "b4d5e5e8",
"metadata": {},
"source": [
"In this figure, expected utility is on the co-ordinate axis\n",
@@ -2211,7 +2211,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "555170d7",
+ "id": "ac2b1d63",
"metadata": {
"tags": [
"hide-input"
@@ -2231,7 +2231,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "205cbbe9",
+ "id": "d9989bf3",
"metadata": {
"tags": [
"hide-input"
@@ -2261,7 +2261,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0ccb4e43",
+ "id": "a1550ab0",
"metadata": {
"tags": [
"hide-input"
@@ -2286,7 +2286,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "143546fe",
+ "id": "69375dcb",
"metadata": {
"tags": [
"hide-input"
@@ -2299,7 +2299,7 @@
},
{
"cell_type": "markdown",
- "id": "4ca4b9c9",
+ "id": "f5ff4b44",
"metadata": {},
"source": [
"The density for the approximating model is\n",
diff --git a/_sources/growth_in_dles.ipynb b/_sources/growth_in_dles.ipynb
index 586ad1a6..84224938 100644
--- a/_sources/growth_in_dles.ipynb
+++ b/_sources/growth_in_dles.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "d0d7b6ee",
+ "id": "e32ae8bf",
"metadata": {},
"source": [
"(growth_in_dles)=\n",
@@ -28,7 +28,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8322349e",
+ "id": "3aa813f3",
"metadata": {
"tags": [
"hide-output"
@@ -41,7 +41,7 @@
},
{
"cell_type": "markdown",
- "id": "5c5e6a71",
+ "id": "840b2cb5",
"metadata": {},
"source": [
"This lecture describes several complete market economies having a\n",
@@ -58,7 +58,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c91d1eeb",
+ "id": "28815ca0",
"metadata": {},
"outputs": [],
"source": [
@@ -69,7 +69,7 @@
},
{
"cell_type": "markdown",
- "id": "ed103cc7",
+ "id": "c0458696",
"metadata": {},
"source": [
"## Common Structure\n",
@@ -321,7 +321,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "93bf6583",
+ "id": "f1ab63e7",
"metadata": {},
"outputs": [],
"source": [
@@ -362,7 +362,7 @@
},
{
"cell_type": "markdown",
- "id": "d49ae89b",
+ "id": "ea4d65bd",
"metadata": {},
"source": [
"These parameter values are used to define an economy of the DLE class."
@@ -371,7 +371,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1ba96186",
+ "id": "35354c76",
"metadata": {},
"outputs": [],
"source": [
@@ -380,7 +380,7 @@
},
{
"cell_type": "markdown",
- "id": "a0a87b51",
+ "id": "fd6147fc",
"metadata": {},
"source": [
"We can then simulate the economy for a chosen length of time, from our\n",
@@ -390,7 +390,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1d6dc2b5",
+ "id": "6942df2a",
"metadata": {},
"outputs": [],
"source": [
@@ -399,7 +399,7 @@
},
{
"cell_type": "markdown",
- "id": "d94b7a67",
+ "id": "b3b1ae6b",
"metadata": {},
"source": [
"The economy stores the simulated values for each variable. Below we plot\n",
@@ -409,7 +409,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "141c81b6",
+ "id": "9e212271",
"metadata": {},
"outputs": [],
"source": [
@@ -422,7 +422,7 @@
},
{
"cell_type": "markdown",
- "id": "1d70499c",
+ "id": "8cc9e110",
"metadata": {},
"source": [
"Inspection of the plot shows that the sample paths of consumption and\n",
@@ -435,7 +435,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f478c465",
+ "id": "dc7dfe3e",
"metadata": {},
"outputs": [],
"source": [
@@ -444,7 +444,7 @@
},
{
"cell_type": "markdown",
- "id": "502276c3",
+ "id": "f2879bcb",
"metadata": {},
"source": [
"The endogenous eigenvalue that appears to be unity reflects the random\n",
@@ -457,7 +457,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6abfc34f",
+ "id": "92e4b082",
"metadata": {},
"outputs": [],
"source": [
@@ -466,7 +466,7 @@
},
{
"cell_type": "markdown",
- "id": "44830295",
+ "id": "f2f10360",
"metadata": {},
"source": [
"The fact that the largest endogenous eigenvalue is strictly less than\n",
@@ -477,7 +477,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ba7f2e4c",
+ "id": "77bdd7b0",
"metadata": {},
"outputs": [],
"source": [
@@ -488,7 +488,7 @@
},
{
"cell_type": "markdown",
- "id": "497f80fd",
+ "id": "04ce6db8",
"metadata": {},
"source": [
"However, the near-unity endogenous eigenvalue means that these steady\n",
@@ -524,7 +524,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0e9efdbd",
+ "id": "d6d31418",
"metadata": {},
"outputs": [],
"source": [
@@ -541,7 +541,7 @@
},
{
"cell_type": "markdown",
- "id": "94a19070",
+ "id": "17aeb8ed",
"metadata": {},
"source": [
"Creating the DLE class and then simulating gives the following plot for\n",
@@ -551,7 +551,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "52bc740c",
+ "id": "61e57b81",
"metadata": {},
"outputs": [],
"source": [
@@ -567,7 +567,7 @@
},
{
"cell_type": "markdown",
- "id": "1d3c25ef",
+ "id": "b2773e69",
"metadata": {},
"source": [
"Simulating our new economy shows that consumption grows quickly in the\n",
@@ -580,7 +580,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "21e26eee",
+ "id": "512351d1",
"metadata": {},
"outputs": [],
"source": [
@@ -590,7 +590,7 @@
},
{
"cell_type": "markdown",
- "id": "10bd7da3",
+ "id": "61f61119",
"metadata": {},
"source": [
"The economy converges faster to this level than in Example 1 because the\n",
@@ -601,7 +601,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7ed3fd8c",
+ "id": "fdadd59e",
"metadata": {},
"outputs": [],
"source": [
@@ -610,7 +610,7 @@
},
{
"cell_type": "markdown",
- "id": "f054c7f5",
+ "id": "14da2aa5",
"metadata": {},
"source": [
"### Example 3: A Jones-Manuelli (1990) Economy\n",
@@ -657,7 +657,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "acfd7e46",
+ "id": "e052b61f",
"metadata": {},
"outputs": [],
"source": [
@@ -668,7 +668,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4e027051",
+ "id": "1e8a015b",
"metadata": {},
"outputs": [],
"source": [
@@ -677,7 +677,7 @@
},
{
"cell_type": "markdown",
- "id": "ec7709a9",
+ "id": "62dc61a0",
"metadata": {},
"source": [
"We simulate this economy from the original state vector"
@@ -686,7 +686,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0b3eab23",
+ "id": "ad31805a",
"metadata": {},
"outputs": [],
"source": [
@@ -701,7 +701,7 @@
},
{
"cell_type": "markdown",
- "id": "fac38174",
+ "id": "63d2029e",
"metadata": {},
"source": [
"Thus, adding habit persistence to the Hall model of Example 1 is enough\n",
@@ -714,7 +714,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b56b550a",
+ "id": "260f5bda",
"metadata": {},
"outputs": [],
"source": [
@@ -723,7 +723,7 @@
},
{
"cell_type": "markdown",
- "id": "3f9411d6",
+ "id": "6ae78637",
"metadata": {},
"source": [
"We now have two unit endogenous eigenvalues. One stems from satisfying\n",
@@ -742,7 +742,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ccaf4b43",
+ "id": "3298e778",
"metadata": {},
"outputs": [],
"source": [
@@ -761,7 +761,7 @@
},
{
"cell_type": "markdown",
- "id": "e2d793cd",
+ "id": "c8d197d1",
"metadata": {},
"source": [
"We no longer achieve sustained growth if $\\lambda$ is raised from -1 to -0.7.\n",
@@ -773,7 +773,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "935cd722",
+ "id": "ce4b3f92",
"metadata": {},
"outputs": [],
"source": [
@@ -782,7 +782,7 @@
},
{
"cell_type": "markdown",
- "id": "903750c1",
+ "id": "e0d1b42e",
"metadata": {},
"source": [
"### Example 3.2: More Impatience\n",
@@ -793,7 +793,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c5fc1508",
+ "id": "f860b099",
"metadata": {},
"outputs": [],
"source": [
@@ -812,7 +812,7 @@
},
{
"cell_type": "markdown",
- "id": "156cd4a4",
+ "id": "5e6ee43d",
"metadata": {},
"source": [
"Growth also fails if we lower $\\beta$, since we now have\n",
@@ -829,7 +829,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c4ed2132",
+ "id": "87bd1b30",
"metadata": {},
"outputs": [],
"source": [
diff --git a/_sources/hs_invertibility_example.ipynb b/_sources/hs_invertibility_example.ipynb
index e88a50fd..9a50a0c6 100644
--- a/_sources/hs_invertibility_example.ipynb
+++ b/_sources/hs_invertibility_example.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "08503ec0",
+ "id": "da3e8bb3",
"metadata": {},
"source": [
"(hs_invertibility_example)=\n",
@@ -30,7 +30,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ae913f01",
+ "id": "1e33055e",
"metadata": {
"tags": [
"hide-output"
@@ -43,7 +43,7 @@
},
{
"cell_type": "markdown",
- "id": "8e14d5e2",
+ "id": "29fe9ab6",
"metadata": {},
"source": [
"We'll make these imports:"
@@ -52,7 +52,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e43e5556",
+ "id": "c58881c5",
"metadata": {},
"outputs": [],
"source": [
@@ -65,7 +65,7 @@
},
{
"cell_type": "markdown",
- "id": "3fbb8cab",
+ "id": "f91f222e",
"metadata": {},
"source": [
"This lecture describes an early contribution to what is now often called\n",
@@ -180,7 +180,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "698971e0",
+ "id": "68c53f72",
"metadata": {},
"outputs": [],
"source": [
@@ -216,7 +216,7 @@
},
{
"cell_type": "markdown",
- "id": "eafa0eaa",
+ "id": "72215085",
"metadata": {},
"source": [
"We define the household's net of interest deficit as $c_t - d_t$.\n",
@@ -294,7 +294,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9c7ab020",
+ "id": "b8b4e98d",
"metadata": {},
"outputs": [],
"source": [
@@ -320,7 +320,7 @@
},
{
"cell_type": "markdown",
- "id": "608f13a8",
+ "id": "94945351",
"metadata": {},
"source": [
"The above figure displays the impulse response of consumption and the\n",
@@ -340,7 +340,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "503b0249",
+ "id": "e2482216",
"metadata": {},
"outputs": [],
"source": [
@@ -388,7 +388,7 @@
},
{
"cell_type": "markdown",
- "id": "fdb117b3",
+ "id": "6b4414b9",
"metadata": {},
"source": [
"The above figure displays the impulse response of consumption and the\n",
@@ -407,7 +407,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "64f90994",
+ "id": "77addde3",
"metadata": {},
"outputs": [],
"source": [
@@ -442,7 +442,7 @@
},
{
"cell_type": "markdown",
- "id": "e1474a79",
+ "id": "8f8e006c",
"metadata": {},
"source": [
"The above figure displays the impulse responses of $u_t$ to\n",
diff --git a/_sources/hs_recursive_models.ipynb b/_sources/hs_recursive_models.ipynb
index 27070951..ecf01201 100644
--- a/_sources/hs_recursive_models.ipynb
+++ b/_sources/hs_recursive_models.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "b1cf830f",
+ "id": "731307de",
"metadata": {},
"source": [
"(hs_recursive_models)=\n",
diff --git a/_sources/intro.ipynb b/_sources/intro.ipynb
index ac576f1d..eb9b8cf1 100644
--- a/_sources/intro.ipynb
+++ b/_sources/intro.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "24911726",
+ "id": "a8cbd67b",
"metadata": {},
"source": [
"# Advanced Quantitative Economics with Python\n",
diff --git a/_sources/irfs_in_hall_model.ipynb b/_sources/irfs_in_hall_model.ipynb
index 87772fa5..1f6a0c55 100644
--- a/_sources/irfs_in_hall_model.ipynb
+++ b/_sources/irfs_in_hall_model.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "76b0abe5",
+ "id": "908d4fa9",
"metadata": {},
"source": [
"(irfs_in_hall_model)=\n",
@@ -28,7 +28,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "31e896c6",
+ "id": "8ff041a6",
"metadata": {
"tags": [
"hide-output"
@@ -41,7 +41,7 @@
},
{
"cell_type": "markdown",
- "id": "d054716a",
+ "id": "8d76d79c",
"metadata": {},
"source": [
"We'll make these imports:"
@@ -50,7 +50,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "46b5a03f",
+ "id": "2bb0f6c1",
"metadata": {},
"outputs": [],
"source": [
@@ -61,7 +61,7 @@
},
{
"cell_type": "markdown",
- "id": "780d7e93",
+ "id": "e0ca4390",
"metadata": {},
"source": [
"This lecture shows how the DLE class can be used to create impulse\n",
@@ -105,7 +105,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "41b10f67",
+ "id": "4f2a232e",
"metadata": {},
"outputs": [],
"source": [
@@ -140,7 +140,7 @@
},
{
"cell_type": "markdown",
- "id": "7641da34",
+ "id": "f6d33fc6",
"metadata": {},
"source": [
"These parameter values are used to define an economy of the DLE class.\n",
@@ -155,7 +155,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0c3347e8",
+ "id": "e20a8f4a",
"metadata": {},
"outputs": [],
"source": [
@@ -171,7 +171,7 @@
},
{
"cell_type": "markdown",
- "id": "99fdd2ac",
+ "id": "a892bb05",
"metadata": {},
"source": [
"The DLE class can be used to create impulse response functions for each\n",
@@ -188,7 +188,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "14a70cdb",
+ "id": "386499f0",
"metadata": {},
"outputs": [],
"source": [
@@ -202,7 +202,7 @@
},
{
"cell_type": "markdown",
- "id": "c48538f8",
+ "id": "68465b1d",
"metadata": {},
"source": [
"It can be seen that the endowment shock has permanent effects on the\n",
@@ -225,7 +225,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3db8b44d",
+ "id": "ad967e95",
"metadata": {},
"outputs": [],
"source": [
@@ -246,7 +246,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3faf58c6",
+ "id": "f94c3dfc",
"metadata": {},
"outputs": [],
"source": [
@@ -261,7 +261,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8f88cf2e",
+ "id": "a5357996",
"metadata": {},
"outputs": [],
"source": [
@@ -271,7 +271,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fa700fee",
+ "id": "d8285b27",
"metadata": {},
"outputs": [],
"source": [
@@ -281,7 +281,7 @@
},
{
"cell_type": "markdown",
- "id": "f13670ce",
+ "id": "93219788",
"metadata": {},
"source": [
"The first graph shows that there seems to be a downward trend in both\n",
@@ -339,7 +339,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d7e22970",
+ "id": "46b96266",
"metadata": {},
"outputs": [],
"source": [
@@ -369,7 +369,7 @@
},
{
"cell_type": "markdown",
- "id": "8409af9b",
+ "id": "d00e41d2",
"metadata": {},
"source": [
"In contrast to Hall's original model of Example 1, it is now investment\n",
@@ -382,7 +382,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e686946e",
+ "id": "48861ddb",
"metadata": {},
"outputs": [],
"source": [
@@ -396,7 +396,7 @@
},
{
"cell_type": "markdown",
- "id": "eb5f740b",
+ "id": "159a9b97",
"metadata": {},
"source": [
"The impulse response functions confirm that consumption is now much more\n",
diff --git a/_sources/knowing_forecasts_of_others.ipynb b/_sources/knowing_forecasts_of_others.ipynb
index 1348fa64..0b85110e 100644
--- a/_sources/knowing_forecasts_of_others.ipynb
+++ b/_sources/knowing_forecasts_of_others.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "1033218e",
+ "id": "35ea8614",
"metadata": {},
"source": [
"(knowing_the_forecast_of_others_v3)=\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bdc600fd",
+ "id": "d551d0c0",
"metadata": {
"tags": [
"hide-output"
@@ -36,7 +36,7 @@
},
{
"cell_type": "markdown",
- "id": "82fb2adc",
+ "id": "d7388218",
"metadata": {},
"source": [
"## Introduction\n",
@@ -926,7 +926,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4f5809a9",
+ "id": "1f7c1714",
"metadata": {},
"outputs": [],
"source": [
@@ -943,7 +943,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "59157549",
+ "id": "37514315",
"metadata": {},
"outputs": [],
"source": [
@@ -957,7 +957,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ef0b14ff",
+ "id": "59190b4a",
"metadata": {},
"outputs": [],
"source": [
@@ -971,7 +971,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4e00acdd",
+ "id": "6673fb65",
"metadata": {},
"outputs": [],
"source": [
@@ -983,7 +983,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d332f188",
+ "id": "62aa96e2",
"metadata": {},
"outputs": [],
"source": [
@@ -1000,7 +1000,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5c988556",
+ "id": "8c10ddb1",
"metadata": {},
"outputs": [],
"source": [
@@ -1012,7 +1012,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b79ab8ec",
+ "id": "bda55eac",
"metadata": {},
"outputs": [],
"source": [
@@ -1043,7 +1043,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "833d0ef0",
+ "id": "fa8b0f18",
"metadata": {},
"outputs": [],
"source": [
@@ -1055,7 +1055,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "46a16a13",
+ "id": "a9b76445",
"metadata": {},
"outputs": [],
"source": [
@@ -1066,7 +1066,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "acbdf5de",
+ "id": "e1a70daa",
"metadata": {},
"outputs": [],
"source": [
@@ -1076,7 +1076,7 @@
},
{
"cell_type": "markdown",
- "id": "d68126d4",
+ "id": "4a5dbab7",
"metadata": {},
"source": [
"### Step 4: Compute impulse response functions\n",
@@ -1088,7 +1088,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4a2e4d1c",
+ "id": "c99d4fa2",
"metadata": {},
"outputs": [],
"source": [
@@ -1109,7 +1109,7 @@
},
{
"cell_type": "markdown",
- "id": "a2ee7afa",
+ "id": "3319792f",
"metadata": {},
"source": [
"### Step 5: Compute stationary covariance matrices and population regressions\n",
@@ -1143,7 +1143,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1aef74f0",
+ "id": "44d26619",
"metadata": {},
"outputs": [],
"source": [
@@ -1166,7 +1166,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1bc2c4b9",
+ "id": "1ca92399",
"metadata": {},
"outputs": [],
"source": [
@@ -1178,7 +1178,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "dfabb4e2",
+ "id": "4c9bd2ac",
"metadata": {},
"outputs": [],
"source": [
@@ -1191,7 +1191,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "60499b61",
+ "id": "aa37540d",
"metadata": {},
"outputs": [],
"source": [
@@ -1202,7 +1202,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5237e744",
+ "id": "2600baa4",
"metadata": {},
"outputs": [],
"source": [
@@ -1214,7 +1214,7 @@
},
{
"cell_type": "markdown",
- "id": "08f57974",
+ "id": "a5c21364",
"metadata": {},
"source": [
"## Equilibrium with Two Noisy Signals on $\\theta_t$\n",
@@ -1318,7 +1318,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "90da85b0",
+ "id": "2f395a94",
"metadata": {},
"outputs": [],
"source": [
@@ -1335,7 +1335,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5c1b865e",
+ "id": "6d00a528",
"metadata": {},
"outputs": [],
"source": [
@@ -1347,7 +1347,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "078cc7aa",
+ "id": "84715b99",
"metadata": {},
"outputs": [],
"source": [
@@ -1385,7 +1385,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a0b2e491",
+ "id": "de9e230b",
"metadata": {},
"outputs": [],
"source": [
@@ -1397,7 +1397,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "355822fe",
+ "id": "32139974",
"metadata": {},
"outputs": [],
"source": [
@@ -1408,7 +1408,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4a6535c4",
+ "id": "14640618",
"metadata": {},
"outputs": [],
"source": [
@@ -1418,7 +1418,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7fab61d8",
+ "id": "413558e3",
"metadata": {},
"outputs": [],
"source": [
@@ -1440,7 +1440,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fea11698",
+ "id": "01ff6b58",
"metadata": {},
"outputs": [],
"source": [
@@ -1463,7 +1463,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d9081c09",
+ "id": "84d9e3b6",
"metadata": {},
"outputs": [],
"source": [
@@ -1475,7 +1475,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7ee85c8a",
+ "id": "ba33cf9e",
"metadata": {},
"outputs": [],
"source": [
@@ -1488,7 +1488,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "eb2837f1",
+ "id": "c61920d2",
"metadata": {},
"outputs": [],
"source": [
@@ -1499,7 +1499,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "53970d6e",
+ "id": "a4e28b8c",
"metadata": {},
"outputs": [],
"source": [
@@ -1523,7 +1523,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5187aca0",
+ "id": "943d8cbe",
"metadata": {},
"outputs": [],
"source": [
@@ -1534,7 +1534,7 @@
},
{
"cell_type": "markdown",
- "id": "62567097",
+ "id": "8cb15099",
"metadata": {},
"source": [
"## Key Step\n",
@@ -1552,7 +1552,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f0e59cf6",
+ "id": "8b0301a9",
"metadata": {},
"outputs": [],
"source": [
@@ -1569,7 +1569,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "95a3f5d6",
+ "id": "aae08d27",
"metadata": {},
"outputs": [],
"source": [
@@ -1578,7 +1578,7 @@
},
{
"cell_type": "markdown",
- "id": "024cfadb",
+ "id": "8ff7bd70",
"metadata": {},
"source": [
"The $R^2$ in this regression equals $1$.\n",
@@ -1654,7 +1654,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "930d84e5",
+ "id": "cfb243ff",
"metadata": {},
"outputs": [],
"source": [
@@ -1669,7 +1669,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fb1a62b1",
+ "id": "deb5e6a1",
"metadata": {},
"outputs": [],
"source": [
@@ -1680,7 +1680,7 @@
},
{
"cell_type": "markdown",
- "id": "446f00d0",
+ "id": "1c524709",
"metadata": {},
"source": [
"Now let's form and plot an impulse response function of $k_t^i$ to shocks $v_t$ to $\\theta_{t+1}$"
@@ -1689,7 +1689,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c2f2de6e",
+ "id": "beb48a7f",
"metadata": {},
"outputs": [],
"source": [
@@ -1709,7 +1709,7 @@
},
{
"cell_type": "markdown",
- "id": "86041a76",
+ "id": "d8886cdb",
"metadata": {},
"source": [
"## Comparison of All Signal Structures\n",
@@ -1724,7 +1724,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5b450ed3",
+ "id": "ee8944e0",
"metadata": {
"hide-output": false
},
@@ -1748,7 +1748,7 @@
},
{
"cell_type": "markdown",
- "id": "49d49da7",
+ "id": "130330be",
"metadata": {},
"source": [
"The three panels in the graph above show that\n",
@@ -1776,7 +1776,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9cf55606",
+ "id": "814db42a",
"metadata": {
"hide-output": false
},
@@ -1789,7 +1789,7 @@
},
{
"cell_type": "markdown",
- "id": "65a15cc6",
+ "id": "1d0bb225",
"metadata": {},
"source": [
"Kalman gains for the two\n",
@@ -1799,7 +1799,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fe8edad6",
+ "id": "f487fd21",
"metadata": {
"hide-output": false
},
@@ -1812,7 +1812,7 @@
},
{
"cell_type": "markdown",
- "id": "d11bf774",
+ "id": "c3687bd2",
"metadata": {},
"source": [
"Another lesson that comes from the preceding three-panel graph is that the presence of iid noise\n",
diff --git a/_sources/lqramsey.ipynb b/_sources/lqramsey.ipynb
index c066294c..68d2eb30 100644
--- a/_sources/lqramsey.ipynb
+++ b/_sources/lqramsey.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "f3847b95",
+ "id": "eb0941c4",
"metadata": {},
"source": [
"(lqramsey)=\n",
@@ -25,7 +25,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "faa2e649",
+ "id": "6503ae24",
"metadata": {
"tags": [
"hide-output"
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "06e8f5af",
+ "id": "de580066",
"metadata": {},
"source": [
"## Overview\n",
@@ -86,7 +86,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0a65f93c",
+ "id": "38a5d6bc",
"metadata": {},
"outputs": [],
"source": [
@@ -102,7 +102,7 @@
},
{
"cell_type": "markdown",
- "id": "7d6c5ecf",
+ "id": "54668154",
"metadata": {},
"source": [
"### Model Features\n",
@@ -608,7 +608,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "94c2bd5f",
+ "id": "dc2847d1",
"metadata": {},
"outputs": [],
"source": [
@@ -874,7 +874,7 @@
},
{
"cell_type": "markdown",
- "id": "28a073b5",
+ "id": "ed5986db",
"metadata": {},
"source": [
"### Comments on the Code\n",
@@ -926,7 +926,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "63aef06e",
+ "id": "8ead4042",
"metadata": {},
"outputs": [],
"source": [
@@ -952,7 +952,7 @@
},
{
"cell_type": "markdown",
- "id": "567628dc",
+ "id": "62f14388",
"metadata": {},
"source": [
"The legends on the figures indicate the variables being tracked.\n",
@@ -964,7 +964,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "db5fa374",
+ "id": "34a18bd2",
"metadata": {},
"outputs": [],
"source": [
@@ -973,7 +973,7 @@
},
{
"cell_type": "markdown",
- "id": "88a5c2c6",
+ "id": "e4d45267",
"metadata": {},
"source": [
"```{only} html\n",
@@ -992,7 +992,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d159efe4",
+ "id": "5799bb66",
"metadata": {},
"outputs": [],
"source": [
@@ -1025,7 +1025,7 @@
},
{
"cell_type": "markdown",
- "id": "7d33bc8c",
+ "id": "487c4e85",
"metadata": {},
"source": [
"The call `gen_fig_2(path)` generates"
@@ -1034,7 +1034,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b65171d3",
+ "id": "d0babf06",
"metadata": {},
"outputs": [],
"source": [
@@ -1043,7 +1043,7 @@
},
{
"cell_type": "markdown",
- "id": "e4969d3e",
+ "id": "3bd16d00",
"metadata": {},
"source": [
"```{only} html\n",
@@ -1082,7 +1082,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "171da54e",
+ "id": "3e130a82",
"metadata": {},
"outputs": [],
"source": [
@@ -1114,7 +1114,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5932ea35",
+ "id": "a06d9bec",
"metadata": {},
"outputs": [],
"source": [
@@ -1123,7 +1123,7 @@
},
{
"cell_type": "markdown",
- "id": "a533e2e3",
+ "id": "ff24effd",
"metadata": {},
"source": [
"```{solution-end}\n",
diff --git a/_sources/lu_tricks.ipynb b/_sources/lu_tricks.ipynb
index 19963df6..eae97c5e 100644
--- a/_sources/lu_tricks.ipynb
+++ b/_sources/lu_tricks.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "7295d55e",
+ "id": "f13fdd5f",
"metadata": {},
"source": [
"(lu_tricks)=\n",
@@ -52,7 +52,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3f47875b",
+ "id": "101df759",
"metadata": {},
"outputs": [],
"source": [
@@ -62,7 +62,7 @@
},
{
"cell_type": "markdown",
- "id": "03ac9d57",
+ "id": "242bd8b4",
"metadata": {},
"source": [
"### References\n",
@@ -899,7 +899,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "092d722d",
+ "id": "31e65c53",
"metadata": {
"load": "_static/lecture_specific/lu_tricks/control_and_filter.py"
},
@@ -1215,7 +1215,7 @@
},
{
"cell_type": "markdown",
- "id": "cda1922b",
+ "id": "b4cbd319",
"metadata": {},
"source": [
"### Example\n",
@@ -1248,7 +1248,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9d9f799e",
+ "id": "9094ae03",
"metadata": {},
"outputs": [],
"source": [
@@ -1286,7 +1286,7 @@
},
{
"cell_type": "markdown",
- "id": "dfe36e1e",
+ "id": "03e29698",
"metadata": {},
"source": [
"Here's what happens when we change $\\gamma$ to 5.0"
@@ -1295,7 +1295,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c9221675",
+ "id": "0ddc9c63",
"metadata": {},
"outputs": [],
"source": [
@@ -1304,7 +1304,7 @@
},
{
"cell_type": "markdown",
- "id": "3041b953",
+ "id": "7cb8ce79",
"metadata": {},
"source": [
"And here's $\\gamma = 10$"
@@ -1313,7 +1313,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3ce29908",
+ "id": "5ccd2b22",
"metadata": {},
"outputs": [],
"source": [
@@ -1322,7 +1322,7 @@
},
{
"cell_type": "markdown",
- "id": "aabee344",
+ "id": "8f13f1ff",
"metadata": {},
"source": [
"## Exercises\n",
diff --git a/_sources/lucas_asset_pricing_dles.ipynb b/_sources/lucas_asset_pricing_dles.ipynb
index 4c0aa2a8..5491e039 100644
--- a/_sources/lucas_asset_pricing_dles.ipynb
+++ b/_sources/lucas_asset_pricing_dles.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "718ab6e7",
+ "id": "3b0ac8fe",
"metadata": {},
"source": [
"(lucas_asset_pricing_dles)=\n",
@@ -28,7 +28,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "76de50ea",
+ "id": "5a6f8054",
"metadata": {
"tags": [
"hide-output"
@@ -41,7 +41,7 @@
},
{
"cell_type": "markdown",
- "id": "f69709bc",
+ "id": "a02ba1cf",
"metadata": {},
"source": [
"This lecture uses the DLE class to price payout\n",
@@ -61,7 +61,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "88ddbd73",
+ "id": "9adc216e",
"metadata": {},
"outputs": [],
"source": [
@@ -72,7 +72,7 @@
},
{
"cell_type": "markdown",
- "id": "76bbc257",
+ "id": "887c31b8",
"metadata": {},
"source": [
"We use a linear-quadratic version of an economy that Lucas (1978) {cite}`Lucas1978` used\n",
@@ -187,7 +187,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8f87e492",
+ "id": "b94fd00a",
"metadata": {},
"outputs": [],
"source": [
@@ -222,7 +222,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "423adabe",
+ "id": "c2ea9e7c",
"metadata": {},
"outputs": [],
"source": [
@@ -231,7 +231,7 @@
},
{
"cell_type": "markdown",
- "id": "dabbdec4",
+ "id": "5575cbb4",
"metadata": {},
"source": [
"After specifying a \"Pay\" matrix, we simulate the economy.\n",
@@ -243,7 +243,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "137be8e5",
+ "id": "cd2b0d29",
"metadata": {},
"outputs": [],
"source": [
@@ -252,7 +252,7 @@
},
{
"cell_type": "markdown",
- "id": "cc82a95d",
+ "id": "c787b621",
"metadata": {},
"source": [
"The graph below plots the price of this claim over time:"
@@ -261,7 +261,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "dbadefcf",
+ "id": "29b90a52",
"metadata": {},
"outputs": [],
"source": [
@@ -273,7 +273,7 @@
},
{
"cell_type": "markdown",
- "id": "cc4e8fc8",
+ "id": "5eadede3",
"metadata": {},
"source": [
"The next plot displays the realized gross rate of return on this \"Lucas\n",
@@ -283,7 +283,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8812258f",
+ "id": "1a8f2799",
"metadata": {},
"outputs": [],
"source": [
@@ -297,7 +297,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f76b892d",
+ "id": "58ba0379",
"metadata": {},
"outputs": [],
"source": [
@@ -306,7 +306,7 @@
},
{
"cell_type": "markdown",
- "id": "adb27895",
+ "id": "6058129f",
"metadata": {},
"source": [
"Above we have also calculated the correlation coefficient between these\n",
@@ -320,7 +320,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "43d9feff",
+ "id": "18883540",
"metadata": {},
"outputs": [],
"source": [
@@ -333,7 +333,7 @@
},
{
"cell_type": "markdown",
- "id": "e51dc310",
+ "id": "042bc7f6",
"metadata": {},
"source": [
"From the above plot, we can see the tendency of the term structure to\n",
@@ -351,7 +351,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "476022b6",
+ "id": "841f1691",
"metadata": {},
"outputs": [],
"source": [
@@ -367,7 +367,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "995b2729",
+ "id": "0f15f3cd",
"metadata": {},
"outputs": [],
"source": [
@@ -381,7 +381,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bab86a30",
+ "id": "6db6696a",
"metadata": {},
"outputs": [],
"source": [
@@ -390,7 +390,7 @@
},
{
"cell_type": "markdown",
- "id": "c18b4254",
+ "id": "94ca7537",
"metadata": {},
"source": [
"The correlation between these two gross rates is now more negative.\n",
@@ -402,7 +402,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a22f31d6",
+ "id": "06ac6eeb",
"metadata": {},
"outputs": [],
"source": [
@@ -415,7 +415,7 @@
},
{
"cell_type": "markdown",
- "id": "cac74bdb",
+ "id": "8dc8685d",
"metadata": {},
"source": [
"We can see the tendency of the term structure to slope up when rates are\n",
diff --git a/_sources/lucas_model.ipynb b/_sources/lucas_model.ipynb
index 71c04233..f67b5e56 100644
--- a/_sources/lucas_model.ipynb
+++ b/_sources/lucas_model.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "f7663caf",
+ "id": "143aa869",
"metadata": {},
"source": [
"(lucas_asset)=\n",
@@ -39,7 +39,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f1889209",
+ "id": "283f19fa",
"metadata": {},
"outputs": [],
"source": [
@@ -51,7 +51,7 @@
},
{
"cell_type": "markdown",
- "id": "e11e340b",
+ "id": "6448ff27",
"metadata": {},
"source": [
"## The Lucas Model\n",
@@ -398,7 +398,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4442d6de",
+ "id": "16ad6476",
"metadata": {},
"outputs": [],
"source": [
@@ -435,7 +435,7 @@
},
{
"cell_type": "markdown",
- "id": "a727b072",
+ "id": "fb0de1b4",
"metadata": {},
"source": [
"The following function takes an instance of the `LucasTree` and generates a\n",
@@ -445,7 +445,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8bac3b11",
+ "id": "dca65f64",
"metadata": {},
"outputs": [],
"source": [
@@ -485,7 +485,7 @@
},
{
"cell_type": "markdown",
- "id": "a41a1c89",
+ "id": "e4a2838e",
"metadata": {},
"source": [
"To solve the model, we write a function that iterates using the Lucas operator\n",
@@ -495,7 +495,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "90b9e9b8",
+ "id": "f1f5ab2e",
"metadata": {},
"outputs": [],
"source": [
@@ -529,7 +529,7 @@
},
{
"cell_type": "markdown",
- "id": "1778022b",
+ "id": "e795c8eb",
"metadata": {},
"source": [
"Solving the model and plotting the resulting price function"
@@ -538,7 +538,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e421eac3",
+ "id": "f7689b45",
"metadata": {},
"outputs": [],
"source": [
@@ -555,7 +555,7 @@
},
{
"cell_type": "markdown",
- "id": "afa49a3d",
+ "id": "4878df1d",
"metadata": {},
"source": [
"We see that the price is increasing, even if we remove all serial correlation from the endowment process.\n",
@@ -598,7 +598,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "66b32c33",
+ "id": "43f7222a",
"metadata": {},
"outputs": [],
"source": [
@@ -618,7 +618,7 @@
},
{
"cell_type": "markdown",
- "id": "81016c04",
+ "id": "8e5faeb8",
"metadata": {},
"source": [
"```{solution-end}\n",
diff --git a/_sources/markov_jump_lq.ipynb b/_sources/markov_jump_lq.ipynb
index 660a51c5..e43fbb61 100644
--- a/_sources/markov_jump_lq.ipynb
+++ b/_sources/markov_jump_lq.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "71136858",
+ "id": "7f468c5f",
"metadata": {},
"source": [
"(markov_jump_lq)=\n",
@@ -25,7 +25,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f4dfb146",
+ "id": "45250236",
"metadata": {
"tags": [
"hide-output"
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "ceeed896",
+ "id": "88856710",
"metadata": {},
"source": [
"## Overview\n",
@@ -257,7 +257,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c0b296f0",
+ "id": "d8ba2cc8",
"metadata": {},
"outputs": [],
"source": [
@@ -270,7 +270,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b139e2cf",
+ "id": "649ecbeb",
"metadata": {},
"outputs": [],
"source": [
@@ -280,7 +280,7 @@
},
{
"cell_type": "markdown",
- "id": "15ce1a51",
+ "id": "9af2481d",
"metadata": {},
"source": [
"## Example 1\n",
@@ -350,7 +350,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ec09dc8e",
+ "id": "5f5fc9c6",
"metadata": {},
"outputs": [],
"source": [
@@ -393,7 +393,7 @@
},
{
"cell_type": "markdown",
- "id": "5c37a687",
+ "id": "6f469ca1",
"metadata": {},
"source": [
"The continuous part of the state $x_t$ consists of two variables,\n",
@@ -403,7 +403,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a2ca0ca5",
+ "id": "4301bd53",
"metadata": {},
"outputs": [],
"source": [
@@ -412,7 +412,7 @@
},
{
"cell_type": "markdown",
- "id": "214c8462",
+ "id": "acfbfedb",
"metadata": {},
"source": [
"We start with a Markov transition matrix that makes the Markov state be\n",
@@ -452,7 +452,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7677ed0d",
+ "id": "1ce767bb",
"metadata": {},
"outputs": [],
"source": [
@@ -464,7 +464,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8075a44e",
+ "id": "9ea8ac31",
"metadata": {},
"outputs": [],
"source": [
@@ -475,7 +475,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a245d86e",
+ "id": "3b887e17",
"metadata": {},
"outputs": [],
"source": [
@@ -487,7 +487,7 @@
},
{
"cell_type": "markdown",
- "id": "811eae62",
+ "id": "3f7dd634",
"metadata": {},
"source": [
"Let’s look at the value function matrices and the decision rules for\n",
@@ -497,7 +497,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a7e815cd",
+ "id": "c68cca16",
"metadata": {},
"outputs": [],
"source": [
@@ -508,7 +508,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6a6b1140",
+ "id": "e0288aa4",
"metadata": {},
"outputs": [],
"source": [
@@ -519,7 +519,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f80e06b2",
+ "id": "6783cd0c",
"metadata": {},
"outputs": [],
"source": [
@@ -529,7 +529,7 @@
},
{
"cell_type": "markdown",
- "id": "e1e26f13",
+ "id": "b30e2772",
"metadata": {},
"source": [
"Now we’ll plot the decision rules and see if they make sense"
@@ -538,7 +538,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "97c9f968",
+ "id": "ad7c6f52",
"metadata": {},
"outputs": [],
"source": [
@@ -568,7 +568,7 @@
},
{
"cell_type": "markdown",
- "id": "b5a68fdf",
+ "id": "3bc69e68",
"metadata": {},
"source": [
"The above graph plots $k_{t+1}= k_t + u_t = k_t - F x_t$ as an affine\n",
@@ -594,7 +594,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0845fb38",
+ "id": "13906747",
"metadata": {},
"outputs": [],
"source": [
@@ -613,7 +613,7 @@
},
{
"cell_type": "markdown",
- "id": "e91f7c58",
+ "id": "c662744c",
"metadata": {},
"source": [
"Now we’ll depart from the preceding transition matrix that made the\n",
@@ -632,7 +632,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f3bdbf86",
+ "id": "9d9759a2",
"metadata": {},
"outputs": [],
"source": [
@@ -648,7 +648,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6e274b3e",
+ "id": "6de4ab86",
"metadata": {},
"outputs": [],
"source": [
@@ -663,7 +663,7 @@
},
{
"cell_type": "markdown",
- "id": "6118bf41",
+ "id": "a134bee8",
"metadata": {},
"source": [
"We can plot optimal decision rules associated with different\n",
@@ -673,7 +673,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8bc98aaf",
+ "id": "92e29d8d",
"metadata": {},
"outputs": [],
"source": [
@@ -694,7 +694,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ef319a4e",
+ "id": "7aa834c3",
"metadata": {},
"outputs": [],
"source": [
@@ -712,7 +712,7 @@
},
{
"cell_type": "markdown",
- "id": "65901585",
+ "id": "10d4cf59",
"metadata": {},
"source": [
"Notice how the decision rules’ constants and slopes behave as functions\n",
@@ -737,7 +737,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "31d8b8d1",
+ "id": "8681e280",
"metadata": {},
"outputs": [],
"source": [
@@ -752,7 +752,7 @@
},
{
"cell_type": "markdown",
- "id": "88e49a2c",
+ "id": "19281f6f",
"metadata": {},
"source": [
"We can plot optimal decision rules for different $\\lambda$ and\n",
@@ -762,7 +762,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0b07e9ba",
+ "id": "fde00640",
"metadata": {},
"outputs": [],
"source": [
@@ -790,7 +790,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8451359c",
+ "id": "c5fd79cb",
"metadata": {},
"outputs": [],
"source": [
@@ -810,7 +810,7 @@
},
{
"cell_type": "markdown",
- "id": "0d9a1df7",
+ "id": "b6452313",
"metadata": {},
"source": [
"The following code defines a wrapper function that computes optimal\n",
@@ -820,7 +820,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "201ea1d0",
+ "id": "8cd88e66",
"metadata": {},
"outputs": [],
"source": [
@@ -919,7 +919,7 @@
},
{
"cell_type": "markdown",
- "id": "315b9339",
+ "id": "74c69b05",
"metadata": {},
"source": [
"To illustrate the code with another example, we shall set\n",
@@ -971,7 +971,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a94c6f52",
+ "id": "3f03598e",
"metadata": {},
"outputs": [],
"source": [
@@ -980,7 +980,7 @@
},
{
"cell_type": "markdown",
- "id": "cbef4883",
+ "id": "98d5661c",
"metadata": {},
"source": [
"Set $f_{1,{s_t}}$ and $d_{s_t}$ as constant functions and\n",
@@ -993,7 +993,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9bd3668f",
+ "id": "de7fbb05",
"metadata": {},
"outputs": [],
"source": [
@@ -1002,7 +1002,7 @@
},
{
"cell_type": "markdown",
- "id": "e707f552",
+ "id": "063e4e9d",
"metadata": {},
"source": [
"## Example 2\n",
@@ -1072,7 +1072,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7670db4c",
+ "id": "4b03f49d",
"metadata": {},
"outputs": [],
"source": [
@@ -1123,7 +1123,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9da64b9d",
+ "id": "f664475a",
"metadata": {},
"outputs": [],
"source": [
@@ -1132,7 +1132,7 @@
},
{
"cell_type": "markdown",
- "id": "50af271a",
+ "id": "680c3e57",
"metadata": {},
"source": [
"Only $d_{s_t}$ depends on $s_t$."
@@ -1141,7 +1141,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d4b7c3ab",
+ "id": "3db405a5",
"metadata": {},
"outputs": [],
"source": [
@@ -1150,7 +1150,7 @@
},
{
"cell_type": "markdown",
- "id": "0047be53",
+ "id": "9dd1cff6",
"metadata": {},
"source": [
"Only $f_{1,{s_t}}$ depends on $s_t$."
@@ -1159,7 +1159,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2b7a605c",
+ "id": "e39824c5",
"metadata": {},
"outputs": [],
"source": [
@@ -1168,7 +1168,7 @@
},
{
"cell_type": "markdown",
- "id": "4775f6a6",
+ "id": "0b918d7c",
"metadata": {},
"source": [
"Only $f_{2,{s_t}}$ depends on $s_t$."
@@ -1177,7 +1177,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "de73b04f",
+ "id": "ce9948ea",
"metadata": {},
"outputs": [],
"source": [
@@ -1186,7 +1186,7 @@
},
{
"cell_type": "markdown",
- "id": "b7e8b178",
+ "id": "6471c144",
"metadata": {},
"source": [
"Only $\\alpha_0(s_t)$ depends on $s_t$."
@@ -1195,7 +1195,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "90e3e476",
+ "id": "d213f6be",
"metadata": {},
"outputs": [],
"source": [
@@ -1204,7 +1204,7 @@
},
{
"cell_type": "markdown",
- "id": "21aec75d",
+ "id": "7118bfd5",
"metadata": {},
"source": [
"Only $\\rho_{s_t}$ depends on $s_t$."
@@ -1213,7 +1213,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8f5fdfd5",
+ "id": "c2a27038",
"metadata": {},
"outputs": [],
"source": [
@@ -1222,7 +1222,7 @@
},
{
"cell_type": "markdown",
- "id": "b3af24fc",
+ "id": "ccf1d08e",
"metadata": {},
"source": [
"Only $\\sigma_{s_t}$ depends on $s_t$."
@@ -1231,7 +1231,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "66e3000c",
+ "id": "c82f838c",
"metadata": {},
"outputs": [],
"source": [
@@ -1240,7 +1240,7 @@
},
{
"cell_type": "markdown",
- "id": "77963a0f",
+ "id": "b033f87d",
"metadata": {},
"source": [
"## More examples\n",
diff --git a/_sources/matsuyama.ipynb b/_sources/matsuyama.ipynb
index 154e084c..9eb7fc0a 100644
--- a/_sources/matsuyama.ipynb
+++ b/_sources/matsuyama.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "c0ae2893",
+ "id": "5fa42e4b",
"metadata": {},
"source": [
"(matsuyama)=\n",
@@ -38,7 +38,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4f8557b0",
+ "id": "c9b3ecdd",
"metadata": {},
"outputs": [],
"source": [
@@ -50,7 +50,7 @@
},
{
"cell_type": "markdown",
- "id": "cc508d4e",
+ "id": "1ace5a13",
"metadata": {},
"source": [
"### Background\n",
@@ -347,7 +347,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d5328c61",
+ "id": "ba8efd0b",
"metadata": {},
"outputs": [],
"source": [
@@ -658,7 +658,7 @@
},
{
"cell_type": "markdown",
- "id": "607684ab",
+ "id": "8df5eab5",
"metadata": {},
"source": [
"### Time Series of Firm Measures\n",
@@ -675,7 +675,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "af61b9e8",
+ "id": "381ed754",
"metadata": {},
"outputs": [],
"source": [
@@ -713,7 +713,7 @@
},
{
"cell_type": "markdown",
- "id": "20477cb2",
+ "id": "47df5740",
"metadata": {},
"source": [
"In the first case, innovation in the two countries does not synchronize.\n",
@@ -772,7 +772,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e3c0bd86",
+ "id": "4717f6f8",
"metadata": {},
"outputs": [],
"source": [
@@ -826,7 +826,7 @@
},
{
"cell_type": "markdown",
- "id": "af907b7a",
+ "id": "4b9d3a02",
"metadata": {},
"source": [
"Additionally, instead of just seeing 4 plots at once, we might want to\n",
@@ -839,7 +839,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4ea11243",
+ "id": "f960b3b6",
"metadata": {},
"outputs": [],
"source": [
@@ -864,7 +864,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4cb1e5fb",
+ "id": "a9bdf43a",
"metadata": {},
"outputs": [],
"source": [
@@ -876,7 +876,7 @@
},
{
"cell_type": "markdown",
- "id": "47be0867",
+ "id": "71a321ce",
"metadata": {},
"source": [
"```{solution-end}\n",
diff --git a/_sources/muth_kalman.ipynb b/_sources/muth_kalman.ipynb
index f4deac9e..e907b1a1 100644
--- a/_sources/muth_kalman.ipynb
+++ b/_sources/muth_kalman.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "5159047a",
+ "id": "a4a96455",
"metadata": {},
"source": [
"(muth_kalman)=\n",
@@ -25,7 +25,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "245ab0a1",
+ "id": "0feacb83",
"metadata": {
"tags": [
"hide-output"
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "71dea00f",
+ "id": "fa49cc05",
"metadata": {},
"source": [
"We'll also need the following imports:"
@@ -47,7 +47,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f64d39aa",
+ "id": "88e709c0",
"metadata": {},
"outputs": [],
"source": [
@@ -61,7 +61,7 @@
},
{
"cell_type": "markdown",
- "id": "4bcf3eb7",
+ "id": "482f55a5",
"metadata": {},
"source": [
"This lecture uses the Kalman filter to reformulate John F. Muth’s first\n",
@@ -183,7 +183,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "085b3a26",
+ "id": "3d86bbd6",
"metadata": {},
"outputs": [],
"source": [
@@ -214,7 +214,7 @@
},
{
"cell_type": "markdown",
- "id": "b6b6f688",
+ "id": "fc256c01",
"metadata": {},
"source": [
"## Some Useful State-Space Math\n",
@@ -271,7 +271,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "05d991ad",
+ "id": "2bf953b0",
"metadata": {},
"outputs": [],
"source": [
@@ -302,7 +302,7 @@
},
{
"cell_type": "markdown",
- "id": "d0d40624",
+ "id": "aaae7d9e",
"metadata": {},
"source": [
"Now that we have simulated our joint system, we have $x_t$,\n",
@@ -321,7 +321,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e600074a",
+ "id": "0b048867",
"metadata": {},
"outputs": [],
"source": [
@@ -336,7 +336,7 @@
},
{
"cell_type": "markdown",
- "id": "21b29964",
+ "id": "18c2a9b7",
"metadata": {},
"source": [
"Note how $x_t$ and $\\hat{x_t}$ differ.\n",
@@ -354,7 +354,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "685d7ded",
+ "id": "95d0a3e8",
"metadata": {},
"outputs": [],
"source": [
@@ -369,7 +369,7 @@
},
{
"cell_type": "markdown",
- "id": "db5c66c5",
+ "id": "3eb7d036",
"metadata": {},
"source": [
"We see above that $y$ seems to look like white noise around the\n",
@@ -384,7 +384,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9609258e",
+ "id": "d5810e71",
"metadata": {},
"outputs": [],
"source": [
@@ -398,7 +398,7 @@
},
{
"cell_type": "markdown",
- "id": "c74b4135",
+ "id": "903c766a",
"metadata": {},
"source": [
"## MA and AR Representations\n",
@@ -418,7 +418,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2ac0fe7c",
+ "id": "cb0928bc",
"metadata": {},
"outputs": [],
"source": [
@@ -442,7 +442,7 @@
},
{
"cell_type": "markdown",
- "id": "a4c7c242",
+ "id": "035dfef6",
"metadata": {},
"source": [
"The **moving average** coefficients in the top panel show tell-tale\n",
@@ -459,7 +459,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b15ce312",
+ "id": "81af6023",
"metadata": {},
"outputs": [],
"source": [
diff --git a/_sources/opt_tax_recur.ipynb b/_sources/opt_tax_recur.ipynb
index 14620713..d8cbd212 100644
--- a/_sources/opt_tax_recur.ipynb
+++ b/_sources/opt_tax_recur.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "a61ea34d",
+ "id": "789d2fd4",
"metadata": {},
"source": [
"(opt_tax_recur)=\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1a7e1db1",
+ "id": "e3275622",
"metadata": {
"tags": [
"hide-output"
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "cdc0141b",
+ "id": "f94e6997",
"metadata": {},
"source": [
"## Overview\n",
@@ -75,7 +75,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6e0e0db2",
+ "id": "8f640e99",
"metadata": {},
"outputs": [],
"source": [
@@ -90,7 +90,7 @@
},
{
"cell_type": "markdown",
- "id": "b7f0253e",
+ "id": "48c98502",
"metadata": {},
"source": [
"## A Competitive Equilibrium with Distorting Taxes\n",
@@ -746,7 +746,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "afc575f5",
+ "id": "56a5d903",
"metadata": {
"load": "_static/lecture_specific/opt_tax_recur/sequential_allocation.py"
},
@@ -954,7 +954,7 @@
},
{
"cell_type": "markdown",
- "id": "bdab9285",
+ "id": "e6de7b6a",
"metadata": {},
"source": [
"## Recursive Formulation of the Ramsey Problem\n",
@@ -1259,7 +1259,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "32aeeaf2",
+ "id": "da58ac3d",
"metadata": {
"load": "_static/lecture_specific/opt_tax_recur/recursive_allocation.py"
},
@@ -1513,7 +1513,7 @@
},
{
"cell_type": "markdown",
- "id": "4c5376fa",
+ "id": "07394cac",
"metadata": {},
"source": [
"## Examples\n",
@@ -1572,7 +1572,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f1e6f2bf",
+ "id": "3b5c1729",
"metadata": {
"load": "_static/lecture_specific/opt_tax_recur/crra_utility.py"
},
@@ -1628,7 +1628,7 @@
},
{
"cell_type": "markdown",
- "id": "a872e276",
+ "id": "57990f89",
"metadata": {},
"source": [
"We set initial government debt $b_0 = 1$.\n",
@@ -1642,7 +1642,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8aa9287e",
+ "id": "b8d42481",
"metadata": {},
"outputs": [],
"source": [
@@ -1681,7 +1681,7 @@
},
{
"cell_type": "markdown",
- "id": "469b2fa4",
+ "id": "05a6999c",
"metadata": {},
"source": [
"**Tax smoothing**\n",
@@ -1726,7 +1726,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7ac8dd6f",
+ "id": "64e58417",
"metadata": {},
"outputs": [],
"source": [
@@ -1739,7 +1739,7 @@
},
{
"cell_type": "markdown",
- "id": "6c0dca37",
+ "id": "b8b400a4",
"metadata": {},
"source": [
"### Government Saving\n",
@@ -1798,7 +1798,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6b3627dc",
+ "id": "4122fb87",
"metadata": {},
"outputs": [],
"source": [
@@ -1830,7 +1830,7 @@
},
{
"cell_type": "markdown",
- "id": "ef80d8d5",
+ "id": "e9825777",
"metadata": {},
"source": [
"The figure indicates that if the government enters with positive debt, it sets\n",
@@ -1879,7 +1879,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bd4a5b24",
+ "id": "932aa50d",
"metadata": {},
"outputs": [],
"source": [
@@ -1907,7 +1907,7 @@
},
{
"cell_type": "markdown",
- "id": "92ca882c",
+ "id": "a48f6725",
"metadata": {},
"source": [
"The tax rates in the figure are equal for only two values of initial government debt.\n",
@@ -1946,7 +1946,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f1026bc1",
+ "id": "76740105",
"metadata": {
"load": "_static/lecture_specific/opt_tax_recur/log_utility.py"
},
@@ -1992,7 +1992,7 @@
},
{
"cell_type": "markdown",
- "id": "7b1b4456",
+ "id": "f541fd2a",
"metadata": {},
"source": [
"Also, suppose that $g_t$ follows a two-state IID process with equal\n",
@@ -2006,7 +2006,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "eebabcd3",
+ "id": "17fcb971",
"metadata": {},
"outputs": [],
"source": [
@@ -2046,7 +2046,7 @@
},
{
"cell_type": "markdown",
- "id": "f1fbe536",
+ "id": "92baa0a9",
"metadata": {},
"source": [
"As should be expected, the recursive and sequential solutions produce almost\n",
diff --git a/_sources/orth_proj.ipynb b/_sources/orth_proj.ipynb
index 71651f1b..60cf7dc0 100644
--- a/_sources/orth_proj.ipynb
+++ b/_sources/orth_proj.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "e7099ecb",
+ "id": "e1531a25",
"metadata": {},
"source": [
"(orth_proj)=\n",
@@ -43,7 +43,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1709860a",
+ "id": "176f0161",
"metadata": {},
"outputs": [],
"source": [
@@ -53,7 +53,7 @@
},
{
"cell_type": "markdown",
- "id": "a18b113d",
+ "id": "8ed6a2c4",
"metadata": {},
"source": [
"### Further Reading\n",
@@ -780,7 +780,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "490582e8",
+ "id": "40219327",
"metadata": {},
"outputs": [],
"source": [
@@ -824,7 +824,7 @@
},
{
"cell_type": "markdown",
- "id": "8804807e",
+ "id": "37a6b9b6",
"metadata": {},
"source": [
"Here are the arrays we'll work with"
@@ -833,7 +833,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8dc2ae95",
+ "id": "48ecb6ad",
"metadata": {},
"outputs": [],
"source": [
@@ -848,7 +848,7 @@
},
{
"cell_type": "markdown",
- "id": "aac5caa8",
+ "id": "51d12551",
"metadata": {},
"source": [
"First, let's try projection of $y$ onto the column space of\n",
@@ -858,7 +858,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7f37e1ee",
+ "id": "34417ef8",
"metadata": {},
"outputs": [],
"source": [
@@ -868,7 +868,7 @@
},
{
"cell_type": "markdown",
- "id": "0c0a855c",
+ "id": "3dafcb58",
"metadata": {},
"source": [
"Now let's do the same using an orthonormal basis created from our\n",
@@ -878,7 +878,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "71ba92a5",
+ "id": "069c15d8",
"metadata": {},
"outputs": [],
"source": [
@@ -889,7 +889,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "743278ef",
+ "id": "492f2ea9",
"metadata": {},
"outputs": [],
"source": [
@@ -899,7 +899,7 @@
},
{
"cell_type": "markdown",
- "id": "1424842a",
+ "id": "b78d518c",
"metadata": {},
"source": [
"This is the same answer. So far so good. Finally, let's try the same\n",
@@ -909,7 +909,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "eafac243",
+ "id": "d7167517",
"metadata": {},
"outputs": [],
"source": [
@@ -920,7 +920,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7d8033a6",
+ "id": "5818cb6f",
"metadata": {},
"outputs": [],
"source": [
@@ -930,7 +930,7 @@
},
{
"cell_type": "markdown",
- "id": "4ba1f9a9",
+ "id": "3477cf0f",
"metadata": {},
"source": [
"Again, we obtain the same answer.\n",
diff --git a/_sources/permanent_income_dles.ipynb b/_sources/permanent_income_dles.ipynb
index ede1bfc9..7d3d32e6 100644
--- a/_sources/permanent_income_dles.ipynb
+++ b/_sources/permanent_income_dles.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "8a4b9984",
+ "id": "13f53bbf",
"metadata": {},
"source": [
"(permanent_income_dles)=\n",
@@ -28,7 +28,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "721ee0c9",
+ "id": "37103dd2",
"metadata": {
"tags": [
"hide-output"
@@ -41,7 +41,7 @@
},
{
"cell_type": "markdown",
- "id": "b3c35105",
+ "id": "c8c932b5",
"metadata": {},
"source": [
"This lecture adds a third solution method for the\n",
@@ -62,7 +62,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0eaafc4c",
+ "id": "96267561",
"metadata": {},
"outputs": [],
"source": [
@@ -75,7 +75,7 @@
},
{
"cell_type": "markdown",
- "id": "1dcff982",
+ "id": "ce0b7049",
"metadata": {},
"source": [
"## The Permanent Income Model\n",
@@ -228,7 +228,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1ef1d58c",
+ "id": "18951211",
"metadata": {},
"outputs": [],
"source": [
@@ -266,7 +266,7 @@
},
{
"cell_type": "markdown",
- "id": "77d2d545",
+ "id": "1b87fa0f",
"metadata": {},
"source": [
"To check the solution of this model with that from the **LQ** problem,\n",
@@ -283,7 +283,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f7e4a67b",
+ "id": "f437d04f",
"metadata": {},
"outputs": [],
"source": [
@@ -292,7 +292,7 @@
},
{
"cell_type": "markdown",
- "id": "20651e46",
+ "id": "45e8493a",
"metadata": {},
"source": [
"The state vector in the DLE class is:\n",
@@ -322,7 +322,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fde2d1e3",
+ "id": "d204b8b7",
"metadata": {},
"outputs": [],
"source": [
diff --git a/_sources/rob_markov_perf.ipynb b/_sources/rob_markov_perf.ipynb
index 72b7bc4c..b492ec8f 100644
--- a/_sources/rob_markov_perf.ipynb
+++ b/_sources/rob_markov_perf.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "53fede6d",
+ "id": "108a730f",
"metadata": {},
"source": [
"(rob_markov_perf)=\n",
@@ -22,7 +22,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "21a691e9",
+ "id": "deb820c4",
"metadata": {
"tags": [
"hide-output"
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "b7e268d6",
+ "id": "3a163c24",
"metadata": {},
"source": [
"## Overview\n",
@@ -62,7 +62,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bf10ffbb",
+ "id": "713354c9",
"metadata": {},
"outputs": [],
"source": [
@@ -74,7 +74,7 @@
},
{
"cell_type": "markdown",
- "id": "bf8e5d33",
+ "id": "3e70fa64",
"metadata": {},
"source": [
"### Basic Setup\n",
@@ -474,7 +474,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3a430aaf",
+ "id": "1d6bac7f",
"metadata": {
"load": "_static/lecture_specific/markov_perf/duopoly_mpe.py"
},
@@ -520,7 +520,7 @@
},
{
"cell_type": "markdown",
- "id": "a8686333",
+ "id": "ed6a86b0",
"metadata": {},
"source": [
"#### Markov Perfect Equilibrium with Robustness\n",
@@ -539,7 +539,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5de2866f",
+ "id": "892fb6a5",
"metadata": {},
"outputs": [],
"source": [
@@ -709,7 +709,7 @@
},
{
"cell_type": "markdown",
- "id": "a87c3133",
+ "id": "e235046f",
"metadata": {},
"source": [
"### Some Details\n",
@@ -783,7 +783,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "6a491c3d",
+ "id": "d7104648",
"metadata": {},
"outputs": [],
"source": [
@@ -814,7 +814,7 @@
},
{
"cell_type": "markdown",
- "id": "0b97029b",
+ "id": "bd0aba4a",
"metadata": {},
"source": [
"#### Consistency Check\n",
@@ -826,7 +826,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bbea8025",
+ "id": "7b663372",
"metadata": {},
"outputs": [],
"source": [
@@ -848,7 +848,7 @@
},
{
"cell_type": "markdown",
- "id": "b8935a64",
+ "id": "28c95478",
"metadata": {},
"source": [
"We can see that the results are consistent across the two functions.\n",
@@ -892,7 +892,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "12cd4ec4",
+ "id": "0eac3be0",
"metadata": {},
"outputs": [],
"source": [
@@ -961,7 +961,7 @@
},
{
"cell_type": "markdown",
- "id": "e395660e",
+ "id": "38ab00f5",
"metadata": {},
"source": [
"The following code prepares graphs that compare market-wide output $q_{1t} + q_{2t}$ and the price of the good\n",
@@ -975,7 +975,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ccdeb787",
+ "id": "9aed165c",
"metadata": {},
"outputs": [],
"source": [
@@ -997,7 +997,7 @@
},
{
"cell_type": "markdown",
- "id": "ea114f0c",
+ "id": "fdc85e5b",
"metadata": {},
"source": [
"Under the dynamics associated with the baseline model, the price path is higher with the Markov perfect equilibrium robust decision rules\n",
@@ -1013,7 +1013,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0e417313",
+ "id": "30e52630",
"metadata": {},
"outputs": [],
"source": [
@@ -1035,7 +1035,7 @@
},
{
"cell_type": "markdown",
- "id": "14f620b1",
+ "id": "10f60238",
"metadata": {},
"source": [
"Evidently, firm 1's output path is substantially lower when firms are robust firms while\n",
@@ -1081,7 +1081,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "95308878",
+ "id": "61e86e47",
"metadata": {},
"outputs": [],
"source": [
@@ -1095,7 +1095,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4fa7f6ab",
+ "id": "48ee9dfe",
"metadata": {},
"outputs": [],
"source": [
@@ -1124,7 +1124,7 @@
},
{
"cell_type": "markdown",
- "id": "6170e60c",
+ "id": "07658e1f",
"metadata": {},
"source": [
"We see from the above graph that under robustness concerns, player 1 and\n",
diff --git a/_sources/robustness.ipynb b/_sources/robustness.ipynb
index 9befc8a1..97e610c7 100644
--- a/_sources/robustness.ipynb
+++ b/_sources/robustness.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "2c7d7335",
+ "id": "532cb25e",
"metadata": {},
"source": [
"(rob)=\n",
@@ -25,7 +25,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "50f866e9",
+ "id": "ca3c43d3",
"metadata": {
"tags": [
"hide-output"
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "4194c32e",
+ "id": "85ef8615",
"metadata": {},
"source": [
"## Overview\n",
@@ -88,7 +88,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "617268d9",
+ "id": "9950ec3f",
"metadata": {},
"outputs": [],
"source": [
@@ -101,7 +101,7 @@
},
{
"cell_type": "markdown",
- "id": "03df01b8",
+ "id": "fec81695",
"metadata": {},
"source": [
"(rb_vec)=\n",
@@ -961,7 +961,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fa2b1340",
+ "id": "c1bd11ab",
"metadata": {},
"outputs": [],
"source": [
@@ -1136,7 +1136,7 @@
},
{
"cell_type": "markdown",
- "id": "b253241a",
+ "id": "f769caff",
"metadata": {},
"source": [
"Here's another such figure, with $\\theta = 0.002$ instead of $0.02$\n",
diff --git a/_sources/rosen_schooling_model.ipynb b/_sources/rosen_schooling_model.ipynb
index d301bc58..b83d339e 100644
--- a/_sources/rosen_schooling_model.ipynb
+++ b/_sources/rosen_schooling_model.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "6a9193ef",
+ "id": "f55eb10e",
"metadata": {},
"source": [
"(rosen_schooling_model)=\n",
@@ -28,7 +28,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cbe10232",
+ "id": "c7769fcb",
"metadata": {
"tags": [
"hide-output"
@@ -41,7 +41,7 @@
},
{
"cell_type": "markdown",
- "id": "e91ac0c8",
+ "id": "16c949b8",
"metadata": {},
"source": [
"We'll also need the following imports:"
@@ -50,7 +50,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "acdf5e4f",
+ "id": "87b1ff22",
"metadata": {},
"outputs": [],
"source": [
@@ -62,7 +62,7 @@
},
{
"cell_type": "markdown",
- "id": "5c329ed6",
+ "id": "561b5a71",
"metadata": {},
"source": [
"## A One-Occupation Model\n",
@@ -182,7 +182,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "31218476",
+ "id": "0e6f3d63",
"metadata": {},
"outputs": [],
"source": [
@@ -193,7 +193,7 @@
},
{
"cell_type": "markdown",
- "id": "f7aabc0c",
+ "id": "66c490bf",
"metadata": {},
"source": [
"### Effects of Changes in Education Technology and Demand\n",
@@ -211,7 +211,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "57d61c7d",
+ "id": "db8488e2",
"metadata": {},
"outputs": [],
"source": [
@@ -264,7 +264,7 @@
},
{
"cell_type": "markdown",
- "id": "3346cbec",
+ "id": "149c6fc2",
"metadata": {},
"source": [
"We create three other instances by:\n",
@@ -277,7 +277,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b3f0ebaf",
+ "id": "dfc6e4f5",
"metadata": {},
"outputs": [],
"source": [
@@ -322,7 +322,7 @@
},
{
"cell_type": "markdown",
- "id": "24e5c0ec",
+ "id": "e7760128",
"metadata": {},
"source": [
"The first figure plots the impulse response of $n_t$ (on the left)\n",
@@ -350,7 +350,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a22513d1",
+ "id": "8ad38256",
"metadata": {},
"outputs": [],
"source": [
@@ -369,7 +369,7 @@
},
{
"cell_type": "markdown",
- "id": "d7d97c49",
+ "id": "39523037",
"metadata": {},
"source": [
"The next figure plots the impulse response of $n_t$ (on the left)\n",
@@ -380,7 +380,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "beaa91d1",
+ "id": "4d452d77",
"metadata": {},
"outputs": [],
"source": [
@@ -401,7 +401,7 @@
},
{
"cell_type": "markdown",
- "id": "21596ba1",
+ "id": "b6eb1816",
"metadata": {},
"source": [
"Both panels in the above figure show that raising $k$ lowers the effect of\n",
diff --git a/_sources/smoothing.ipynb b/_sources/smoothing.ipynb
index 2614ed04..45ab610a 100644
--- a/_sources/smoothing.ipynb
+++ b/_sources/smoothing.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "96fbaf24",
+ "id": "95121ea1",
"metadata": {},
"source": [
"(smoothing)=\n",
@@ -25,7 +25,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e8af3031",
+ "id": "66547f96",
"metadata": {
"tags": [
"hide-output"
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "ac37cc4b",
+ "id": "dbf4fead",
"metadata": {},
"source": [
"## Overview\n",
@@ -88,7 +88,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "afd1edc4",
+ "id": "c07c641c",
"metadata": {},
"outputs": [],
"source": [
@@ -100,7 +100,7 @@
},
{
"cell_type": "markdown",
- "id": "dc8cc693",
+ "id": "031b413c",
"metadata": {},
"source": [
"### Relationship to Other Lectures\n",
@@ -293,7 +293,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ac89b7dc",
+ "id": "c09cef05",
"metadata": {},
"outputs": [],
"source": [
@@ -374,7 +374,7 @@
},
{
"cell_type": "markdown",
- "id": "57e4e2a7",
+ "id": "feea7c00",
"metadata": {},
"source": [
"### Interpretation of Graph\n",
@@ -658,7 +658,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c29fd950",
+ "id": "9b27c933",
"metadata": {},
"outputs": [],
"source": [
@@ -786,7 +786,7 @@
},
{
"cell_type": "markdown",
- "id": "734ca9e0",
+ "id": "ccbfe187",
"metadata": {},
"source": [
"Let's test by checking that $\\bar c$ and $b_2$ satisfy the budget constraint"
@@ -795,7 +795,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0a9add65",
+ "id": "3f20a19e",
"metadata": {},
"outputs": [],
"source": [
@@ -806,7 +806,7 @@
},
{
"cell_type": "markdown",
- "id": "61f08793",
+ "id": "f07aa5ea",
"metadata": {},
"source": [
"Below, we'll take the outcomes produced by this code -- in particular the implied\n",
@@ -965,7 +965,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7e839758",
+ "id": "4a20d780",
"metadata": {},
"outputs": [],
"source": [
@@ -1001,7 +1001,7 @@
},
{
"cell_type": "markdown",
- "id": "b9bd70ab",
+ "id": "6abe13a8",
"metadata": {},
"source": [
"In the graph on the left, for the same sample path of nonfinancial\n",
diff --git a/_sources/smoothing_tax.ipynb b/_sources/smoothing_tax.ipynb
index 42924bff..70a48b0b 100644
--- a/_sources/smoothing_tax.ipynb
+++ b/_sources/smoothing_tax.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "6f455a8d",
+ "id": "e06a60b4",
"metadata": {},
"source": [
"(smoothing_tax)=\n",
@@ -25,7 +25,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "817318ac",
+ "id": "06b0e22e",
"metadata": {
"tags": [
"hide-output"
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "bea0fb39",
+ "id": "8e67c9c8",
"metadata": {},
"source": [
"## Overview\n",
@@ -102,7 +102,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5f75966e",
+ "id": "5a4f7f1d",
"metadata": {},
"outputs": [],
"source": [
@@ -113,7 +113,7 @@
},
{
"cell_type": "markdown",
- "id": "ef0b1402",
+ "id": "201ac5b4",
"metadata": {},
"source": [
"To exploit the isomorphism between consumption-smoothing and tax-smoothing models, we simply use code from {doc}`Consumption Smoothing with Complete and Incomplete Markets `\n",
@@ -129,7 +129,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b935a62d",
+ "id": "03912c7e",
"metadata": {},
"outputs": [],
"source": [
@@ -257,7 +257,7 @@
},
{
"cell_type": "markdown",
- "id": "98b5620c",
+ "id": "48d2ee91",
"metadata": {},
"source": [
"### Revisiting the consumption-smoothing model\n",
@@ -273,7 +273,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bac59870",
+ "id": "61a132b0",
"metadata": {},
"outputs": [],
"source": [
@@ -307,7 +307,7 @@
},
{
"cell_type": "markdown",
- "id": "235b4106",
+ "id": "33a5c277",
"metadata": {},
"source": [
"In the graph on the left, for the same sample path of nonfinancial\n",
@@ -327,7 +327,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "07088166",
+ "id": "69134072",
"metadata": {},
"outputs": [],
"source": [
@@ -354,7 +354,7 @@
},
{
"cell_type": "markdown",
- "id": "c7b1fca0",
+ "id": "f1aef870",
"metadata": {},
"source": [
"## Tax Smoothing with Complete Markets\n",
@@ -431,7 +431,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9c48eac8",
+ "id": "e41416c5",
"metadata": {},
"outputs": [],
"source": [
@@ -469,7 +469,7 @@
},
{
"cell_type": "markdown",
- "id": "44a2077e",
+ "id": "b40b0416",
"metadata": {},
"source": [
"### An Example of Tax Smoothing\n",
@@ -497,7 +497,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "81c60f32",
+ "id": "b89e546c",
"metadata": {},
"outputs": [],
"source": [
@@ -574,7 +574,7 @@
},
{
"cell_type": "markdown",
- "id": "63f65244",
+ "id": "d4061b32",
"metadata": {},
"source": [
"### Explanation\n",
@@ -630,7 +630,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "165d3f98",
+ "id": "1b959de4",
"metadata": {},
"outputs": [],
"source": [
@@ -747,7 +747,7 @@
},
{
"cell_type": "markdown",
- "id": "fc9a121c",
+ "id": "0cf6fa08",
"metadata": {},
"source": [
"### Parameters"
@@ -756,7 +756,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "76c7f411",
+ "id": "0feeaeb4",
"metadata": {},
"outputs": [],
"source": [
@@ -773,7 +773,7 @@
},
{
"cell_type": "markdown",
- "id": "380deb3d",
+ "id": "e1a5e02a",
"metadata": {},
"source": [
"### Example 1\n",
@@ -805,7 +805,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "14343e13",
+ "id": "fd674646",
"metadata": {},
"outputs": [],
"source": [
@@ -820,7 +820,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "287d5d6e",
+ "id": "19683457",
"metadata": {},
"outputs": [],
"source": [
@@ -831,7 +831,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c9b8fdd7",
+ "id": "7e222b11",
"metadata": {},
"outputs": [],
"source": [
@@ -843,7 +843,7 @@
},
{
"cell_type": "markdown",
- "id": "494621da",
+ "id": "3ff66283",
"metadata": {},
"source": [
"### Example 2\n",
@@ -869,7 +869,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e69c151e",
+ "id": "121ca452",
"metadata": {},
"outputs": [],
"source": [
@@ -884,7 +884,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d0e842e1",
+ "id": "bc309788",
"metadata": {},
"outputs": [],
"source": [
@@ -894,7 +894,7 @@
},
{
"cell_type": "markdown",
- "id": "4843ddd5",
+ "id": "e4c2c974",
"metadata": {},
"source": [
"### Example 3\n",
@@ -923,7 +923,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "43699623",
+ "id": "e153d802",
"metadata": {},
"outputs": [],
"source": [
@@ -939,7 +939,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f3d3ac64",
+ "id": "21c5b76b",
"metadata": {},
"outputs": [],
"source": [
@@ -949,7 +949,7 @@
},
{
"cell_type": "markdown",
- "id": "88ba43ea",
+ "id": "aaeb3ade",
"metadata": {},
"source": [
"### Example 4\n",
@@ -976,7 +976,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1c50381e",
+ "id": "9a88f752",
"metadata": {},
"outputs": [],
"source": [
@@ -993,7 +993,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "840176be",
+ "id": "50a9389e",
"metadata": {},
"outputs": [],
"source": [
@@ -1003,7 +1003,7 @@
},
{
"cell_type": "markdown",
- "id": "f24ebc84",
+ "id": "4738ed31",
"metadata": {},
"source": [
"### Example 5\n",
@@ -1035,7 +1035,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5bc97ae7",
+ "id": "7e879cb7",
"metadata": {},
"outputs": [],
"source": [
@@ -1054,7 +1054,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f294046d",
+ "id": "10bb1892",
"metadata": {},
"outputs": [],
"source": [
@@ -1064,7 +1064,7 @@
},
{
"cell_type": "markdown",
- "id": "83191beb",
+ "id": "bd1398b4",
"metadata": {},
"source": [
"### Continuous-State Gaussian Model\n",
diff --git a/_sources/stationary_densities.ipynb b/_sources/stationary_densities.ipynb
index 9f846721..7daace0a 100644
--- a/_sources/stationary_densities.ipynb
+++ b/_sources/stationary_densities.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "ccd2a982",
+ "id": "4d2fd32e",
"metadata": {},
"source": [
"(statd)=\n",
@@ -25,7 +25,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b927d496",
+ "id": "506113c6",
"metadata": {
"tags": [
"hide-output"
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "7c5c28a9",
+ "id": "ee87d3f7",
"metadata": {},
"source": [
"## Overview\n",
@@ -84,7 +84,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ec0f75e2",
+ "id": "ef31b799",
"metadata": {},
"outputs": [],
"source": [
@@ -97,7 +97,7 @@
},
{
"cell_type": "markdown",
- "id": "a3a2e83f",
+ "id": "ee3bb151",
"metadata": {},
"source": [
"(statd_density_case)=\n",
@@ -487,7 +487,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "aa7d312d",
+ "id": "24e66de9",
"metadata": {},
"outputs": [],
"source": [
@@ -535,7 +535,7 @@
},
{
"cell_type": "markdown",
- "id": "a797df28",
+ "id": "41268de7",
"metadata": {},
"source": [
"The figure shows part of the density sequence $\\{\\psi_t\\}$, with each\n",
@@ -852,7 +852,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "152ad67e",
+ "id": "678c61b3",
"metadata": {},
"outputs": [],
"source": [
@@ -889,7 +889,7 @@
},
{
"cell_type": "markdown",
- "id": "e9f67b2b",
+ "id": "474fc5d1",
"metadata": {},
"source": [
"```{solution-end}\n",
@@ -927,7 +927,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "dd5d6c8f",
+ "id": "935e6a03",
"metadata": {},
"outputs": [],
"source": [
@@ -977,7 +977,7 @@
},
{
"cell_type": "markdown",
- "id": "145c5a01",
+ "id": "47af4aa9",
"metadata": {},
"source": [
"```{solution-end}\n",
@@ -1007,7 +1007,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8decaa42",
+ "id": "e1b05b84",
"metadata": {},
"outputs": [],
"source": [
@@ -1027,7 +1027,7 @@
},
{
"cell_type": "markdown",
- "id": "3cb45515",
+ "id": "c9684782",
"metadata": {},
"source": [
"Each data set is represented by a box, where the top and bottom of the box are the third and first quartiles of the data, and the red line in the center is the median.\n",
@@ -1075,7 +1075,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8038b7d7",
+ "id": "bd9280f3",
"metadata": {},
"outputs": [],
"source": [
@@ -1107,7 +1107,7 @@
},
{
"cell_type": "markdown",
- "id": "0ae43af1",
+ "id": "98910ffb",
"metadata": {},
"source": [
"```{solution-end}\n",
diff --git a/_sources/status.ipynb b/_sources/status.ipynb
index 3291938b..ebe02898 100644
--- a/_sources/status.ipynb
+++ b/_sources/status.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "0bca22cb",
+ "id": "49558d06",
"metadata": {},
"source": [
"# Execution Statistics\n",
diff --git a/_sources/tax_smoothing_1.ipynb b/_sources/tax_smoothing_1.ipynb
index ec155084..58f08839 100644
--- a/_sources/tax_smoothing_1.ipynb
+++ b/_sources/tax_smoothing_1.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "838a2d9e",
+ "id": "b750c3ea",
"metadata": {},
"source": [
"(tax_smoothing_1)=\n",
@@ -25,7 +25,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1ec7762e",
+ "id": "cefd7c1e",
"metadata": {
"tags": [
"hide-output"
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "4b34cafe",
+ "id": "01eebbde",
"metadata": {},
"source": [
"## Reader's Guide\n",
@@ -49,7 +49,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "83f70f26",
+ "id": "e7d4c894",
"metadata": {},
"outputs": [],
"source": [
@@ -60,7 +60,7 @@
},
{
"cell_type": "markdown",
- "id": "d293e836",
+ "id": "7bb8a96a",
"metadata": {},
"source": [
"This lecture uses the method of **Markov jump linear quadratic dynamic programming** that is described in lecture\n",
@@ -304,7 +304,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7712e4f2",
+ "id": "d13d02c4",
"metadata": {},
"outputs": [],
"source": [
@@ -347,7 +347,7 @@
},
{
"cell_type": "markdown",
- "id": "79cd3ab1",
+ "id": "844f5a19",
"metadata": {},
"source": [
"We can now create an instance of `LQ`:"
@@ -356,7 +356,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f0db76ec",
+ "id": "69fbe2d4",
"metadata": {},
"outputs": [],
"source": [
@@ -367,7 +367,7 @@
},
{
"cell_type": "markdown",
- "id": "705acc0f",
+ "id": "4c0d5685",
"metadata": {},
"source": [
"We can see the isomorphism by noting that consumption is a martingale in\n",
@@ -407,7 +407,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "525204cb",
+ "id": "8c1a364e",
"metadata": {},
"outputs": [],
"source": [
@@ -416,7 +416,7 @@
},
{
"cell_type": "markdown",
- "id": "e563f0a7",
+ "id": "d8ad065c",
"metadata": {},
"source": [
"This explains the fanning out of the conditional empirical distribution of taxation across time, computing\n",
@@ -427,7 +427,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "29c2b0a5",
+ "id": "5b803b54",
"metadata": {},
"outputs": [],
"source": [
@@ -442,7 +442,7 @@
},
{
"cell_type": "markdown",
- "id": "a09850d1",
+ "id": "176eafb2",
"metadata": {},
"source": [
"We can see a similar, but a smoother pattern, if we plot government debt\n",
@@ -452,7 +452,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4ced9e3e",
+ "id": "d05c7153",
"metadata": {},
"outputs": [],
"source": [
@@ -467,7 +467,7 @@
},
{
"cell_type": "markdown",
- "id": "376cc817",
+ "id": "4a65a2ed",
"metadata": {},
"source": [
"## Python Class to Solve Markov Jump Linear Quadratic Control Problems\n",
@@ -532,7 +532,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2b407519",
+ "id": "f3e311cd",
"metadata": {},
"outputs": [],
"source": [
@@ -562,7 +562,7 @@
},
{
"cell_type": "markdown",
- "id": "5d838bde",
+ "id": "f886690f",
"metadata": {},
"source": [
"The decision rules are now dependent on the Markov state:"
@@ -571,7 +571,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c4f1be70",
+ "id": "964b434f",
"metadata": {},
"outputs": [],
"source": [
@@ -581,7 +581,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "c88de900",
+ "id": "cb37840e",
"metadata": {},
"outputs": [],
"source": [
@@ -590,7 +590,7 @@
},
{
"cell_type": "markdown",
- "id": "ea3c5c3e",
+ "id": "33014a55",
"metadata": {},
"source": [
"Simulating a large number of such economies over time reveals\n",
@@ -603,7 +603,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "e4af4c51",
+ "id": "24304bd3",
"metadata": {},
"outputs": [],
"source": [
diff --git a/_sources/tax_smoothing_2.ipynb b/_sources/tax_smoothing_2.ipynb
index 70c3054d..c47edd5d 100644
--- a/_sources/tax_smoothing_2.ipynb
+++ b/_sources/tax_smoothing_2.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "c8e63083",
+ "id": "3c7f1c8f",
"metadata": {},
"source": [
"(tax_smoothing_2)=\n",
@@ -25,7 +25,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1f428f66",
+ "id": "1a332b7e",
"metadata": {
"tags": [
"hide-output"
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "c821d196",
+ "id": "b8897794",
"metadata": {},
"source": [
"## An Application of Markov Jump Linear Quadratic Dynamic Programming\n",
@@ -84,7 +84,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1ffc6a22",
+ "id": "6bbf3ed9",
"metadata": {},
"outputs": [],
"source": [
@@ -95,7 +95,7 @@
},
{
"cell_type": "markdown",
- "id": "439a7e27",
+ "id": "cdaa80b7",
"metadata": {},
"source": [
"## Two example specifications\n",
@@ -338,7 +338,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "31736683",
+ "id": "0cf601d3",
"metadata": {},
"outputs": [],
"source": [
@@ -397,7 +397,7 @@
},
{
"cell_type": "markdown",
- "id": "a15aa8a5",
+ "id": "f5b84a53",
"metadata": {},
"source": [
"With the above function, we can proceed to solve the model in two steps:\n",
@@ -458,7 +458,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f4434ac4",
+ "id": "e11c4cbc",
"metadata": {},
"outputs": [],
"source": [
@@ -510,7 +510,7 @@
},
{
"cell_type": "markdown",
- "id": "1404c25b",
+ "id": "518ebd96",
"metadata": {},
"source": [
"The above simulations show that when no penalty is imposed on different\n",
@@ -527,7 +527,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "401b9758",
+ "id": "24c7dd76",
"metadata": {},
"outputs": [],
"source": [
@@ -569,7 +569,7 @@
},
{
"cell_type": "markdown",
- "id": "c783a9c7",
+ "id": "99bf8aac",
"metadata": {},
"source": [
"## A Model with Restructuring\n",
@@ -752,7 +752,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fb019a69",
+ "id": "9871bca2",
"metadata": {},
"outputs": [],
"source": [
@@ -805,7 +805,7 @@
},
{
"cell_type": "markdown",
- "id": "6695f24e",
+ "id": "c4da65fb",
"metadata": {},
"source": [
"### Example with Restructuring\n",
@@ -836,7 +836,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4ecf7cc0",
+ "id": "3db06c90",
"metadata": {},
"outputs": [],
"source": [
@@ -879,7 +879,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "a843e1c6",
+ "id": "781f242f",
"metadata": {},
"outputs": [],
"source": [
@@ -905,7 +905,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4bfcdd11",
+ "id": "b8a47a2e",
"metadata": {},
"outputs": [],
"source": [
diff --git a/_sources/tax_smoothing_3.ipynb b/_sources/tax_smoothing_3.ipynb
index e28ab2f6..6033d914 100644
--- a/_sources/tax_smoothing_3.ipynb
+++ b/_sources/tax_smoothing_3.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "724e0348",
+ "id": "4bd066a3",
"metadata": {},
"source": [
"(tax_smoothing_3)=\n",
@@ -25,7 +25,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "64ba472a",
+ "id": "95fc2d93",
"metadata": {
"tags": [
"hide-output"
@@ -38,7 +38,7 @@
},
{
"cell_type": "markdown",
- "id": "87ecf0ef",
+ "id": "f495fedc",
"metadata": {},
"source": [
"## Another Application of Markov Jump Linear Quadratic Dynamic Programming\n",
@@ -67,7 +67,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8b9b5b46",
+ "id": "a18f2e86",
"metadata": {},
"outputs": [],
"source": [
@@ -78,7 +78,7 @@
},
{
"cell_type": "markdown",
- "id": "35d548b7",
+ "id": "43039ad0",
"metadata": {},
"source": [
"## Roll-Over Risk\n",
@@ -209,7 +209,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3a370559",
+ "id": "5a77a8c4",
"metadata": {},
"outputs": [],
"source": [
@@ -267,7 +267,7 @@
},
{
"cell_type": "markdown",
- "id": "6f3a8639",
+ "id": "c51e6f4a",
"metadata": {},
"source": [
"This model is simulated below, using the same process for $G_t$ as\n",
@@ -290,7 +290,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "26306cd4",
+ "id": "bc49c563",
"metadata": {},
"outputs": [],
"source": [
@@ -316,7 +316,7 @@
},
{
"cell_type": "markdown",
- "id": "4525070d",
+ "id": "a671b557",
"metadata": {},
"source": [
"We can adjust the model so that, rather than having debt fluctuate\n",
@@ -330,7 +330,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f955837b",
+ "id": "ab99716e",
"metadata": {},
"outputs": [],
"source": [
@@ -369,7 +369,7 @@
},
{
"cell_type": "markdown",
- "id": "26cd5433",
+ "id": "212dbc21",
"metadata": {},
"source": [
"With a lower interest rate, the government has an incentive to\n",
diff --git a/_sources/troubleshooting.ipynb b/_sources/troubleshooting.ipynb
index e0910cca..8f2fc284 100644
--- a/_sources/troubleshooting.ipynb
+++ b/_sources/troubleshooting.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "3f3a9204",
+ "id": "5873a4a4",
"metadata": {},
"source": [
"(troubleshooting)=\n",
diff --git a/_sources/un_insure.ipynb b/_sources/un_insure.ipynb
index 96a28408..45e29baa 100644
--- a/_sources/un_insure.ipynb
+++ b/_sources/un_insure.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "bf985118",
+ "id": "2d68cd92",
"metadata": {},
"source": [
"# Optimal Unemployment Insurance\n",
@@ -405,14 +405,14 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "69ca7278",
+ "id": "11c5a1ca",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
- "id": "6416248a",
+ "id": "18c6af48",
"metadata": {},
"source": [
"### Computational Details\n",
@@ -504,7 +504,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "67e14f95",
+ "id": "358ac6ac",
"metadata": {},
"outputs": [],
"source": [
@@ -515,7 +515,7 @@
},
{
"cell_type": "markdown",
- "id": "0d62876d",
+ "id": "98e61597",
"metadata": {},
"source": [
"We first create a class to set up a particular parametrization."
@@ -524,7 +524,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "52ae46a5",
+ "id": "c71e2e08",
"metadata": {},
"outputs": [],
"source": [
@@ -545,7 +545,7 @@
},
{
"cell_type": "markdown",
- "id": "1499ffa6",
+ "id": "571cf789",
"metadata": {},
"source": [
"### Parameter Values\n",
@@ -558,7 +558,7 @@
},
{
"cell_type": "markdown",
- "id": "07eb3dcf",
+ "id": "c86d71e4",
"metadata": {},
"source": [
"First, we create some helper functions."
@@ -567,7 +567,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9701f9b3",
+ "id": "4b478d58",
"metadata": {},
"outputs": [],
"source": [
@@ -591,7 +591,7 @@
},
{
"cell_type": "markdown",
- "id": "b9c5c9ec",
+ "id": "17ca0ce4",
"metadata": {},
"source": [
"Recall that under autarky the value for an unemployed worker\n",
@@ -625,7 +625,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "fb4b5ea0",
+ "id": "7cf161b8",
"metadata": {},
"outputs": [],
"source": [
@@ -642,7 +642,7 @@
},
{
"cell_type": "markdown",
- "id": "44d99e7e",
+ "id": "28b63e5b",
"metadata": {},
"source": [
"Since the calibration exercise is to match the hazard rate under autarky to the data, we must find an interest rate $r$ to match `p(a,r) = 0.1`.\n",
@@ -655,7 +655,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "b6077e27",
+ "id": "febaf71c",
"metadata": {},
"outputs": [],
"source": [
@@ -671,7 +671,7 @@
},
{
"cell_type": "markdown",
- "id": "526b5466",
+ "id": "fb868cf3",
"metadata": {},
"source": [
"Now, let us create an instance of the model with our parametrization"
@@ -680,7 +680,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "68b8a2ad",
+ "id": "ca3ec4de",
"metadata": {},
"outputs": [],
"source": [
@@ -692,7 +692,7 @@
},
{
"cell_type": "markdown",
- "id": "deb12ec7",
+ "id": "ff90acf9",
"metadata": {},
"source": [
"We want to compute an $r$ that is consistent with the hazard rate 0.1 in autarky.\n",
@@ -703,7 +703,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "bab57580",
+ "id": "0db0efbd",
"metadata": {},
"outputs": [],
"source": [
@@ -718,7 +718,7 @@
},
{
"cell_type": "markdown",
- "id": "b4e4a8ec",
+ "id": "2f36c78d",
"metadata": {},
"source": [
"Now that we have calibrated our interest rate $r$, we can continue with solving the model with private information."
@@ -726,7 +726,7 @@
},
{
"cell_type": "markdown",
- "id": "5afb8bbd",
+ "id": "f9ed854b",
"metadata": {},
"source": [
"### Computation under Private Information"
@@ -734,7 +734,7 @@
},
{
"cell_type": "markdown",
- "id": "6ccb310b",
+ "id": "fa7729e2",
"metadata": {},
"source": [
"Our approach to solving the full model is a variant on Judd (1998) {cite}`Judd1998`, who uses a polynomial to approximate the value function and a numerical optimizer to perform the optimization at each iteration.\n",
@@ -744,7 +744,7 @@
},
{
"cell_type": "markdown",
- "id": "51e3934e",
+ "id": "13fadcef",
"metadata": {},
"source": [
"Our strategy involves finding a function $C(V)$ -- the expected cost of giving the worker value $V$ -- that satisfies the Bellman equation:\n",
@@ -761,7 +761,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "2993ff21",
+ "id": "143c1034",
"metadata": {},
"outputs": [],
"source": [
@@ -789,7 +789,7 @@
},
{
"cell_type": "markdown",
- "id": "b8982cd5",
+ "id": "e36bc94e",
"metadata": {},
"source": [
"With these analytical solutions for optimal $c$ and $a$ in hand, we can reduce the minimization to {eq}`eq:hugo23` in the single variable\n",
@@ -812,7 +812,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "f5faa97a",
+ "id": "a01a1ddc",
"metadata": {},
"outputs": [],
"source": [
@@ -863,7 +863,7 @@
},
{
"cell_type": "markdown",
- "id": "2e735638",
+ "id": "c99de0b8",
"metadata": {},
"source": [
"The below code executes steps 4 and 5 in the Algorithm until convergence to a function $C^*(V)$."
@@ -872,7 +872,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0f537e1b",
+ "id": "21be3615",
"metadata": {},
"outputs": [],
"source": [
@@ -898,7 +898,7 @@
},
{
"cell_type": "markdown",
- "id": "23915298",
+ "id": "f1f2e3a0",
"metadata": {},
"source": [
"## Outcomes"
@@ -906,7 +906,7 @@
},
{
"cell_type": "markdown",
- "id": "a7c2efe7",
+ "id": "d57e3fb2",
"metadata": {},
"source": [
"Using the above functions, we create another instance of the parameters with the correctly calibrated interest rate, $r$."
@@ -915,7 +915,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3e6a0125",
+ "id": "9207818e",
"metadata": {},
"outputs": [],
"source": [
@@ -939,7 +939,7 @@
},
{
"cell_type": "markdown",
- "id": "059e45d5",
+ "id": "b2f9b1a7",
"metadata": {},
"source": [
"### Replacement Ratios and Continuation Values"
@@ -947,7 +947,7 @@
},
{
"cell_type": "markdown",
- "id": "728cb4a1",
+ "id": "f8f67aa2",
"metadata": {},
"source": [
"We want to graph the replacement ratio ($c/w$) and search effort $a$ as functions of the duration of unemployment.\n",
@@ -960,7 +960,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "3b9ca7d6",
+ "id": "fcc2771d",
"metadata": {},
"outputs": [],
"source": [
@@ -978,7 +978,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7ebf26a1",
+ "id": "22e55781",
"metadata": {},
"outputs": [],
"source": [
@@ -993,7 +993,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "ef97138a",
+ "id": "6949d7c7",
"metadata": {},
"outputs": [],
"source": [
@@ -1027,7 +1027,7 @@
},
{
"cell_type": "markdown",
- "id": "91c34b92",
+ "id": "a473b45d",
"metadata": {},
"source": [
"For an initial promised value $V^u = V_{\\rm aut}$, the planner chooses the autarky level of $0$ for the replacement ratio and instructs the worker to search at the autarky search intensity, regardless of the duration of unemployment\n",
diff --git a/_sources/zreferences.ipynb b/_sources/zreferences.ipynb
index 4b501156..9034ac00 100644
--- a/_sources/zreferences.ipynb
+++ b/_sources/zreferences.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "108e14a7",
+ "id": "4765db54",
"metadata": {},
"source": [
"(references)=\n",
diff --git a/additive_functionals.html b/additive_functionals.html
index 81a1c677..d6931aa8 100644
--- a/additive_functionals.html
+++ b/additive_functionals.html
@@ -274,13 +274,13 @@ 30. Additive and Multiplicative Function
Requirement already satisfied: numba>=0.49.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (0.59.0)
Requirement already satisfied: numpy>=1.17.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.26.4)
-
-
-Requirement already satisfied: requests in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (2.31.0)
+Requirement already satisfied: requests in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (2.31.0)
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
Requirement already satisfied: llvmlite<0.43,>=0.42.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.42.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
+
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -924,7 +924,7 @@ 30.3.1.1. Plotting
-
+
Notice the irregular but persistent growth in \(y_t\).
@@ -1068,7 +1068,7 @@ 30.4. Code
-
+
When we plot multiple realizations of a component in the 2nd, 3rd, and 4th panels, we also plot the population 95% probability coverage sets computed using the LinearStateSpace class.
@@ -1119,7 +1119,7 @@As before, when we plotted multiple realizations of a component in the 2nd, 3rd, and 4th panels, we also plotted population 95% confidence bands computed using the LinearStateSpace class.
diff --git a/amss.html b/amss.html index 399b84f2..997631df 100644 --- a/amss.html +++ b/amss.html @@ -283,7 +283,9 @@Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -297,66 +299,69 @@ 44. Optimal Taxation without State-Conti
Collecting numba>=0.59.1 (from interpolation)
- Downloading numba-0.60.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (2.7 kB)
+
Downloading numba-0.60.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (2.7 kB)
Requirement already satisfied: scipy<2.0,>=1.10 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from interpolation) (1.11.4)
Collecting llvmlite<0.44,>=0.43.0dev0 (from numba>=0.59.1->interpolation)
Downloading llvmlite-0.43.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.8 kB)
Requirement already satisfied: numpy<2.1,>=1.22 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.59.1->interpolation) (1.26.4)
-
Downloading interpolation-2.2.7-py3-none-any.whl (80 kB)
+Downloading interpolation-2.2.7-py3-none-any.whl (80 kB)
?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/80.5 kB ? eta -:--:--
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 80.5/80.5 kB 7.1 MB/s eta 0:00:00
-?25hDownloading numba-0.60.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.7 MB)
-?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/3.7 MB ? eta -:--:--
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 80.5/80.5 kB 9.7 MB/s eta 0:00:00
+?25h
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 3.7/3.7 MB 126.4 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.7/3.7 MB 91.6 MB/s eta 0:00:00
+Downloading numba-0.60.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.7 MB)
+?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/3.7 MB ? eta -:--:--
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.7/3.7 MB 128.9 MB/s eta 0:00:00
?25hDownloading llvmlite-0.43.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (43.9 MB)
?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/43.9 MB ? eta -:--:--
- ━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.6/43.9 MB 197.1 MB/s eta 0:00:01
+ ━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.1/43.9 MB 212.2 MB/s eta 0:00:01
- ━━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━━━ 13.3/43.9 MB 196.1 MB/s eta 0:00:01
+ ━━━━━━━━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━ 14.1/43.9 MB 207.4 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━ 21.1/43.9 MB 205.3 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━ 19.8/43.9 MB 193.5 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━ 26.4/43.9 MB 191.7 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━ 28.1/43.9 MB 205.6 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━ 32.9/43.9 MB 192.8 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━ 35.0/43.9 MB 204.3 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━ 42.1/43.9 MB 206.4 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━ 39.5/43.9 MB 191.6 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 43.9/43.9 MB 196.4 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 43.9/43.9 MB 205.6 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 43.9/43.9 MB 196.4 MB/s eta 0:00:01
-
-
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 43.9/43.9 MB 196.4 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 43.9/43.9 MB 68.9 MB/s eta 0:00:00
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 43.9/43.9 MB 205.6 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 43.9/43.9 MB 71.6 MB/s eta 0:00:00
?25h
Installing collected packages: llvmlite, numba, interpolation
Attempting uninstall: llvmlite
- Found existing installation: llvmlite 0.42.0
+
+
+ Found existing installation: llvmlite 0.42.0
Uninstalling llvmlite-0.42.0:
Successfully uninstalled llvmlite-0.42.0
Attempting uninstall: numba
- Found existing installation: numba 0.59.0
+
+
+ Found existing installation: numba 0.59.0
Uninstalling numba-0.59.0:
- Successfully uninstalled numba-0.59.0
+
+
+ Successfully uninstalled numba-0.59.0
Succesfully solved the time 0 problem.
-CPU times: user 2min 54s, sys: 1.8 s, total: 2min 56s
-Wall time: 2min 15s
+CPU times: user 2min 49s, sys: 1.64 s, total: 2min 51s
+Wall time: 2min 11s
@@ -1714,8 +1719,8 @@ 44.4.1.1. Perpetual War AlertSuccesfully solved the time 0 problem.
-CPU times: user 2min 42s, sys: 1.36 s, total: 2min 43s
-Wall time: 2min 13s
+CPU times: user 2min 40s, sys: 1.42 s, total: 2min 41s
+Wall time: 2min 11s
diff --git a/amss2.html b/amss2.html
index c95d5b47..2bb5d5bb 100644
--- a/amss2.html
+++ b/amss2.html
@@ -275,7 +275,9 @@ 45. Fluctuating Interest Rates Deliver F
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
+
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -1259,13 +1261,13 @@ 45.7. Short Simulation for Reverse-engin
warnings.warn("Values in x were outside bounds during a "
-/tmp/ipykernel_5542/108196118.py:24: RuntimeWarning: divide by zero encountered in reciprocal
+/tmp/ipykernel_5562/108196118.py:24: RuntimeWarning: divide by zero encountered in reciprocal
U = (c**(1 - σ) - 1) / (1 - σ)
-/tmp/ipykernel_5542/108196118.py:29: RuntimeWarning: divide by zero encountered in power
+/tmp/ipykernel_5562/108196118.py:29: RuntimeWarning: divide by zero encountered in power
return c**(-self.σ)
-/tmp/ipykernel_5542/1277371586.py:249: RuntimeWarning: invalid value encountered in divide
+/tmp/ipykernel_5562/1277371586.py:249: RuntimeWarning: invalid value encountered in divide
x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime,
-/tmp/ipykernel_5542/1277371586.py:249: RuntimeWarning: invalid value encountered in multiply
+/tmp/ipykernel_5562/1277371586.py:249: RuntimeWarning: invalid value encountered in multiply
x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime,
@@ -1528,111 +1530,113 @@ 45.7. Short Simulation for Reverse-engin
2.9783836454122435e-08
-2.6716185879207155e-08
-2.3964828404060055e-08
-2.1497111441656643e-08
+2.6716185879207155e-08
+2.3964828404060055e-08
+
+
+2.1497111441656643e-08
+1.928376711102591e-08
-1.928376711102591e-08
-1.7298534286134342e-08
+1.7298534286134342e-08
+1.5517887041510468e-08
-1.5517887041510468e-08
-1.3920711115842077e-08
+1.3920711115842077e-08
+1.2488086772484325e-08
-1.2488086772484325e-08
-1.120303914946054e-08
+1.120303914946054e-08
+1.0050349805051883e-08
-1.0050349805051883e-08
-9.016372957223345e-09
+9.016372957223345e-09
+8.088867717275256e-09
-8.088867717275256e-09
-7.256860052028448e-09
+7.256860052028448e-09
+6.5105080491085e-09
-6.5105080491085e-09
-5.8409842196277625e-09
+5.8409842196277625e-09
+5.240371187393206e-09
-5.240371187393206e-09
-4.701571286205833e-09
+4.701571286205833e-09
+4.2182149401635156e-09
-4.2182149401635156e-09
-3.784594252430241e-09
+3.784594252430241e-09
+3.3955835551064364e-09
-3.3955835551064364e-09
-3.0465910785331343e-09
+3.0465910785331343e-09
+2.7334965385949916e-09
-2.7334965385949916e-09
-2.4526029798499404e-09
+2.4526029798499404e-09
+2.2005967896788517e-09
-2.2005967896788517e-09
-1.9745023230252437e-09
+1.9745023230252437e-09
+1.7716540861495694e-09
-1.7716540861495694e-09
-1.5896779606666392e-09
+1.5896779606666392e-09
+1.4263644656786832e-09
-1.4263644656786832e-09
-1.279915801041798e-09
+1.279915801041798e-09
+1.1484611488603225e-09
-1.1484611488603225e-09
-1.0305702313922867e-09
+1.0305702313922867e-09
+9.247647878021015e-10
-9.247647878021015e-10
-8.298468061604299e-10
+8.298468061604299e-10
+7.446744286173443e-10
-7.446744286173443e-10
-6.682506157688693e-10
+6.682506157688693e-10
+5.996765544062293e-10
-5.996765544062293e-10
-5.381420956749845e-10
+5.381420956749845e-10
+4.829271458904042e-10
-4.829271458904042e-10
-4.3337871811544764e-10
+4.3337871811544764e-10
+3.8891892933983235e-10
-3.8891892933983235e-10
-3.4902066124392655e-10
+3.4902066124392655e-10
+3.1321799130111273e-10
-3.1321799130111273e-10
-2.8109002457092086e-10
+2.8109002457092086e-10
+2.5225950288597284e-10
-2.5225950288597284e-10
-2.263868938948011e-10
+2.263868938948011e-10
+2.0316830484184638e-10
-2.0316830484184638e-10
-1.8233409175417047e-10
+1.8233409175417047e-10
+1.6363582056463494e-10
-1.6363582056463494e-10
-1.4685617665861112e-10
+1.4685617665861112e-10
+1.3179940303096093e-10
-1.3179940303096093e-10
-1.1828486777347211e-10
+1.1828486777347211e-10
+1.0615888599012755e-10
-1.0615888599012755e-10
-9.527490070407684e-11
+9.527490070407684e-11
@@ -1690,7 +1694,7 @@ 45.8. Long Simulation
-
+
diff --git a/amss3.html b/amss3.html
index 314e08fd..50aa2d65 100644
--- a/amss3.html
+++ b/amss3.html
@@ -281,7 +281,9 @@ 46. Fiscal Risk and Government Debt
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -1020,15 +1022,15 @@ 46.3. Long Simulation/tmp/ipykernel_5587/108196118.py:24: RuntimeWarning: divide by zero encountered in reciprocal
+/tmp/ipykernel_5606/108196118.py:24: RuntimeWarning: divide by zero encountered in reciprocal
U = (c**(1 - σ) - 1) / (1 - σ)
-/tmp/ipykernel_5587/108196118.py:29: RuntimeWarning: divide by zero encountered in power
+/tmp/ipykernel_5606/108196118.py:29: RuntimeWarning: divide by zero encountered in power
return c**(-self.σ)
-/tmp/ipykernel_5587/1277371586.py:249: RuntimeWarning: invalid value encountered in divide
+/tmp/ipykernel_5606/1277371586.py:249: RuntimeWarning: invalid value encountered in divide
x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime,
-/tmp/ipykernel_5587/1277371586.py:249: RuntimeWarning: invalid value encountered in multiply
+/tmp/ipykernel_5606/1277371586.py:249: RuntimeWarning: invalid value encountered in multiply
x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime,
@@ -1491,7 +1493,7 @@ 46.3. Long Simulation9.047094182757221e-11
-
+
@@ -1537,7 +1539,7 @@ 46.3. Long Simulation
-
+
diff --git a/arellano.html b/arellano.html
index cdf6f9ca..a99c740f 100644
--- a/arellano.html
+++ b/arellano.html
@@ -270,7 +270,9 @@ 13. Default Risk and Income Fluctuations
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
+
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
diff --git a/arma.html b/arma.html
index 9d0cc4fa..9a238ecf 100644
--- a/arma.html
+++ b/arma.html
@@ -877,13 +877,13 @@ 28.4.1. Application
-
+
If we look carefully, things look good: the spectrum is the flat line at \(10^0\) at the very top of the spectrum graphs,
@@ -907,11 +907,11 @@
28.4.1. Application
-/tmp/ipykernel_5777/4271821819.py:15: UserWarning: Attempt to set non-positive ylim on a log-scaled axis will be ignored.
+/tmp/ipykernel_5733/4271821819.py:15: UserWarning: Attempt to set non-positive ylim on a log-scaled axis will be ignored.
ax.set(xlim=(0, np.pi), ylim=(0, np.max(spect)),
-
+
Ljungqvist and Sargent’s second model is \(X_t = .9 X_{t-1} + \epsilon_t\)
@@ -925,11 +925,11 @@ 28.4.1. Application
-/tmp/ipykernel_5777/4271821819.py:15: UserWarning: Attempt to set non-positive ylim on a log-scaled axis will be ignored.
+/tmp/ipykernel_5733/4271821819.py:15: UserWarning: Attempt to set non-positive ylim on a log-scaled axis will be ignored.
ax.set(xlim=(0, np.pi), ylim=(0, np.max(spect)),
-
+
Ljungqvist and Sargent’s third model is \(X_t = .8 X_{t-4} + \epsilon_t\)
@@ -943,11 +943,11 @@ 28.4.1. Application
-/tmp/ipykernel_5777/4271821819.py:15: UserWarning: Attempt to set non-positive ylim on a log-scaled axis will be ignored.
+/tmp/ipykernel_5733/4271821819.py:15: UserWarning: Attempt to set non-positive ylim on a log-scaled axis will be ignored.
ax.set(xlim=(0, np.pi), ylim=(0, np.max(spect)),
-
+
Ljungqvist and Sargent’s fourth model is \(X_t = .98 X_{t-1} + \epsilon_t -.7 \epsilon_{t-1}\)
@@ -961,11 +961,11 @@ 28.4.1. Application
-/tmp/ipykernel_5777/4271821819.py:15: UserWarning: Attempt to set non-positive ylim on a log-scaled axis will be ignored.
+/tmp/ipykernel_5733/4271821819.py:15: UserWarning: Attempt to set non-positive ylim on a log-scaled axis will be ignored.
ax.set(xlim=(0, np.pi), ylim=(0, np.max(spect)),
-
+
diff --git a/asset_pricing_lph.html b/asset_pricing_lph.html
index 3a799986..f313c89c 100644
--- a/asset_pricing_lph.html
+++ b/asset_pricing_lph.html
@@ -922,7 +922,7 @@ 35.10. Exercises
-(0.06075435650848324, 0.07857190709464326)
+(0.06185596875196789, 0.08016600446606582)
@@ -960,8 +960,8 @@ 35.10. Exercises
-(array([0.2038879 , 0.38642743, 0.61082102, 0.80952813, 1.01271054]),
- array([0.04101763, 0.03955093, 0.04069035, 0.0397986 , 0.04064374]))
+(array([0.20160114, 0.40768703, 0.59634019, 0.82506218, 0.99882213]),
+ array([0.04038332, 0.03998863, 0.03992771, 0.04072763, 0.04013323]))
@@ -1069,7 +1069,7 @@ 35.10. Exercises
-(89.73551091909235, -492.05408397896434, 57.36477919010039)
+(89.39322102912662, -481.2504406183535, 56.586215352255515)
diff --git a/black_litterman.html b/black_litterman.html
index c73526b0..5f0d7c42 100644
--- a/black_litterman.html
+++ b/black_litterman.html
@@ -116,7 +116,7 @@
-
+
@@ -621,7 +621,7 @@ 36.6. Adding Views
-
+
@@ -831,7 +831,7 @@ 36.8. Curve Decolletage
-
+
Note that the line that connects the two points
\(\hat \mu\) and \(\mu_{BL}\) is linear, which comes from the
@@ -890,7 +890,7 @@
36.8. Curve Decolletage
-
+
diff --git a/calvo.html b/calvo.html
index c87756d4..c4587524 100644
--- a/calvo.html
+++ b/calvo.html
@@ -360,7 +360,9 @@ 42.1. Overview
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
diff --git a/calvo_machine_learn.html b/calvo_machine_learn.html
index 5c9f0adf..f4935238 100644
--- a/calvo_machine_learn.html
+++ b/calvo_machine_learn.html
@@ -553,7 +553,9 @@ 41.6.1. ImplementationRequirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -564,10 +566,10 @@ 41.6.1. Implementation Downloading optax-0.2.3-py3-none-any.whl.metadata (8.3 kB)
-Collecting absl-py>=0.7.1 (from optax)
- Downloading absl_py-2.1.0-py3-none-any.whl.metadata (2.3 kB)
+Collecting absl-py>=0.7.1 (from optax)
+ Downloading absl_py-2.1.0-py3-none-any.whl.metadata (2.3 kB)
Collecting chex>=0.1.86 (from optax)
Downloading chex-0.1.86-py3-none-any.whl.metadata (17 kB)
@@ -579,99 +581,98 @@ 41.6.1. ImplementationCollecting jaxlib>=0.4.27 (from optax)
Downloading jaxlib-0.4.31-cp311-cp311-manylinux2014_x86_64.whl.metadata (983 bytes)
Requirement already satisfied: numpy>=1.18.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from optax) (1.26.4)
-
-
-Collecting etils[epy] (from optax)
+Collecting etils[epy] (from optax)
Downloading etils-1.9.2-py3-none-any.whl.metadata (6.4 kB)
-Requirement already satisfied: typing-extensions>=4.2.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from chex>=0.1.86->optax) (4.9.0)
-Requirement already satisfied: toolz>=0.9.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from chex>=0.1.86->optax) (0.12.0)
-Collecting ml-dtypes>=0.2.0 (from jax>=0.4.27->optax)
- Downloading ml_dtypes-0.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (20 kB)
+Requirement already satisfied: typing-extensions>=4.2.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from chex>=0.1.86->optax) (4.9.0)
+Requirement already satisfied: toolz>=0.9.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from chex>=0.1.86->optax) (0.12.0)
+Collecting ml-dtypes>=0.2.0 (from jax>=0.4.27->optax)
-Collecting opt-einsum (from jax>=0.4.27->optax)
+ Downloading ml_dtypes-0.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (20 kB)
+Collecting opt-einsum (from jax>=0.4.27->optax)
Downloading opt_einsum-3.3.0-py3-none-any.whl.metadata (6.5 kB)
Requirement already satisfied: scipy>=1.10 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from jax>=0.4.27->optax) (1.11.4)
Downloading optax-0.2.3-py3-none-any.whl (289 kB)
?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/289.6 kB ? eta -:--:--
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 289.6/289.6 kB 17.1 MB/s eta 0:00:00
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 289.6/289.6 kB 52.8 MB/s eta 0:00:00
?25hDownloading absl_py-2.1.0-py3-none-any.whl (133 kB)
?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/133.7 kB ? eta -:--:--
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.7/133.7 kB 32.3 MB/s eta 0:00:00
-?25hDownloading chex-0.1.86-py3-none-any.whl (98 kB)
-?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/98.2 kB ? eta -:--:--
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 98.2/98.2 kB 32.7 MB/s eta 0:00:00
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.7/133.7 kB 44.5 MB/s eta 0:00:00
?25h
-Downloading jax-0.4.31-py3-none-any.whl (2.0 MB)
+Downloading chex-0.1.86-py3-none-any.whl (98 kB)
+?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/98.2 kB ? eta -:--:--
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 98.2/98.2 kB 38.2 MB/s eta 0:00:00
+?25hDownloading jax-0.4.31-py3-none-any.whl (2.0 MB)
?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/2.0 MB ? eta -:--:--
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.0/2.0 MB 84.9 MB/s eta 0:00:00
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.0/2.0 MB 113.7 MB/s eta 0:00:00
?25hDownloading jaxlib-0.4.31-cp311-cp311-manylinux2014_x86_64.whl (88.1 MB)
?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/88.1 MB ? eta -:--:--
- ━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.8/88.1 MB 174.8 MB/s eta 0:00:01
+ ━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.2/88.1 MB 187.5 MB/s eta 0:00:01
- ━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.5/88.1 MB 189.8 MB/s eta 0:00:01
- ━━━━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 18.9/88.1 MB 191.7 MB/s eta 0:00:01
+ ━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.8/88.1 MB 189.2 MB/s eta 0:00:01
+ ━━━━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 19.2/88.1 MB 189.3 MB/s eta 0:00:01
- ━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 25.2/88.1 MB 185.5 MB/s eta 0:00:01
+ ━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 25.3/88.1 MB 181.3 MB/s eta 0:00:01
- ━━━━━━━━━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━ 30.7/88.1 MB 171.3 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━ 31.4/88.1 MB 177.9 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━ 37.2/88.1 MB 174.6 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━ 35.8/88.1 MB 166.8 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━ 42.2/88.1 MB 167.4 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━━━━━━━ 43.0/88.1 MB 170.6 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━ 48.7/88.1 MB 189.3 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━ 48.8/88.1 MB 170.4 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━━ 54.7/88.1 MB 170.7 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━ 55.4/88.1 MB 196.9 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━ 61.4/88.1 MB 184.5 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━ 60.5/88.1 MB 172.0 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━ 66.6/88.1 MB 167.7 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━ 66.3/88.1 MB 171.3 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━ 72.8/88.1 MB 170.4 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━ 79.3/88.1 MB 184.9 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━ 72.1/88.1 MB 170.1 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━ 77.9/88.1 MB 170.9 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━ 85.9/88.1 MB 192.3 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━━ 83.7/88.1 MB 169.9 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 88.1/88.1 MB 193.2 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 88.1/88.1 MB 193.2 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 88.1/88.1 MB 184.9 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 88.1/88.1 MB 184.9 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 88.1/88.1 MB 193.2 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 88.1/88.1 MB 184.9 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 88.1/88.1 MB 193.2 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 88.1/88.1 MB 193.2 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 88.1/88.1 MB 184.9 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 88.1/88.1 MB 184.9 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 88.1/88.1 MB 41.8 MB/s eta 0:00:00
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 88.1/88.1 MB 42.8 MB/s eta 0:00:00
?25hDownloading ml_dtypes-0.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB)
?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/2.2 MB ? eta -:--:--
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.2/2.2 MB 121.8 MB/s eta 0:00:00
+?25h
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.2/2.2 MB 115.1 MB/s eta 0:00:00
-?25hDownloading etils-1.9.2-py3-none-any.whl (161 kB)
+Downloading etils-1.9.2-py3-none-any.whl (161 kB)
?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/161.5 kB ? eta -:--:--
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 161.5/161.5 kB 40.6 MB/s eta 0:00:00
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 161.5/161.5 kB 54.5 MB/s eta 0:00:00
?25hDownloading opt_einsum-3.3.0-py3-none-any.whl (65 kB)
?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/65.5 kB ? eta -:--:--
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 65.5/65.5 kB 19.7 MB/s eta 0:00:00
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 65.5/65.5 kB 28.2 MB/s eta 0:00:00
?25h
@@ -688,9 +689,7 @@ 41.6.1. Implementation Downloading statsmodels-0.14.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (9.2 kB)
-
-
-Requirement already satisfied: numpy>=1.22.3 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from statsmodels) (1.26.4)
+Requirement already satisfied: numpy>=1.22.3 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from statsmodels) (1.26.4)
Requirement already satisfied: scipy!=1.9.2,>=1.8 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from statsmodels) (1.11.4)
Requirement already satisfied: pandas!=2.1.0,>=1.4 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from statsmodels) (2.1.4)
Collecting patsy>=0.5.6 (from statsmodels)
@@ -706,17 +705,17 @@ 41.6.1. ImplementationDownloading statsmodels-0.14.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB)
?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/10.7 MB ? eta -:--:--
+ ━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.0/10.7 MB 90.7 MB/s eta 0:00:01
- ━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.2/10.7 MB 64.8 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━ 9.4/10.7 MB 137.1 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━ 8.0/10.7 MB 118.0 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 10.7/10.7 MB 187.0 MB/s eta 0:00:01
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.7/10.7 MB 123.1 MB/s eta 0:00:00
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 10.7/10.7 MB 147.1 MB/s eta 0:00:01
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.7/10.7 MB 104.7 MB/s eta 0:00:00
?25hDownloading patsy-0.5.6-py2.py3-none-any.whl (233 kB)
?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/233.9 kB ? eta -:--:--
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 233.9/233.9 kB 55.9 MB/s eta 0:00:00
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 233.9/233.9 kB 67.3 MB/s eta 0:00:00
?25h
@@ -730,15 +729,11 @@ 41.6.1. Implementation Attempting uninstall: statsmodels
-
-
- Found existing installation: statsmodels 0.14.0
+ Found existing installation: statsmodels 0.14.0
Uninstalling statsmodels-0.14.0:
-
-
- Successfully uninstalled statsmodels-0.14.0
+ Successfully uninstalled statsmodels-0.14.0
Successfully installed patsy-0.5.6 statsmodels-0.14.2
@@ -1038,8 +1033,8 @@ 41.6.1. Implementation41.6.2. Restricting
Iteration 0, grad norm: 3.333333969116211
-
-
-Iteration 100, grad norm: 0.004979133605957031
+Iteration 100, grad norm: 0.004979133605957031
Iteration 200, grad norm: 6.818771362304688e-05
Converged after 282 iterations.
optimized μ =
@@ -1426,8 +1419,8 @@ 41.7.1. Two implementationsRequirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
-
-
-Requirement already satisfied: mpmath>=0.19 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from sympy->quantecon) (1.3.0)
+Requirement already satisfied: mpmath>=0.19 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from sympy->quantecon) (1.3.0)
@@ -582,7 +582,7 @@ 22.2.3. Information
-
+
In their Figure 3, [Rosen et al., 1994] plot the impulse response functions
diff --git a/chang_credible.html b/chang_credible.html
index e0ab3c72..977baed9 100644
--- a/chang_credible.html
+++ b/chang_credible.html
@@ -261,11 +261,11 @@
48. Credible Government Policies in a Mo
Collecting polytope
- Downloading polytope-0.2.5.tar.gz (54 kB)
-?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/54.9 kB ? eta -:--:--
- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54.9/54.9 kB 4.5 MB/s eta 0:00:00
+ Downloading polytope-0.2.5.tar.gz (54 kB)
+?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/54.9 kB ? eta -:--:--
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54.9/54.9 kB 6.4 MB/s eta 0:00:00
?25h
@@ -286,7 +286,7 @@ 48. Credible Government Policies in a Mo
done
-?25h Created wheel for polytope: filename=polytope-0.2.5-py3-none-any.whl size=47765 sha256=82de03bf4efacc75485ec6b445e64cd2b3e4554a35e1b9aa61b3aa3099d41f52
+?25h Created wheel for polytope: filename=polytope-0.2.5-py3-none-any.whl size=47765 sha256=5fe49608a089f69cebd6252f0143c8ddec2e101ccf9df6ad731408a515f5ee1c
Stored in directory: /home/runner/.cache/pip/wheels/0a/dc/7c/19db8e9a73e1a551591347b185108f137877f9638ee8f8e3cc
Successfully built polytope
@@ -455,10 +455,9 @@ 48.2.2. Government
(48.5)#\[y_t = f(x_t)\]
-where \(f: \mathbb{R}\rightarrow \mathbb{R}\) satisfies \(f(x) > 0\),
-is twice continuously differentiable, \(f''(x) < 0\), and
-\(f(x) = f(-x)\) for all \(x \in
-\mathbb{R}\), so that subsidies and taxes are equally distorting.
+where \(f: \mathbb{R}\rightarrow \mathbb{R}\) satisfies \(f(x) > 0\), \(f(x)\)
+is twice continuously differentiable, \(f''(x) < 0\), \(f'(0) = 0\), and
+\(f(x) = f(-x)\) for all \(x \in \mathbb{R}\), so that subsidies and taxes are equally distorting.
The purpose is not to model the causes of tax distortions in any detail but simply to summarize
the outcome of those distortions via the function \(f(x)\).
A key part of the specification is that tax distortions are increasing in the
@@ -904,7 +903,7 @@
48.3. Calculating the Set of Sustainable
following functional forms:
\[
-u(c) = log(c)
+u(c) = \log(c)
\]
\[
@@ -1500,7 +1499,7 @@ 48.3.1. Comparison of Sets[0.00001]
-Convergence achieved after 16 iterations and 42.8 seconds
+Convergence achieved after 16 iterations and 41.76 seconds
@@ -1690,7 +1689,7 @@ 48.3.1. Comparison of Sets[0.00001]
-Convergence achieved after 40 iterations and 123.3 seconds
+Convergence achieved after 40 iterations and 120.27 seconds
diff --git a/chang_ramsey.html b/chang_ramsey.html
index 8c5e35ce..48e43b9d 100644
--- a/chang_ramsey.html
+++ b/chang_ramsey.html
@@ -174,7 +174,7 @@
47.1.1. The Setting
-47.2. Setting
@@ -368,14 +370,14 @@ 47.1.1. The Setting\(t \geq 0\).
-
-47.2. Setting#
+
+47.2. Decisions#
47.2.1. The Household’s Problem#
A representative household faces a nonnegative value of money sequence
\(\vec q\) and sequences \(\vec y, \vec x\) of income and total
tax collections, respectively.
-The household chooses nonnegative
+
Facing vector \(\vec q\) as a price taker, the representative household chooses nonnegative
sequences \(\vec c, \vec M\) of consumption and nominal balances,
respectively, to maximize
@@ -398,8 +400,8 @@ 47.2.1. The Household’s ProblemThe household carries real balances out of a period equal to \(m_t = q_t M_t\).
Inequality (47.2) is the household’s time \(t\) budget constraint.
It tells how real balances \(q_t M_t\) carried out of period \(t\) depend
-on income, consumption, taxes, and real balances \(q_t M_{t-1}\)
-carried into the period.
+on real balances \(q_t M_{t-1}\)
+carried into period \(t\), income, consumption, taxes.
Equation (47.3) imposes an exogenous upper bound
\(\bar m\) on the household’s choice of real balances, where
\(\bar m \geq m^f\).
@@ -411,8 +413,22 @@ 47.2.2. Government\(h_t \equiv {M_{t-1}\over M_t} \in \Pi \equiv
[ \underline \pi, \overline \pi]\), where
\(0 < \underline \pi < 1 < { 1 \over \beta } \leq \overline \pi\).
-The government faces a sequence of budget constraints with time
-\(t\) component
+The government purchases no goods.
+It taxes only to acquire paper currency that it will withdraw from circulation (e.g., by burning it).
+Let \(p_t \) be the price level at time \(t\), measured as time \(t\) dollars per unit of the consumption good.
+Evidently, the value of paper currency meassured in units of the consumption good at time \(t\) is
+
+\[
+q_t = \frac{1}{p_t} .
+\]
+The government faces a sequence of budget constraints with time \(t\) component
+
+\[
+x_t + \frac{M_{t} - M_{t-1}}{p_t} = 0,
+\]
+where \(x_t\) is the real value of revenue that the government raises from taxes and \(\frac{M_{t} - M_{t-1}}{p_t}\) is
+the real value of revenue that the government raises by printing new paper currency.
+Evidently, this budget constraint can be rewritten as
\[
-x_t = q_t (M_t - M_{t-1})
@@ -421,7 +437,7 @@ 47.2.2. Government
(47.4)#\[-x_t = m_t (1-h_t)\]
-The restrictions \(m_t \in [0, \bar m]\) and \(h_t \in \Pi\) evidently
+
The restrictions \(m_t \in [0, \bar m]\) and \(h_t \in \Pi = [\underline \pi, \overline \pi]\) evidently
imply that \(x_t \in X \equiv [(\underline \pi -1)\bar m,
(\overline \pi -1) \bar m]\).
We define the set \(E \equiv [0,\bar m] \times \Pi \times X\),
@@ -430,10 +446,24 @@
47.2.2. Government
(47.5)#\[y_t = f(x_t),\]
-where \(f: \mathbb{R}\rightarrow \mathbb{R}\) satisfies \(f(x) > 0\),
-is twice continuously differentiable, \(f''(x) < 0\), and
-\(f(x) = f(-x)\) for all \(x \in
-\mathbb{R}\), so that subsidies and taxes are equally distorting.
+where \(f: \mathbb{R}\rightarrow \mathbb{R}\) satisfies \(f(x) > 0\), \(f(x)\)
+is twice continuously differentiable, \(f''(x) < 0\), \(f'(0) = 0\), and
+\(f(x) = f(-x)\) for all \(x \in \mathbb{R}\), so that subsidies and taxes are equally distorting.
+Example parameterizations
+In some of our Python code deployed later in this lecture, we’ll assume the following functional forms:
+
+\[
+u(c) = \log(c)
+\]
+
+\[
+v(m) = \frac{1}{500}(m \bar m - 0.5m^2)^{0.5}
+\]
+
+\[
+f(x) = 180 - (0.4x)^2
+\]
+The tax distortion function
Calvo’s and Chang’s purpose is not to model the causes of tax distortions in
any detail but simply to summarize
the outcome of those distortions via the function \(f(x)\).
@@ -933,7 +963,7 @@ 47.6. Calculating all Promise-Value Pair
following functional forms:
\[
-u(c) = log(c)
+u(c) = \log(c)
\]
\[
@@ -1515,7 +1545,7 @@ 47.6. Calculating all Promise-Value Pair
[0.00001]
-Convergence achieved after 16 iterations and 42.31 seconds
+Convergence achieved after 16 iterations and 42.2 seconds
@@ -1693,7 +1723,7 @@ 47.6. Calculating all Promise-Value Pair
[0.00001]
-Convergence achieved after 40 iterations and 122.53 seconds
+Convergence achieved after 40 iterations and 121.67 seconds
@@ -1764,7 +1794,7 @@ 47.7. Solving a Continuation Ramsey Plan
-/tmp/ipykernel_6126/1608401414.py:33: RuntimeWarning: invalid value encountered in log
+/tmp/ipykernel_6086/1608401414.py:33: RuntimeWarning: invalid value encountered in log
uc = lambda c: np.log(c)
@@ -1778,22 +1808,22 @@ 47.7. Solving a Continuation Ramsey Plan
-/tmp/ipykernel_6126/1608401414.py:382: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
+/tmp/ipykernel_6086/1608401414.py:382: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
p_iter1[i] = -p_fun(res.x)
-/tmp/ipykernel_6126/1608401414.py:309: RuntimeWarning: invalid value encountered in log
+/tmp/ipykernel_6086/1608401414.py:309: RuntimeWarning: invalid value encountered in log
uc = lambda c: np.log(c)
Convergence achieved after 15 iterations
-/tmp/ipykernel_6126/1608401414.py:427: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
+/tmp/ipykernel_6086/1608401414.py:427: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
p_grid[i] = p
-/tmp/ipykernel_6126/1608401414.py:444: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
+/tmp/ipykernel_6086/1608401414.py:444: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
resid_grid[i] = np.dot(cheb.chebvander(scale, order-1), c) - p
-/tmp/ipykernel_6126/1608401414.py:468: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
+/tmp/ipykernel_6086/1608401414.py:468: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
θ_series[0] = res.x
diff --git a/coase.html b/coase.html
index 75e03566..ea4944d1 100644
--- a/coase.html
+++ b/coase.html
@@ -719,9 +719,7 @@ 15.6. Exercises
Iteration converged in 2 steps
When delta=1.05 there are 41 firms
-
-
-Iteration converged in 2 steps
+Iteration converged in 2 steps
When delta=1.1 there are 35 firms
diff --git a/cons_news.html b/cons_news.html
index 0d330fb3..f19d7a4f 100644
--- a/cons_news.html
+++ b/cons_news.html
@@ -269,7 +269,9 @@ 5. Information and Consumption Smoothing
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
+
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -962,7 +964,7 @@ 5.9. Computations
-<matplotlib.legend.Legend at 0x7fafbe1da790>
+<matplotlib.legend.Legend at 0x7f6ab8b02650>
@@ -999,7 +1001,7 @@ 5.9. Computations
-<matplotlib.legend.Legend at 0x7fafbe06bf50>
+<matplotlib.legend.Legend at 0x7f6ab8ae2110>
@@ -1038,10 +1040,10 @@ 5.9. Computations
-<matplotlib.legend.Legend at 0x7fafbda90bd0>
+<matplotlib.legend.Legend at 0x7f6ab833ae10>
-
+
-<matplotlib.legend.Legend at 0x7fafbda35a10>
+<matplotlib.legend.Legend at 0x7f6ab810fdd0>
-
+
diff --git a/discrete_dp.html b/discrete_dp.html
index bf0d1b88..8bfd49fc 100644
--- a/discrete_dp.html
+++ b/discrete_dp.html
@@ -303,13 +303,13 @@ 4.
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
-
-
-Requirement already satisfied: mpmath>=0.19 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from sympy->quantecon) (1.3.0)
+Requirement already satisfied: mpmath>=0.19 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from sympy->quantecon) (1.3.0)
@@ -1259,13 +1259,13 @@ 4.6.3.3. Speed Comparison
-91 ms ± 1.55 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
+87.7 ms ± 106 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
-9.14 ms ± 8.38 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
+9.11 ms ± 23.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
-10.5 ms ± 15.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
+10.5 ms ± 22.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
@@ -1338,22 +1338,22 @@ 4.6.4.1. Convergence of Value Iteration<
Iteration Distance Elapsed (seconds)
---------------------------------------------
-1 5.518e+00 7.293e-04
-2 4.070e+00 1.143e-03
+1 5.518e+00 4.930e-04
+2 4.070e+00 8.452e-04
Iteration Distance Elapsed (seconds)
---------------------------------------------
-1 5.518e+00 3.989e-04
-2 4.070e+00 8.261e-04
-3 3.866e+00 1.210e-03
-4 3.673e+00 1.569e-03
+1 5.518e+00 3.626e-04
+2 4.070e+00 7.164e-04
+3 3.866e+00 1.057e-03
+4 3.673e+00 1.393e-03
Iteration Distance Elapsed (seconds)
---------------------------------------------
-1 5.518e+00 4.692e-04
-2 4.070e+00 8.574e-04
-3 3.866e+00 1.215e-03
-4 3.673e+00 1.564e-03
-5 3.489e+00 1.908e-03
-6 3.315e+00 2.251e-03
+1 5.518e+00 3.796e-04
+2 4.070e+00 7.293e-04
+3 3.866e+00 1.066e-03
+4 3.673e+00 1.402e-03
+5 3.489e+00 1.736e-03
+6 3.315e+00 2.070e-03
/home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages/quantecon/_compute_fp.py:152: RuntimeWarning: max_iter attained before convergence in compute_fixed_point
diff --git a/dyn_stack.html b/dyn_stack.html
index 8583f990..ad131a9d 100644
--- a/dyn_stack.html
+++ b/dyn_stack.html
@@ -294,7 +294,9 @@ 40. Stackelberg PlansRequirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
diff --git a/estspec.html b/estspec.html
index feb422f3..275278c0 100644
--- a/estspec.html
+++ b/estspec.html
@@ -267,7 +267,9 @@ 29. Estimation of SpectraRequirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -437,7 +439,7 @@ 29.2.2. Calculation
-
+
This estimate looks rather disappointing, but the data size is only 40, so
@@ -634,7 +636,7 @@
29.4. Exercises
-
+
@@ -683,7 +685,7 @@ 29.4. Exercises
-
+
diff --git a/five_preferences.html b/five_preferences.html
index 3d40ad6f..ee10c6de 100644
--- a/five_preferences.html
+++ b/five_preferences.html
@@ -587,7 +587,7 @@ 24.2. Basic objects
-/tmp/ipykernel_6405/3759713737.py:2: RuntimeWarning: divide by zero encountered in log
+/tmp/ipykernel_6423/3759713737.py:2: RuntimeWarning: divide by zero encountered in log
plt.pcolormesh(x, y, np.log(ent_vals_mat.T), shading='gouraud', cmap='seismic')
@@ -1910,7 +1910,7 @@ 24.13. Iso-utility and iso-entropy curve
-/tmp/ipykernel_6405/3904427642.py:36: RuntimeWarning: invalid value encountered in divide
+/tmp/ipykernel_6423/3904427642.py:36: RuntimeWarning: invalid value encountered in divide
m = m_unnormalized / (π * m_unnormalized).sum()
@@ -1932,9 +1932,9 @@ 24.13. Iso-utility and iso-entropy curve
-/tmp/ipykernel_6405/3904427642.py:35: RuntimeWarning: overflow encountered in exp
+/tmp/ipykernel_6423/3904427642.py:35: RuntimeWarning: overflow encountered in exp
m_unnormalized = np.exp(-u(c) / θ)
-/tmp/ipykernel_6405/3904427642.py:36: RuntimeWarning: invalid value encountered in divide
+/tmp/ipykernel_6423/3904427642.py:36: RuntimeWarning: invalid value encountered in divide
m = m_unnormalized / (π * m_unnormalized).sum()
diff --git a/growth_in_dles.html b/growth_in_dles.html
index f931523c..dd273652 100644
--- a/growth_in_dles.html
+++ b/growth_in_dles.html
@@ -266,7 +266,9 @@
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
+
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -593,7 +595,7 @@ 17.3.1. Example 1: Hall (1978)
-
+
Inspection of the plot shows that the sample paths of consumption and
@@ -711,7 +713,7 @@
17.3.2. Example 2: Altered Growth Condit
-
+
Simulating our new economy shows that consumption grows quickly in the
@@ -807,7 +809,7 @@
17.3.3. Example 3: A Jones-Manuelli (199
-
+
Thus, adding habit persistence to the Hall model of Example 1 is enough
@@ -852,7 +854,7 @@
17.3.4. Example 3.1: Varying Sensitivity
-
+
We no longer achieve sustained growth if \(\lambda\) is raised from -1 to -0.7.
@@ -891,7 +893,7 @@ 17.3.5. Example 3.2: More Impatience
-
+
Growth also fails if we lower \(\beta\), since we now have
diff --git a/hs_invertibility_example.html b/hs_invertibility_example.html
index cf9907c7..513b7931 100644
--- a/hs_invertibility_example.html
+++ b/hs_invertibility_example.html
@@ -261,7 +261,9 @@
23.1. Overview
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
diff --git a/irfs_in_hall_model.html b/irfs_in_hall_model.html
index 720bd138..f635755b 100644
--- a/irfs_in_hall_model.html
+++ b/irfs_in_hall_model.html
@@ -259,7 +259,9 @@
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
+
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -359,7 +361,7 @@ 19.1. Example 1: Hall (1978)
-
+
The DLE class can be used to create impulse response functions for each
@@ -415,7 +417,7 @@
19.2. Example 2: Higher Adjustment Costs
-
+
@@ -526,7 +528,7 @@ 19.3. Example 3: Durable Consumption Goo
-
+
In contrast to Hall’s original model of Example 1, it is now investment
diff --git a/knowing_forecasts_of_others.html b/knowing_forecasts_of_others.html
index a38cb76c..a9b75aae 100644
--- a/knowing_forecasts_of_others.html
+++ b/knowing_forecasts_of_others.html
@@ -292,7 +292,9 @@
33. Knowing the Forecasts of Others
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -370,8 +372,250 @@ 33. Knowing the Forecasts of Others\
-done
-Solving environment: /
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
-
@@ -404,6 +648,391 @@ 33. Knowing the Forecasts of Others\
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+done
+Solving environment: -
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
+/
+
+
+-
+
+
+\
+
+
+|
+
+
done
diff --git a/lqramsey.html b/lqramsey.html
index b18fe85d..2da67da8 100644
--- a/lqramsey.html
+++ b/lqramsey.html
@@ -283,7 +283,9 @@ 12. Optimal Taxation in an LQ Economy
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -1019,7 +1021,7 @@ 12.4. Examples
-
+
The legends on the figures indicate the variables being tracked.
@@ -1032,7 +1034,7 @@ 12.4. Examples
-
+
See the original manuscript for comments and interpretation.
@@ -1071,11 +1073,11 @@ 12.4.2. The Discrete Case
-/tmp/ipykernel_7145/2748685684.py:111: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
+/tmp/ipykernel_7164/2748685684.py:111: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
a0, b0 = float(a0), float(b0)
-
+
The call gen_fig_2(path)
generates
@@ -1086,7 +1088,7 @@ 12.4.2. The Discrete Case
-
+
See the original manuscript for comments and interpretation.
@@ -1140,7 +1142,7 @@ 12.5. Exercises
-
+
-
+
diff --git a/lucas_asset_pricing_dles.html b/lucas_asset_pricing_dles.html
index 41aa64c7..9f4220a9 100644
--- a/lucas_asset_pricing_dles.html
+++ b/lucas_asset_pricing_dles.html
@@ -258,7 +258,9 @@
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
+
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -447,7 +449,7 @@ 18.2. Asset Pricing Simulations
-
+
The next plot displays the realized gross rate of return on this “Lucas
@@ -463,7 +465,7 @@
18.2. Asset Pricing Simulations
-
+
-array([[ 1. , -0.45603798],
- [-0.45603798, 1. ]])
+array([[ 1. , -0.48109711],
+ [-0.48109711, 1. ]])
@@ -495,7 +497,7 @@ 18.2. Asset Pricing Simulations
-
+
From the above plot, we can see the tendency of the term structure to
@@ -530,7 +532,7 @@
18.2. Asset Pricing Simulations
-
+
-array([[ 1. , -0.62216598],
- [-0.62216598, 1. ]])
+array([[ 1. , -0.6582152],
+ [-0.6582152, 1. ]])
@@ -560,7 +562,7 @@ 18.2. Asset Pricing Simulations
-
+
We can see the tendency of the term structure to slope up when rates are
diff --git a/lucas_model.html b/lucas_model.html
index 46747a4d..f3e486bf 100644
--- a/lucas_model.html
+++ b/lucas_model.html
@@ -624,7 +624,7 @@
34.2.3.2. A Little Fixed Point Theory
-
+
We see that the price is increasing, even if we remove all serial correlation from the endowment process.
@@ -671,7 +671,7 @@ 34.3. Exercises
-
+
diff --git a/markov_jump_lq.html b/markov_jump_lq.html
index 7de9dad0..fa946681 100644
--- a/markov_jump_lq.html
+++ b/markov_jump_lq.html
@@ -261,7 +261,9 @@
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
+
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
diff --git a/matsuyama.html b/matsuyama.html
index 0577c9cd..02893df5 100644
--- a/matsuyama.html
+++ b/matsuyama.html
@@ -116,7 +116,7 @@
-
+
@@ -990,7 +990,7 @@ 14.5. Exercises
-
+
diff --git a/muth_kalman.html b/muth_kalman.html
index 41bd6502..3e1054b0 100644
--- a/muth_kalman.html
+++ b/muth_kalman.html
@@ -262,7 +262,9 @@
Requirement already satisfied: requests in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (2.31.0)
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
-Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
+
+
+Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
@@ -496,7 +498,7 @@ 3.4. Estimates of Unobservables
-
+
Note how \(x_t\) and \(\hat{x_t}\) differ.
@@ -520,7 +522,7 @@ 3.5. Relationship of Unobservables to Ob
-
+
We see above that \(y\) seems to look like white noise around the
@@ -541,7 +543,7 @@
3.5.1. Innovations
-
+
diff --git a/opt_tax_recur.html b/opt_tax_recur.html
index 46919f36..efc358a0 100644
--- a/opt_tax_recur.html
+++ b/opt_tax_recur.html
@@ -288,7 +288,9 @@ 43. Optimal Taxation with State-Continge
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
+
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
diff --git a/permanent_income_dles.html b/permanent_income_dles.html
index 4637a011..2a9d835d 100644
--- a/permanent_income_dles.html
+++ b/permanent_income_dles.html
@@ -260,7 +260,9 @@
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
+
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -488,7 +490,7 @@ 20.1.1. Solution with the DLE Class
-
+
diff --git a/rob_markov_perf.html b/rob_markov_perf.html
index e82eb7e0..a91691f5 100644
--- a/rob_markov_perf.html
+++ b/rob_markov_perf.html
@@ -281,7 +281,9 @@ 27. Robust Markov Perfect Equilibrium
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
diff --git a/robustness.html b/robustness.html
index da47d519..6e019210 100644
--- a/robustness.html
+++ b/robustness.html
@@ -288,7 +288,9 @@ 26. Robustness
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -1116,22 +1118,22 @@ 26.7. Application
-/tmp/ipykernel_8180/154157873.py:51: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
+/tmp/ipykernel_8169/154157873.py:51: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
return list(map(float, (value, entropy)))
-/tmp/ipykernel_8180/154157873.py:51: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
+/tmp/ipykernel_8169/154157873.py:51: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
return list(map(float, (value, entropy)))
-/tmp/ipykernel_8180/154157873.py:51: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
+/tmp/ipykernel_8169/154157873.py:51: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
return list(map(float, (value, entropy)))
-/tmp/ipykernel_8180/154157873.py:51: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
+/tmp/ipykernel_8169/154157873.py:51: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
return list(map(float, (value, entropy)))
-[<matplotlib.lines.Line2D object at 0x7fec2b2c2990>]
-[<matplotlib.lines.Line2D object at 0x7fec2b2c3710>]
-[<matplotlib.lines.Line2D object at 0x7fec2b2ccc90>]
-[<matplotlib.lines.Line2D object at 0x7fec2b2af790>]
+[<matplotlib.lines.Line2D object at 0x7f589ce101d0>]
+[<matplotlib.lines.Line2D object at 0x7f589ce7a050>]
+[<matplotlib.lines.Line2D object at 0x7f589ce7b250>]
+[<matplotlib.lines.Line2D object at 0x7f589d5eab50>]
diff --git a/rosen_schooling_model.html b/rosen_schooling_model.html
index 8d76d86e..2a4003ab 100644
--- a/rosen_schooling_model.html
+++ b/rosen_schooling_model.html
@@ -264,7 +264,9 @@
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
+
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
diff --git a/searchindex.js b/searchindex.js
index bec2ca2d..5a04553e 100644
--- a/searchindex.js
+++ b/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["BCG_complete_mkts", "BCG_incomplete_mkts", "additive_functionals", "amss", "amss2", "amss3", "arellano", "arma", "asset_pricing_lph", "black_litterman", "calvo", "calvo_machine_learn", "cattle_cycles", "chang_credible", "chang_ramsey", "classical_filtering", "coase", "cons_news", "discrete_dp", "dyn_stack", "entropy", "estspec", "five_preferences", "growth_in_dles", "hs_invertibility_example", "hs_recursive_models", "intro", "irfs_in_hall_model", "knowing_forecasts_of_others", "lqramsey", "lu_tricks", "lucas_asset_pricing_dles", "lucas_model", "markov_jump_lq", "matsuyama", "muth_kalman", "opt_tax_recur", "orth_proj", "permanent_income_dles", "rob_markov_perf", "robustness", "rosen_schooling_model", "smoothing", "smoothing_tax", "stationary_densities", "status", "tax_smoothing_1", "tax_smoothing_2", "tax_smoothing_3", "troubleshooting", "un_insure", "zreferences"], "filenames": ["BCG_complete_mkts.md", "BCG_incomplete_mkts.md", "additive_functionals.md", "amss.md", "amss2.md", "amss3.md", "arellano.md", "arma.md", "asset_pricing_lph.md", "black_litterman.md", "calvo.md", "calvo_machine_learn.md", "cattle_cycles.md", "chang_credible.md", "chang_ramsey.md", "classical_filtering.md", "coase.md", "cons_news.md", "discrete_dp.md", "dyn_stack.md", "entropy.md", "estspec.md", "five_preferences.md", "growth_in_dles.md", "hs_invertibility_example.md", "hs_recursive_models.md", "intro.md", "irfs_in_hall_model.md", "knowing_forecasts_of_others.md", "lqramsey.md", "lu_tricks.md", "lucas_asset_pricing_dles.md", "lucas_model.md", "markov_jump_lq.md", "matsuyama.md", "muth_kalman.md", "opt_tax_recur.md", "orth_proj.md", "permanent_income_dles.md", "rob_markov_perf.md", "robustness.md", "rosen_schooling_model.md", "smoothing.md", "smoothing_tax.md", "stationary_densities.md", "status.md", "tax_smoothing_1.md", "tax_smoothing_2.md", "tax_smoothing_3.md", "troubleshooting.md", "un_insure.md", "zreferences.md"], "titles": ["37. Irrelevance of Capital Structures with Complete Markets", "38. Equilibrium Capital Structures with Incomplete Markets", "30. Additive and Multiplicative Functionals", "44. Optimal Taxation without State-Contingent Debt", "45. Fluctuating Interest Rates Deliver Fiscal Insurance", "46. Fiscal Risk and Government Debt", "13. Default Risk and Income Fluctuations", "28. Covariance Stationary Processes", "35. Elementary Asset Pricing Theory", "36. Two Modifications of Mean-Variance Portfolio Theory", "42. Ramsey Plans, Time Inconsistency, Sustainable Plans", "41. Machine Learning a Ramsey Plan", "22. Cattle Cycles", "48. Credible Government Policies in a Model of Chang", "47. Competitive Equilibria of a Model of Chang", "32. Classical Prediction and Filtering With Linear Algebra", "15. Coase\u2019s Theory of the Firm", "5. Information and Consumption Smoothing", "4. Discrete State Dynamic Programming", "40. Stackelberg Plans", "25. Etymology of Entropy", "29. Estimation of Spectra", "24. Risk and Model Uncertainty", "17. Growth in Dynamic Linear Economies", "23. Shock Non Invertibility", "16. Recursive Models of Dynamic Linear Economies", "Advanced Quantitative Economics with Python", "19. IRFs in Hall Models", "33. Knowing the Forecasts of Others", "12. Optimal Taxation in an LQ Economy", "31. Classical Control with Linear Algebra", "18. Lucas Asset Pricing Using DLE", "34. Asset Pricing II: The Lucas Asset Pricing Model", "8. Markov Jump Linear Quadratic Dynamic Programming", "14. Globalization and Cycles", "3. Reverse Engineering a la Muth", "43. Optimal Taxation with State-Contingent Debt", "1. Orthogonal Projections and Their Applications", "20. Permanent Income Model using the DLE Class", "27. Robust Markov Perfect Equilibrium", "26. Robustness", "21. Rosen Schooling Model", "6. Consumption Smoothing with Complete and Incomplete Markets", "7. Tax Smoothing with Complete and Incomplete Markets", "2. Continuous State Markov Chains", "51. Execution Statistics", "9. How to Pay for a War: Part 1", "10. How to Pay for a War: Part 2", "11. How to Pay for a War: Part 3", "49. Troubleshooting", "39. Optimal Unemployment Insurance", "50. References"], "terms": {"In": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 51], "addit": [0, 1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "what": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "anaconda": [0, 1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49], "thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], "lectur": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50], "need": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 18, 19, 20, 21, 23, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 41, 44, 46, 47, 49], "follow": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50], "librari": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49], "pip": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49], "instal": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49], "upgrad": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49], "quantecon": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 25, 27, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50], "conda": [0, 1, 28], "y": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 25, 28, 30, 32, 34, 35, 37, 38, 40, 42, 43, 44, 50, 51], "c": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51], "plotli": [0, 1, 28], "orca": [0, 1, 28], "collect": [0, 1, 3, 10, 11, 12, 13, 14, 22, 28, 29, 34, 41, 43, 46, 47, 48], "download": [0, 3, 11, 13], "0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50], "7": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51], "2": [0, 1, 2, 3, 4, 6, 9, 11, 12, 13, 14, 17, 18, 19, 20, 22, 24, 25, 26, 29, 30, 31, 32, 34, 35, 36, 38, 39, 41, 45, 46, 48, 50, 51], "py3": [0, 3, 11, 13, 37], "none": [0, 1, 2, 3, 4, 5, 6, 7, 11, 13, 15, 22, 24, 27, 30, 33, 34, 36, 43, 46], "ani": [0, 1, 2, 3, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 25, 30, 32, 35, 36, 37, 40, 44, 48, 50], "whl": [0, 3, 11, 13], "metadata": [0, 1, 3, 11, 13, 28], "4": [0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 46, 47, 48, 50, 51], "9": [0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50], "kb": [0, 3, 11, 13, 40], "requir": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "alreadi": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "satisfi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "numba": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "49": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], "home": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "runner": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "miniconda3": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "env": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "lib": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "python3": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "11": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50], "site": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "packag": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "from": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51], "59": [0, 1, 2, 3, 15, 30, 45, 51], "numpi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "1": [0, 1, 2, 3, 4, 9, 11, 12, 13, 14, 17, 18, 20, 22, 24, 25, 26, 30, 31, 35, 36, 38, 39, 41, 45, 47, 48, 50, 51], "17": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 17, 18, 19, 21, 23, 24, 27, 28, 29, 30, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], "26": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51], "request": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "31": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 24, 27, 28, 29, 30, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], "scipi": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "5": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 50, 51], "sympi": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "12": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51], "llvmlite": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "43": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51], "42": [0, 1, 2, 3, 5, 6, 10, 13, 14, 22, 45], "0dev0": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "charset": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "normal": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51], "idna": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "3": [0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 45, 46, 47, 50, 51], "urllib3": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "21": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 15, 17, 18, 19, 21, 23, 24, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "certifi": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "2017": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51], "2024": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51], "mpmath": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "19": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], "215": 0, "25l": [0, 3, 11, 13], "90m": [0, 3, 11, 13], "0m": [0, 3, 11, 13], "32m0": [0, 3, 11, 13], "31m": [0, 3, 11, 13], "eta": [0, 3, 11, 13, 15, 22, 40, 50], "36m": [0, 3, 11, 13], "2k": [0, 3, 11, 13, 37], "32m215": 0, "31m9": 0, "8": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51], "mb": [0, 3, 11, 13], "36m0": [0, 3, 11, 13], "00": [0, 3, 5, 8, 11, 13, 15, 18, 19], "25h": [0, 3, 11, 13], "successfulli": [0, 3, 4, 11, 13, 22], "channel": [0, 1, 28], "default": [0, 1, 10, 11, 15, 16, 18, 22, 26, 27, 28, 30, 39, 42, 43, 46, 50, 51], "platform": [0, 1, 21, 28], "linux": [0, 1, 28, 45], "64": [0, 1, 16, 28, 45], "repodata": [0, 1, 28], "json": [0, 1, 28], "done": [0, 1, 2, 13, 16, 20, 28, 40, 50], "solv": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 17, 19, 22, 23, 25, 29, 30, 33, 34, 36, 37, 38, 39, 42, 43, 47, 50], "environ": [0, 1, 13, 27, 28, 31], "locat": [0, 22, 44], "ad": [0, 1, 7, 10, 16, 23, 39, 40, 44, 51], "updat": [0, 1, 4, 6, 7, 9, 10, 11, 13, 14, 19, 22, 32, 39, 44, 49, 50], "spec": 0, "The": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 15, 17, 19, 20, 22, 23, 24, 25, 26, 27, 30, 31, 33, 34, 35, 39, 41, 43, 46, 47, 48, 49, 50, 51], "build": [0, 2, 7, 9, 10, 12, 13, 14, 19, 22, 25, 28, 32, 34, 41], "56": [0, 3, 51], "6": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 22, 23, 24, 28, 29, 30, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 50, 51], "total": [0, 3, 4, 11, 12, 13, 14, 16, 19, 25, 28, 34, 37, 39, 43, 46, 47], "new": [0, 1, 6, 7, 13, 14, 18, 22, 23, 24, 25, 36, 41, 44, 47, 51], "extract": [0, 6, 14, 16, 28, 29, 35, 39, 40, 51], "100": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 22, 27, 30, 31, 32, 33, 36, 38, 40, 44, 46, 47, 50], "prepar": [0, 11, 12, 13, 14, 25, 29, 36, 39], "transact": [0, 16, 25, 51], "verifi": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 16, 17, 19, 20, 21, 22, 25, 29, 37, 40, 42], "execut": [0, 13, 26, 49, 50], "prolegomenon": 0, "anoth": [0, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 18, 19, 21, 22, 23, 24, 25, 27, 28, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 49, 50], "incomplet": [0, 3, 4, 5, 8, 25, 26, 28, 51], "about": [0, 1, 3, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 25, 28, 31, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 49, 50], "model": [0, 1, 2, 5, 6, 7, 15, 20, 21, 23, 30, 31, 33, 35, 36, 44, 48, 51], "author": [0, 1, 7, 10, 36, 44], "bisin": [0, 1, 51], "clementi": [0, 1, 51], "gottardi": [0, 1, 51], "et": [0, 1, 3, 4, 5, 12, 13, 14, 16, 17, 18, 20, 22, 24, 25, 28, 33, 36, 44], "al": [0, 1, 3, 4, 5, 12, 13, 14, 16, 17, 18, 20, 22, 24, 25, 28, 33, 36, 44], "2018": [0, 1, 7, 8, 10, 14, 16, 18, 19, 44, 50, 51], "we": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50], "adopt": [0, 1, 3, 13, 14, 29, 36, 39, 40, 47], "specif": [0, 1, 2, 7, 8, 9, 13, 14, 16, 19, 24, 25, 27, 28, 29, 39, 40, 41, 42, 43, 44, 45, 48, 49, 51], "veri": [0, 1, 5, 6, 7, 9, 11, 12, 14, 18, 21, 23, 24, 32, 33, 38, 40, 44], "close": [0, 2, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 33, 37, 39, 40, 42, 43, 44], "clement": [0, 1], "unlik": [0, 36, 44], "them": [0, 1, 2, 5, 6, 7, 9, 10, 11, 14, 16, 17, 19, 22, 23, 24, 25, 27, 28, 35, 36, 39, 42, 43, 44, 47, 50], "assum": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 23, 25, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44, 46, 47, 49, 50], "ar": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50], "one": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50], "period": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 22, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 43, 44, 46, 48, 50], "arrow": [0, 1, 3, 25, 29, 42, 43], "secur": [0, 1, 3, 9, 20, 29, 36, 42, 43, 51], "simplif": [0, 13, 25], "bcg": [0, 1], "us": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 34, 36, 37, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], "creat": [0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 22, 23, 25, 27, 28, 30, 34, 35, 36, 37, 39, 41, 42, 44, 46, 47, 50], "benchmark": [0, 9, 18, 40, 50], "economi": [0, 6, 10, 11, 12, 14, 16, 24, 27, 31, 32, 34, 35, 36, 38, 41, 42, 43, 46, 51], "compar": [0, 1, 2, 3, 8, 10, 11, 15, 17, 18, 20, 21, 25, 28, 31, 36, 40, 42, 44], "outcom": [0, 1, 3, 4, 5, 6, 9, 11, 13, 14, 17, 18, 20, 21, 22, 23, 28, 35, 36, 39, 43, 47, 48], "good": [0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 14, 16, 18, 19, 21, 22, 23, 25, 28, 29, 30, 31, 32, 34, 36, 37, 39, 41, 42, 43, 44, 46, 47, 48, 50], "guess": [0, 1, 3, 5, 6, 10, 11, 13, 14, 22, 25, 32, 36, 40, 42, 50], "initi": [0, 1, 2, 3, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 25, 27, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 50], "valu": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 51], "some": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 18, 19, 21, 22, 25, 28, 29, 30, 32, 33, 34, 36, 37, 40, 42, 43, 44, 46, 47, 48, 50], "via": [0, 5, 6, 7, 10, 11, 13, 14, 16, 17, 18, 19, 21, 25, 29, 30, 32, 34, 36, 39, 43, 44], "an": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 46, 48, 50, 51], "iter": [0, 1, 3, 4, 5, 6, 11, 13, 14, 16, 19, 25, 32, 34, 36, 39, 44, 46, 50, 51], "algorithm": [0, 1, 2, 5, 6, 13, 14, 16, 19, 21, 22, 25, 36, 37], "illustr": [0, 1, 2, 7, 8, 9, 10, 11, 13, 16, 17, 20, 23, 24, 25, 27, 28, 30, 32, 33, 34, 36, 37, 39, 43, 44], "classic": [0, 9, 17, 20, 25, 26, 33, 35, 36, 39, 44, 46, 47, 48], "includ": [0, 1, 2, 5, 6, 7, 10, 11, 12, 15, 16, 18, 23, 25, 28, 30, 36, 37, 38, 40, 41, 42, 43, 47], "indeterminaci": 0, "portfolio": [0, 1, 4, 5, 6, 8, 26, 29, 43, 46, 51], "choic": [0, 1, 4, 5, 6, 10, 11, 13, 14, 15, 16, 18, 19, 21, 22, 23, 27, 31, 32, 33, 35, 36, 39, 40, 42, 44, 46, 50], "financi": [0, 1, 7, 24, 42, 48, 51], "underli": [0, 2, 4, 9, 10, 11, 15, 21, 25, 42, 46], "1958": [0, 1, 51], "introduc": [0, 2, 4, 5, 6, 9, 10, 13, 14, 15, 16, 17, 21, 25, 32, 34, 44, 47, 48], "big": [0, 1, 2, 7, 9, 10, 16, 17, 19, 28, 34], "k": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 25, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 51], "littl": [0, 1, 7, 10, 11, 16, 17, 19, 23, 28, 39, 42], "issu": [0, 1, 3, 4, 16, 21, 24, 29, 36, 42, 44, 46, 47, 48, 51], "simpl": [0, 1, 2, 3, 6, 7, 8, 14, 15, 16, 17, 18, 21, 22, 25, 30, 36, 37, 39, 43, 44, 46, 47, 51], "context": [0, 8, 15, 19, 22, 37, 40], "recur": 0, "analysi": [0, 1, 4, 9, 13, 16, 17, 20, 21, 24, 25, 35, 36, 40, 44, 51], "also": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50], "plai": [0, 1, 4, 7, 8, 9, 10, 11, 13, 17, 19, 20, 25, 28, 40, 44], "role": [0, 1, 4, 7, 8, 9, 11, 16, 17, 19, 20, 22, 25, 28, 33, 40, 44, 51], "well": [0, 1, 2, 3, 4, 6, 7, 10, 11, 12, 16, 17, 18, 19, 21, 22, 28, 30, 31, 36, 37, 39, 40, 42, 44, 47, 50], "here": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 46, 47, 49, 50], "last": [0, 1, 2, 4, 5, 7, 11, 14, 15, 22, 29, 32, 42, 47, 50], "two": [0, 1, 2, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 38, 39, 42, 43, 46, 49, 50], "t": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51], "There": [0, 1, 3, 4, 6, 10, 11, 16, 21, 22, 25, 29, 30, 32, 34, 36, 50], "type": [0, 1, 2, 3, 5, 6, 11, 13, 14, 15, 16, 17, 18, 21, 22, 29, 34, 35, 39, 42, 43], "name": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 14, 15, 17, 18, 19, 22, 25, 28, 29, 30, 33, 38, 39, 42, 43], "i": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51], "scalar": [0, 1, 2, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 23, 28, 29, 30, 33, 34, 35, 37, 39, 40, 44, 47], "random": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 17, 18, 21, 22, 23, 24, 25, 27, 28, 29, 30, 33, 35, 36, 39, 40, 42, 43, 44, 46, 51], "variabl": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17, 18, 19, 22, 23, 25, 27, 30, 32, 33, 35, 38, 39, 42, 44, 46, 47, 48, 50, 51], "epsilon": [0, 1, 4, 5, 8, 9, 13, 14, 17, 18, 20, 28], "probabl": [0, 1, 2, 3, 6, 8, 9, 18, 20, 22, 25, 29, 34, 36, 37, 40, 42, 43, 44, 47, 50, 51], "densiti": [0, 1, 2, 3, 6, 9, 20, 21, 22, 25, 29, 36, 40], "g": [0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 15, 17, 18, 19, 20, 21, 22, 25, 28, 29, 32, 35, 36, 38, 39, 43, 44, 46, 47, 48, 51], "affect": [0, 1, 6, 9, 10, 14, 17, 20, 22, 25, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46], "both": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 50], "return": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 42, 44, 47, 50], "invest": [0, 1, 18, 23, 27, 33, 51], "geq": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 30, 31, 32, 34, 36, 37, 38, 39, 40, 42, 43, 44, 50], "physic": [0, 1, 19, 20, 23, 25, 41], "exogen": [0, 1, 4, 6, 10, 12, 13, 14, 19, 23, 25, 32, 34, 36, 38, 42, 43, 44, 46, 47, 48], "consumpt": [0, 1, 3, 4, 8, 12, 13, 14, 18, 23, 24, 25, 26, 29, 31, 32, 36, 38, 46, 47, 48, 50, 51], "correl": [0, 1, 8, 11, 28, 31, 32], "differ": [0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 25, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 46, 50], "wai": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 25, 28, 29, 30, 32, 33, 35, 36, 38, 39, 40, 43, 44, 46, 48, 49, 50], "discuss": [0, 1, 3, 5, 7, 8, 10, 13, 14, 15, 16, 17, 18, 21, 22, 24, 25, 28, 29, 30, 32, 34, 36, 39, 40, 42, 44], "arrang": [0, 28, 30, 50], "command": [0, 49], "which": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 50], "benevol": [0, 6, 10, 11, 13, 14, 25, 29], "planner": [0, 3, 4, 5, 11, 12, 13, 25, 29, 36, 50], "choos": [0, 1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 25, 27, 29, 30, 34, 36, 37, 38, 39, 40, 42, 46, 47, 48, 50], "alloc": [0, 1, 2, 3, 4, 5, 6, 13, 14, 16, 22, 23, 29, 34, 43], "each": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50], "second": [0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 20, 21, 22, 23, 25, 28, 29, 34, 36, 38, 39, 42, 44, 46, 47, 48, 49, 50], "state": [0, 1, 4, 5, 6, 7, 10, 11, 12, 13, 14, 16, 19, 20, 23, 25, 26, 27, 30, 31, 32, 33, 37, 38, 39, 40, 46, 47, 48, 50, 51], "claim": [0, 1, 4, 6, 10, 17, 19, 20, 25, 28, 29, 31, 32, 37, 40, 42, 43], "set": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27, 29, 30, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50], "possibl": [0, 2, 3, 5, 7, 10, 13, 14, 17, 18, 20, 21, 22, 23, 25, 28, 29, 33, 34, 36, 39, 40, 42, 43, 44, 46, 47, 49, 50], "continuum": [0, 28, 42, 44], "pai": [0, 1, 3, 4, 6, 7, 14, 16, 17, 26, 31, 32, 33, 36, 42, 43, 50], "conting": [0, 4, 5, 6, 10, 14, 15, 25, 26, 29, 42, 47, 51], "realiz": [0, 2, 3, 4, 6, 7, 9, 13, 14, 15, 17, 21, 25, 28, 30, 31, 33, 36, 42], "singl": [0, 3, 4, 8, 10, 11, 14, 16, 17, 18, 19, 21, 22, 27, 28, 29, 32, 34, 35, 36, 40, 42, 43, 44, 50], "wide": [0, 1, 8, 9, 15, 28, 37, 39], "begin": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "align": [0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 17, 20, 22, 25, 28, 30, 32, 33, 34, 35, 36, 37, 38, 40, 42, 43, 47, 50], "w_0": [0, 1, 13, 25, 28], "cr": [0, 1, 4, 5, 8, 9, 10, 11, 17, 19, 20, 22, 28, 30, 35, 36, 38, 42, 43, 47, 50], "w_1": [0, 1, 25, 39], "textrm": [0, 1, 20, 22, 30, 40, 44, 47], "end": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 50], "soon": [0, 3, 19, 22, 34, 36, 40, 50], "ll": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 19, 20, 22, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50], "explain": [0, 5, 6, 8, 20, 21, 24, 32, 34, 37, 40, 46, 48, 51], "how": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 49, 50], "aggreg": [0, 1, 28], "divid": [0, 1, 3, 4, 5, 8, 20, 22, 29, 36], "between": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 42, 44, 50], "don": [0, 1, 11, 34, 37, 40, 49], "do": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 21, 23, 24, 25, 28, 30, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 49, 50, 51], "order": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 38, 39, 42, 46, 47, 48, 50], "describ": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "social": [0, 10, 11, 25, 50], "where": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50], "alpha": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 18, 21, 22, 25, 29, 30, 32, 34, 36, 37, 38, 39, 40, 42, 43, 44], "c_0": [0, 1, 3, 4, 13, 14, 15, 19, 25, 29, 30, 36, 50], "c_1": [0, 1, 15, 19, 22, 30, 47, 50], "e": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 40, 41, 42, 43, 44, 47, 50, 51], "quad": [0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 33, 34, 36, 37, 39, 40, 42, 43, 44, 47], "i_1": [0, 1], "u": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 18, 19, 22, 25, 30, 32, 33, 36, 37, 38, 40, 42, 44, 46, 47, 48, 50], "beta": [0, 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "int": [0, 1, 4, 5, 6, 9, 20, 29, 32, 34, 39, 40, 42, 43, 44], "d": [0, 1, 2, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 22, 25, 28, 29, 30, 33, 34, 38, 39, 40, 42, 43, 44, 46, 51], "util": [0, 1, 3, 5, 6, 8, 9, 10, 11, 13, 14, 15, 17, 18, 25, 29, 32, 38, 42, 43, 50, 51], "function": [0, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 50, 51], "case": [0, 1, 2, 3, 4, 5, 7, 8, 12, 13, 15, 18, 21, 22, 25, 28, 30, 33, 34, 36, 42, 43, 46], "frac": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44], "gamma": [0, 1, 3, 4, 5, 7, 8, 9, 12, 14, 17, 19, 20, 21, 23, 24, 25, 30, 32, 36, 38, 39, 40, 42, 43, 44], "neq": [0, 1, 9, 10, 11, 13, 15, 17, 19, 36, 39], "log": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 18, 20, 22, 25, 36, 50], "shall": [0, 1, 3, 4, 8, 9, 10, 11, 14, 15, 17, 19, 22, 23, 25, 28, 30, 33, 35, 36, 38, 42, 50], "emploi": [0, 1, 10, 14, 16, 17, 19, 34, 39, 50], "sim": [0, 1, 2, 4, 8, 9, 18, 19, 22, 25, 28, 33, 35, 36, 40, 42, 44, 46, 47, 48], "mathcal": [0, 1, 2, 4, 5, 8, 9, 13, 14, 16, 20, 22, 25, 28, 35, 37, 39, 40], "n": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 25, 28, 29, 30, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 51], "mu": [0, 1, 3, 7, 8, 9, 10, 13, 14, 21, 22, 25, 29, 42, 44], "sigma": [0, 1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 18, 19, 20, 25, 32, 33, 34, 36, 38, 42, 44, 46, 47], "chi_i": [0, 1], "sometim": [0, 1, 8, 9, 15, 17, 20, 25, 29, 32, 36, 37, 50], "instead": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 15, 22, 25, 28, 30, 32, 34, 36, 37, 40, 42, 44, 48, 49], "asum": [0, 1], "cdot": [0, 1, 2, 7, 8, 9, 10, 11, 13, 14, 18, 23, 24, 25, 30, 37, 41, 42, 43, 44, 47], "mass": [0, 1, 2, 18, 32, 34, 44], "serv": [0, 1, 10, 19], "discret": [0, 1, 6, 7, 9, 14, 19, 20, 21, 22, 26, 28, 30, 32, 33, 34, 39, 44, 47, 51], "approxim": [0, 1, 7, 8, 9, 13, 14, 15, 18, 19, 21, 22, 28, 30, 32, 37, 40, 44, 50], "standard": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 25, 28, 29, 30, 32, 36, 37, 39, 40, 43, 44, 46, 47, 48], "obj": [0, 22, 36], "phi_1": [0, 2, 7, 23, 24, 25, 27, 30, 31, 36], "phi_2": [0, 2, 7], "phi_i": [0, 12, 23, 25, 38], "weight": [0, 9, 10, 11, 12, 21, 30, 51], "attach": [0, 3, 36], "form": [0, 1, 3, 4, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 22, 23, 25, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 44, 46, 47, 50, 51], "lagrangian": [0, 1, 19, 22, 28, 29, 36, 40], "l": [0, 1, 3, 4, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 22, 24, 25, 28, 29, 30, 36, 51], "sum_": [0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "left": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 50], "right": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 50], "lambda_0": 0, "lambda_1": [0, 15, 25, 30], "first": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50], "necessari": [0, 1, 7, 9, 10, 14, 23, 25, 28, 30, 42, 50], "optim": [0, 4, 5, 6, 9, 11, 13, 14, 15, 16, 17, 19, 22, 23, 26, 28, 30, 32, 33, 34, 38, 39, 40, 42, 43, 44, 46, 51], "condit": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 25, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 42, 44, 46, 47, 50, 51], "four": [0, 2, 13, 14, 25, 34, 36, 43, 44, 48], "equat": [0, 1, 2, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 34, 38, 39, 41, 42, 43, 46, 48, 50], "impli": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 22, 24, 25, 28, 29, 30, 36, 37, 42, 43, 44, 50], "These": [0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 22, 23, 25, 27, 29, 30, 34, 35, 36, 37, 39, 40, 42, 43, 45], "togeth": [0, 1, 2, 7, 8, 9, 11, 13, 14, 16, 19, 21, 28, 30, 33, 36, 50], "fifth": 0, "determin": [0, 1, 4, 6, 7, 8, 9, 10, 11, 12, 14, 16, 21, 22, 25, 28, 30, 32, 33, 34, 40, 41, 42, 43, 46, 47, 50, 51], "evid": [0, 1, 3, 7, 8, 9, 10, 11, 13, 14, 17, 19, 20, 22, 25, 30, 33, 36, 37, 39, 42, 46, 47, 50, 51], "understood": [0, 4, 7, 13, 16, 36, 40, 44], "hold": [0, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 25, 29, 30, 32, 37, 40, 43, 46, 48], "1_0": [0, 1], "2_0": [0, 1, 25, 30], "all": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 13, 15, 16, 17, 18, 19, 20, 21, 22, 25, 29, 30, 32, 34, 36, 37, 38, 39, 40, 42, 43, 44, 47, 48, 50], "With": [0, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 21, 22, 25, 26, 28, 29, 30, 33, 34, 35, 36, 40, 42, 43, 44, 47, 48, 50], "same": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 15, 16, 18, 19, 21, 22, 25, 28, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 47, 48], "understand": [0, 1, 2, 4, 10, 11, 12, 15, 19, 22, 25, 32, 34, 36, 40, 42], "let": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 50], "It": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 33, 34, 36, 37, 41, 42, 43, 44, 46, 47, 50], "preced": [0, 5, 7, 10, 13, 17, 18, 21, 22, 28, 32, 33, 34, 36, 37, 40, 42, 44, 50], "consequ": [0, 1, 2, 3, 6, 8, 10, 11, 13, 14, 15, 17, 25, 27, 28, 32, 33, 36, 38, 40, 41, 46, 47, 48, 50], "can": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50], "write": [0, 2, 3, 5, 6, 8, 9, 10, 11, 15, 16, 17, 18, 19, 21, 23, 25, 28, 29, 30, 32, 33, 34, 37, 39, 40, 42, 44, 46, 47, 50], "anticip": [0, 1, 6, 10, 11, 14, 17, 40], "idea": [0, 1, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 21, 22, 24, 25, 30, 31, 32, 33, 35, 36, 37, 39, 40, 44, 46, 48, 51], "macroeconom": [0, 8, 19, 21, 33, 51], "detail": [0, 1, 2, 5, 6, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 27, 29, 31, 34, 37, 38, 40, 41, 43, 44, 49], "below": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50], "so": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], "associ": [0, 1, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 25, 27, 28, 29, 30, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 50, 51], "share": [0, 9, 23, 28, 32, 33, 34, 36, 39, 47, 51], "paramet": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 35, 37, 38, 40, 42, 44, 46, 47, 48], "mention": [0, 2, 32, 46], "abov": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 50], "curvatur": [0, 22], "rel": [0, 6, 7, 8, 9, 10, 15, 16, 21, 22, 28, 29, 31, 32, 34, 36, 37, 39, 40, 44, 50], "doe": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 19, 21, 22, 23, 24, 27, 28, 30, 34, 36, 38, 39, 40, 44, 46, 50], "37": [0, 19, 36, 45, 51], "neither": [0, 1, 10, 25, 27, 35, 42], "influenc": [0, 1, 5, 10, 13, 14, 18, 19, 25, 28, 30, 36, 39], "depend": [0, 1, 3, 4, 5, 6, 7, 10, 12, 13, 14, 15, 19, 20, 22, 24, 25, 28, 29, 30, 32, 33, 34, 35, 36, 39, 40, 42, 44, 46, 47, 50], "sole": [0, 17, 33], "thu": [0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 28, 29, 30, 32, 33, 34, 36, 39, 42, 43, 44, 46, 47, 48, 50], "interact": [0, 1, 6, 9, 28, 34], "want": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 28, 29, 30, 32, 34, 35, 36, 37, 39, 40, 41, 42, 44, 46, 47, 48, 50, 51], "now": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "ha": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 46, 47, 48, 50], "ident": [0, 2, 3, 4, 5, 6, 9, 10, 15, 16, 17, 19, 20, 22, 28, 30, 32, 36, 38, 39, 40], "those": [0, 1, 3, 4, 7, 8, 10, 11, 12, 13, 14, 15, 18, 19, 21, 22, 24, 28, 29, 30, 34, 35, 36, 39, 40, 43, 44, 46, 47, 48], "while": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30, 32, 34, 36, 37, 39, 40, 42, 43, 46, 47, 48, 50], "onli": [0, 1, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 36, 37, 39, 40, 43, 44, 46, 47, 48, 50], "import": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "To": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "relat": [0, 1, 4, 5, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 27, 29, 30, 32, 35, 36, 40, 42, 46, 47, 50, 51], "turn": [0, 1, 3, 4, 6, 7, 9, 10, 17, 18, 19, 21, 22, 25, 28, 29, 32, 36, 40, 41, 42, 43, 44], "distinct": [0, 1, 7, 11, 15, 24, 30], "unit": [0, 1, 2, 3, 6, 7, 13, 14, 15, 16, 20, 21, 22, 23, 25, 27, 29, 30, 31, 32, 34, 36, 37, 42, 43, 44, 50, 51], "access": [0, 1, 3, 6, 17, 48, 50], "product": [0, 1, 7, 12, 13, 14, 15, 16, 22, 27, 28, 30, 32, 33, 34, 36, 37, 40, 44, 51], "convert": [0, 1, 7, 18, 29, 30, 32, 43, 44], "time": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 50, 51], "omega": [0, 1, 7, 10, 13, 14, 19, 20, 21, 25, 28, 34], "index": [0, 1, 4, 5, 6, 7, 8, 9, 10, 16, 18, 19, 22, 25, 28, 29, 34, 36, 40, 42, 43], "particular": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 42, 43, 44, 46, 47, 50], "Then": [0, 1, 2, 3, 4, 8, 9, 10, 11, 13, 14, 15, 19, 20, 22, 25, 28, 30, 35, 36, 37, 43, 47], "defin": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 50], "int_0": [0, 1, 7, 28], "spirit": [0, 1, 10, 13, 19, 25, 29, 42, 46, 47], "zeta": [0, 1, 9, 20], "assumpt": [0, 1, 2, 3, 7, 8, 10, 11, 13, 14, 21, 25, 28, 29, 30, 32, 34, 36, 39, 40, 42, 43, 47, 49, 50], "continua": 0, "our": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 49, 50], "three": [0, 1, 3, 5, 6, 11, 12, 13, 17, 18, 21, 22, 23, 25, 27, 28, 36, 39, 40, 41, 43, 44, 47, 50], "make": [0, 1, 2, 3, 4, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 30, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 47, 48, 50], "individu": [0, 1, 2, 3, 9, 25, 44, 50], "powerless": [0, 1], "taker": [0, 1, 16, 25, 28, 36], "its": [0, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 30, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44], "own": [0, 1, 15, 16, 18, 25, 28, 32, 44], "infinesim": 0, "part": [0, 1, 2, 3, 4, 7, 8, 13, 14, 15, 16, 17, 19, 21, 25, 26, 28, 30, 32, 33, 36, 38, 40, 41, 43, 44], "take": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 50], "given": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 25, 28, 29, 30, 32, 33, 34, 37, 38, 39, 40, 42, 43, 44, 47, 50], "infinitesmim": [0, 1], "nevertheless": [0, 2, 5, 10, 11, 15, 16, 28], "power": [0, 1, 4, 5, 11, 15, 16, 18, 25, 29, 34], "devic": [0, 1, 10, 19], "host": [0, 1], "independ": [0, 1, 2, 3, 5, 9, 25, 28, 29, 33, 36, 44], "decis": [0, 1, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 28, 32, 33, 38, 39, 40, 42, 43, 46, 47, 51], "who": [0, 1, 3, 7, 9, 10, 12, 16, 17, 19, 22, 24, 25, 29, 34, 36, 40, 42, 43, 50], "behav": [0, 2, 3, 12, 16, 17, 33, 42], "just": [0, 1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 21, 22, 23, 24, 25, 28, 30, 32, 34, 35, 37, 39, 40, 44, 50], "like": [0, 1, 2, 3, 4, 7, 8, 9, 10, 16, 19, 24, 25, 28, 33, 34, 35, 36, 40, 42, 43, 44, 47, 48, 49], "thei": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 16, 17, 18, 20, 22, 25, 28, 30, 33, 34, 36, 37, 39, 42, 44, 47], "sum_i": [0, 20, 22, 37], "oper": [0, 6, 7, 13, 15, 16, 17, 19, 22, 25, 28, 29, 30, 32, 35, 37, 39, 40, 44, 50], "nonneg": [0, 3, 4, 13, 14, 16, 20, 21, 22, 44], "amount": [0, 3, 4, 7, 9, 17, 18, 19, 21, 23, 25, 29, 34, 37, 40, 42, 43, 48], "produc": [0, 9, 14, 16, 19, 23, 25, 28, 29, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44], "theta_0": [0, 10, 11, 13, 14, 36], "At": [0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 13, 14, 16, 22, 36, 40, 42, 50], "trade": [0, 1, 3, 4, 6, 9, 13, 14, 18, 25, 32, 34, 36, 42, 43, 46, 47, 51], "other": [0, 1, 3, 4, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 30, 32, 33, 34, 36, 37, 38, 39, 41, 43, 44, 46, 47, 48, 50, 51], "equiti": 0, "known": [0, 3, 8, 9, 10, 13, 15, 17, 18, 21, 22, 25, 29, 30, 32, 36, 37, 40, 44, 46], "stock": [0, 10, 11, 12, 23, 25, 27, 28, 41], "when": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50], "shock": [0, 1, 2, 3, 4, 6, 8, 12, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 36, 40, 41, 42, 44, 47], "later": [0, 2, 5, 10, 12, 19, 25, 28, 30, 35, 36, 39, 43, 44, 46, 50], "allow": [0, 2, 3, 5, 6, 7, 9, 10, 12, 13, 14, 18, 19, 22, 25, 27, 28, 29, 30, 34, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50], "bond": [0, 3, 4, 6, 17, 29, 31, 36, 42, 43, 46], "too": [0, 1, 2, 7, 16, 21, 25, 28, 29, 40, 48], "purchas": [0, 1, 3, 4, 6, 16, 29, 32, 36, 42, 43, 46, 47, 48], "q": [0, 1, 6, 7, 8, 10, 11, 13, 14, 18, 19, 20, 22, 25, 28, 29, 33, 36, 37, 39, 40, 42, 43, 46, 47, 48], "kernel": [0, 6, 42, 44], "intial": [0, 3, 22, 36], "theta": [0, 1, 6, 7, 9, 10, 11, 13, 14, 15, 20, 22, 25, 28, 34, 36, 37, 40, 43, 44, 50], "fraction": [0, 1, 17, 30], "v": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 25, 28, 29, 30, 32, 36, 42, 43, 44, 50, 51], "tild": [0, 2, 3, 9, 10, 11, 12, 13, 14, 15, 19, 22, 25, 29, 30, 36, 40, 47], "construct": [0, 2, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 28, 29, 30, 33, 35, 36, 37, 39, 42, 43, 44, 47, 48], "proce": [0, 11, 14, 15, 19, 25, 28, 40, 43, 47, 50], "constrain": [0, 11, 22, 36, 42], "optimum": [0, 1, 6, 11, 15, 19, 25, 30, 33, 51], "face": [0, 1, 3, 6, 13, 14, 16, 19, 25, 28, 30, 33, 36, 40, 42, 43, 46, 48], "financ": [0, 1, 3, 8, 10, 17, 29, 36, 51], "itself": [0, 10, 16, 17, 37, 44], "earn": [0, 3, 4, 6, 9, 19, 36, 43], "owner": 0, "multipli": [0, 3, 4, 5, 9, 13, 14, 15, 16, 19, 25, 28, 29, 39, 40, 47, 50], "over": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 22, 24, 25, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 50, 51], "maxim": [0, 1, 3, 6, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 22, 23, 25, 28, 29, 30, 32, 33, 36, 38, 39, 40, 42, 47], "side": [0, 1, 3, 4, 5, 7, 10, 15, 16, 19, 20, 22, 25, 28, 30, 32, 34, 35, 36, 39, 40, 44, 50], "equal": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 28, 29, 30, 32, 33, 34, 36, 40, 42, 43, 44, 46, 47, 50], "minu": [0, 5, 8, 20, 22, 39, 43], "cost": [0, 4, 6, 7, 9, 10, 11, 12, 13, 14, 19, 22, 23, 28, 30, 33, 34, 36, 39, 40, 42, 47, 48, 50, 51], "pose": [0, 1, 10, 12, 14, 15, 28, 36], "As": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 22, 25, 27, 28, 30, 32, 33, 34, 36, 39, 40, 42, 43, 44, 46, 47, 48, 50], "chosen": [0, 1, 2, 6, 7, 9, 10, 11, 14, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 34, 36, 38, 40, 46, 47, 48, 50], "prospect": [0, 1, 3, 22, 32, 50], "next": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 48, 50], "dividend": [0, 2, 25, 32], "If": [0, 1, 2, 3, 6, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 22, 25, 27, 28, 29, 30, 32, 34, 36, 37, 39, 40, 42, 44, 46, 47, 49, 50], "evalu": [0, 1, 3, 4, 7, 10, 15, 16, 17, 18, 22, 29, 30, 34, 36, 40, 50, 51], "budget": [0, 1, 3, 4, 5, 6, 13, 14, 22, 24, 25, 36, 38, 42, 43, 46, 47, 48, 51], "constraint": [0, 1, 4, 5, 6, 9, 10, 11, 13, 14, 17, 18, 19, 23, 25, 38, 40, 42, 43, 46, 47, 48, 50], "zero": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 25, 27, 28, 29, 30, 33, 34, 36, 37, 38, 39, 41, 42, 43, 46, 47, 48, 50], "obtain": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 30, 32, 33, 34, 36, 37, 40, 42, 43, 44, 50], "bar": [0, 2, 4, 6, 9, 10, 13, 14, 15, 18, 21, 22, 25, 29, 30, 31, 42, 43, 46, 47, 50], "maximum": [0, 1, 6, 8, 9, 10, 11, 13, 14, 19, 21, 22, 29, 30, 34, 39, 40, 47, 50], "feasibl": [0, 4, 10, 16, 18, 19, 36, 42], "repai": [0, 6, 42], "hi": [0, 8, 9, 10, 11, 16, 17, 19, 22, 28, 35, 39, 40, 42, 43, 46, 47, 48, 50], "creditor": [0, 6], "notic": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 15, 17, 18, 20, 22, 28, 30, 33, 36, 37, 39, 40, 42, 43, 44, 50], "represent": [0, 4, 11, 13, 14, 15, 20, 22, 24, 28, 36, 38, 44, 51], "constitut": [0, 9, 10, 13, 22], "sourc": [0, 3, 12, 14, 17, 22, 29, 30, 42, 49, 50, 51], "collater": 0, "back": [0, 3, 7, 9, 15, 22, 23, 29, 30, 32, 37, 40, 43, 50], "off": [0, 3, 5, 9, 11, 13, 14, 18, 22, 23, 25, 36, 39, 42, 43, 44], "subject": [0, 1, 3, 9, 10, 11, 12, 13, 14, 17, 19, 20, 22, 23, 25, 29, 30, 32, 33, 36, 38, 39, 40, 42, 46, 47, 48, 50], "leq": [0, 1, 3, 6, 8, 9, 10, 13, 14, 15, 16, 18, 20, 22, 25, 28, 30, 32, 34, 36, 37, 40, 42, 44, 50], "lagrang": [0, 3, 4, 19, 22, 25, 28, 29, 40, 50], "scale": [0, 1, 2, 7, 13, 14, 18, 22, 24, 25, 29, 36, 44], "corner": [0, 30], "respect": [0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 24, 25, 28, 29, 30, 32, 34, 36, 37, 39, 40, 42, 44, 50], "adjust": [0, 3, 6, 9, 10, 19, 22, 23, 28, 29, 30, 32, 33, 36, 39, 47, 48], "deduc": [0, 8, 9, 10, 19, 25, 28, 35, 37, 39, 42, 51], "restrict": [0, 1, 3, 4, 8, 10, 13, 14, 16, 19, 20, 24, 25, 29, 36, 40, 42, 50], "express": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 25, 28, 29, 30, 32, 34, 35, 36, 37, 39, 40, 42, 43, 44, 48, 50], "substitut": [0, 1, 3, 7, 8, 9, 10, 19, 22, 25, 28, 29, 30, 34, 36, 37, 39, 40, 42, 50], "rearrang": [0, 1, 8, 10, 13, 14, 19, 29, 37, 42, 43, 47], "get": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 16, 18, 19, 22, 25, 28, 29, 30, 32, 34, 38, 40, 42, 43, 44, 48, 49, 50], "intertempor": [0, 1, 8, 11, 13, 14, 30, 39, 42, 43, 46, 47, 48], "inequ": [0, 1, 7, 8, 10, 13, 14, 22, 40, 50], "present": [0, 3, 4, 5, 7, 10, 13, 15, 17, 19, 22, 24, 25, 26, 27, 28, 29, 30, 34, 36, 39, 40, 41, 42, 43, 44, 46, 50, 51], "bui": [0, 1, 42, 43], "find": [0, 1, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 18, 19, 20, 22, 23, 28, 30, 32, 34, 35, 36, 37, 39, 43, 44, 46, 47, 50], "No": [0, 11, 25, 28, 39], "arbitrag": [0, 8, 51], "profit": [0, 6, 16, 19, 34, 40, 51], "unless": [0, 18, 22, 44, 50], "opportun": [0, 6, 8, 10, 14, 42], "would": [0, 1, 3, 4, 7, 8, 9, 10, 11, 14, 15, 21, 22, 24, 25, 28, 29, 30, 34, 36, 37, 38, 39, 42, 44, 46, 48, 50], "open": [0, 2, 6, 16], "could": [0, 1, 2, 3, 4, 5, 9, 10, 11, 14, 15, 16, 17, 18, 25, 28, 30, 36, 42, 44], "afford": 0, "arbitrarili": [0, 7, 43], "high": [0, 1, 6, 8, 9, 10, 11, 13, 14, 18, 22, 24, 29, 31, 33, 34, 36, 42, 43, 46, 48, 50], "larg": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 21, 22, 28, 29, 30, 34, 36, 39, 40, 44, 46, 47, 48, 51], "neg": [0, 4, 6, 7, 8, 9, 13, 15, 16, 25, 29, 31, 40, 41, 48], "number": [0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 28, 29, 30, 33, 34, 36, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51], "posit": [0, 1, 3, 4, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 30, 34, 35, 36, 40, 41, 43, 44, 47, 48, 50], "sinc": [0, 3, 6, 7, 10, 13, 16, 18, 21, 23, 30, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 50], "resourc": [0, 3, 4, 5, 6, 32, 42], "finit": [0, 4, 7, 13, 14, 16, 18, 22, 25, 28, 33, 36, 39, 44, 46], "exist": [0, 3, 7, 8, 9, 11, 13, 14, 15, 18, 22, 25, 29, 30, 34, 37, 44], "therefor": [0, 1, 3, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 22, 23, 28, 30, 32, 36, 39, 42, 43, 46, 47, 50], "must": [0, 1, 3, 6, 8, 9, 10, 13, 14, 15, 16, 19, 22, 28, 30, 32, 34, 36, 42, 44, 46, 47, 48, 50], "true": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 42, 44], "prevail": [0, 1, 4, 5, 11, 15, 25, 28, 29, 33, 36, 40, 50], "assert": [0, 1, 8, 9, 10, 11, 17, 20, 22, 23, 28, 29, 36, 37, 40, 50], "ak": [0, 1, 35], "have": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 49, 50], "sai": [0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 22, 25, 36, 39, 40, 42, 44], "more": [0, 1, 3, 4, 6, 7, 8, 9, 10, 13, 14, 16, 17, 18, 21, 22, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 42, 44, 46, 50], "indetermin": [0, 1], "offset": [0, 10, 24], "appropri": [0, 2, 3, 5, 8, 9, 10, 13, 14, 15, 19, 20, 21, 22, 28, 29, 30, 32, 35, 42, 43, 46, 47], "schedul": [0, 6, 25, 50], "readili": [0, 4, 15], "step": [0, 1, 3, 4, 6, 7, 8, 9, 10, 13, 15, 16, 17, 18, 20, 21, 25, 29, 30, 35, 36, 40, 44, 47, 50], "see": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 50], "reli": [0, 14, 18, 30, 50], "heavili": [0, 9], "logic": [0, 1], "earlier": [0, 1, 3, 4, 5, 7, 10, 11, 13, 14, 15, 17, 20, 21, 22, 23, 25, 27, 30, 32, 36, 37, 40, 42, 47, 48, 50], "equilbrium": [0, 19], "encod": [0, 13, 28], "shadow": [0, 12, 25], "substanti": [0, 9, 13, 29, 39, 40], "procedur": [0, 1, 5, 6, 7, 9, 14, 15, 16, 29, 30, 37, 39, 40, 43, 50], "valid": [0, 3, 22, 30, 32], "hand": [0, 3, 5, 6, 7, 9, 11, 13, 15, 16, 17, 22, 25, 28, 29, 30, 32, 36, 39, 40, 42, 44, 50], "confirm": [0, 1, 4, 5, 7, 10, 13, 17, 19, 22, 23, 27, 28, 30, 38, 42], "consid": [0, 3, 6, 7, 9, 10, 13, 15, 16, 18, 20, 21, 22, 23, 24, 28, 29, 30, 34, 36, 37, 39, 40, 42, 44, 47, 48], "becom": [0, 1, 3, 4, 7, 8, 10, 11, 12, 15, 16, 19, 22, 23, 25, 27, 28, 30, 32, 33, 34, 36, 39, 40, 41, 43, 47, 48, 50], "becaus": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "equival": [0, 4, 5, 6, 9, 10, 11, 13, 14, 15, 17, 23, 24, 25, 28, 30, 33, 37, 40, 42, 44], "formula": [0, 3, 5, 8, 9, 10, 11, 15, 17, 22, 25, 28, 29, 30, 36, 40, 50], "portolio": 0, "directli": [0, 5, 15, 17, 22, 24, 28, 32, 36, 37, 44], "multipl": [0, 7, 9, 17, 18, 22, 25, 36], "distribut": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 17, 18, 22, 24, 25, 28, 32, 36, 37, 40, 42, 46, 49], "wealth": [0, 25, 32, 42], "you": [0, 2, 3, 6, 7, 8, 14, 16, 17, 18, 19, 21, 29, 30, 32, 34, 37, 40, 44, 49, 50], "why": [0, 3, 5, 7, 19, 21, 24, 25, 37, 40, 42, 50], "think": [0, 3, 7, 10, 11, 13, 14, 16, 18, 19, 22, 25, 28, 32, 33, 36, 39, 40, 44], "payout": [0, 8, 29, 31, 43], "b": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 51], "max": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 16, 18, 19, 22, 28, 30, 32, 33, 36, 39, 40, 50], "min": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, 22, 28, 32, 33, 34, 36, 40], "sum": [0, 3, 6, 7, 9, 10, 11, 12, 15, 17, 18, 19, 21, 22, 24, 25, 28, 29, 30, 35, 37, 42, 44, 50], "plu": [0, 5, 11, 18, 25, 28, 30, 33, 35, 42, 43, 46], "denot": [0, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 18, 19, 20, 21, 28, 29, 33, 34, 36, 37, 39, 40, 44, 46, 47, 48, 50], "p": [0, 1, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 51], "continu": [0, 3, 4, 5, 9, 10, 13, 16, 17, 18, 19, 22, 25, 26, 32, 33, 34, 39, 42, 47], "version": [0, 1, 4, 6, 9, 10, 11, 13, 14, 15, 18, 19, 22, 23, 25, 28, 29, 30, 31, 32, 33, 35, 37, 39, 43, 44, 46, 47, 49, 50], "argument": [0, 2, 3, 4, 6, 9, 10, 13, 14, 22, 28, 30, 32, 36, 39, 40, 44], "int_": [0, 1, 7, 20, 34, 42], "infti": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "celebr": [0, 8, 36], "mix": [0, 1, 9, 44], "much": [0, 5, 7, 9, 11, 16, 18, 21, 22, 25, 27, 29, 30, 33, 34, 36, 37, 40, 44, 49], "whether": [0, 1, 3, 4, 6, 10, 13, 15, 16, 19, 22, 34, 36, 40, 44, 46], "pleas": [0, 1, 3, 5, 8, 13, 19, 25, 28, 35, 36, 39, 40, 42, 43, 49], "note": [0, 1, 2, 3, 4, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 30, 34, 35, 36, 37, 39, 40, 42, 44, 46, 47, 50], "shut": [0, 4, 48], "down": [0, 2, 3, 4, 6, 8, 15, 16, 18, 23, 25, 29, 30, 31, 32, 34, 35, 36, 39, 40, 42, 46, 48], "almost": [0, 2, 3, 6, 13, 27, 30, 36, 39, 44], "That": [0, 1, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 25, 28, 30, 33, 35, 36, 43, 50], "pull": [0, 2, 8, 24, 39], "rug": 0, "underneath": 0, "class": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 47, 50], "bcg_complete_market": 0, "list": [0, 1, 6, 7, 9, 10, 15, 21, 22, 25, 29, 30, 34, 35, 36, 40, 42, 43, 46, 47, 48], "consist": [0, 1, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 25, 27, 29, 30, 33, 36, 40, 41, 44, 50, 51], "thing": [0, 1, 3, 4, 5, 6, 7, 10, 11, 15, 16, 18, 19, 20, 22, 25, 28, 30, 36, 37, 40, 41, 42, 43, 46, 49, 50], "opt_k": 0, "grid": [0, 1, 3, 4, 5, 6, 9, 14, 16, 18, 22, 29, 30, 32, 36, 40, 50], "opt_c": 0, "i_0": [0, 1, 21, 25, 47], "chi_1": [0, 1], "chi_2": [0, 1], "w": [0, 1, 3, 7, 9, 13, 14, 15, 18, 19, 20, 21, 22, 25, 28, 29, 30, 33, 36, 39, 40, 46, 47, 48, 50, 51], "psi": [0, 1, 13, 14, 25, 34, 40, 43, 44], "crra": [0, 8, 22, 32], "risk": [0, 4, 9, 17, 20, 29, 31, 32, 36, 38, 43, 46, 47, 51], "mean": [0, 1, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 42, 43, 44, 46, 48, 50, 51], "deviat": [0, 1, 2, 6, 7, 8, 9, 11, 13, 16, 22, 28, 30, 40], "025": [0, 1, 6, 11], "discount": [0, 1, 4, 5, 6, 8, 10, 11, 13, 15, 16, 17, 18, 19, 20, 25, 28, 29, 32, 33, 36, 38, 39, 40, 41, 42, 43, 46, 47, 48, 50, 51], "factor": [0, 1, 4, 5, 6, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 28, 29, 30, 32, 33, 36, 37, 38, 39, 42, 43, 46, 47, 48, 50, 51], "96": [0, 1, 19, 39, 42, 43], "nb_points_integ": 0, "point": [0, 1, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 18, 19, 21, 22, 23, 25, 28, 30, 33, 36, 37, 40, 44, 50], "integr": [0, 1, 7, 16, 25, 32, 34, 44], "through": [0, 1, 2, 4, 6, 9, 10, 13, 14, 16, 18, 19, 21, 22, 25, 29, 32, 33, 34, 36, 37, 40, 42, 45, 47, 49, 50], "gauss": 0, "hermit": 0, "quadratur": [0, 6], "10": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 47, 50, 51], "np": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "matplotlib": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "pyplot": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "plt": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "stat": [0, 1, 2, 9, 15, 22, 30, 32, 44], "norm": [0, 2, 7, 9, 11, 13, 14, 18, 22, 34, 44], "njit": [0, 1, 3, 6, 22, 32, 36], "prang": [0, 3, 6, 32, 36], "root_find": 0, "init": [0, 1, 3, 6, 11, 18, 29, 42, 43], "method": [0, 1, 2, 5, 6, 7, 8, 10, 11, 13, 14, 15, 19, 21, 22, 25, 28, 32, 33, 35, 37, 38, 40, 42, 44, 45, 46, 47, 48, 50, 51], "constructor": [0, 1], "def": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 21, 22, 29, 30, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 47, 50], "__init__": [0, 1, 2, 3, 4, 5, 6, 10, 11, 13, 14, 15, 16, 18, 30, 32, 34, 36, 40, 42, 43, 50], "self": [0, 1, 2, 3, 4, 5, 6, 7, 11, 13, 14, 15, 16, 18, 25, 30, 32, 34, 36, 40, 42, 43, 50], "\ud835\udf121": [0, 1], "\ud835\udf122": [0, 1], "w10": [0, 1], "w20": [0, 1], "\ud835\udf0310": [0, 1], "\ud835\udf0320": [0, 1], "\ud835\udf13": [0, 1], "\ud835\udefc": [0, 1], "\ud835\udf07": [0, 1], "\ud835\udf0e": [0, 1], "\ud835\udefd": [0, 1], "lambda": [0, 1, 2, 4, 5, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 25, 27, 29, 30, 32, 33, 38, 41, 43, 50], "f": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 25, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 46, 50, 51], "\ud835\udf16": [0, 1], "exp": [0, 1, 2, 6, 8, 9, 16, 20, 21, 22, 32, 44, 50], "w0": [0, 1], "w11": [0, 1], "w21": [0, 1], "w1": [0, 1, 19, 39, 46, 47], "pdf": [0, 1, 2, 9, 22, 44], "x": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 20, 21, 22, 25, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "loc": [0, 1, 2, 6, 7, 10, 18, 19, 21, 22, 29, 32, 39, 40, 44], "polynomi": [0, 2, 7, 13, 14, 15, 19, 25, 28, 30, 37, 50], "hermgauss": 0, "points_integr": 0, "sqrt": [0, 2, 7, 8, 9, 12, 13, 14, 15, 19, 24, 25, 28, 29, 30, 32, 34, 37, 39, 44], "k_foc": 0, "k_foc_factori": 0, "plot": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "fals": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 18, 19, 21, 22, 29, 34], "kgrid": [0, 1], "linspac": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 21, 22, 30, 32, 33, 34, 36, 40, 44, 50], "1e": [0, 1, 2, 3, 4, 5, 6, 11, 13, 14, 16, 17, 18, 19, 22, 23, 24, 27, 28, 31, 32, 34, 36, 38, 39, 40, 41, 46, 47, 48, 50], "fonc": [0, 1, 25], "kfoc_list": 0, "kfoc": [0, 1], "append": [0, 1, 2, 4, 5, 6, 9, 10, 11, 16, 18, 40], "fig": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 47, 48], "ax": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 21, 22, 29, 30, 32, 33, 34, 35, 36, 39, 40, 42, 43, 44, 47, 50], "subplot": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 21, 22, 24, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50], "figsiz": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 18, 19, 21, 22, 24, 29, 30, 32, 34, 36, 38, 39, 41, 42, 43, 44, 47, 48, 50], "color": [0, 1, 2, 6, 10, 11, 17, 18, 22, 25, 33, 34, 38, 40, 42, 43, 44, 50], "blue": [0, 1, 4, 8, 10, 13, 22, 25, 33, 40, 43, 50], "label": [0, 1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 27, 29, 30, 31, 32, 33, 34, 35, 38, 39, 41, 42, 43, 44, 50], "r": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 25, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51], "axhlin": [0, 2, 9, 10, 11, 42, 43], "red": [0, 1, 3, 5, 13, 22, 33, 36, 40, 44, 50, 51], "linestyl": [0, 1, 2, 7, 10, 11, 42], "legend": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 21, 22, 23, 24, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 50], "set_xlabel": [0, 1, 6, 7, 9, 10, 13, 14, 18, 19, 21, 22, 29, 32, 33, 35, 36, 40, 42, 43, 44, 47, 48], "show": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "kk": [0, 1], "newton_sec": 0, "arg": [0, 1, 3, 4, 5, 18, 22, 36, 50], "root": [0, 3, 4, 5, 7, 13, 14, 15, 22, 23, 28, 30, 34, 36, 42, 43], "fk": [0, 1], "integ": [0, 5, 11, 17, 21], "pi": [0, 2, 3, 4, 5, 7, 12, 13, 14, 15, 20, 21, 22, 23, 25, 27, 29, 30, 32, 33, 36, 38, 41, 44, 46, 47, 48], "ratio": [0, 9, 20, 22, 29], "\ud835\udf02": 0, "c1": [0, 4, 11, 13, 14, 18, 36, 43, 47], "denom": [0, 15, 30], "w11q": 0, "num": [0, 22], "c10": [0, 1], "c20": [0, 1], "c11": [0, 1], "c21": [0, 1], "integrand": 0, "int_k": 0, "mul": 0, "val": [0, 6, 7, 10, 21, 33, 34, 51], "provid": [0, 1, 4, 5, 7, 8, 11, 13, 14, 18, 21, 22, 25, 28, 29, 30, 32, 33, 37, 40, 44, 47, 49, 50], "bcg_complet": 0, "up": [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 16, 18, 19, 22, 23, 25, 28, 29, 31, 34, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50], "instanc": [0, 1, 2, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 19, 22, 23, 25, 28, 31, 32, 35, 36, 38, 41, 42, 43, 44, 45, 46, 50], "either": [0, 1, 6, 7, 8, 9, 10, 11, 15, 18, 21, 22, 27, 30, 32, 36, 44, 49, 50], "mdl1": 0, "mdl2": 0, "incom": [0, 3, 4, 13, 14, 15, 24, 26, 29, 35, 36, 43, 46, 51], "alter": [0, 1, 3, 10, 22, 28, 36, 39, 47], "figur": [0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 14, 16, 19, 21, 22, 24, 28, 29, 32, 33, 34, 36, 37, 38, 40, 41, 43, 44, 50], "hh": [0, 34], "innov": [0, 24, 25, 27, 28], "epsgrid": 0, "1000": [0, 2, 3, 4, 5, 9, 10, 11, 16, 19, 39, 40, 44, 46], "14": [0, 2, 3, 4, 7, 10, 11, 14, 15, 16, 18, 22, 28, 29, 30, 33, 36, 40, 42, 43, 44, 45, 50], "black": [0, 3, 5, 10, 13, 14, 22, 36, 44, 51], "set_xlim": [0, 6, 10, 12, 16, 18, 21, 22, 40, 44], "set_ylim": [0, 6, 10, 16, 18, 22, 42, 43, 44], "fontsiz": [0, 1, 2, 9, 10, 11, 13, 14, 16, 22, 34, 44, 50], "set_titl": [0, 1, 2, 6, 9, 10, 12, 18, 19, 21, 22, 24, 33, 34, 35, 36, 41, 42, 43, 44, 47, 48], "print": [0, 1, 2, 3, 4, 5, 6, 11, 13, 14, 15, 16, 18, 19, 23, 27, 28, 29, 33, 35, 39, 40, 43, 50, 51], "kk_1": 0, "kk_2": 0, "5f": [0, 1], "format": [0, 1, 13, 14, 18, 22, 28, 29], "c20_1": 0, "c20_2": 0, "14235": 0, "13791": 0, "90205": 0, "92862": 0, "3d": [0, 1, 33], "http": [0, 20, 51], "com": 0, "python": [0, 1, 5, 7, 10, 11, 13, 14, 17, 23, 25, 28, 29, 33, 42, 43, 49], "start": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 27, 29, 30, 32, 33, 34, 36, 39, 40, 42, 43, 44, 46, 47, 48, 50], "further": [0, 7, 8, 11, 13, 14, 15, 16, 25, 27, 29, 30, 32, 34, 46, 50], "instruct": [0, 4, 13, 15, 36, 43, 49, 50], "mesh": 0, "\ud835\udf12": 0, "30": [0, 1, 2, 3, 9, 13, 14, 18, 22, 23, 24, 27, 31, 36, 41, 44, 45], "\ud835\udf121grid": 0, "\ud835\udf122grid": 0, "meshgrid": [0, 1, 9, 22], "zeros_lik": [0, 1, 2, 3], "parallel": [0, 3, 6, 30, 32, 36, 44], "fill_k_grid": 0, "loop": [0, 1, 6, 10, 11, 18, 19, 22, 33, 39], "j": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 47, 50, 51], "x1": [0, 11, 17], "x2": [0, 11, 17, 28], "cpu": [0, 3, 11], "user": [0, 3, 7, 11], "sy": [0, 3, 11, 29], "128": [0, 1], "ms": [0, 11, 18, 19, 30], "72": [0, 10, 14, 50], "wall": [0, 3, 11], "run": [0, 1, 2, 4, 6, 8, 9, 11, 16, 17, 18, 21, 28, 33, 44, 45, 49], "51": [0, 6, 40, 51], "ns": [0, 29, 33, 46, 47, 48], "79": [0, 7, 51], "ipython": [0, 1, 10, 18, 28], "displai": [0, 1, 2, 4, 5, 8, 10, 19, 20, 21, 22, 24, 28, 31, 34, 35, 39, 43], "imag": [0, 1, 28], "graph_obj": [0, 1], "go": [0, 1, 6, 9, 16, 18, 22, 28, 29, 32, 36, 37, 44], "data": [0, 1, 6, 7, 8, 9, 10, 11, 18, 20, 21, 22, 24, 28, 29, 34, 39, 40, 42, 43, 44, 50, 51], "surfac": [0, 1, 33], "z": [0, 1, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 17, 18, 19, 21, 22, 25, 28, 30, 32, 35, 36, 37, 40, 44, 47], "update_layout": [0, 1, 28], "scene": [0, 1], "dict": [0, 1], "xaxis_titl": [0, 1, 28], "yaxis_titl": [0, 1, 28], "zaxis_titl": [0, 1], "aspectratio": [0, 1], "width": [0, 1, 22, 34], "500": [0, 2, 3, 12, 13, 14, 18, 32, 34, 44, 46, 50], "height": [0, 1, 34], "margin": [0, 1, 4, 5, 13, 14, 20, 25, 28, 32, 34, 36, 50], "50": [0, 1, 3, 12, 14, 22, 24, 29, 34, 35, 40, 47, 50], "65": [0, 1, 10, 11, 18, 21, 38, 45], "90": [0, 1, 3, 22, 32, 51], "scene_camera": [0, 1], "ey": [0, 1, 2, 3, 4, 5, 9, 11, 15, 19, 24, 29, 30, 33, 36, 37, 39, 41, 42, 43, 47], "export": [0, 1, 28], "png": [0, 1, 28], "file": [0, 1, 21, 28], "to_imag": [0, 1, 28], "notebook": [0, 14, 28, 38, 49], "local": [0, 1, 21, 28], "extens": [1, 4, 8, 9, 11, 14, 20, 21, 25, 33, 36, 46], "irrelev": [1, 26], "complet": [1, 3, 4, 5, 8, 9, 13, 14, 16, 22, 23, 25, 26, 36, 37, 39, 40, 47, 50], "contrast": [1, 5, 16, 27, 33, 34, 36, 42, 50], "being": [1, 2, 3, 4, 7, 8, 9, 11, 13, 15, 16, 19, 21, 22, 23, 25, 28, 29, 30, 33, 34, 35, 36, 37, 38, 40, 42, 43, 44, 50], "abl": [1, 3, 4, 7, 16, 19, 21, 28, 30, 34, 37, 40, 47, 50], "full": [1, 3, 4, 5, 6, 10, 13, 14, 23, 34, 36, 37, 41, 42, 43, 47], "watch": [1, 8, 10, 22, 42], "uniqu": [1, 8, 18, 22, 25, 29, 30, 37, 39, 40, 44, 51], "stochast": [1, 3, 4, 6, 7, 8, 9, 12, 15, 17, 18, 20, 21, 22, 23, 27, 29, 30, 33, 35, 36, 39, 42, 43, 46, 47, 48, 50, 51], "embodi": [1, 17, 25], "redund": [1, 4], "studi": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 14, 15, 16, 17, 19, 24, 28, 29, 30, 32, 33, 34, 36, 39, 40, 41, 42, 43, 44, 50, 51], "conform": [1, 8, 9, 17, 19, 25, 29], "previou": [1, 3, 5, 7, 11, 16, 21, 22, 28, 31, 32, 43, 44, 47], "subtl": [1, 13, 19], "featur": [1, 3, 5, 6, 7, 9, 10, 11, 12, 14, 18, 19, 20, 22, 23, 25, 30, 34, 36, 43, 46, 47, 50], "convei": [1, 8, 10, 14, 40], "heart": [1, 16, 35], "call": [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 28, 29, 30, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 50], "ration": [1, 10, 11, 12, 19, 25, 28, 35, 39, 44, 51], "conjectur": [1, 22], "region": [1, 40], "space": [1, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 22, 24, 25, 28, 29, 32, 34, 36, 37, 38, 40, 43, 44, 47], "averag": [1, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 21, 22, 23, 24, 25, 28, 30, 35, 44], "visit": [1, 44], "absenc": [1, 8, 34, 36], "cannot": [1, 3, 9, 22, 23, 25, 37, 40, 44, 48, 50], "comput": [1, 2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 18, 20, 21, 22, 23, 25, 30, 33, 34, 35, 36, 37, 42, 43, 46, 51], "competit": [1, 4, 16, 23, 26, 28, 29, 32, 34, 51], "plan": [1, 3, 4, 14, 15, 16, 22, 25, 26, 28, 29, 32, 36, 38, 46, 47, 48, 50, 51], "did": [1, 8, 14, 16, 19, 34, 40], "system": [1, 2, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 25, 29, 30, 33, 35, 39, 42, 43, 44, 46, 51], "simultan": [1, 4, 10, 11, 17, 30, 34, 39], "address": [1, 9, 16, 19, 34], "interest": [1, 2, 3, 5, 6, 8, 9, 10, 13, 15, 16, 17, 18, 21, 22, 24, 26, 28, 29, 31, 33, 34, 37, 38, 40, 42, 43, 44, 47, 48, 50], "question": [1, 7, 11, 16, 32, 35, 37, 44], "equlibrium": 1, "technolog": [1, 3, 16, 23, 24, 31, 34, 36, 38, 44], "repres": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 44, 46, 48, 50, 51], "companion": [1, 30], "compon": [1, 2, 3, 4, 8, 12, 13, 14, 15, 18, 19, 23, 24, 25, 28, 30, 36], "justifi": [1, 7, 8, 10, 28, 35, 39], "infinitesim": 1, "howev": [1, 3, 4, 7, 9, 11, 15, 16, 18, 21, 22, 23, 28, 30, 32, 34, 37, 39, 40, 41, 44, 48], "object": [1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 15, 17, 18, 19, 20, 21, 24, 25, 28, 29, 30, 33, 35, 36, 39, 40, 42, 43, 44, 46], "out": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 22, 24, 25, 28, 29, 31, 32, 34, 38, 40, 42, 43, 44, 46, 47, 50], "symmetr": [1, 9, 15, 20, 28, 30, 33, 34, 37, 40], "profil": 1, "level": [1, 3, 4, 5, 6, 10, 11, 13, 14, 17, 20, 22, 23, 25, 27, 33, 36, 38, 39, 40, 42, 43, 50], "ourselv": [1, 11], "equilibria": [1, 13, 23, 25, 26, 28, 29, 36, 51], "per": [1, 8, 13, 14, 16, 18, 22, 25, 34, 44, 46, 47, 48, 50], "give": [1, 3, 4, 5, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 44, 47, 49, 50], "incent": [1, 6, 10, 13, 14, 16, 28, 34, 36, 47, 48], "demand": [1, 10, 11, 12, 19, 28, 30, 34, 39, 40, 51], "suppli": [1, 3, 4, 5, 7, 10, 11, 14, 16, 23, 25, 29, 34, 36, 41], "under": [1, 2, 3, 4, 5, 7, 11, 12, 15, 16, 17, 19, 20, 22, 29, 30, 36, 40, 42, 43, 44, 51], "typic": [1, 2, 7, 9, 14, 19, 20, 21, 24, 33], "ex": [1, 4, 5, 7, 16, 32, 39, 43], "cathedra": 1, "builder": 1, "declar": 1, "xi": [1, 8, 15], "post": [1, 7, 39, 43], "promis": [1, 3, 4, 6, 7, 10, 11, 28, 29, 36, 40, 46, 47, 48, 50], "output": [1, 2, 3, 4, 5, 10, 11, 13, 14, 15, 18, 19, 23, 25, 28, 29, 30, 34, 36, 39], "among": [1, 4, 6, 9, 10, 11, 14, 15, 18, 19, 20, 25, 28, 29, 42, 43], "bondhold": 1, "debt": [1, 10, 14, 17, 26, 29, 33, 38, 46, 47, 48, 51], "payoff": [1, 10, 13, 17, 19, 29, 33, 39, 42, 47], "date": [1, 3, 4, 6, 10, 11, 13, 14, 15, 17, 19, 25, 29, 36, 39, 42, 44, 47, 49], "regard": [1, 5, 7, 10, 15, 17, 21, 29, 36, 44], "sens": [1, 5, 6, 7, 9, 10, 11, 14, 15, 17, 18, 20, 21, 22, 24, 25, 29, 30, 33, 35, 36, 37, 40, 42, 44], "check": [1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 19, 22, 23, 34, 38, 40, 42, 43, 46, 50], "know": [1, 2, 5, 6, 10, 11, 14, 16, 17, 19, 22, 25, 26, 34, 36, 37, 39, 40, 42, 44, 51], "expect": [1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 24, 25, 28, 29, 30, 32, 33, 34, 36, 37, 38, 39, 40, 42, 46, 50, 51], "Being": [1, 2, 20], "max_": [1, 3, 6, 9, 10, 13, 14, 18, 19, 25, 30, 32, 33, 36, 40, 50], "text": [1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 22, 29, 30, 31, 33, 34, 37, 39, 40, 42, 44, 47, 50, 51], "i_0v": 1, "foral": [1, 3, 7, 10, 11, 13, 14, 19, 20, 22, 24, 32, 36, 37, 42, 44], "impos": [1, 3, 4, 8, 10, 13, 14, 15, 17, 19, 24, 25, 28, 29, 32, 36, 38, 43, 47, 50], "short": [1, 5, 9, 10, 16, 22, 25, 34, 39, 46, 47], "sell": [1, 3, 6, 16, 25, 28, 29, 32, 36, 42, 43], "theta_0v": 1, "prime": [1, 6, 8, 15, 19, 25, 33], "combin": [1, 3, 6, 7, 8, 9, 11, 13, 14, 16, 17, 19, 20, 25, 29, 30, 32, 33, 34, 35, 37, 38, 44, 46], "max_i": [1, 30], "fix": [1, 5, 8, 9, 10, 14, 15, 18, 19, 22, 25, 28, 30, 33, 36, 37, 39, 40, 42, 44, 46, 50], "38": [1, 18, 34, 36, 51], "appear": [1, 2, 3, 4, 5, 10, 11, 13, 14, 16, 17, 18, 19, 20, 22, 23, 25, 28, 36, 39, 40, 47], "pair": [1, 3, 6, 8, 9, 10, 11, 16, 22, 24, 25, 30, 34, 36, 37, 39, 50], "credit": 1, "makowski": 1, "emphas": [1, 19], "clarifi": 1, "equiv": [1, 3, 5, 8, 9, 10, 13, 14, 15, 17, 19, 20, 25, 28, 33, 40, 42, 43, 46, 47], "attribut": [1, 2, 3, 4, 5, 18, 22, 25, 29, 36, 46], "special": [1, 2, 3, 4, 5, 7, 8, 11, 22, 24, 25, 28, 29, 30, 33, 39, 44, 50], "quantit": [1, 10, 18, 40], "occur": [1, 3, 8, 9, 10, 20, 25, 34, 36, 38, 40, 41, 42, 43, 48, 50], "than": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 50], "hedg": [1, 8, 36, 51], "1_1": 1, "2_1": 1, "recal": [1, 4, 5, 7, 10, 11, 13, 16, 19, 21, 25, 28, 30, 32, 34, 35, 37, 39, 40, 42, 44, 50], "threshold": [1, 44], "rewrit": [1, 7, 15, 29, 34, 40, 47], "_": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 46, 47, 48, 50], "partial": [1, 11, 16, 18, 19, 30, 34, 37, 41], "leibniz": 1, "rule": [1, 3, 6, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 28, 33, 37, 38, 39, 40, 46, 50], "sever": [1, 4, 10, 11, 15, 16, 19, 20, 21, 22, 23, 29, 33, 34, 40], "arriv": [1, 3, 7, 43], "deriv": [1, 3, 4, 5, 7, 8, 9, 11, 16, 17, 20, 22, 28, 29, 30, 32, 34, 36, 40], "confin": [1, 10, 25], "rate": [1, 2, 3, 6, 8, 9, 11, 13, 14, 16, 17, 20, 25, 26, 29, 30, 31, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 50], "again": [1, 8, 9, 10, 11, 12, 17, 19, 21, 28, 29, 31, 37, 39, 40, 43, 48, 50], "On": [1, 7, 16, 34, 44, 51], "page": [1, 3, 5, 7, 49, 51], "correspond": [1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 25, 28, 29, 30, 32, 35, 36, 39, 40, 42, 43, 44, 46, 47, 48], "correct": [1, 2, 5, 7, 22, 32, 50], "immedi": [1, 4, 6, 10, 12, 15, 28, 30, 36, 37], "coincid": [1, 39], "euler": [1, 3, 13, 14, 15, 16, 19, 28, 30], "befor": [1, 2, 3, 5, 7, 8, 9, 10, 11, 14, 18, 21, 22, 25, 28, 29, 30, 32, 39, 40, 44, 47, 50], "sketch": [1, 37, 40], "flow": [1, 3, 6, 18, 23, 51], "goe": [1, 7, 9, 19], "upper": [1, 2, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 21, 22, 30, 32, 37, 39, 44, 50], "lower": [1, 2, 3, 6, 7, 8, 9, 10, 11, 15, 17, 18, 22, 23, 27, 28, 30, 33, 36, 39, 41, 48, 50], "bound": [1, 2, 3, 4, 5, 9, 10, 13, 14, 16, 18, 20, 30, 32, 36, 39, 44, 50], "v_h": 1, "v_l": 1, "k_h": 1, "k_l": 1, "b_h": 1, "b_l": 1, "abus": [1, 10, 29], "notat": [1, 2, 4, 5, 7, 9, 10, 13, 18, 21, 23, 28, 29, 32, 39, 40, 43, 44, 47], "freez": 1, "effect": [1, 4, 5, 6, 9, 10, 12, 13, 14, 16, 17, 21, 22, 23, 25, 27, 28, 30, 34, 36, 43, 48, 50], "temporarili": [1, 4, 33, 36], "treat": [1, 7, 16, 19, 37, 40, 43, 44, 47], "frozen": 1, "foc": [1, 4, 5, 10, 12, 50], "low": [1, 3, 6, 8, 9, 10, 11, 13, 22, 28, 29, 31, 33, 34, 36, 40, 42, 43, 46, 50], "1_h": 1, "1_l": 1, "valuat": [1, 51], "q_1": [1, 19, 39], "1_0v": 1, "pb": [1, 10, 40], "q_2": [1, 19, 39], "theta_l": 1, "otherwis": [1, 3, 7, 15, 18, 22, 44, 50], "theta_h": [1, 12, 23, 25, 27, 38, 41], "repeat": [1, 3, 6, 10, 13, 16, 33, 40, 44, 50, 51], "6aa": 1, "6ad": 1, "until": [1, 2, 3, 6, 14, 16, 20, 32, 34, 40, 44, 50], "small": [1, 2, 6, 7, 9, 10, 11, 12, 13, 14, 16, 18, 21, 22, 23, 24, 25, 28, 38, 40, 46, 47], "2_0v": 1, "confess": 1, "interpret": [1, 2, 3, 4, 5, 6, 8, 10, 15, 18, 22, 25, 29, 36, 40, 43, 44], "7a": 1, "bfoc": 1, "7b": 1, "synthet": [1, 10], "v_x": [1, 3, 36], "ultim": [1, 3, 5, 14, 17, 19, 28, 40, 41, 44, 50], "_0": [1, 12, 15, 30], "_1": [1, 14, 22, 31, 32, 33, 39], "bcg_incomplete_market": 1, "solve_eq": 1, "eq_valu": 1, "input": [1, 3, 4, 5, 9, 10, 11, 16, 22, 25, 34, 36, 50], "consumpion": 1, "truncat": [1, 11, 28], "truncnorm": 1, "\ud835\udf131": 1, "\ud835\udf132": 1, "vl": 1, "vh": 1, "kbot": 1, "01": [1, 2, 3, 4, 5, 10, 11, 14, 16, 19, 22, 25, 39, 44, 45, 47], "ktop": 1, "25": [1, 2, 7, 8, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 29, 30, 34, 38, 40, 41, 45, 46, 48, 51], "bbot": 1, "btop": 1, "ta": 1, "tb": [1, 43], "rv": [1, 9, 15, 30, 32, 44], "\ud835\udf16_rang": 1, "1000000": 1, "pdf_rang": 1, "interp": [1, 4, 5, 16, 22, 32, 36, 40], "print_crit": 1, "load": [1, 22, 23, 50], "v_crit": 1, "intqq1": 1, "\ud835\udf031": 1, "intp1": 1, "intp2": 1, "\ud835\udf032": 1, "intqq2": 1, "intk1": 1, "intk2": 1, "intb1": 1, "intb2": 1, "ww10": 1, "ww20": 1, "bl": [1, 9], "bh": 1, "b_crit": 1, "kl": [1, 20, 25, 40], "kh": 1, "k_crit": 1, "epstar": 1, "converg": [1, 2, 3, 6, 9, 10, 11, 13, 14, 15, 16, 19, 22, 23, 30, 32, 39, 44, 50], "\ud835\udf091": 1, "\ud835\udf031a": 1, "\ud835\udf031b": 1, "ab": [1, 3, 4, 5, 6, 11, 13, 14, 15, 16, 18, 19, 21, 28, 30, 32, 34, 36, 39, 44, 50], "001": [1, 2, 9, 11, 12, 23, 39], "qq1": 1, "constant": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 20, 21, 22, 24, 28, 30, 33, 36, 38, 40, 42, 43, 44, 46, 47, 50], "term": [1, 2, 3, 4, 5, 7, 9, 10, 11, 15, 16, 19, 20, 21, 22, 24, 25, 28, 31, 33, 34, 36, 39, 40, 42, 43, 44, 46, 47, 50], "\ud835\udefde": 1, "const_qq1": 1, "qq1l": 1, "qq1h": 1, "diff": [1, 3, 4, 5, 13, 14, 18, 36], "rh": [1, 3, 6, 9, 22, 36, 50], "els": [1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15, 16, 18, 19, 22, 29, 30, 34, 36, 39, 40, 43], "\ud835\udf092": 1, "const_p": 1, "pl": 1, "ph": 1, "qq2": 1, "const_qq2": 1, "qq2l": 1, "qq2h": 1, "base": [1, 2, 5, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 28, 30, 32, 35, 36, 39, 40, 44], "criterion": [1, 4, 5, 9, 10, 11, 20, 22, 25, 30], "imr": 1, "relev": [1, 10, 16, 22, 23, 28, 32, 38], "kfoc_num": 1, "kfoc_denom": 1, "critic": 1, "bfoc1": 1, "bfoc2": 1, "value_x": 1, "formattedlist": 1, "3f": [1, 10], "member": [1, 12, 16, 23, 24, 27, 28, 40], "result": [1, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 27, 28, 29, 30, 32, 34, 37, 39, 42, 43, 47, 50], "kss": [1, 23, 27], "bss": 1, "vss": 1, "qss": 1, "pss": 1, "c10ss": 1, "c11ss": 1, "c20ss": 1, "c21ss": 1, "\ud835\udf031ss": 1, "finish": [1, 47], "valuations_by_ag": 1, "imrs1": 1, "imrs2": 1, "intq1": 1, "q1": [1, 19, 39, 46, 47], "p1": [1, 17, 19, 39, 47], "intq2": 1, "q2": [1, 19, 39, 46, 47], "p2": [1, 17, 19, 39, 47], "bgrid": 1, "vgrid": 1, "qgrid": 1, "pgrid": 1, "rang": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 29, 30, 33, 34, 36, 37, 38, 39, 40, 43, 44, 46, 48, 50], "bcg_incomplet": 1, "mdl": 1, "178": 1, "503": 1, "407": 1, "092": 1, "000": [1, 5, 11], "568": 1, "250": [1, 6, 13, 14, 18, 34, 46], "131": [1, 10, 51], "155": 1, "487": 1, "381": [1, 51], "073": [1, 39], "518": 1, "125": [1, 10, 23], "021": 1, "144": [1, 51], "479": 1, "368": 1, "065": [1, 11], "492": [1, 8, 51], "062": 1, "034": 1, "150": [1, 2, 3, 13, 14, 19, 21, 23, 24, 27, 31, 38, 44, 50], "484": 1, "374": 1, "069": [1, 39], "504": 1, "094": 1, "006": [1, 10], "153": [1, 51], "486": 1, "377": 1, "071": [1, 10, 39], "510": 1, "109": 1, "008": 1, "151": 1, "376": 1, "070": 1, "508": 1, "102": [1, 5, 10, 22, 29, 51], "483": 1, "375": 1, "507": [1, 51], "098": 1, "003": [1, 9, 10], "101": [1, 5, 22, 51], "10073912888808995": 1, "100830078125": 1, "98564453125": 1, "report": [1, 4, 6, 10, 19, 22, 28, 51], "truli": 1, "found": [1, 2, 3, 7, 11, 14, 15, 18, 21, 28, 34, 36, 37, 40, 42, 43, 44, 46, 50], "actual": [1, 5, 7, 8, 9, 10, 11, 16, 18, 19, 21, 22, 23, 28, 29, 32, 39, 40, 44], "10074": 1, "10083": 1, "involv": [1, 3, 5, 7, 8, 9, 10, 15, 16, 21, 28, 30, 34, 36, 40, 44, 50], "comfort": 1, "inde": [1, 3, 7, 11, 25, 44, 50], "seem": [1, 4, 7, 11, 22, 27, 28, 32, 35, 43, 44], "top": [1, 2, 7, 10, 16, 21, 35, 44], "hill": [1, 51], "plane": [1, 7], "mpl_toolkit": [1, 22, 33], "mplot3d": [1, 22, 33], "scatter3d": 1, "mode": [1, 29, 37], "marker": [1, 10, 33], "size": [1, 2, 6, 8, 9, 10, 13, 16, 18, 21, 22, 33, 34, 39, 40, 44, 50], "colorscal": 1, "green": [1, 2, 5, 8, 10, 22, 32, 43, 50], "opac": 1, "700": [1, 3], "titl": [1, 3, 4, 5, 6, 7, 8, 9, 14, 17, 19, 22, 28, 30, 34, 36, 43, 50], "dot": [1, 2, 8, 10, 11, 13, 14, 22, 29, 30, 34], "graph": [1, 2, 4, 5, 7, 10, 11, 12, 16, 18, 20, 22, 27, 28, 31, 33, 39, 40, 43, 50], "But": [1, 2, 3, 4, 5, 6, 10, 11, 14, 15, 16, 19, 22, 25, 32, 33, 35, 36, 37, 39, 40, 42, 50], "nor": [1, 10, 25, 35, 42], "care": [1, 2, 10, 30, 36, 42], "ridg": [1, 9], "long": [1, 2, 3, 6, 7, 9, 10, 16, 17, 28, 29, 43, 44, 46, 47, 50], "remain": [1, 2, 6, 10, 13, 14, 15, 16, 22, 28, 29, 30, 40, 42, 50], "even": [1, 2, 3, 5, 7, 8, 9, 10, 15, 16, 17, 19, 21, 22, 25, 32, 36, 39, 40, 42, 44], "within": [1, 2, 4, 6, 7, 10, 11, 12, 14, 16, 19, 23, 24, 25, 27, 31, 34, 36, 37, 38, 39, 40, 41, 46, 49, 51], "qualifi": 1, "sit": [1, 22], "sharpli": [1, 17], "unqualifi": 1, "descib": 1, "wa": [1, 3, 6, 8, 9, 10, 11, 14, 16, 19, 21, 23, 25, 36, 37, 44], "bear": [1, 16, 17, 28, 42], "thought": [1, 15, 16, 44, 48], "explor": [1, 2, 3, 10, 21, 25, 36, 39], "calcul": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 22, 25, 28, 29, 30, 31, 36, 39, 42, 43, 48, 50], "ferret": [1, 11], "stabl": [1, 2, 10, 19, 28, 38, 44, 46], "ask": [1, 11, 16, 32, 34, 35, 37, 40, 44], "intertermpor": 1, "conduct": [1, 3, 39, 40], "off_eq_check": 1, "perturb": [1, 40], "importantli": 1, "relax": [1, 3, 47], "xi_1": 1, "intpp1a": 1, "intpp1b": 1, "intpp2a": 1, "intpp2b": 1, "\ud835\udf091a": 1, "\ud835\udf091b": 1, "pp1": 1, "const_pp1": 1, "pp1l": 1, "pp1h": 1, "pp2": 1, "const_pp2": 1, "pp2l": 1, "pp2h": 1, "strategi": [1, 8, 13, 14, 25, 50], "stabil": [1, 6, 10, 19, 51], "hunch": [1, 9], "indic": [1, 4, 5, 6, 7, 10, 11, 14, 16, 18, 19, 21, 22, 24, 25, 28, 29, 30, 31, 34, 36, 37, 39, 40, 42, 43, 44], "experi": [1, 3, 6, 7, 14, 17, 23, 34, 43, 48], "ve1": 1, "ke1": 1, "be1": 1, "pe1": 1, "qe1": 1, "c10e1": 1, "c11e1": 1, "c20e1": 1, "c21e1": 1, "\ud835\udf091e1": 1, "kgride1": 1, "bgride1": 1, "vgride1": 1, "qgride1": 1, "pgride1": 1, "20": [1, 3, 4, 9, 10, 11, 14, 18, 19, 22, 23, 24, 28, 30, 33, 36, 38, 39, 44, 45, 51], "4f": [1, 19], "1191": 1, "1118": 1, "attain": [1, 2, 6, 10, 11, 13, 14, 18, 19, 20, 22, 29, 36, 40, 50], "higher": [1, 6, 8, 9, 13, 22, 28, 33, 36, 39, 40, 41, 43, 44, 46, 50], "ve2": 1, "ke2": 1, "be2": 1, "pe2": 1, "qe2": 1, "c10e2": 1, "c11e2": 1, "c20e2": 1, "c21e2": 1, "\ud835\udf091e2": 1, "kgride2": 1, "bgride2": 1, "vgride2": 1, "qgride2": 1, "pgride2": 1, "1082": 1, "0974": 1, "o": [1, 8, 9, 13, 14, 18, 22, 23, 25, 30, 31, 37, 39, 51], "decreas": [1, 9, 10, 11, 17, 22, 27, 36, 43, 50], "issuanc": [1, 48], "interestingli": 1, "were": [1, 4, 5, 8, 14, 15, 16, 22, 23, 25, 29, 30, 46, 50], "corpor": [1, 51], "For": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 49, 50], "039": 1, "suggest": [1, 18, 21, 23, 46, 47, 50], "though": [1, 10, 17, 19, 22, 39, 50], "willing": 1, "refin": 1, "look": [1, 5, 7, 8, 9, 10, 12, 15, 18, 19, 21, 25, 28, 29, 30, 32, 33, 35, 36, 37, 40, 44, 47, 48, 50], "orang": [1, 9, 10, 32], "merit": [1, 16], "reflect": [1, 3, 7, 9, 11, 23, 25, 30, 36, 50], "reveal": [1, 7, 10, 11, 17, 19, 24, 28, 33, 46, 50], "countervail": 1, "lie": [1, 2, 7, 11, 15, 16, 25], "beneath": [1, 39], "appar": [1, 5, 22], "held": [1, 28, 32, 43, 50], "storag": [1, 2, 18], "wlist": 1, "klist": 1, "blist": 1, "qlist": 1, "plist": 1, "vlist": 1, "tlist": 1, "q1list": 1, "q2list": 1, "p1list": 1, "p2list": 1, "save": [1, 3, 6, 9, 13, 14, 17, 18, 28, 38, 42, 43, 44, 46, 47, 50], "05": [1, 3, 4, 5, 6, 8, 9, 10, 11, 16, 17, 19, 22, 23, 24, 27, 29, 31, 34, 38, 40, 41, 48], "store": [1, 4, 5, 6, 10, 13, 16, 18, 21, 22, 23, 25, 27, 29, 32, 34, 42, 43, 44, 46], "502": 1, "570": 1, "022": [1, 10], "145": [1, 51], "480": [1, 51], "367": 1, "490": 1, "485": 1, "378": 1, "511": [1, 19], "506": 1, "180": [1, 3, 7, 13, 14, 21], "544": 1, "404": [1, 4, 5, 14], "081": [1, 10], "498": 1, "130": [1, 3], "158": 1, "531": 1, "063": 1, "443": 1, "020": 1, "148": [1, 31], "525": 1, "364": 1, "055": 1, "414": 1, "036": [1, 22], "528": 1, "371": 1, "059": 1, "428": 1, "156": 1, "530": 1, "061": 1, "435": 1, "154": 1, "529": 1, "373": 1, "060": 1, "432": 1, "433": 1, "105": [1, 23, 27, 51], "002": [1, 39, 40], "104": 1, "103": [1, 51], "184": 1, "590": 1, "400": [1, 3, 11, 21], "427": [1, 14], "162": 1, "581": 1, "053": [1, 8], "366": 1, "017": [1, 6, 46], "152": [1, 18], "577": 1, "359": 1, "046": 1, "335": 1, "157": 1, "579": 1, "049": 1, "351": 1, "011": [1, 51], "159": 1, "580": 1, "369": 1, "051": 1, "050": 1, "355": 1, "004": 1, "357": 1, "358": 1, "107": [1, 10, 51], "106": [1, 27], "187": 1, "642": 1, "395": [1, 16], "354": 1, "166": 1, "638": 1, "044": [1, 10], "289": [1, 11], "014": 1, "637": 1, "037": 1, "255": 1, "042": 1, "161": [1, 11], "040": 1, "273": [1, 51], "164": 1, "363": 1, "282": [1, 6, 11], "192": [1, 11, 43], "702": 1, "387": 1, "281": 1, "122": [1, 14], "172": [1, 45], "704": 1, "035": 1, "211": 1, "010": 1, "706": 1, "342": 1, "029": 1, "173": 1, "167": [1, 10], "705": 1, "350": 1, "032": 1, "018": 1, "170": [1, 3], "033": 1, "202": 1, "171": [1, 51], "356": 1, "206": 1, "117": [1, 51], "204": 1, "113": 1, "205": 1, "115": 1, "114": [1, 51], "198": 1, "771": 1, "118": 1, "781": 1, "346": 1, "027": 1, "129": 1, "169": 1, "788": 1, "330": 1, "088": 1, "174": [1, 18], "784": [1, 19], "338": [1, 45], "024": 1, "176": 1, "783": [1, 51], "026": 1, "119": 1, "177": [1, 50], "344": 1, "345": 1, "127": 1, "121": [1, 10, 18], "782": 1, "851": 1, "030": 1, "126": 1, "186": [1, 11], "872": 1, "333": 1, "043": 1, "885": 1, "316": 1, "016": 1, "181": 1, "878": 1, "324": 1, "875": 1, "328": 1, "019": 1, "013": [1, 23], "185": 1, "874": 1, "038": [1, 10], "873": [1, 51], "332": 1, "041": 1, "123": [1, 11, 13, 30, 51], "124": [1, 51], "212": 1, "945": [1, 6], "108": 1, "194": [1, 19], "980": 1, "047": 1, "005": [1, 2, 9, 10], "203": 1, "961": 1, "334": 1, "188": [1, 24], "052": 1, "199": [1, 5], "970": 1, "325": 1, "023": [1, 23], "196": 1, "975": [1, 11], "321": 1, "015": [1, 8], "141": [1, 51], "195": 1, "977": 1, "319": 1, "133": [1, 11, 19], "979": 1, "318": 1, "978": 1, "221": 1, "056": 1, "110": [1, 3, 23, 51], "298": 1, "009": 1, "143": [1, 10], "012": [1, 10], "208": 1, "095": 1, "307": 1, "302": 1, "300": [1, 3, 6, 19, 23, 27, 47, 48], "137": 1, "301": 1, "139": [1, 11, 51], "132": [1, 51], "138": 1, "231": 1, "189": [1, 24], "315": 1, "096": [1, 43], "214": 1, "269": 1, "277": [1, 11], "247": [1, 19], "222": [1, 11], "226": 1, "296": 1, "190": [1, 3], "218": 1, "286": [1, 7], "216": [1, 11], "258": 1, "233": [1, 11], "217": 1, "252": [1, 51], "284": 1, "225": [1, 51], "256": 1, "283": [1, 51], "229": 1, "230": 1, "13": [1, 3, 4, 7, 10, 11, 14, 20, 22, 28, 29, 30, 40, 42, 43, 44, 45, 50, 51], "epslist": 1, "len": [1, 2, 3, 4, 5, 6, 7, 10, 11, 16, 18, 21, 22, 29, 30, 32, 33, 36, 42, 43], "bb": 1, "ep": 1, "cont": 1, "stare": [1, 5, 10, 11, 17, 22, 28, 43], "panel": [1, 2, 6, 7, 8, 10, 19, 22, 23, 27, 28, 31, 35, 41], "quantiti": [1, 4, 6, 12, 13, 14, 18, 20, 21, 25, 28, 29, 36, 39, 43, 47, 51], "respond": [1, 3, 9, 10, 13, 14, 17, 24, 39, 40], "societi": [1, 51], "desir": [1, 21, 22, 25, 32, 40, 50], "across": [1, 3, 4, 9, 13, 14, 16, 20, 22, 23, 25, 28, 33, 34, 36, 39, 40, 42, 46, 50], "keep": [1, 2, 9, 10, 22, 25, 28, 29, 49, 50], "mind": [1, 7, 9, 13, 33, 39, 40], "highest": [1, 11, 13, 14], "pertin": [1, 15, 28], "16": [1, 3, 7, 9, 10, 11, 13, 14, 15, 18, 19, 22, 29, 30, 36, 40, 44, 45, 51], "reward": [1, 18, 40], "highli": [1, 11, 18, 40, 44], "taken": [1, 4, 5, 9, 10, 14, 18, 19, 22, 25, 29, 39, 43], "s": [2, 3, 4, 5, 7, 8, 9, 11, 12, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 49, 51], "mani": [2, 3, 4, 6, 7, 8, 10, 11, 16, 18, 25, 30, 31, 34, 36, 37, 44, 51], "econom": [2, 7, 8, 10, 11, 13, 15, 18, 24, 25, 27, 30, 31, 33, 34, 37, 44, 47, 51], "seri": [2, 5, 6, 7, 8, 10, 15, 17, 18, 21, 25, 28, 29, 33, 44, 48, 51], "persist": [2, 3, 6, 9, 10, 12, 23, 25, 28, 41, 46, 47], "growth": [2, 8, 11, 13, 14, 17, 22, 25, 26, 27, 30, 31, 44, 51], "prevent": [2, 5, 16, 37, 47, 48], "asymptot": [2, 9, 35, 44], "stationari": [2, 11, 15, 18, 20, 21, 26, 30, 32, 35, 38, 42, 46, 47, 51], "ergod": [2, 4, 9, 44], "exampl": [2, 5, 6, 8, 9, 11, 12, 13, 16, 17, 19, 21, 22, 25, 37, 38, 39, 42, 46, 48], "price": [2, 3, 6, 9, 10, 11, 12, 13, 14, 16, 18, 20, 28, 29, 39, 42, 43, 47, 51], "irregular": [2, 21], "stationar": [2, 44], "kei": [2, 3, 4, 5, 9, 10, 11, 13, 14, 15, 18, 19, 20, 21, 25, 29, 33, 35, 36], "learn": [2, 7, 17, 22, 26, 36, 37, 44, 51], "appli": [2, 3, 5, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 32, 33, 35, 36, 37, 38, 39, 40, 46, 50, 51], "statist": [2, 8, 9, 11, 25, 26, 37, 39, 51], "still": [2, 9, 25, 27, 28, 49], "enabl": [2, 34], "law": [2, 3, 8, 10, 12, 16, 19, 20, 22, 23, 25, 28, 30, 33, 37, 39, 40, 44, 46, 47], "hansen": [2, 8, 9, 12, 15, 20, 22, 23, 24, 25, 27, 30, 31, 33, 38, 39, 40, 41, 51], "2012": [2, 51], "accommod": [2, 44], "arithmet": [2, 25], "geometr": [2, 10, 15, 25, 29, 30, 35, 37], "connect": [2, 7, 9, 13, 15, 21, 22, 25, 28, 30, 37, 39], "y_t": [2, 6, 7, 12, 13, 14, 15, 19, 20, 25, 28, 30, 32, 35, 38, 40, 42, 43], "phi_t": [2, 28], "trend": [2, 27], "concept": [2, 3, 8, 9, 10, 13, 19, 20, 25, 28, 34, 37, 39], "sargent": [2, 3, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 36, 38, 39, 40, 41, 44, 50, 51], "linalg": [2, 3, 4, 5, 8, 9, 11, 13, 14, 15, 19, 28, 29, 30, 36, 37, 39, 40, 42, 43], "la": [2, 15, 19, 26, 30, 42], "qe": [2, 6, 7, 13, 14, 17, 18, 19, 24, 28, 33, 39, 40, 42, 43, 46, 47, 48], "lognorm": [2, 32, 44], "gener": [2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 27, 28, 29, 30, 32, 34, 35, 37, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51], "focus": [2, 10, 11, 18, 30, 44], "subclass": 2, "whose": [2, 3, 8, 11, 13, 14, 19, 22, 28, 30, 35, 36, 40, 42, 46], "increment": [2, 17, 34, 42], "driven": [2, 4, 5, 17, 25, 41, 42], "gaussian": [2, 7, 9, 22, 23, 25, 28, 29, 30, 37, 38, 40, 42, 51], "vector": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 18, 19, 20, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48], "autoregress": [2, 7, 9, 15, 24, 28, 31, 35, 38, 42, 44], "behavior": [2, 3, 5, 9, 10, 11, 16, 17, 19, 29, 32, 39, 40, 44, 51], "easi": [2, 7, 14, 20, 25, 30, 32, 36, 42], "analyz": [2, 3, 4, 13, 14, 21, 24, 25, 28, 33, 39], "tool": [2, 5, 8, 15, 16, 22, 25, 28, 30, 35, 40], "piec": [2, 15, 28], "var": [2, 4, 5, 8, 9, 29, 35], "x_": [2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 19, 21, 23, 25, 28, 29, 30, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47], "x_t": [2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 25, 28, 29, 30, 31, 33, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47], "z_": [2, 3, 13, 14, 17, 19, 23, 24, 25, 28, 30, 31, 38, 46, 47, 48], "matrix": [2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 18, 19, 20, 22, 25, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "eigenvalu": [2, 10, 23, 25, 27, 38], "circl": [2, 3, 7, 13, 14, 15, 25, 30], "cal": [2, 3, 20, 22, 25, 33, 36, 42, 46, 47, 48], "m": [2, 4, 5, 8, 9, 11, 13, 14, 15, 18, 20, 21, 22, 25, 29, 30, 33, 34, 37, 39, 46, 47, 48, 51], "iid": [2, 4, 5, 28, 30, 32, 35, 36, 38, 40, 42, 44], "x_0": [2, 3, 9, 10, 13, 14, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 40, 42, 44], "mu_0": [2, 10, 11, 20, 25, 28, 35, 42], "sigma_0": [2, 14, 20, 25], "nu": [2, 29, 34], "y_": [2, 6, 7, 9, 15, 17, 19, 20, 25, 28, 30, 31, 32, 34, 35, 38, 40, 42], "y_0": [2, 15, 17, 19, 25, 30], "mu_": [2, 9, 10, 11, 25], "y0": [2, 19], "sigma_": [2, 8, 17, 18, 20, 25, 28, 33], "nonstationari": 2, "systemat": [2, 18, 34, 44], "conveni": [2, 3, 7, 8, 10, 13, 14, 15, 17, 19, 21, 22, 25, 28, 29, 35, 36, 39, 40, 44], "observ": [2, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 20, 21, 24, 25, 32, 37, 40, 42, 44, 50, 51], "hat": [2, 4, 5, 8, 9, 10, 11, 13, 15, 17, 19, 20, 21, 22, 25, 28, 35, 37, 39, 40, 47], "_t": [2, 4, 5, 10, 15, 25, 28, 32, 33, 47], "bmatrix": [2, 10, 11, 17, 19, 25, 28, 33, 35, 38, 39, 40, 41, 42, 43, 46, 47, 48], "written": [2, 6, 7, 9, 15, 17, 18, 19, 21, 28, 29, 30, 32, 40, 46], "map": [2, 4, 5, 6, 7, 10, 13, 14, 16, 18, 19, 22, 23, 25, 28, 32, 33, 34, 35, 36, 38, 39, 40, 44, 46], "linearstatespac": [2, 17, 24, 35, 42], "py": [2, 4, 5, 7, 11, 13, 14, 18, 21, 22, 29, 37, 40, 44, 49, 50], "reason": [2, 4, 7, 10, 11, 12, 19, 21, 22, 25, 28, 32, 36, 44, 50], "intuit": [2, 7, 9, 16, 29, 32, 37, 40, 44], "4th": 2, "phi_3": 2, "phi_4": 2, "phi": [2, 3, 4, 7, 9, 20, 21, 25, 30, 32, 36, 40, 42, 43, 44], "strictli": [2, 3, 6, 10, 13, 14, 15, 16, 23, 25, 32, 33, 36, 38, 40, 44, 50], "greater": [2, 6, 22, 30, 37, 40], "uniti": [2, 3, 11, 15, 23, 25, 27, 30, 36, 38, 43], "absolut": [2, 7, 10, 13, 14, 19, 22, 25, 32], "obei": [2, 7, 27, 29, 42, 44], "fact": [2, 3, 4, 6, 7, 8, 9, 12, 14, 15, 16, 17, 18, 22, 23, 25, 29, 30, 32, 34, 37, 40, 42, 44, 50], "whole": [2, 9, 32, 44], "definit": [2, 4, 8, 10, 13, 14, 15, 19, 20, 28, 29, 34, 40, 41], "select": [2, 16, 25, 30, 38], "matric": [2, 9, 10, 11, 12, 15, 17, 18, 20, 23, 25, 29, 30, 33, 35, 37, 38, 39, 40, 42, 43, 46, 47, 48], "try": [2, 5, 6, 8, 11, 13, 14, 16, 19, 21, 22, 25, 32, 34, 37, 42, 43, 44, 49], "exercis": [2, 4, 7, 11, 50], "emb": 2, "bigger": [2, 9, 14, 40], "propos": [2, 5, 13, 20, 22, 28, 30], "amf_lss_var": 2, "transform": [2, 3, 4, 9, 15, 20, 21, 22, 25, 35, 37, 42], "\u03bd": [2, 29], "unpack": [2, 3, 6, 34, 42, 43], "element": [2, 3, 6, 11, 13, 14, 15, 18, 25, 29, 30, 33, 34, 36, 37, 38, 40, 48], "nx": [2, 29], "nk": [2, 34, 37], "shape": [2, 4, 5, 6, 7, 10, 12, 13, 14, 15, 18, 29, 30, 37, 39, 40, 42, 43, 44, 47], "dimens": [2, 13, 15, 25, 34, 36, 46, 47, 50], "extend": [2, 4, 5, 7, 22, 25, 28, 30, 33, 39, 42, 43, 44, 46, 47, 48], "nm": 2, "elif": [2, 34, 36], "expand_dim": 2, "add_decomp": 2, "mult_decomp": 2, "float": [2, 7, 21, 29, 34, 39, 40], "asarrai": [2, 4, 5, 7, 9, 15, 21, 22, 30, 37, 40, 42, 43], "rais": [2, 3, 4, 5, 10, 13, 15, 17, 23, 27, 30, 36, 39, 40, 41, 43, 46, 48, 49, 50], "valueerror": [2, 3, 15, 30, 39], "inconsist": [2, 11, 13, 14, 26, 50], "lss": [2, 28, 42], "construct_ss": 2, "pass": [2, 6, 7, 8, 15, 18, 29, 30], "info": 2, "h": [2, 3, 6, 7, 9, 13, 14, 15, 17, 19, 20, 25, 28, 29, 30, 32, 34, 35, 36, 39, 44, 46, 47, 51], "additive_decomp": 2, "auxiliari": [2, 3, 15, 30, 36], "block": [2, 7], "fill": [2, 13, 14, 16, 22, 40], "nx0c": 2, "nx0r": 2, "nx1": 2, "ones": [2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 18, 19, 21, 22, 28, 29, 36, 41, 42, 43, 50], "nk0": 2, "ny0c": 2, "ny0r": 2, "ny1m": 2, "ny0m": 2, "nyx0m": 2, "xt": 2, "yt": [2, 19], "mt": 2, "a1": [2, 12, 13, 14, 19, 39, 47], "hstack": [2, 3, 4, 5, 9, 11, 41, 42, 46, 47, 48], "transit": [2, 3, 4, 5, 6, 10, 17, 18, 19, 25, 28, 29, 30, 33, 36, 40, 42, 43, 44, 46, 47, 48], "a2": [2, 13, 14, 47], "a3": 2, "a4": 2, "m_": [2, 8, 10, 11, 13, 14, 15, 20, 22, 25, 30, 34], "a5": 2, "abar": [2, 15, 30], "vstack": [2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 17, 19, 24, 30, 35, 41, 42, 46, 47, 48], "bbar": 2, "st": [2, 25, 29, 41, 51], "tt": [2, 15], "selector": [2, 27, 29], "g1": [2, 4, 10, 11, 17, 39, 43], "g2": [2, 4, 10, 11, 17, 39, 43], "g3": 2, "g4": 2, "g5": 2, "gbar": [2, 46, 47, 48], "hbar": 2, "x0": [2, 3, 4, 5, 12, 19, 22, 23, 24, 27, 29, 31, 33, 38, 40, 42, 46, 47, 48], "s0": [2, 3, 4, 5, 36, 42, 43], "uncondit": [2, 5, 9, 20, 46], "coeffici": [2, 4, 5, 7, 8, 9, 13, 14, 15, 17, 19, 22, 25, 28, 30, 31, 32, 33, 34, 35], "\u03ba_a": 2, "should": [2, 3, 4, 5, 7, 9, 11, 16, 18, 19, 21, 32, 36, 37, 39, 43, 44, 46, 47, 49, 50], "a_r": 2, "multiplicative_decomp": 2, "\u03bd_tild": 2, "jensen": 2, "diag": [2, 11, 15, 30], "loglikelihood_path": 2, "ff": 2, "ffinv": 2, "inv": [2, 9, 11, 15, 19, 23, 27, 28, 29, 30, 37, 42, 43], "temp": [2, 29], "ob": [2, 36, 37], "obssum": 2, "cumsum": [2, 29], "det": [2, 15, 20, 25, 40], "arang": [2, 4, 5, 9, 10, 11, 13, 14, 15, 18, 30, 34, 42, 43], "loglikelihood": 2, "llh": 2, "add": [2, 3, 8, 10, 11, 13, 14, 16, 21, 22, 25, 28, 33, 38, 39, 42, 46, 47], "plot_given_path": 2, "amf": 2, "ypath": 2, "mpath": 2, "spath": 2, "tpath": 2, "mbound": 2, "sbound": 2, "horlin": 2, "show_trend": 2, "trang": 2, "sharei": [2, 22], "15": [2, 3, 5, 7, 8, 9, 10, 11, 12, 14, 15, 18, 21, 22, 23, 27, 28, 29, 30, 34, 36, 39, 40, 42, 44, 45, 51], "m_t": [2, 8, 10, 11, 12, 13, 14, 25, 29, 46, 47], "s_t": [2, 3, 4, 5, 13, 14, 18, 23, 24, 25, 27, 29, 31, 33, 36, 42, 43, 47], "t_t": [2, 3, 19, 43, 46, 47, 48], "One": [2, 6, 7, 8, 9, 14, 16, 18, 21, 22, 23, 25, 29, 31, 33, 34, 37, 38, 40, 44, 48, 49], "45": [2, 4, 6, 10, 14, 22, 33, 51], "ub": [2, 12, 23, 24, 27, 31, 38, 41], "lb": [2, 18], "fill_between": [2, 6, 22, 40], "plot_addit": 2, "npath": 2, "act": [2, 10, 13, 16, 19, 21, 22, 28, 44], "empti": [2, 3, 4, 5, 6, 8, 14, 16, 18, 19, 22, 24, 29, 32, 33, 34, 36, 37, 39, 42, 43, 44, 50], "moment_gener": 2, "moment_sequ": 2, "popul": [2, 4, 5, 8, 18, 21], "moment": [2, 4, 8, 30, 40, 44], "tmom": 2, "ymean": 2, "yvar": 2, "ii": [2, 22, 26, 38, 42, 43], "li": [2, 11, 15, 16, 22, 25], "ui": 2, "mscale": 2, "sscale": 2, "avoid": [2, 14, 34, 43], "runtimewarn": [2, 4, 5, 14, 18, 22, 50], "ppf": 2, "std": [2, 11, 18, 35], "dev": [2, 6, 18], "madd_dist": 2, "sadd_dist": 2, "99": [2, 5, 8, 10, 14, 18, 22, 45, 51], "add_fig": 2, "suptitl": [2, 10, 14, 34], "plot_multipl": 2, "mpath_mult": 2, "mbounds_mult": 2, "spath_mult": 2, "sbounds_mult": 2, "tpath_mult": 2, "ypath_mult": 2, "mdist": 2, "item": [2, 3, 4, 12, 28, 35, 36], "sdist": 2, "mult_fig": 2, "plot_martingale_path": 2, "ffccff": 2, "linewidth": [2, 22, 35], "4c4c4c": 2, "plot_martingal": 2, "mart_fig": 2, "postpon": 2, "descript": [2, 5, 6, 10, 11, 22, 23, 29, 37, 40], "exactli": [2, 7, 16, 17, 21, 28, 32, 34, 35, 40, 44], "\u03d5_1": [2, 23, 24, 27, 31, 38], "\u03d5_2": 2, "\u03d5_3": 2, "\u03d5_4": 2, "\u03c3": [2, 3, 4, 5, 7, 9, 18, 32, 36, 38, 42, 46, 47, 48, 50], "arrai": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "inherit": [2, 4, 10, 14, 19, 32, 36, 42, 46, 47, 48], "underbrac": [2, 8, 9, 17, 28, 33], "overbrac": 2, "z_j": [2, 3, 30], "stage": [2, 10, 11, 16, 17, 23, 39, 50], "paus": [2, 8, 11], "tau_t": [2, 3, 4, 5, 29, 36], "determinist": [2, 15, 18, 30, 40, 43, 44], "character": [2, 3, 7, 9, 10, 13, 14, 20, 25, 36, 39, 50], "routin": [2, 3, 7, 8, 18, 22, 37, 39], "By": [2, 3, 7, 8, 11, 13, 14, 16, 17, 18, 19, 21, 22, 28, 34, 36, 37, 40, 44, 46, 50], "pick": [2, 4, 5, 6, 32], "track": [2, 10, 29, 30], "hint": [2, 11, 29, 40], "stand": [2, 25, 47], "embed": [2, 18, 19, 22], "modulo": [2, 18, 21], "2nd": [2, 51], "3rd": 2, "95": [2, 6, 17, 18, 20, 23, 27, 29, 31, 32, 33, 34, 38, 40, 41, 42, 45, 46, 47, 48], "coverag": 2, "non": [2, 6, 7, 8, 9, 13, 23, 26, 27, 29, 35, 39, 40, 42, 43, 51], "tell": [2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 19, 28, 32, 35, 37, 44, 49], "shade": [2, 22, 40], "area": [2, 22], "tale": [2, 4, 19, 25, 35], "sign": [2, 4, 5, 10, 19, 20, 22, 25, 29, 35], "purpl": [2, 22], "grow": [2, 9, 12, 16, 23, 30], "band": 2, "m_0": [2, 13, 14], "bigl": [2, 3, 4, 13, 14, 22, 25, 30, 36], "bigr": [2, 4, 13, 14, 22, 25, 30, 36], "biggl": [2, 3, 15, 22, 25, 30, 50], "biggr": [2, 3, 15, 22, 25, 30, 50], "widetild": 2, "cell": [2, 5, 8, 11], "confid": 2, "help": [2, 3, 4, 6, 7, 8, 10, 11, 14, 15, 16, 19, 21, 22, 28, 29, 34, 39, 40, 44, 47, 48, 50], "limit": [2, 3, 5, 6, 9, 10, 11, 14, 17, 18, 20, 25, 33, 35, 39, 40, 42, 43, 44, 50], "horizon": [2, 7, 18, 27, 29, 33, 35, 40, 46, 47, 50, 51], "rightarrow": [2, 5, 8, 10, 11, 13, 14, 15, 19, 22, 25, 30, 33, 34, 39], "happen": [2, 10, 16, 18, 22, 30, 32, 33, 43, 44], "12000": 2, "ch": [2, 15, 30], "e_0": [2, 3, 25, 28, 33, 38, 46, 47, 48], "ldot": [2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 33, 35, 36, 37, 39, 40, 43, 44, 46, 47], "sure": [2, 3, 7, 9, 10, 16, 18, 30, 36, 39, 42, 44, 47], "prove": [2, 9, 15, 30, 37], "seed": [2, 6, 9, 30, 42], "10021987": 2, "line": [2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 16, 17, 21, 22, 28, 32, 33, 36, 40, 44, 46, 49], "percent": [2, 4], "frequenc": [2, 7, 21, 28, 51], "interv": [2, 7, 16, 20, 22, 32, 44], "collaps": 2, "around": [2, 11, 21, 22, 23, 27, 35, 48], "drill": [2, 15], "seen": [2, 6, 7, 12, 24, 25, 27, 36], "program": [2, 5, 9, 11, 12, 13, 14, 15, 17, 23, 29, 30, 36, 39, 40, 42, 44, 46, 50, 51], "5000": [2, 16, 34, 44, 47], "length": [2, 6, 8, 9, 15, 16, 17, 18, 21, 22, 23, 27, 29, 30, 44], "after": [2, 3, 4, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 28, 31, 34, 36, 37, 39, 40, 42, 43, 44, 50], "accomplish": [2, 4, 10, 15, 17, 28, 48, 50], "histogram": [2, 5, 22, 44], "variou": [2, 4, 8, 10, 20, 25, 44], "task": [2, 16, 40, 49], "formul": [2, 6, 16, 20, 22, 28, 30, 39, 40, 46, 48, 50, 51], "put": [2, 4, 5, 7, 9, 15, 16, 17, 19, 21, 22, 25, 28, 30, 33, 35, 41, 43, 44, 47, 48, 50], "work": [2, 3, 5, 7, 8, 10, 13, 14, 15, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 49, 50], "proposit": [2, 10, 13, 14, 15, 36], "kappa_a": 2, "heavi": [2, 32], "lift": 2, "insid": [2, 15, 24, 25, 29, 32, 37, 39, 44], "straightforward": [2, 9, 21, 28, 29, 32], "simulate_xi": 2, "foo": 2, "simulate_path": 2, "storex": 2, "storei": 2, "population_mean": 2, "xmean": 2, "toolkit": [2, 25], "simulate_martingale_compon": 2, "add_mart_comp": 2, "third": [2, 7, 10, 11, 17, 19, 21, 22, 23, 24, 25, 27, 28, 38, 39, 42, 44, 50], "mul_mart_comp": 2, "amf_2": 2, "amc": 2, "mmc": 2, "amct": 2, "mmct": 2, "8379907335579106": 2, "011040789361757435": 2, "4697384727035145": 2, "14222026893384476": 2, "006753060146832": 2, "8858858377907133": 2, "10000": [2, 42, 44, 50], "100000": 2, "investig": [2, 4, 9, 15, 16, 28, 35], "evolv": [2, 16, 19, 25, 29, 30, 39, 44], "th": [2, 7, 15, 16, 17, 18, 22, 25, 29, 36, 37, 44, 50], "expon": 2, "keyword": 2, "h2": [2, 11, 39], "document": [2, 7, 18, 45], "tackl": [2, 15, 30], "mtilde_t_dens": 2, "xmin": 2, "xmax": [2, 44], "npt": [2, 34], "\u03bdtild": 2, "logmtilde_t_dens": 2, "lmdist": 2, "times_to_plot": 2, "2500": 2, "dens_to_plot": 2, "ldens_to_plot": 2, "flatten": [2, 3, 4, 5, 7, 9, 14, 19, 29, 36, 43, 44], "18": [2, 3, 10, 11, 13, 14, 15, 22, 28, 30, 36, 40, 42, 43, 44, 51], "02": [2, 5, 6, 8, 9, 10, 19, 22, 25, 28, 29, 39, 40, 45, 46, 47, 48], "dens_t": 2, "enumer": [2, 5, 6, 7, 15, 16, 18, 21, 22, 30, 32, 33, 34, 42, 43, 50], "tight_layout": [2, 3, 4, 5, 7, 10, 11, 13, 14, 19, 34, 36, 47], "mechan": [2, 20, 28, 34, 51], "most": [2, 4, 7, 9, 13, 16, 18, 20, 21, 28, 29, 30, 32, 34, 42, 43, 44, 49, 50], "shift": [2, 18, 23, 25, 29, 32, 37, 44], "leftward": 2, "toward": [2, 5, 7, 9, 10, 21, 27, 33, 36, 44, 51], "tail": [2, 3, 4, 5], "lengthen": [2, 50], "enough": [2, 7, 11, 13, 14, 17, 23, 25, 30, 36, 40, 47], "move": [2, 3, 4, 5, 7, 12, 15, 17, 22, 23, 24, 25, 28, 31, 32, 35, 40, 46, 47, 48], "exhibit": [2, 7, 10, 14, 30], "natur": [2, 3, 4, 11, 16, 18, 19, 21, 30, 36, 40, 42, 44, 50, 51], "interpol": [3, 4, 5, 13, 14, 16, 22, 50], "913": 3, "byte": [3, 11], "60": [3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51], "cp311": [3, 11], "manylinux2014_x86_64": [3, 11], "manylinux_2_17_x86_64": [3, 11], "44": [3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "22": [3, 10, 11, 12, 15, 18, 19, 23, 25, 28, 30, 34, 36, 37, 38, 40, 41, 42, 46, 47, 48], "80": [3, 9, 42, 43, 51], "32m80": 3, "31m7": 3, "25hdownload": [3, 11], "91m": [3, 11], "32m3": 3, "31m126": 3, "31m91": 3, "32m6": 3, "31m197": 3, "32m13": 3, "31m196": [3, 11], "32m19": 3, "31m193": [3, 11], "32m26": 3, "31m191": [3, 11], "32m32": 3, "31m192": [3, 11], "32m39": 3, "32m43": 3, "31m68": 3, "attempt": [3, 7, 11, 32], "uninstal": [3, 11], "spline": [3, 50], "eval_linear": 3, "ucgrid": 3, "node": 3, "markovchain": [3, 4, 5, 6, 18, 36, 42, 43], "float64": [3, 4, 34, 36], "experiment": [3, 36], "jitclass": [3, 36], "due": [3, 4, 5, 6, 15, 16, 36, 38, 42, 43, 47, 48], "robert": [3, 24, 25, 28, 29, 36, 51], "jr": [3, 25, 28, 36, 51], "nanci": [3, 29, 36, 51], "1983": [3, 6, 8, 15, 28, 29, 36, 42, 43, 51], "aiyagari": [3, 4, 5, 8, 36, 51], "marcet": [3, 36, 51], "sepp\u00e4l\u00e4": [3, 36], "2002": [3, 4, 5, 18, 28, 36, 51], "hereaft": 3, "implement": [3, 4, 5, 10, 13, 14, 17, 18, 19, 21, 25, 27, 28, 37, 46, 47, 48], "numer": [3, 6, 7, 10, 11, 14, 20, 22, 30, 37, 44, 50, 51], "polici": [3, 4, 5, 6, 10, 11, 14, 17, 19, 26, 29, 30, 32, 33, 36, 39, 43, 44, 46, 50, 51], "market": [3, 4, 5, 8, 9, 10, 13, 14, 16, 22, 23, 26, 28, 29, 34, 36, 39, 48, 51], "introduct": [3, 17, 22, 35, 50, 51], "histori": [3, 4, 5, 7, 13, 14, 15, 17, 19, 20, 24, 25, 29, 34, 35, 36, 39, 40, 50], "s_": [3, 4, 5, 13, 14, 17, 18, 25, 29, 33, 36, 37, 42, 43, 47], "s_0": [3, 4, 5, 13, 14, 18, 25, 33, 36, 42, 43], "govern": [3, 4, 9, 11, 12, 17, 19, 20, 22, 23, 25, 26, 28, 30, 33, 39, 40, 42, 43, 46, 47, 48, 51], "exact": [3, 8, 18, 36, 37, 42], "invari": [3, 4, 7, 10, 11, 25, 28, 35, 36, 39, 40, 42, 50], "c_t": [3, 4, 5, 6, 8, 12, 13, 14, 17, 22, 23, 24, 25, 27, 29, 31, 32, 36, 38, 41, 42, 43, 47, 50], "ell_t": [3, 25, 29, 36], "n_t": [3, 4, 5, 25, 34, 36, 41], "leisur": [3, 4, 5, 36], "labor": [3, 4, 5, 16, 18, 23, 25, 29, 34, 36, 51], "household": [3, 6, 10, 11, 12, 17, 18, 23, 24, 27, 32, 34, 36, 38, 41], "endow": [3, 6, 7, 17, 22, 24, 27, 29, 31, 32, 36, 38], "storabl": [3, 29, 32], "pin": [3, 6, 18, 25, 29, 30, 32, 36, 40, 46], "pre": [3, 13, 14, 36, 50], "wage": [3, 25, 34, 36, 41, 50], "A": [3, 4, 6, 7, 8, 12, 14, 15, 17, 19, 21, 22, 24, 31, 33, 34, 37, 38, 40, 43, 44, 46, 50, 51], "prefer": [3, 4, 5, 6, 23, 24, 27, 29, 31, 32, 38, 39, 40, 42, 44, 50, 51], "pi_t": [3, 29, 30, 32, 36], "joint": [3, 7, 8, 9, 20, 35, 36], "sequenc": [3, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 29, 30, 32, 37, 38, 39, 40, 42, 43, 44, 46], "increas": [3, 6, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 30, 32, 34, 36, 40, 41, 48, 50], "concav": [3, 6, 8, 13, 14, 30, 32, 36, 38, 50], "differenti": [3, 11, 13, 14, 16, 22, 30, 32, 34, 36, 44, 50, 51], "flat": [3, 4, 7, 20, 29, 36], "smooth": [3, 4, 6, 22, 24, 26, 27, 29, 30, 33, 35, 44, 45, 46, 47, 48, 50, 51], "modifi": [3, 6, 9, 28, 29, 36, 40, 45, 46], "direct": [3, 4, 7, 8, 9, 11, 16, 19, 25, 33, 34, 36, 44, 46, 49], "prescrib": [3, 10, 13, 14, 19, 43, 50], "barro": [3, 29, 33, 42, 43, 47, 48, 51], "1979": [3, 8, 29, 33, 42, 43, 47, 48, 50, 51], "b_": [3, 4, 5, 6, 17, 25, 29, 33, 36, 38, 39, 42, 43, 46, 47, 48], "r_t": [3, 4, 5, 8, 10, 25, 29, 36, 40, 47], "gross": [3, 4, 8, 16, 17, 20, 29, 31, 36, 38, 42, 43, 46, 47], "lump": [3, 6, 10, 17], "captur": [3, 9, 12, 13, 14, 19, 25, 33, 36, 41, 43], "charact": [3, 23], "matur": [3, 6, 12, 25, 38, 43, 46], "b_t": [3, 4, 5, 6, 10, 11, 12, 17, 23, 24, 25, 27, 29, 31, 36, 38, 41, 42, 43, 47], "tau": [3, 4, 5, 9, 15, 25, 31, 34, 36, 41], "z_t": [3, 13, 14, 17, 19, 23, 24, 25, 31, 38, 46, 47, 48], "net": [3, 6, 9, 10, 11, 24, 31, 42, 43, 50], "surplu": [3, 5, 24, 28], "ponzi": [3, 6, 38, 46, 47], "scheme": [3, 6, 16, 22, 28, 35, 38, 46, 47, 50], "forthcom": 3, "vert": [3, 9, 15, 25, 28, 30], "pi_": [3, 19, 22, 29, 32, 33, 34, 36, 39, 47], "u_c": [3, 4, 5, 25, 36], "yield": [3, 6, 9, 10, 29, 30, 32, 34, 40, 44, 47], "rise": [3, 10, 12, 16, 19, 22, 32, 41, 50], "replac": [3, 4, 9, 15, 16, 17, 18, 21, 28, 33, 36, 40, 44, 46], "r_": [3, 4, 5, 8, 9, 10, 16, 18, 20, 25, 29, 32, 33, 40, 44, 47], "similar": [3, 6, 13, 14, 16, 21, 36, 39, 40, 44, 46], "futur": [3, 6, 7, 10, 11, 12, 13, 14, 15, 18, 19, 25, 28, 29, 30, 32, 35, 38, 40, 44, 46], "occurr": 3, "indebted": [3, 6, 42], "invok": [3, 15, 32], "u_": [3, 4, 5, 8, 15, 17, 19, 24, 25, 30, 33, 36, 39, 46, 47, 48, 50], "ell": [3, 4, 16, 21, 25, 29, 36], "elimin": [3, 4, 32, 36, 50], "b_0": [3, 4, 10, 11, 25, 29, 36, 38, 42, 43], "mathbb": [3, 6, 7, 9, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 27, 29, 31, 32, 34, 36, 37, 40, 41, 42, 43, 44, 50], "e_t": [3, 4, 5, 20, 25, 28, 29, 36, 38, 42, 43, 46], "stream": [3, 6, 25, 29, 31, 32, 36, 38, 51], "surplus": 3, "debreu": [3, 25, 29], "languag": 3, "literatur": [3, 10, 17, 20, 25, 39, 44], "said": [3, 7, 10, 13, 14, 22, 25, 37], "belong": [3, 10, 11, 14, 25, 36], "subspac": [3, 15, 28, 37], "e_": [3, 4, 5, 25, 28, 33, 36, 37], "gamma_0": [3, 12, 25], "resort": 3, "distortionari": [3, 29], "process": [3, 4, 5, 6, 9, 12, 14, 15, 16, 19, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 36, 38, 41, 43, 44, 46, 47, 48, 50, 51], "gamma_t": [3, 4], "bind": [3, 4, 6], "reduc": [3, 9, 11, 12, 19, 29, 31, 32, 36, 41, 50], "effici": [3, 8, 11, 16, 18, 21, 40, 44, 50], "qquad": [3, 7, 15, 18, 21, 25, 30, 32, 40, 44], "psi_t": [3, 7, 44], "psi_": [3, 7, 44], "abel": 3, "summat": [3, 29], "cc": [3, 4, 23, 24, 25, 28, 31, 36, 37, 42], "z_c": 3, "hspace": [3, 6, 7, 13, 14, 29, 40, 46, 47], "35mm": 3, "gamma_": [3, 15, 39], "mai": [3, 36, 37, 39, 40, 44, 47, 51], "chang": [3, 4, 5, 7, 9, 10, 11, 17, 19, 22, 23, 26, 27, 30, 33, 34, 43, 51], "respons": [3, 6, 7, 10, 11, 12, 13, 17, 19, 23, 24, 25, 27, 35, 36, 39, 41, 42, 50], "sequenti": [3, 4, 5, 10, 14, 16, 32, 36], "sequential": [3, 36], "expenditur": [3, 4, 5, 29, 36, 42, 43, 46, 47, 48], "\u03c6": [3, 4, 13, 14, 36], "pref": [3, 36], "\u03c0": [3, 4, 5, 7, 22, 29, 33, 36, 43, 46, 47, 48], "\u03b2": [3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 17, 18, 19, 23, 24, 27, 28, 29, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 46, 47, 48, 50], "mc": [3, 4, 5, 6, 18, 36, 42, 43, 51], "best": [3, 4, 5, 10, 13, 14, 19, 21, 22, 29, 36, 37, 39, 40, 50], "find_first_best": [3, 4, 5, 36], "foc_first_best": [3, 36], "uc": [3, 4, 5, 13, 14, 36], "ul": [3, 4, 36], "re": [3, 4, 5, 6, 8, 13, 14, 18, 21, 22, 36, 37, 39, 50], "fun": [3, 5, 8, 13, 14, 22, 36, 50], "except": [3, 4, 5, 9, 11, 18, 22, 25, 28, 30, 36, 44], "cfb": [3, 4, 5, 36], "nfb": [3, 4, 5, 36], "foc_time1": [3, 36], "ucc": [3, 4, 5, 36], "ull": [3, 36], "ulc": [3, 36], "lh": [3, 22, 34, 36, 50], "time1_alloc": [3, 4, 5, 36], "ls": [3, 4, 5, 9, 36, 42, 43], "foc_time0": [3, 36], "c0": [3, 4, 5, 10, 36], "g0": [3, 4, 10, 11, 36], "b0": [3, 4, 10, 11, 29, 36, 42, 43], "n0": [3, 4, 5, 36], "l0": [3, 36], "cn0_arr": [3, 36], "time0_alloc": [3, 4, 5, 36], "\u03c4": [3, 4, 5, 9, 29, 36], "simul": [3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 21, 23, 25, 27, 28, 29, 30, 35, 36, 39, 42, 43, 44, 46, 47, 48, 51], "shist": [3, 4, 5, 36], "chist": [3, 4, 5, 36], "nhist": [3, 4, 5, 36], "bhist": [3, 4, 5, 36], "\u03c4hist": [3, 4, 5, 36], "\u03c6hist": [3, 36], "rhist": [3, 4, 5, 36], "onward": [3, 4, 5, 10, 36], "eu_c": [3, 4, 5, 36], "ghist": [3, 36], "yhist": [3, 36], "techniqu": [3, 5, 8, 18, 21, 28, 38, 42, 43, 44, 50], "dynam": [3, 4, 6, 7, 11, 12, 13, 14, 15, 17, 24, 27, 29, 30, 31, 34, 35, 36, 38, 40, 41, 42, 46, 50, 51], "stackelberg": [3, 10, 13, 14, 26, 36], "view": [3, 7, 13, 14, 15, 19, 21, 22, 24, 25, 30, 32, 42, 44, 46], "leav": [3, 9, 10, 17, 28, 29, 30], "intact": 3, "g_t": [3, 4, 5, 23, 24, 25, 27, 28, 29, 31, 36, 41, 43, 46, 47, 48], "throughout": [3, 7, 10, 25, 28, 36, 37, 43], "linear": [3, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 27, 28, 29, 31, 34, 35, 36, 38, 40, 41, 43, 44, 50, 51], "markov": [3, 4, 5, 6, 11, 18, 25, 26, 28, 36, 51], "entri": [3, 15, 16, 25, 30, 41], "distinguish": [3, 8, 10, 18, 19, 22, 28], "u_l": [3, 4, 36], "n_0": [3, 20, 34, 36], "g_0": [3, 4, 10, 11, 17, 25, 36], "23": [3, 11, 15, 18, 28, 30, 40, 45], "envelop": [3, 16, 22, 36, 50], "theorem": [3, 7, 9, 16, 18, 22, 23, 25, 32, 44], "27": [3, 11, 15, 22, 36, 39], "28": [3, 7, 10, 15, 40, 51], "twist": [3, 9, 22], "along": [3, 5, 10, 11, 17, 18, 19, 22, 32, 36, 42, 46, 50], "counterpart": [3, 15, 28, 36, 39, 42, 43], "vari": [3, 4, 6, 9, 10, 21, 22, 33, 41, 42, 47, 48], "accord": [3, 5, 6, 8, 9, 10, 11, 15, 17, 19, 21, 22, 25, 29, 30, 32, 34, 39, 50], "properti": [3, 7, 9, 10, 14, 17, 21, 25, 30, 35, 37, 39, 51], "transmit": 3, "employ": [3, 50], "quasi": [3, 36], "furthermor": [3, 9, 10, 30, 36, 40, 50], "chain": [3, 4, 6, 16, 18, 26, 29, 33, 36, 42, 46, 51], "accumul": [3, 6, 18, 38, 42, 48, 51], "suffici": [3, 4, 6, 7, 10, 13, 14, 16, 17, 22, 23, 29, 30, 36, 40, 44, 50], "asset": [3, 4, 5, 9, 18, 20, 22, 36, 42, 43, 46, 48, 51], "excess": [3, 8, 9, 29, 51], "revenu": [3, 13, 14, 19, 29, 36, 43], "warn": [3, 4, 5, 11, 14, 16, 18, 50], "THE": 3, "IS": 3, "extrem": [3, 9, 13, 14, 39], "sensit": [3, 5, 9, 40, 51], "TO": 3, "choci": 3, "OF": 3, "NOT": [3, 15, 30], "AND": 3, "IT": 3, "x_grid": [3, 13, 14, 36], "bounds_v": 3, "t_v": 3, "t_w": 3, "bellman_operator_factori": 3, "v_solv": 3, "w_solv": 3, "compute_v": [3, 11], "\u03c3_v_star": 3, "tol_vfi": 3, "maxitr": 3, "print_itr": 3, "success": [3, 4, 5, 7, 13, 14, 16, 22, 28, 39], "v_new": [3, 36, 50], "\u03b4": [3, 9, 12, 22, 33, 34, 44], "itr": 3, "vfi": 3, "break": [3, 11, 13, 14, 36, 39, 40, 43], "error": [3, 5, 7, 8, 9, 11, 14, 15, 16, 17, 22, 24, 25, 29, 32, 40, 44, 49, 50], "compute_w": 3, "\u03c3_w_star": 3, "succesfulli": 3, "s_hist": 3, "msg": [3, 34, 43, 50], "n_hist": 3, "x_hist": [3, 42], "c_hist": [3, 42], "\u03c4_hist": 3, "b_hist": [3, 42], "g_hist": 3, "l_0": [3, 25], "t_0": [3, 16, 39], "x_arr": 3, "c_next": 3, "l_next": 3, "obj_factori": 3, "obj_v": [3, 36], "v_next": 3, "obj_w": 3, "x_node": 3, "\u03c3_star": 3, "x_i": [3, 9, 15, 20, 22, 37], "nelder_mead": [3, 36], "fail": [3, 10, 11, 13, 14, 22, 23, 34, 44], "bounds_w": 3, "manag": [3, 9, 10, 16, 28, 36, 46, 51], "uncertainti": [3, 10, 11, 15, 20, 28, 40, 51], "match": [3, 6, 7, 11, 16, 24, 28, 36, 50], "rather": [3, 4, 5, 9, 14, 18, 21, 28, 29, 32, 35, 36, 40, 43, 44, 48], "g_l": [3, 36, 43], "g_3": [3, 36], "g_h": [3, 24, 36, 43], "trick": [3, 10, 19, 24, 25, 35, 41], "six": [3, 11, 36], "pmatrix": [3, 39], "crra_util_data": [3, 36], "\u03b3": [3, 4, 5, 6, 12, 19, 23, 24, 27, 30, 31, 32, 36, 38, 39, 40, 41, 43], "crrautil": [3, 4, 5, 36], "ucl": [3, 36], "path": [3, 4, 7, 11, 13, 14, 15, 17, 18, 19, 23, 25, 29, 30, 33, 36, 39, 40, 42, 43, 44], "peac": [3, 43], "triangl": 3, "IF": 3, "x_min": 3, "5555": 3, "x_max": 3, "339": 3, "x_num": 3, "crra_pref": [3, 36], "amss_model": 3, "110064840137854": 3, "30784885876438395": 3, "03221851531398379": 3, "40": [3, 9, 11, 13, 14, 18, 19, 21, 24, 27, 36, 44], "014347598008733087": 3, "0031219444631354065": 3, "0010783647355108172": 3, "70": 3, "0003761255356202753": 3, "0001318127597098595": 3, "650031579878089e": 3, "801377708510188e": 3, "175872600877597e": 3, "06": [3, 4, 5, 8, 10, 11, 14, 22, 45, 50], "120": [3, 19, 21, 35, 42], "4450291853383987e": 3, "0836745989450947e": 3, "140": 3, "682877084467464e": 3, "07": [3, 4, 5, 10, 11, 14, 22, 45, 51], "567560966644123e": 3, "160": 3, "5837734796141376e": 3, "047536575844333e": 3, "7066849622437985e": 3, "4622035848788073e": 3, "200": [3, 4, 5, 6, 9, 10, 11, 22, 36, 44, 50], "27387780324284e": 3, "210": [3, 44], "1226231499961159e": 3, "220": 3, "2min": 3, "54": [3, 8, 10, 13], "ls_model": 3, "s_hist_h": 3, "s_hist_l": 3, "sim_h_amss": 3, "sim_l_amss": 3, "sim_h_l": 3, "sim_l_l": 3, "spend": [3, 4, 29, 36, 42, 43, 47], "ls_l": 3, "ls_h": 3, "amss_l": 3, "amss_h": 3, "zip": [3, 4, 5, 6, 7, 10, 14, 36, 40, 44], "ok": [3, 4, 36], "structur": [3, 7, 12, 13, 14, 16, 18, 19, 25, 26, 31, 33, 36, 39, 41, 43, 47, 51], "design": [3, 4, 9, 10, 13, 14, 18, 19, 20, 21, 25, 36, 40, 43, 46, 50], "sale": [3, 6, 36, 42], "regardless": [3, 17, 36, 44, 50], "pattern": [3, 8, 11, 12, 17, 20, 22, 33, 43, 46], "facil": 3, "enter": [3, 6, 16, 23, 27, 34, 36], "fall": [3, 4, 6, 7, 12, 31, 34, 36, 38, 40, 42, 43, 50], "unusu": 3, "carri": [3, 5, 13, 14, 16, 19, 22], "servic": [3, 17, 23, 25, 27, 36], "burden": [3, 34], "lead": [3, 4, 6, 9, 10, 11, 22, 24, 25, 28, 29, 30, 32, 34, 36, 39, 40, 42, 44, 46, 50], "current": [3, 4, 6, 10, 14, 17, 18, 22, 25, 28, 29, 30, 32, 34, 35, 36, 39, 42, 44, 46, 48], "caus": [3, 4, 6, 10, 13, 14, 22, 23, 24, 25, 27, 46, 47, 48], "perman": [3, 12, 15, 24, 26, 27, 31, 35, 42, 43, 46, 50, 51], "reduct": [3, 10], "dramat": 3, "final": [3, 6, 11, 13, 14, 16, 18, 34, 37, 47, 49], "69": [3, 7, 10, 36, 45, 51], "log_util_data": [3, 36], "\u03c8": [3, 7, 36, 43, 44], "logutil": [3, 36], "4107": 3, "709": 3, "log_pref": 3, "55": [3, 18, 21, 45, 51], "3e": [3, 22], "3000": 3, "0011569123052908026": 3, "0005024948171925558": 3, "0002995649778405607": 3, "00020753209923363158": 3, "00015556566848218267": 3, "600": [3, 11], "0001228034492957164": 3, "00010068689697462219": 3, "800": 3, "474340939912395e": 3, "900": 3, "290920770763876e": 3, "375694017535238e": 3, "1100": 3, "642689428775327e": 3, "1200": [3, 21], "045426282634935e": 3, "1300": 3, "561168914030134e": 3, "1400": [3, 4], "150059282892471e": 3, "1500": [3, 9], "799110186264443e": 3, "1600": 3, "5163266918658564e": 3, "1700": 3, "263979350620616e": 3, "1800": 3, "0359381506528393e": 3, "1818": 3, "36": [3, 9, 10, 22, 36, 45], "sim_amss": 3, "sim_l": [3, 36], "prolong": 3, "borrow": [3, 4, 6, 17, 29, 38, 42, 46, 47, 48, 50], "drift": [3, 8, 23, 42, 43, 44], "awai": [3, 8, 9, 10, 17, 40], "evolut": [3, 13, 33, 39], "presenc": [3, 5, 22, 28, 36], "forc": [3, 5, 11, 16, 28, 30, 39, 48], "precautionari": 3, "impart": [3, 11, 28], "subsequ": [3, 4, 6, 10, 11, 13, 14, 17, 25, 28, 36, 41], "s_hist_long": 3, "random_st": [3, 28, 42, 43], "levi": [3, 4, 10, 11, 17], "ever": [3, 28], "privat": [3, 4, 10, 13, 14, 36, 43, 51], "sector": [3, 4, 10, 13, 14, 29, 43, 44], "improv": [3, 18, 50], "circumst": [3, 13], "tax": [4, 5, 6, 10, 11, 13, 14, 17, 26, 29, 33, 42, 46, 47, 48, 50], "ramsei": [4, 5, 13, 26, 51], "amss": [4, 5, 36, 45], "taxat": [4, 5, 10, 14, 26, 43, 46, 48, 51], "without": [4, 5, 6, 9, 11, 16, 19, 21, 26, 28, 29, 34, 39, 44, 51], "equilibrium": [4, 8, 11, 12, 23, 26, 31, 34, 41, 43, 44, 50, 51], "distort": [4, 9, 10, 11, 13, 14, 20, 22, 29, 39, 40, 43, 46, 47, 48], "measur": [4, 5, 8, 9, 10, 11, 13, 14, 16, 24, 25, 28, 29, 35, 36, 40, 44, 46, 47, 48, 50], "inform": [4, 6, 7, 9, 11, 15, 18, 21, 22, 23, 24, 26, 28, 30, 31, 32, 33, 35, 38, 39, 43, 46, 51], "free": [4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 17, 19, 20, 22, 29, 31, 36, 38, 43, 46, 47, 50], "least": [4, 7, 8, 9, 11, 13, 14, 15, 18, 20, 28, 30, 35, 40, 44, 50, 51], "violat": [4, 22, 25, 30, 36, 50], "nonzero": [4, 30], "arbitrari": [4, 5, 7, 10, 18, 22, 23, 27, 32, 36, 37, 40], "eventu": [4, 5, 6, 10, 11, 19, 28, 30, 34, 40, 43], "stop": [4, 6, 13, 34, 48], "evermor": 4, "longer": [4, 23, 41], "vanish": [4, 9], "par": [4, 5], "alwai": [4, 7, 10, 17, 22, 25, 30, 34, 43, 44, 47], "loan": [4, 17, 29, 36, 47], "never": [4, 6, 10, 16, 28, 50], "fulli": [4, 11, 28, 29, 44, 50], "payment": [4, 5, 6, 17, 29, 32, 36, 43, 50, 51], "against": [4, 8, 10, 11, 22, 28, 36, 40, 42, 43], "recurs": [4, 6, 7, 11, 12, 13, 14, 15, 16, 23, 24, 26, 27, 28, 31, 35, 38, 39, 40, 41, 43, 50, 51], "agre": [4, 5, 11, 16, 17, 20, 22, 36, 39], "tomorrow": [4, 10, 32, 33, 42, 43, 44], "situat": [4, 5, 7, 9, 16, 19, 24, 28, 33, 40, 43, 44, 48], "lose": [4, 6], "noth": [4, 7, 9], "exchang": [4, 16, 32, 51], "emerg": [4, 9, 10, 15, 17, 19, 28, 30, 42, 43, 51], "nutshel": 4, "strike": [4, 11, 40, 42], "fsolv": [4, 50], "fmin": 4, "drive": [4, 5, 10, 36, 39], "bhandari": [4, 5, 51], "nontrivi": [4, 5, 16, 21, 40], "martingal": [4, 23, 25, 30, 46, 51], "imperfectli": 4, "slowli": [4, 10, 27], "push": [4, 9, 33], "weak": [4, 5, 9, 50], "unrel": 4, "domin": [4, 18, 30], "facilit": [4, 7, 19, 25], "imperfect": [4, 28, 51], "trivial": [4, 34], "altern": [4, 7, 9, 10, 15, 17, 18, 19, 21, 22, 25, 28, 29, 32, 37, 39, 40, 42, 44, 51], "todai": [4, 6, 10, 17, 18, 32, 33, 36, 42, 43, 44, 47, 48], "accur": [4, 5], "although": [4, 17, 19, 21, 25, 29, 40, 44], "avail": [4, 6, 9, 10, 17, 18, 19, 21, 28, 34, 37, 40, 42, 44, 49], "tau_0": [4, 36], "r_0": [4, 10, 15, 30], "agent": [4, 5, 9, 10, 11, 13, 14, 16, 18, 22, 24, 25, 28, 30, 32, 36, 51], "onc": [4, 6, 10, 13, 14, 19, 21, 23, 25, 28, 29, 34, 36, 40, 44, 50], "u_n": [4, 36, 37], "nn": [4, 36], "simplifi": [4, 9, 10, 11, 14, 18, 28, 29, 32, 36, 37, 39, 43, 47], "\u03b8": [4, 5, 6, 7, 10, 11, 13, 14, 21, 22, 34, 40, 43, 44], "transfer": [4, 5, 16, 17, 32, 42], "un": [4, 5], "unn": [4, 5], "mostli": [4, 8, 15, 30], "adapt": [4, 14, 20, 25, 42], "sequentialalloc": [4, 5], "cesutil": [4, 5], "bgputil": [4, 5], "\u03bc": [4, 5, 9, 10, 11], "\u03befb": [4, 5], "zfb": [4, 5], "\u03be": [4, 5, 8, 29], "problem": [4, 5, 6, 8, 9, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 25, 33, 37, 38, 42, 43, 48, 49, 51], "xprime": [4, 5, 36], "time1_valu": [4, 5], "\u03bchist": [4, 5], "fmin_slsqp": [4, 5], "recursiveallocationamss": [4, 5], "\u03bcgrid": [4, 5], "tol_diff": [4, 5], "tol": [4, 5, 6, 13, 14, 16, 19, 28, 32, 36, 39, 50], "solve_time1_bellman": [4, 5], "time_0": [4, 5], "bellman": [4, 5, 6, 10, 11, 13, 16, 25, 33, 39, 42, 50], "calibr": [4, 5, 8, 22, 50], "\u03bcgrid0": [4, 5], "fit": [4, 5, 8, 11, 21, 22, 25, 28, 37, 40, 44, 46], "solut": [4, 5, 9, 11, 14, 15, 19, 22, 23, 30, 40, 50, 51], "ant": [4, 5, 16, 43], "pp": [4, 5], "interpolator_factori": [4, 5], "incomplete_alloc": [4, 5], "\u03bc_": [4, 5], "cf": [4, 5, 34, 35], "nf": [4, 5], "xgrid": [4, 5], "vf": [4, 5], "xprimef": [4, 5], "fun_vstack": [4, 5], "fun_hstack": [4, 5], "xbar": [4, 5], "bellmanequ": [4, 5], "pf": [4, 5], "vfnew": [4, 5], "fit_policy_funct": [4, 5], "tf": [4, 5, 32], "pfvec": [4, 5], "z0": [4, 5, 19, 36], "xprime0": [4, 5, 36], "t0": [4, 5], "simulate_markov": [4, 5], "xhist": [4, 5, 36], "thist": [4, 5], "policies0": [4, 5], "maxit": [4, 5, 13, 14, 34], "ifb": [4, 5], "xfb": [4, 5], "__call__": [4, 5, 40, 44], "get_policies_time1": [4, 5], "get_policies_time0": [4, 5], "objf": [4, 5], "vprime": [4, 5, 36], "objf_prim": [4, 5], "asfarrai": [4, 5], "f0": [4, 5], "atleast_1d": [4, 5], "jac": [4, 5], "dx": [4, 5, 20, 40, 44], "transpos": [4, 5, 29], "con": [4, 5, 23, 27], "fx": [4, 5], "imod": [4, 5], "smode": [4, 5], "f_eqcon": [4, 5], "fprime": [4, 5], "full_output": [4, 5], "iprint": [4, 5], "acc": [4, 5], "univariatesplin": [4, 5, 13, 14], "interpolate_wrapp": [4, 5], "__getitem__": [4, 5], "reshap": [4, 5, 6, 9, 13, 14, 15, 18, 22, 24, 29, 30, 35, 44], "__len__": [4, 5], "xvec": [4, 5], "fhat": [4, 5], "fs": [4, 5, 33, 46], "sort": [4, 5, 15, 17, 30], "fun_list": [4, 5], "iw": [4, 5], "dtype": [4, 5, 6, 11, 15, 30, 39, 40], "render": [4, 9, 10, 19, 22, 35], "recogn": [4, 8, 9, 15, 22, 25, 39, 43], "insight": [4, 7, 8, 9, 10, 11, 14, 15, 16, 19, 22, 25, 35, 37], "fundament": [4, 7, 10, 15, 17, 21, 32, 35], "jointli": [4, 16, 46, 47], "vec": [4, 9, 10, 11, 13, 14, 19, 36, 42], "minim": [4, 5, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 25, 33, 36, 37, 39, 40, 46, 47, 48, 50], "min_\u03c6": 4, "unknown": [4, 21, 28, 32, 36, 37, 42, 44], "c2": [4, 11, 12, 18, 23, 24, 27, 31, 38, 41, 43, 46, 47, 48], "eq": [4, 13, 14], "global": [4, 18, 26, 29, 44, 51], "loss": [4, 6, 10, 19, 33, 34, 39, 40, 43], "\u03c6_star": 4, "ftol": 4, "termin": [4, 6, 15, 18, 19, 30, 39], "000000": 4, "24": [4, 5, 13, 14, 22, 30, 36, 40, 41, 45], "48": [4, 10, 13, 45, 51], "recov": [4, 7, 11, 14, 16, 17, 19, 24, 25, 28, 32, 36, 37, 39], "b_bar": 4, "0757576567504166": 4, "solve_cb": 4, "\u03c4_0": 4, "eq1": 4, "eq2": 4, "xtol": 4, "0e": 4, "9344994030900681": 4, "0386984075517638": 4, "038698407551764": 4, "ought": 4, "slack": [4, 14, 25], "\u03bc_grid": [4, 5], "09": [4, 5, 10], "log_exampl": [4, 5, 36], "log_sequenti": [4, 5], "log_bellman": [4, 5], "sim_seq": [4, 36], "03869841": 4, "sim_bel": 4, "seq": [4, 36], "bel": 4, "_optim": [4, 5, 14], "outsid": [4, 5, 7, 8, 14, 15, 16, 30, 43], "dure": [4, 5, 6, 14, 43, 50, 51], "clip": [4, 5, 14], "tmp": [4, 5, 7, 14, 22, 29, 40], "ipykernel_5542": 4, "108196118": [4, 5], "encount": [4, 5, 14, 20, 22, 36, 50], "reciproc": [4, 5, 13, 14, 15, 17, 20, 30, 42, 43, 46], "29": [4, 5, 10, 36, 40, 45], "1277371586": [4, 5], "249": [4, 5, 7], "invalid": [4, 5, 14, 22], "04094445433232542": 4, "001673211146137493": 4, "001484674847917127": 4, "001313772136887205": 4, "0011814037130420663": 4, "001055965336102068": 4, "0009446661649946108": 4, "0008463807319492324": 4, "0007560453788611131": 4, "0006756001033938903": 4, "000604152845540819": 4, "0005396004518747859": 4, "00048207169166290613": 4, "00043082732064067867": 4, "00038481851351225495": 4, "000343835217593145": 4, "0003072436935049677": 4, "0002745009146233244": 4, "00024531773293589513": 4, "00021923324298642947": 4, "00019593539310787213": 4, "00017514303481690137": 4, "0001565593985003591": 4, "00013996737081815812": 4, "00012514457789841946": 4, "00011190070823325749": 4, "0001000702000922041": 4, "949728534363834e": 4, "00497532414663e": 4, "160585250570457e": 4, "405840591557493e": 4, "731160522780524e": 4, "1279701373366633e": 4, "588651722582404e": 4, "106390497232627e": 4, "6750969979187823e": 4, "289357328148953e": 4, "9443322731171715e": 4, "6356778254647064e": 4, "3595477005441402e": 4, "1124867549068547e": 4, "8914292342161616e": 4, "6935989661294087e": 4, "5165570482803087e": 4, "3581075188566359e": 4, "2162766163347089e": 4, "0893227516817513e": 4, "756678182519297e": 4, "739234428152772e": 4, "828320614508025e": 4, "012602839408298e": 4, "2821988113865695e": 4, "628118884533389e": 4, "0424276120745635e": 4, "517800318375349e": 4, "048011435284343e": 4, "6271819852132397e": 4, "250228025571809e": 4, "91255521672949e": 4, "6100632205124585e": 4, "339096372677708e": 4, "096300057053759e": 4, "8787856014677842e": 4, "6838896002658147e": 4, "5092763000475938e": 4, "352790440377663e": 4, "2125870135921682e": 4, "0869367592654264e": 4, "74329344948381e": 4, "734258726613521e": 4, "82979401245993e": 4, "019280421759928e": 4, "292786681149374e": 4, "641636376342722e": 4, "058008139530142e": 4, "5348427330256424e": 4, "0659062310367744e": 4, "6455314441729855e": 4, "2687002299145745e": 4, "930882045255147e": 4, "6280345786809706e": 4, "356529429295176e": 4, "1131168850248635e": 4, "8948851788438695e": 4, "6992245629426705e": 4, "5237965358488245e": 4, "3665054480740185e": 4, "2254729288266142e": 4, "0990157880047098e": 4, "85625196806722e": 4, "08": [4, 5, 8, 10, 11, 22, 45, 51], "839490296454315e": 4, "927751099544721e": 4, "110169892267009e": 4, "377012234144897e": 4, "719543299951795e": 4, "129944108294742e": 4, "6011930465755267e": 4, "127024907212617e": 4, "7017901411273995e": 4, "320421136675924e": 4, "9783836454122435e": 4, "6716185879207155e": 4, "3964828404060055e": 4, "1497111441656643e": 4, "928376711102591e": 4, "7298534286134342e": 4, "5517887041510468e": 4, "3920711115842077e": 4, "2488086772484325e": 4, "120303914946054e": 4, "0050349805051883e": 4, "016372957223345e": 4, "088867717275256e": 4, "256860052028448e": 4, "5105080491085e": 4, "8409842196277625e": 4, "240371187393206e": 4, "701571286205833e": 4, "2182149401635156e": 4, "784594252430241e": 4, "3955835551064364e": 4, "0465910785331343e": 4, "7334965385949916e": 4, "4526029798499404e": 4, "2005967896788517e": 4, "9745023230252437e": 4, "7716540861495694e": 4, "5896779606666392e": 4, "4263644656786832e": 4, "279915801041798e": 4, "1484611488603225e": 4, "0305702313922867e": 4, "247647878021015e": 4, "298468061604299e": 4, "446744286173443e": 4, "682506157688693e": 4, "996765544062293e": 4, "381420956749845e": 4, "829271458904042e": 4, "3337871811544764e": 4, "8891892933983235e": 4, "4902066124392655e": 4, "1321799130111273e": 4, "8109002457092086e": 4, "5225950288597284e": 4, "263868938948011e": 4, "0316830484184638e": 4, "8233409175417047e": 4, "6363582056463494e": 4, "4685617665861112e": 4, "3179940303096093e": 4, "1828486777347211e": 4, "0615888599012755e": 4, "527490070407684e": 4, "sampl": [4, 5, 7, 8, 17, 21, 22, 23, 25, 28, 36, 37, 42, 43, 44], "grai": [4, 22], "approx": [4, 5, 7, 22, 28, 39], "public": [4, 8, 10, 11, 13, 51], "2000": [4, 5, 8, 22, 28, 40, 46, 51], "sim_seq_long": [4, 5], "shist_long": [4, 5], "sim_bel_long": [4, 5], "id": [4, 5], "ceas": 4, "seek": [4, 5, 11, 18, 19, 20, 37, 40, 50], "link": [4, 6, 22, 28, 39, 42], "slightli": [4, 6, 10, 13, 14, 23, 27, 44], "reader": [4, 5, 10, 11, 15, 21, 28, 30, 44, 49], "quickli": [4, 5, 14, 15, 23, 38], "remind": [4, 5, 8, 11, 33], "variat": [4, 5, 9, 10, 22, 33, 46, 51], "compos": 4, "deficit": [4, 5, 24, 43], "rm": [4, 5, 8, 9, 13, 14, 15, 19, 20, 25, 33, 36, 40, 42, 50], "cov": [4, 5, 8, 9], "superscript": [4, 5], "regress": [4, 5, 8, 9, 21], "varianc": [4, 5, 7, 15, 17, 20, 21, 22, 26, 28, 35, 51], "argmin": [4, 5, 22], "minimand": [4, 5], "47": [4, 5, 10, 14, 22, 51], "steadi": [4, 12, 17, 23, 27, 39, 44], "plug": [4, 21, 43], "covari": [4, 5, 8, 9, 11, 15, 17, 20, 21, 26, 29, 30, 35, 38, 40, 42], "mu_x": 4, "mu_i": 4, "940580824225584": 4, "8943592757759343": 4, "055169547122964": 4, "1670526750992583": 4, "06357685646224803": 4, "19251010100512958": 4, "ingredi": [4, 22, 28], "bstar": 4, "div": [4, 5], "bhat": 4, "0757585378303758": 4, "810799592140484e": 4, "job": [4, 6, 18, 28, 42, 44, 50, 51], "jmin": 4, "020562075079397e": 4, "machin": [4, 26, 49], "verif": [4, 25], "succe": [4, 11], "luck": 4, "speed": [4, 11, 13, 14, 25, 44], "den2": 4, "speedrev": 4, "9974715478249827": 4, "meantim": 4, "ttime": 4, "1819": 4, "0360880098472": 4, "slow": 4, "highlight": [4, 10], "discov": [4, 10, 11, 28, 30, 42, 48], "applic": [5, 8, 10, 11, 18, 22, 25, 26, 28, 30, 35, 44, 46, 51], "648": 5, "650": [5, 11], "section": [5, 6, 7, 8, 11, 13, 14, 15, 16, 17, 18, 21, 23, 28, 30, 32, 36, 37, 38, 39, 40, 44, 50], "iii": [5, 25], "beg": 5, "endogen": [5, 6, 10, 16, 19, 23, 27, 28, 29, 34, 42, 43, 46, 47, 48, 51], "fluctuat": [5, 22, 26, 33, 42, 48, 51], "support": [5, 14], "span": [5, 15, 18, 24, 25, 35, 37, 51], "insur": [5, 10, 26, 42, 43, 51], "lack": 5, "concentr": [5, 24], "establish": [5, 13, 14, 17, 20, 25, 30, 37, 50], "steer": 5, "come": [5, 6, 8, 9, 10, 13, 15, 16, 17, 22, 23, 25, 28, 29, 30, 32, 35, 36, 40, 43, 44, 50], "precis": [5, 6, 7, 9, 10, 11, 17, 18, 23, 35, 37, 38, 46], "deliv": [5, 6, 10, 11, 13, 14, 16, 17, 22, 26, 36, 50], "typo": 5, "recycl": 5, "luca": [5, 22, 25, 26, 28, 29, 36, 42, 43, 51], "stokei": [5, 10, 13, 18, 29, 36, 42, 43, 44, 51], "102000": 5, "ipykernel_5587": 5, "038266353387659546": 5, "0015144378246632448": 5, "0013387575049931865": 5, "0011833202400662248": 5, "0010600307116134505": 5, "0009506620324908642": 5, "0008518776517238551": 5, "0007625857031042564": 5, "0006819563061669217": 5, "0006094002927240671": 5, "0005443007356805235": 5, "00048599500343956094": 5, "0004338395935928358": 5, "00038722730865154364": 5, "00034559541217657187": 5, "00030842870645340995": 5, "00027525901875688697": 5, "0002456631291987257": 5, "00021925988533911457": 5, "0001957069581927878": 5, "00017469751641633328": 5, "00015595697131045533": 5, "00013923987965580473": 5, "0001243270476244632": 5, "00011102285954170156": 5, "915283206080047e": 5, "856139177373994e": 5, "910986485356134e": 5, "067466534026614e": 5, "314566737649043e": 5, "6424746008715835e": 5, "04244714230645e": 5, "5066942129829506e": 5, "028274354582181e": 5, "601001917066026e": 5, "219364287744318e": 5, "878448158073308e": 5, "5738738366349524e": 5, "3017369974638877e": 5, "0585562530972924e": 5, "8412273759209572e": 5, "6470096733078585e": 5, "4734148603737835e": 5, "3182214255360329e": 5, "1794654716176686e": 5, "0553942898779478e": 5, "444436197515114e": 5, "452171093491432e": 5, "564681603048501e": 5, "770836606096674e": 5, "060699172057158e": 5, "4253876343226e": 5, "856977544060761e": 5, "348382732427091e": 5, "893276456302588e": 5, "4860028420224977e": 5, "1215110784890745e": 5, "7952840260155024e": 5, "503284254157189e": 5, "241904747465382e": 5, "0079209145832687e": 5, "7984472260187192e": 5, "610904141295967e": 5, "4429883256895489e": 5, "2926354365994746e": 5, "1580011940576491e": 5, "0374362190402233e": 5, "294651286343194e": 5, "327660623755013e": 5, "461585686381671e": 5, "68586648784756e": 5, "991017296865946e": 5, "368606502407216e": 5, "811037017633464e": 5, "3115434615062044e": 5, "8640500348483447e": 5, "4631274740294855e": 5, "1039146715661056e": 5, "782060642970499e": 5, "493665449692665e": 5, "235241683944158e": 5, "0036660045892633e": 5, "796140357496926e": 5, "610161234596195e": 5, "4434845857135709e": 5, "29410194199688e": 5, "1602140686642469e": 5, "04020962175412e": 5, "326451087350253e": 5, "362279520562034e": 5, "49799979528415e": 5, "723237810210067e": 5, "028699653820159e": 5, "4060588066801066e": 5, "847855517381241e": 5, "347405660607874e": 5, "898720608840536e": 5, "496434157686767e": 5, "135737680533792e": 5, "8123222131646282e": 5, "5223262308472423e": 5, "2622892571432625e": 5, "0291098813063476e": 5, "820008555543109e": 5, "6324938418135388e": 5, "4643330672610771e": 5, "3135245110419445e": 5, "178274355586975e": 5, "0569743803546048e": 5, "48183058751907e": 5, "506079544395937e": 5, "630907318911004e": 5, "845926774203295e": 5, "141826797773109e": 5, "510259068441386e": 5, "943738281315066e": 5, "435554859709816e": 5, "979736766026741e": 5, "5708317622814044e": 5, "2040044801866767e": 5, "874916539533131e": 5, "579680212253616e": 5, "3148068175021918e": 5, "077170148801081e": 5, "8639635474165993e": 5, "6726726276855955e": 5, "5010414936033808e": 5, "3470449992327086e": 5, "2088698423920761e": 5, "0848882197883804e": 5, "736395405805598e": 5, "738135346705384e": 5, "842367703299733e": 5, "03855297579472e": 5, "317225605423774e": 5, "669925787732949e": 5, "089032105148693e": 5, "5677367318159076e": 5, "0999013116379334e": 5, "680044560697966e": 5, "3032415368561477e": 5, "96506010211222e": 5, "6615516244191936e": 5, "389139399385772e": 5, "144649644252697e": 5, "9252092177853976e": 5, "7282471699749249e": 5, "551454449875162e": 5, "3927730577138407e": 5, "2503449048385917e": 5, "1224916676355658e": 5, "0077318342152794e": 5, "047094182757221e": 5, "reach": [5, 18, 28, 33, 39, 40, 50], "forecast": [5, 7, 10, 13, 15, 17, 19, 26, 35, 38, 39, 51], "discard": [5, 7, 19, 21], "vertic": [5, 6, 13, 14, 16, 22, 33], "been": [5, 8, 9, 16, 18, 21, 23, 25, 28, 29, 31, 33, 34, 36, 39, 50], "earli": [5, 10, 23, 24, 50], "conceal": [5, 25], "inexor": 5, "far": [5, 16, 21, 37], "theori": [5, 10, 11, 15, 17, 18, 21, 22, 26, 31, 37, 39, 40, 44, 51], "meant": 5, "46": [5, 51], "mathemat": [5, 11, 15, 16, 22, 28, 29, 30, 32, 33, 38, 39, 40, 42, 43, 44, 46, 51], "remaind": [5, 25, 36], "technic": [5, 12, 13, 17, 19, 24, 25, 28, 34, 40, 42, 46, 47, 48, 51], "materi": [5, 7, 8, 13, 16, 25, 39], "estim": [5, 8, 11, 22, 24, 25, 26, 28, 37, 44, 50, 51], "primari": 5, "revers": [5, 9, 11, 15, 21, 24, 25, 26, 30, 44], "engin": [5, 9, 26, 41, 51], "forth": [5, 10], "might": [5, 9, 11, 16, 18, 22, 29, 34, 40, 44, 48, 50], "confus": 5, "sight": 5, "digest": 5, "c_": [5, 8, 13, 14, 15, 17, 22, 24, 25, 29, 30, 32, 33, 34, 36, 38, 42, 46, 47, 48, 50], "nonlinear": [5, 6, 11, 44], "alert": 5, "middl": [5, 6, 21], "made": [5, 10, 11, 16, 17, 19, 21, 28, 32, 33, 39, 43, 44], "solver": 5, "induc": [5, 6, 9, 10, 11, 13, 14, 16, 19, 29, 32, 36, 39, 46, 47, 50], "composit": [5, 34, 35, 46, 47], "string": [5, 22, 40], "divisor": 5, "circumv": 5, "surround": [5, 22, 40], "better": [5, 7, 9, 10, 16, 17, 18, 21, 22, 44, 50], "enlarg": 5, "fairli": [5, 21, 44], "perfect": [5, 11, 26], "calc": 5, "solve_c": 5, "93852387": 5, "89231015": 5, "84858872": 5, "messag": 5, "statu": [5, 8, 13, 14, 34, 45], "618e": 5, "769e": 5, "175e": 5, "385e": 5, "923e": 5, "486e": 5, "nfev": 5, "fjac": 5, "999e": 5, "954e": 5, "03": [5, 10, 13, 14, 18, 19, 22, 34], "261e": [5, 18], "156e": 5, "610e": 5, "253e": 5, "616e": 5, "998e": 5, "269e": 5, "685e": 5, "301e": 5, "713e": 5, "433e": 5, "508e": 5, "qtf": 5, "556e": 5, "283e": 5, "899e": 5, "rememb": [5, 7, 8, 11, 19, 28, 50], "row": [5, 10, 15, 18, 29, 30, 34, 44], "place": [5, 6, 7, 13, 14, 16, 42], "spin": 5, "compute_r_x": 5, "25997521": 5, "33333333": 5, "00116313": 5, "10755123": 5, "22461897": 5, "1111111111111112": 5, "05457803": 5, "18259396": 5, "33685546": 5, "19134248445303795": 5, "19134248": 5, "solve_\u03c4": 5, "2740159773695818": 5, "min_j": 5, "035564405653720765": 5, "b_star": [5, 6], "199483167941158": 5, "b_hat": [5, 8], "0577661126390971": 5, "\u03c4_star": 5, "09572916798461703": 5, "r_star": 5, "x_star": 5, "9998398": 5, "10746593": 5, "2260276": 5, "0020272": 5, "12464752": 5, "27315299": 5, "9931353432732218": 5, "9264382": 5, "88027117": 5, "83662635": 5, "arellano": [6, 45, 51], "2008": [6, 7, 9, 20, 21, 22, 33, 39, 40, 51], "sovereign": 6, "premium": [6, 9], "maker": [6, 9, 10, 13, 18, 22, 28, 33, 39, 40], "neutral": [6, 20], "foreign": 6, "lender": 6, "compens": [6, 22, 50], "lend": [6, 46, 47, 48, 50], "abroad": 6, "citizen": 6, "declin": [6, 10, 35, 50], "advers": [6, 10, 22, 40], "countercycl": 6, "balanc": [6, 10, 11, 13, 14, 16, 24, 36, 51], "volatil": [6, 20, 32, 39], "notabl": 6, "recess": 6, "bad": [6, 48], "draw": [6, 8, 10, 15, 17, 21, 22, 30, 32, 35, 40, 41, 44], "spike": [6, 48], "temporari": [6, 10, 17, 24, 34, 36, 43, 46], "drop": [6, 32, 40, 44], "welfar": [6, 10, 11, 13, 14, 23, 25, 29, 43], "capit": [6, 8, 23, 25, 26, 27, 28, 33, 44, 51], "outflow": 6, "Such": [6, 21], "countri": [6, 34], "main": [6, 7, 15, 18, 30, 34, 40], "potenti": 6, "honor": [6, 36], "consum": [6, 8, 9, 10, 16, 17, 18, 22, 23, 24, 25, 28, 29, 34, 35, 38, 42, 43, 50], "rank": [6, 22, 25, 32, 37], "enjoi": [6, 33, 38], "internation": 6, "aim": [6, 8, 18, 23, 35, 37, 40, 44], "domest": 6, "actor": 6, "avers": [6, 8, 9, 32, 51], "instrument": [6, 10, 22], "seller": [6, 16, 32], "receiv": [6, 16, 17, 28, 34, 43, 46, 47, 48, 50], "exclud": 6, "nation": [6, 51], "everi": [6, 7, 8, 13, 15, 16, 25, 32, 34, 37, 44, 47, 48, 50], "delta": [6, 9, 12, 15, 16, 18, 25, 33, 34, 44], "meet": [6, 15, 44], "oblig": [6, 29, 36], "regain": 6, "account": [6, 9, 10, 14, 19, 22, 28, 40, 42, 50], "repaid": 6, "compris": [6, 19, 28], "v_c": 6, "v_d": 6, "dy": [6, 44], "henc": [6, 7, 9, 14, 16, 18, 25, 30, 32, 36, 37, 40, 42, 44, 50], "tripl": [6, 10, 13, 14, 22, 33, 40], "code": [6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 25, 30, 33, 34, 36, 39, 40, 44, 46, 49, 50], "replic": [6, 7, 12, 21, 29, 32, 34, 38, 44], "perform": [6, 7, 9, 11, 14, 16, 19, 28, 29, 40, 50, 51], "recommend": [6, 10, 40, 43], "appendix": [6, 19, 24], "approach": [6, 9, 10, 11, 17, 18, 19, 22, 25, 28, 30, 32, 33, 37, 38, 39, 40, 44, 50, 51], "faster": [6, 18, 23, 33], "tauchen": 6, "acceler": 6, "arellano_economi": 6, "primit": [6, 16, 29, 32, 40, 44, 47], "b_grid_siz": 6, "251": 6, "b_grid_min": 6, "smallest": [6, 14, 28], "b_grid_max": 6, "largest": [6, 14, 23, 27, 28], "y_grid_siz": 6, "953": 6, "\u03c1": [6, 9, 28, 29, 34, 40, 46, 47, 48], "\u03b7": [6, 22], "prob": [6, 11, 20, 33, 36], "def_y_param": 6, "969": 6, "b_grid": 6, "y_grid": 6, "state_valu": 6, "b0_idx": 6, "searchsort": [6, 18], "reciev": 6, "def_i": 6, "minimum": [6, 9, 16, 19, 22, 50], "param": [6, 8, 10, 11, 28, 34, 39, 50], "jit": [6, 11, 18, 22, 32, 34], "infer": [6, 25, 28, 51], "easier": [6, 7, 9, 16, 40], "compute_q": 6, "b_idx": 6, "y_idx": 6, "t_d": 6, "current_util": 6, "cont_valu": 6, "t_c": 6, "current_max": 6, "1e10": 6, "bp_idx": 6, "bp": 6, "bp_star_idx": 6, "fast": [6, 21, 34], "update_values_and_pric": 6, "memori": [6, 18], "new_v_c": 6, "empty_lik": [6, 16, 19, 22, 32, 36], "new_v_d": 6, "compil": [6, 18, 22, 34], "outer": [6, 13, 14, 19], "hard": [6, 21, 22], "handl": [6, 9, 10, 21, 34, 50], "strip": 6, "basic": [6, 8, 16, 21, 27, 31, 46, 47, 48, 49, 51], "max_it": [6, 11, 13, 14, 16, 18, 32, 39, 50], "10_000": [6, 11], "current_it": 6, "dist": 6, "inf": [6, 13, 14, 16, 18, 22], "toler": [6, 9, 39], "in_default": 6, "y_sim_indic": 6, "simulate_indic": 6, "y_sim": 6, "y_a_sim": 6, "b_sim": 6, "q_sim": 6, "d_sim": 6, "rand": [6, 9], "shown": [6, 7, 8, 14, 15, 16, 18, 23, 29, 34, 37, 40, 44, 47], "quarterli": [6, 8, 22, 51], "year": [6, 12, 41], "treasuri": [6, 43, 51], "2001": [6, 9, 22, 51], "y_l": 6, "y_h": 6, "fine": [6, 14, 46], "minor": [6, 44], "arrelano": 6, "larger": [6, 7, 9, 10, 13, 16, 18, 21, 22, 23, 28, 32, 34, 39, 40, 41], "likelihood": [6, 9, 20, 22, 29], "heat": [6, 22], "grei": [6, 11, 44], "past": [6, 7, 10, 15, 17, 18, 19, 23, 25, 28, 30, 35, 42, 46, 47, 48], "sharp": [6, 9], "extent": [6, 34], "cours": [6, 11, 19, 21, 36], "ae": 6, "399": 6, "iy_high": 6, "iy_low": 6, "suitabl": [6, 16, 22, 29, 36], "q_low": 6, "q_high": 6, "35": [6, 10, 13, 14, 16, 18, 22, 29, 34, 45, 51], "lw": [6, 7, 9, 10, 18, 19, 21, 29, 30, 32, 34, 36, 39, 40, 44], "frameon": [6, 19, 39], "xlabel": [6, 7, 8, 9, 10, 11, 14, 19, 22, 30, 32, 36, 39, 43, 46, 50], "ylabel": [6, 7, 8, 10, 11, 14, 22, 32, 39, 46, 50], "xx": [6, 15], "yy": 6, "zz": [6, 12], "hm": 6, "pcolormesh": [6, 22, 34], "cax": [6, 34], "add_ax": [6, 34], "92": [6, 10], "colorbar": [6, 22, 34], "axi": [6, 7, 10, 11, 13, 14, 15, 22, 34, 40], "major": [6, 29], "start_end_pair": 6, "start_default": 6, "end_default": 6, "plot_seri": 6, "subplots_adjust": [6, 7, 29], "s_max": 6, "s_min": 6, "s_rang": 6, "y_max": 6, "y_min": 6, "advantag": [7, 11, 18, 25, 33], "eleg": [7, 32, 44], "comprehens": [7, 13], "broad": [7, 30], "kind": [7, 21, 22, 25, 37, 42, 44, 50], "domain": [7, 14, 16, 18, 28, 31, 51], "focu": [7, 9, 10, 13, 14, 15, 21, 34, 37, 39, 43, 44], "attent": [7, 10, 11], "cornerston": [7, 37], "valuabl": [7, 32], "separ": [7, 10, 20, 22, 25, 28, 32, 40], "essenc": [7, 18, 25, 44], "shine": 7, "light": [7, 9, 11, 28, 30, 34], "simpler": [7, 13, 16, 47], "tractabl": [7, 25, 39, 40, 42, 46, 47], "famou": [7, 9, 21, 32, 37], "fourier": [7, 21, 25], "invers": [7, 8, 10, 11, 13, 14, 19, 20, 22, 25, 28, 30, 39, 40, 41, 46, 47], "supplementari": [7, 21], "ljungqvist": [7, 8, 10, 14, 18, 19, 44, 50, 51], "chapter": [7, 8, 10, 14, 17, 18, 19, 20, 24, 28, 30, 33, 37, 39, 51], "1987": [7, 8, 15, 19, 20, 21, 22, 28, 30, 51], "john": [7, 25, 35, 51], "cochran": [7, 8, 51], "shiriaev": [7, 51], "1995": [7, 51], "cryer": [7, 21, 51], "chan": [7, 21, 51], "infinit": [7, 10, 11, 13, 14, 16, 17, 18, 20, 22, 25, 28, 29, 33, 35, 40, 44, 46, 50, 51], "field": 7, "real": [7, 10, 11, 13, 14, 15, 21, 29, 30, 34, 40, 44, 51], "Its": [7, 34, 36, 40], "colon": [7, 16, 18, 19, 29, 32, 37, 44], "exclus": [7, 44], "perhap": [7, 16, 17, 18, 21, 44], "simplest": [7, 46], "epsilon_t": [7, 20, 21, 28, 32], "mathbf": [7, 9, 11, 18, 22, 40, 44], "complic": [7, 42, 44, 50], "flexibl": [7, 18, 25], "famili": [7, 18, 44], "psi_j": [7, 12], "epsilon_": [7, 8, 9, 17, 21, 22, 25, 28, 32, 33, 35, 41], "squar": [7, 8, 9, 11, 14, 15, 17, 20, 25, 28, 30, 35, 44, 50, 51], "summabl": [7, 10, 11, 17, 25, 35], "often": [7, 8, 9, 15, 18, 19, 24, 37, 39, 42, 43, 44, 47], "filter": [7, 25, 26, 30, 35, 37], "manipul": [7, 8, 19, 34, 43], "cauchi": [7, 8], "schwartz": [7, 8], "remark": [7, 8, 9, 10, 12, 14, 19, 22, 25, 32, 42], "entir": [7, 13, 14, 16, 17, 19, 29, 30, 32, 36, 40, 44, 50], "decomposit": [7, 9, 15, 30, 51], "eta_t": [7, 15], "psi_0": [7, 44], "ahead": [7, 15, 17, 20, 25, 35, 40, 42, 44], "predict": [7, 11, 16, 17, 26, 30, 35, 37, 39, 51], "perfectli": [7, 8, 11, 36, 42], "especi": [7, 24, 28, 50], "num_row": [7, 29], "num_col": [7, 29], "\u03d5": [7, 9, 15, 21, 30, 32, 43, 44], "acov": 7, "bo": [7, 19], "xlim": [7, 9, 22, 30, 32, 36], "hline": [7, 10], "likewis": 7, "phi_p": 7, "theta_1": [7, 11, 39], "theta_q": 7, "lag": [7, 9, 15, 17, 19, 24, 25, 28, 35], "succinct": 7, "algebra": [7, 10, 11, 17, 19, 21, 25, 26, 29, 33, 34, 35, 40, 51], "ordinari": [7, 10, 11, 19, 21, 28, 29, 37, 39, 40, 46], "legitim": [7, 8, 29], "guarante": [7, 10, 25, 30, 50], "outlin": [7, 9, 25, 29, 38, 40], "mapsto": [7, 9, 37, 40], "impuls": [7, 12, 17, 24, 27, 35, 41], "great": [7, 16, 24], "deal": [7, 13, 16], "signific": [7, 16, 44], "invit": 7, "skip": [7, 16, 32, 40], "formal": [7, 9, 34, 44], "notion": [7, 13, 18, 20, 25, 40, 44], "imaginari": [7, 21, 39, 40], "modulu": [7, 18, 21, 23, 30, 38], "euclidean": [7, 34], "usual": [7, 9, 17, 21, 28, 29, 39, 40, 44], "xu": 7, "vy": 7, "xv": 7, "yu": 7, "pointwis": [7, 18], "proceed": [7, 28], "naiv": [7, 11, 30, 44], "yv": 7, "polar": 7, "co": [7, 13, 14, 21, 22, 37], "sin": [7, 13, 14, 21, 30], "arctan": 7, "tan": 7, "convent": [7, 16, 43, 44, 47], "difficult": [7, 9, 16, 18, 50], "proof": [7, 16, 18, 20, 40, 44], "refer": [7, 8, 10, 13, 14, 17, 25, 26, 29, 32, 33, 37, 44], "visibl": [7, 21, 44], "spectrum": 7, "origin": [7, 11, 13, 14, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 34, 35, 36, 39, 40, 42, 46], "bit": [7, 16, 20, 21], "effort": [7, 11, 21, 50], "261": [7, 51], "convolut": 7, "nice": [7, 25, 37], "ar1_sd": 7, "\u03c9": 7, "\u03c9s": 7, "sd": [7, 24, 29, 31], "center": [7, 10, 11, 17, 21, 44], "damp": 7, "cycl": [7, 22, 26, 28, 51], "horizont": [7, 8, 10, 11, 22, 40], "y1": [7, 17], "y2": [7, 17, 28], "y3": [7, 28], "ytick": [7, 22, 50], "stem": [7, 23], "ylim": [7, 22, 34, 39, 50], "contain": [7, 14, 17, 18, 22, 25, 29, 31, 32, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47], "smaller": [7, 9, 13, 14, 16, 21, 24, 28, 40], "summari": [7, 8, 9, 11, 25, 28, 36], "perspect": [7, 11, 22], "loos": [7, 18], "253": 7, "background": [7, 8, 18, 37], "hilbert": 7, "feel": 7, "progress": [7, 13, 14, 28, 50], "countabl": [7, 16], "orthonorm": [7, 15], "basi": [7, 13, 14, 15, 34, 50], "h_k": 7, "sum_k": [7, 34], "alpha_k": [7, 37], "langl": [7, 37], "rangl": [7, 37], "inner": [7, 15, 19, 22, 25, 37, 40], "degre": [7, 10, 13, 14, 21, 22, 33, 34], "linearli": [7, 16, 37], "word": [7, 9, 14, 15, 16, 18, 21, 25, 32, 40, 44], "ell_2": 7, "expans": [7, 14, 15, 16, 30], "elementari": [7, 9, 15, 26, 30, 44], "onto": 7, "preimag": 7, "isometri": 7, "summar": [7, 8, 9, 10, 13, 14, 15, 19, 25, 28, 36, 42], "isometr": 7, "isomorph": [7, 46], "l_2": [7, 15, 34], "trigonometr": 7, "apart": [7, 29, 47], "certain": [7, 34], "tsa": [7, 21], "submodul": 7, "statsmodel": [7, 8, 11, 21, 28], "doesn": [7, 22, 40], "quit": [7, 18], "cover": [7, 17, 18, 21, 29, 44], "particularli": 7, "vi": 7, "ve": [7, 18, 21, 40, 44, 50], "modul": [7, 29, 33, 34, 50], "68": [7, 10, 51], "plot_impulse_respons": 7, "gca": [7, 22], "yi": 7, "impulse_respons": [7, 17, 24, 28], "plot_spectral_dens": 7, "spect": 7, "spectral_dens": [7, 21], "two_pi": [7, 21], "semilog": [7, 21], "plot_autocovari": 7, "plot_simul": [7, 30], "x_out": 7, "quad_plot": 7, "plot_funct": 7, "plot_func": 7, "warmup": 7, "pure": [7, 12, 24, 32, 33, 36], "cbook": [7, 21], "1699": [7, 21], "complexwarn": [7, 21], "cast": [7, 17, 19, 21, 22, 25, 28, 36], "math": [7, 10, 12, 21, 24, 39], "isfinit": [7, 21, 22], "1345": [7, 21], "ipykernel_5777": 7, "4271821819": 7, "userwarn": 7, "ignor": [7, 10, 14, 15, 39, 42], "992": 7, "_point": 7, "carefulli": [7, 11, 18, 21, 32], "covariogram": [7, 15, 20], "challeng": [7, 11, 19, 28], "visual": [7, 18, 20, 22, 44], "surpris": [7, 20, 21, 44], "pretti": 7, "laboratori": [7, 10, 11], "quartet": [7, 51], "teach": 7, "ljunqvist": 7, "fourth": [7, 25], "98": [7, 11, 18, 32], "theta_2": [7, 11, 39], "permit": [7, 9, 18], "signal": [7, 51], "fft": [7, 21], "manner": [7, 18, 39, 42], "dimpuls": 7, "ma_poli": 7, "ar_poli": 7, "impulse_length": 7, "maintain": [7, 36, 43, 44], "automat": [7, 11, 51], "decid": [7, 16, 22], "assign": [7, 8, 10, 17, 25, 29, 50], "achiev": [7, 9, 10, 13, 14, 15, 23, 30, 36, 42], "descriptor": 7, "easiest": 7, "wrap": [7, 22, 43], "fortran": [7, 44], "fftpack": 7, "ifft": 7, "a_0": [7, 10, 12, 15, 17, 19, 21, 25, 29, 30, 39, 40], "a_1": [7, 15, 19, 25, 30, 39, 40, 44], "a_": [7, 8, 10, 12, 15, 17, 19, 21, 23, 25, 30, 33, 34, 38, 41, 44, 46, 47, 48], "a_k": 7, "a_t": [7, 10, 15, 18, 19, 21, 25, 28, 30, 31, 35, 43, 44, 46, 47, 48, 50], "ik": 7, "omega_t": [7, 25, 34], "divers": [8, 25, 37], "monetari": [8, 14, 18, 33, 51], "brought": [8, 10], "lar": [8, 25, 40, 51], "peter": [8, 25, 40, 51], "richard": [8, 51], "ravi": [8, 51], "jagannathan": [8, 20, 51], "1991": [8, 10, 15, 17, 20, 25, 28, 30, 51], "footstep": 8, "practition": 8, "cross": [8, 15, 20, 25, 44], "project": [8, 15, 22, 25, 26, 33, 35], "orthogon": [8, 15, 24, 26], "sequel": [8, 15, 30, 46, 47, 48], "modif": [8, 24, 26, 28, 44], "live": [8, 13, 14, 24, 28, 50], "common": [8, 9, 18, 21, 25, 32, 34, 37, 39, 44, 49, 50], "bring": [8, 10, 14, 16, 21, 42, 48], "someth": [8, 11, 21, 39], "theoret": [8, 10, 18, 20, 37, 51], "concis": [8, 10, 35], "foundat": [8, 22, 30, 37], "ross": [8, 51], "1976": [8, 51], "1978": [8, 9, 10, 11, 13, 14, 17, 24, 25, 31, 32, 42, 43, 51], "harrison": [8, 51], "krep": [8, 51], "1981": [8, 22, 51], "chamberlain": [8, 51], "rothschild": [8, 51], "operatornam": [8, 18], "simpli": [8, 9, 10, 11, 13, 14, 17, 18, 19, 21, 25, 28, 29, 30, 32, 40, 43, 44, 48, 49, 50], "beta_": [8, 9], "lambda_": [8, 19, 39], "lambda_m": [8, 15, 30], "sdf": 8, "dive": 8, "logarithm": [8, 20, 22], "whom": [8, 10, 39], "popular": [8, 29, 36], "rho": [8, 12, 25, 28, 29, 33, 34, 40, 44, 46, 47], "twice": [8, 13, 14, 50], "diffenti": 8, "sigma_c": [8, 22], "walk": [8, 17, 23, 24, 27, 29, 35, 42, 43, 44], "poor": [8, 21], "deploi": [8, 10, 11, 13, 17, 25, 28, 46, 47, 48], "scott": [8, 51], "2005": [8, 18, 28, 37, 51], "Their": [8, 26], "schwarz": 8, "less": [8, 9, 10, 11, 21, 22, 23, 25, 27, 28, 29, 30, 33, 34, 36, 39, 40, 41], "rho_": [8, 25, 33, 34, 41], "parenthes": 8, "leqslant": 8, "delin": 8, "roughli": [8, 9], "sigmam": 8, "em": 8, "y_valu": 8, "z_valu": 8, "straight": [8, 22, 40], "locu": [8, 22], "uncorrel": [8, 15, 17, 20, 25], "diversifi": 8, "mv": 8, "affin": [8, 9, 11, 22, 25, 33, 42], "residu": [8, 13, 14, 21, 37], "lambda_j": [8, 15, 30], "expos": 8, "f_t": [8, 25, 44], "exposur": 8, "uncov": [8, 11], "specifi": [8, 10, 11, 13, 14, 16, 18, 20, 22, 25, 27, 31, 39, 40, 42, 43, 44, 46, 47], "f_": [8, 17, 25, 33, 39, 44, 46], "perp": [8, 37], "f_a": 8, "briefli": [8, 18, 25, 30, 39, 40], "importnt": 8, "entail": [8, 22], "test": [8, 9, 22, 25, 29, 34, 37, 39, 42, 51], "regressor": [8, 37], "alpha_": [8, 25, 33, 41], "alpha_i": [8, 37], "presum": [8, 17], "ei": 8, "aspect": [8, 10, 14, 19, 20, 28, 50, 51], "artifici": [8, 11, 44], "convinc": 8, "api": [8, 11], "sm": [8, 11, 29], "lot": [8, 22, 47, 48], "ol": [8, 9, 11, 21, 25, 28], "univari": [8, 15, 17, 20, 35, 38], "simple_ol": 8, "add_const": [8, 11], "\u03b2_hat": 8, "\u03c3_hat": 8, "resid": [8, 25], "df_resid": 8, "i_t": [8, 12, 23, 24, 25, 27, 28, 31, 38, 41], "sigma_i": [8, 35], "varepsilon_": [8, 15], "mutual": [8, 15, 28], "scienc": [8, 51], "manifold": 8, "sigma_f": 8, "04": [8, 9, 11, 16, 18, 39, 45], "sigma_1": [8, 20, 24], "sigma_2": [8, 24], "sigma_3": 8, "sigma_4": 8, "sigma_5": 8, "erf": 8, "\u03c3f": 8, "zejin": 8, "tom": 8, "\u03bb": [8, 9, 11, 15, 28, 30, 33, 43], "\u03b2i": 8, "\u03c3i": 8, "\u03f5": 8, "rf": [8, 10, 14, 30, 32], "excess_rm": 8, "ri": 8, "erf_hat": 8, "\u03c3f_hat": 8, "020000000000000046": 8, "5114090308141905e": 8, "\u03be_hat": 8, "\u03bb_hat": 8, "06075435650848324": 8, "07857190709464326": 8, "\u03b2i_hat": 8, "\u03c3i_hat": 8, "2038879": 8, "38642743": 8, "61082102": 8, "80952813": 8, "01271054": 8, "04101763": 8, "03955093": 8, "04069035": 8, "0397986": 8, "04064374": 8, "your": [8, 14, 16, 29, 40], "r_f": [8, 9], "invert": [8, 15, 19, 22, 25, 26, 35], "solve_ab": 8, "condm": 8, "cond": 8, "87": [8, 45, 51], "49999999999999": 8, "468": [8, 14, 51], "7499999999999": 8, "406619883717504": 8, "a_hat": 8, "m_hat": 8, "89": 8, "73551091909235": 8, "05408397896434": 8, "57": 8, "36477919010039": 8, "trust": [9, 11, 39, 40], "he": [9, 14, 17, 22, 28, 40, 42, 46, 50], "distrust": [9, 22], "1992": [9, 34, 51], "imput": [9, 39], "histor": [9, 22], "doubt": [9, 39, 40, 51], "motiv": [9, 10, 36], "moder": [9, 40], "grant": 9, "theorist": 9, "plausibl": [9, 22, 35, 42], "confront": [9, 11, 13, 14, 19, 25, 28, 36, 38], "embarrass": 9, "widespread": 9, "investor": 9, "belief": [9, 10, 28], "ipywidget": [9, 34], "floatslid": 9, "riski": [9, 20, 22, 51], "bf": [9, 10, 19, 23, 40, 46], "multivari": [9, 15, 37, 42], "reaction": [9, 10], "implaus": 9, "custom": 9, "w_m": [9, 15, 30], "premia": 9, "randn": [9, 29, 30, 39, 44], "psd": 9, "holder": 9, "excess_return": 9, "multivariate_norm": [9, 15, 30], "\u03bc_est": 9, "\u03c3_est": 9, "vline": 9, "xaxi": [9, 28], "set_tick": 9, "numpoint": 9, "accept": [9, 18, 37, 40, 50], "her": [9, 10, 35, 50], "peopl": [9, 10, 25, 44], "r_m": 9, "sr": 9, "_m": 9, "delta_m": 9, "philosophi": 9, "drawn": [9, 13, 14, 18, 21], "mu_m": 9, "\u03c3_m": 9, "sr_m": 9, "d_m": [9, 15, 30], "\u03bc_m": 9, "baselin": [9, 11, 12, 22, 40], "she": [9, 16, 40], "believ": [9, 10, 19, 50], "advis": 9, "imagin": [9, 14, 25, 36], "suppos": [9, 15, 16, 21, 22, 25, 29, 30, 35, 36, 37, 40, 42], "w_": [9, 13, 23, 24, 25, 27, 28, 29, 31, 33, 34, 38, 39, 40, 41, 42, 46, 47, 48], "black_litterman": [9, 45], "\u03bc1": 9, "\u03bc2": 9, "\u03c31": 9, "\u03c32": 9, "mixtur": 9, "\u03c31_inv": 9, "\u03c32_inv": 9, "\u03bc_tild": 9, "w_tild": 9, "\u03c4_slider": 9, "bl_plot": 9, "subj": 9, "relationship": [9, 10, 11, 25, 37, 40], "prior": [9, 10, 21, 22, 35, 51], "mid": [9, 15, 18, 25, 33], "bay": 9, "posterior": 9, "compet": [9, 34], "r_e": 9, "euclidiean": 9, "dimension": [9, 13, 14, 25, 28, 32, 40, 44], "ellips": 9, "iso": 9, "possess": 9, "spheric": 9, "symmetri": [9, 37], "81": [9, 10, 19, 51], "leamer": [9, 51], "d_1": [9, 10, 11, 15, 30, 33, 39], "d_2": [9, 30, 33], "tangenc": [9, 10, 22], "reminisc": [9, 20], "pareto": [9, 25], "edgeworth": 9, "box": [9, 44], "dickei": [9, 51], "1975": [9, 28, 51], "contract": [9, 16, 18, 32, 33, 50], "prespecifi": 9, "identifi": [9, 29, 33, 38], "trace": [9, 14, 20, 22, 25, 29, 31, 33, 40], "1987102": 9, "n_r1": 9, "n_r2": 9, "r1": [9, 13, 14, 19, 39, 47, 48], "r2": [9, 13, 14, 19, 39, 47, 48], "\u03bb_grid": [9, 33], "\u03bb_slider": 9, "dist_r_bl": 9, "squeez": [9, 42], "dist_r_hat": 9, "z_bl": 9, "z_hat": 9, "contourf": 9, "cmap": [9, 22, 34], "viridi": [9, 34], "contour": [9, 22], "scatter": [9, 10, 11, 13, 14, 28, 33], "axvlin": [9, 10, 16], "set_ylabel": [9, 10, 13, 14, 18, 21, 22, 32, 33, 40, 43], "proport": [9, 16, 22, 41], "necessarili": [9, 20, 37], "bend": 9, "20000": 9, "min_": [9, 13, 14, 16, 22, 33, 37, 40, 50], "mse": 9, "beta_0": 9, "bia": [9, 21], "overal": [9, 21, 47], "scenario": 9, "tikhonov": 9, "reg": 9, "shrink": 9, "shrinkag": 9, "stack": [9, 33, 35, 39], "i_": [9, 15, 21, 25, 30, 33, 34], "otim": 9, "iota_t": 9, "i_n": 9, "column": [9, 10, 15, 18, 25, 29, 30, 37, 40, 44], "correspondingli": [9, 18], "person": [9, 17, 25, 50], "shrunk": 9, "conserv": [9, 22], "compromis": 9, "partli": [9, 19, 36, 38, 46, 47], "inspir": [9, 20, 46], "econometr": [9, 37, 51], "gave": [9, 44], "licens": 9, "percept": 9, "tamper": 9, "hing": 9, "sf": [9, 22, 44], "entropi": [9, 26, 39, 40, 45, 51], "ent": [9, 20, 22, 40], "discrep": [9, 22, 36, 40], "discrimin": [9, 22], "readi": [9, 17, 25, 30, 33], "indirect": [9, 14, 22, 32], "adversari": [9, 22], "penalti": [9, 17, 22, 36, 38, 39, 40, 46, 48], "underlin": [9, 13, 14, 20, 22, 39], "scope": 9, "acquir": [9, 10, 11, 25, 28, 43], "worst": [9, 10, 11, 13, 22], "_f": 9, "rob": 9, "folk": 9, "operation": 9, "statement": [9, 16, 22, 25, 32, 34, 36, 37], "analog": [9, 16, 21, 36, 40, 42, 43, 44], "x_n": [9, 20, 37, 44], "s_n": 9, "difficulti": [9, 25], "infin": [9, 16, 30], "varepsilon": [9, 15, 18, 20], "lim_": [9, 10, 11, 13, 14, 15, 19, 20, 22, 25, 30], "underset": [9, 17, 33], "significantli": [9, 11, 23], "unbias": 9, "n2": [9, 34, 37], "revert": [9, 10, 36], "dx_t": 9, "kappa": [9, 28, 40], "dt": [9, 41], "dw_t": 9, "w_t": [9, 13, 24, 25, 28, 29, 33, 40, 41, 47], "brownian": 9, "motion": [9, 10, 12, 19, 23, 25, 28, 33, 39, 40, 44, 47], "aris": [9, 22, 34], "nh": 9, "sigma_h": 9, "wherea": [9, 14], "distanc": [9, 13, 14, 18, 22], "autocorrel": [9, 21], "gamma_h": 9, "corr": 9, "auto": 9, "irrespect": 9, "moreov": [9, 37, 39, 40], "\u03ba": [9, 28], "var_uncond": 9, "n_grid": [9, 50], "autocorr_h1": 9, "autocorr_h2": 9, "autocorr_h5": 9, "autocorr_h1000": 9, "1e8": 9, "darkblu": [9, 22], "darkr": [9, 22], "darkgreen": 9, "explicit": [9, 10, 18], "inflat": [9, 10, 11], "everyth": [9, 15, 25, 39], "slower": 9, "stronger": [9, 44], "content": [9, 29, 40], "saw": [9, 15, 28, 39, 42, 50], "unfortun": 9, "harder": [9, 11], "nonetheless": 9, "sample_gener": 9, "mean_uncond": 9, "std_uncond": 9, "\u03b5_path": 9, "y_path": [9, 42, 43], "n_app": 9, "m_app": 9, "30000": 9, "h_grid": [9, 13, 14], "var_est_stor": 9, "mean_est_stor": 9, "mse_mean": 9, "mse_var": 9, "benchmark_r": 9, "rate_h": 9, "pronounc": 9, "deterior": 9, "quadrat": [10, 11, 12, 15, 17, 19, 23, 25, 26, 28, 30, 31, 34, 36, 38, 39, 40, 42, 43, 51], "guillermo": [10, 11, 51], "1998": [10, 11, 13, 14, 50, 51], "tradeoff": [10, 11], "benefit": [10, 13, 14, 16, 25, 29, 32, 41, 44, 50, 51], "monei": [10, 11, 13, 14, 51], "therebi": [10, 11, 13, 14, 16, 17, 36, 50], "liquid": [10, 11], "paper": [10, 11, 12, 17, 34, 35, 36, 44], "destroi": [10, 11, 34], "costli": [10, 11, 16, 33, 50], "action": [10, 11, 13, 14, 19, 44, 45, 47], "theme": [10, 28, 43], "cagan": [10, 11, 51], "1956": [10, 11, 51], "1989": [10, 13, 18, 22, 25, 44, 51], "chari": [10, 13, 51], "keho": [10, 13, 51], "1990": [10, 13, 14, 22, 51], "1988": [10, 15, 30, 51], "control": [10, 17, 18, 19, 22, 23, 25, 32, 33, 35, 39, 40, 48, 50, 51], "lq": [10, 11, 15, 17, 19, 23, 24, 25, 30, 38, 39, 40, 42, 43, 46, 48], "ticker": 10, "formatstrformatt": 10, "panda": [10, 11, 40], "pd": [10, 40], "p_t": [10, 11, 12, 19, 25, 28, 29, 30, 32, 36, 39, 40, 47], "nomin": [10, 11, 13, 14], "p_": [10, 11, 19, 20, 25, 28, 32, 33, 34, 36, 39, 42, 43, 46, 47, 50], "mu_t": [10, 13, 14, 25, 28, 29], "foresight": [10, 11, 17, 24, 51], "1977": [10, 51], "subtract": [10, 11], "theta_": [10, 11, 13, 14, 25, 28, 39, 40], "forward": [10, 11, 17, 19, 25, 28, 30, 34, 36, 42, 43], "intermedi": [10, 11, 13, 14, 23, 25, 34, 47], "imping": [10, 11], "analsi": 10, "creation": [10, 11, 14], "matter": [10, 16, 40, 42], "ordinarili": 10, "threaten": 10, "destabil": 10, "u_0": [10, 11, 19, 50], "u_1": [10, 11, 37], "u_2": [10, 11, 37], "bliss": [10, 11, 23, 25, 38, 42], "milton": [10, 35, 51], "withdraw": [10, 28], "incur": [10, 11, 16, 19, 34], "rx_t": [10, 25], "v_0": [10, 11, 25, 50], "v_t": [10, 11, 17, 25, 28, 41, 42], "v_": [10, 11, 15, 17, 18, 19, 25, 28, 39, 40, 42, 50], "mp": 10, "policymak": 10, "unaffect": [10, 42], "topic": [10, 13, 14, 21, 44], "split": [10, 13, 14, 33, 34, 39], "overrightarrow": 10, "x_1": [10, 15, 20, 25, 30, 36, 37, 44], "lbrace": 10, "rbrace": 10, "px": [10, 40], "riccati": [10, 19, 25, 28, 39, 40, 46, 48], "pa": 10, "g_1": [10, 11, 25, 43], "g_2": [10, 11, 43], "f_1": [10, 12, 19, 25, 30, 39], "f_2": [10, 12, 19, 25, 39], "b_1": [10, 11, 19, 36, 39, 43, 47], "d_0": [10, 11, 15, 25, 30], "regular": [10, 21, 40], "assur": [10, 19, 36, 40, 42], "liberti": [10, 11], "purpos": [10, 13, 14, 15, 28, 32, 42], "meanwhil": 10, "symptom": [10, 28, 36], "reap": [10, 14], "monoton": [10, 11, 13, 14, 18, 37], "fond": 10, "transient": 10, "movement": 10, "destin": [10, 34], "fade": 10, "pretend": 10, "ago": [10, 34], "stuck": 10, "commit": [10, 14, 29], "guidanc": 10, "telltal": 10, "yet": [10, 16, 29, 34, 35, 41], "mirror": 10, "forev": [10, 17, 38, 50], "expand": [10, 16, 29, 34, 46, 47], "mpe": [10, 11, 19, 39], "nonstandard": 10, "changlq": [10, 11], "\u03b1": [10, 11, 18, 22, 32, 38, 42, 44], "u0": [10, 11], "u1": [10, 11, 19], "u2": [10, 11, 19], "\u03b8_n": [10, 11], "record": [10, 11, 13, 14, 22, 25, 36, 43], "setup_lq_matric": [10, 11], "solve_lq_problem": [10, 11], "compute_policy_funct": [10, 11], "simulate_ramsey_plan": [10, 11], "compute_\u03b8_rang": [10, 11], "compute_value_and_polici": [10, 11], "stationary_valu": [10, 11, 17, 19, 33, 35, 40, 46, 47, 48], "41": [10, 11, 16, 45], "b1": [10, 11, 19, 39, 47], "d0": [10, 11], "d1": [10, 11, 17, 39, 41], "cl_mat": [10, 11], "\u03b8_r": [10, 11], "\u03b8_b": [10, 11], "\u03bc_mpe": [10, 11], "\u03b8_mpe": [10, 11], "\u03bc_cr": [10, 11], "\u03b8_cr": [10, 11], "j_\u03b8": [10, 11], "\u03b8_arrai": [10, 11], "v_\u03b8": [10, 11], "j_mpe": [10, 11], "j_cr": [10, 11], "\u03b8_seri": [10, 11, 13, 14], "\u03bc_seri": [10, 11], "j_seri": [10, 11], "\u03b8_lb": [10, 11], "\u03b8_ub": [10, 11], "\u03b8_rang": [10, 11], "\u03b8_space": [10, 11], "j_space": [10, 11], "\u03bc_space": [10, 11], "x_prime": [10, 11], "\u03b8_prime": [10, 11], "cr_space": [10, 11], "j_rang": [10, 11], "j_lb": [10, 11], "j_ub": [10, 11], "ptp": [10, 11], "clq": [10, 11], "85": [10, 11, 12], "compute_\u03b8": [10, 11], "\u03b8_point": 10, "argmax": 10, "\u03b8_color": 10, "c5": 10, "plot_policy_funct": 10, "\u03bc_min": 10, "\u03bc_max": 10, "\u03bc_rang": 10, "annot": [10, 13, 14, 22], "xy": [10, 13, 14], "xytext": [10, 13, 14], "intersect": [10, 14, 22], "plot_value_funct": 10, "\u03b8s": [10, 11, 22, 40], "gap": [10, 17, 22], "disarm": 10, "exce": [10, 11, 17, 19, 22, 30, 36, 40, 43], "anyth": [10, 11, 22, 44, 50], "\u03b8_inf": 10, "allclos": [10, 11, 39], "strict": [10, 50], "wors": 10, "compare_ramsey_cr": 10, "min_cr": 10, "max_cr": 10, "range_cr": 10, "l_cr": 10, "u_cr": 10, "j_line": 10, "cr_line": 10, "mark": [10, 34], "ymin": 10, "v_cr": [10, 11], "vcr_line": 10, "plt_clq": 10, "helper": [10, 36, 50], "bottom": [10, 15, 21, 34, 44], "line_handl": 10, "scatter_handl": 10, "fr": 10, "tick_param": 10, "rotat": 10, "get_label": [10, 22], "gcf": 10, "ncol": [10, 29], "bbox_to_anchor": [10, 29, 33], "prop": 10, "generate_t": 10, "dig": [10, 39], "tabl": [10, 45], "latex": [10, 28], "digit": 10, "round": [10, 13, 14, 19, 28, 39], "label_map": 10, "data_fram": 10, "datafram": [10, 40], "join": [10, 43], "col": [10, 37], "latex_cod": 10, "\u03b2_valu": 10, "displaystyl": 10, "cccc": [10, 12, 37], "111": [10, 22, 27, 29, 33, 45], "083": 10, "079": 10, "respectfulli": 10, "tangent": [10, 22, 40], "c_valu": 10, "028": 10, "c_limit": 10, "drove": 10, "wedg": [10, 16], "decai": [10, 35], "plot_ramsey_mp": 10, "rect": 10, "generate_param_t": 10, "param_nam": 10, "iterrow": 10, "cccccccc": [10, 28], "39": [10, 11, 36, 45, 50], "75": [10, 11, 18, 21, 22, 34, 39, 51], "52": [10, 45, 50], "76": 10, "58": [10, 51], "84": [10, 45], "53": [10, 14, 51], "67": [10, 39], "62": [10, 51], "82": [10, 45, 51], "32": [10, 15, 18, 30, 36, 45], "33": [10, 14, 28, 30, 36, 45], "74": [10, 45, 51], "390": [10, 18], "88": [10, 11], "constel": 10, "offer": [10, 18, 44, 46, 50], "reoptim": 10, "economist": [10, 36, 44], "attract": [10, 22], "research": [10, 11, 28, 40, 51], "rescu": 10, "complaint": 10, "deter": [10, 13, 47], "disappoint": [10, 13, 21], "a_j": [10, 15, 21, 30, 50], "mu_j": 10, "whenev": [10, 19, 37, 44, 49], "gain": [10, 17, 19, 25, 28, 35], "resist": 10, "outweigh": 10, "explos": [10, 23], "unbound": 10, "dilip": [10, 51], "kept": 10, "superscipt": 10, "restart": 10, "v_j": [10, 25], "theta_j": 10, "taught": 10, "invent": [10, 14], "imit": [10, 34], "insist": [10, 14], "thereaft": [10, 43], "candid": [10, 13, 14, 36], "t_a": 10, "gradual": [10, 13, 14, 28, 33, 36], "10th": 10, "abreu_plan": 10, "\u03bc_bar": [10, 11], "t_plot": 10, "\u03bc_a": 10, "\u03b8_a": 10, "u_a": [10, 25, 31], "v_a": [10, 14], "v_dev": 10, "34": [10, 30, 36], "check_ramsei": 10, "r_dev": 10, "tupl": [10, 12, 13, 14, 29, 50], "nu_": [10, 17], "nu_v": 10, "favor": [10, 16, 18, 33, 36], "gather": 10, "unrestrict": [10, 29], "776447396127581": 10, "756756756756755": 10, "70875734810947": 10, "nicknam": [10, 14], "angl": [11, 37], "sustain": [11, 14, 23, 26, 51], "analyt": [11, 18, 25, 28, 44, 50], "guid": [11, 28], "calvo": [11, 13, 14, 45, 51], "pave": 11, "sophist": [11, 13, 14], "brute": 11, "growh": 11, "exploit": [11, 14, 15, 16, 18, 25, 34, 36, 43], "prolifer": 11, "sister": 11, "appreci": [11, 28], "realli": [11, 18, 25, 28, 32], "lazi": 11, "descent": [11, 22], "exert": [11, 39, 50], "hidden": [11, 28, 35], "answer": [11, 15, 16, 19, 21, 25, 32, 35, 37, 42, 44, 46], "human": 11, "intellig": 11, "deflat": [11, 13, 14], "theta_t": [11, 13, 14, 19, 36], "h_0": [11, 14, 25, 36], "h_1": [11, 14, 34], "h_2": [11, 34], "gotten": 11, "mu_1": [11, 20], "hope": [11, 39, 43], "jax": 11, "optax": 11, "absl": 11, "absl_pi": 11, "chex": 11, "86": [11, 45, 51], "jaxlib": 11, "983": 11, "etil": 11, "epi": 11, "toolz": 11, "ml_dtype": 11, "opt": [11, 37], "einsum": 11, "opt_einsum": 11, "32m289": 11, "31m17": 11, "32m133": 11, "31m32": 11, "32m98": 11, "32m2": 11, "31m84": 11, "32m5": 11, "31m174": 11, "32m12": 11, "31m189": 11, "32m18": 11, "32m25": 11, "31m185": 11, "32m30": 11, "31m171": 11, "32m35": 11, "31m166": 11, "32m42": 11, "31m167": 11, "32m48": 11, "32m55": 11, "32m61": 11, "31m184": 11, "32m66": 11, "32m72": 11, "31m170": 11, "32m79": 11, "32m85": 11, "32m88": 11, "31m41": 11, "31m115": 11, "32m161": 11, "31m40": 11, "32m65": 11, "31m19": 11, "patsi": 11, "py2": [11, 37], "dateutil": 11, "pytz": 11, "2020": 11, "2023": 11, "post1": 11, "tzdata": 11, "2022": 11, "31m64": 11, "32m9": 11, "31m137": 11, "32m10": 11, "31m187": 11, "31m123": 11, "32m233": 11, "31m55": 11, "jnp": 11, "grad": 11, "copi": [11, 13, 14, 19, 22, 48, 50], "hide": 11, "subproblem": [11, 14], "setup": [11, 13, 19, 33, 36, 47], "protocol": [11, 19], "\u03bcbar": 11, "\u03bb_power": 11, "weighted_sum": 11, "compute_h": 11, "h0": 11, "h1": [11, 39], "v_sum": 11, "v_final": 11, "v_val": 11, "430511474609375e": 11, "adam": 11, "adam_optim": 11, "grad_func": 11, "init_param": 11, "lr": 11, "error_tol": 11, "learning_r": 11, "opt_stat": 11, "apply_upd": 11, "\u03bc_init": 11, "grad_v": 11, "optimized_\u03bc": 11, "8627105951309204": 11, "0033030672930181026": 11, "701549808785785e": 11, "06450703": 11, "09033976": 11, "10068483": 11, "10482766": 11, "10648672": 11, "10715112": 11, "10741719": 11, "10752375": 11, "10756642": 11, "10758351": 11, "10759035": 11, "10759308": 11, "10759415": 11, "10759459": 11, "10759478": 11, "10759482": 11, "10759486": 11, "10759488": 11, "10759487": 11, "10759485": 11, "10759489": 11, "1075949": 11, "10759491": 11, "10759493": 11, "10759494": 11, "10759497": 11, "10759496": 11, "10759495": 11, "10759499": 11, "532": [11, 51], "656": [11, 51], "06450708": 11, "09033982": 11, "10068489": 11, "10482772": 11, "10648677": 11, "10715115": 11, "10741722": 11, "10752377": 11, "10756644": 11, "10758352": 11, "10759037": 11, "10759311": 11, "1075942": 11, "10759464": 11, "10759492": 11, "9737057616330276e": 11, "8357825": 11, "float32": 11, "835783": 11, "brief": [11, 22, 40], "digress": 11, "optimized_\u03bc_cr": 11, "333333969116211": 11, "004979133605957031": 11, "818771362304688e": 11, "10000004": 11, "7252903e": 11, "8333354": 11, "8333344": 11, "vdot": [11, 15, 17, 19, 25, 30, 37, 41, 47], "mu_2": 11, "construct_b": 11, "\u03bcs": 11, "rewritten": [11, 29, 30, 34], "compute_j": 11, "\u03b2_vec": 11, "\u03b2\u03b8_sum": 11, "\u03b2\u03b8_square_sum": 11, "\u03b2\u03bc_square_sum": 11, "grad_j": 11, "003303033299744129": 11, "6926183889154345e": 11, "280": 11, "06450712": 11, "09033988": 11, "10068493": 11, "10482774": 11, "1064868": 11, "1071512": 11, "10741723": 11, "10752378": 11, "10758355": 11, "10759039": 11, "10759313": 11, "10759424": 11, "10759471": 11, "10759498": 11, "107595": 11, "207": 11, "3748542332668876e": 11, "v_r": 11, "knowledg": [11, 15, 25, 27, 31, 44], "compute_\u03bc": 11, "\u03bc_close": 11, "0645071": 11, "1006849": 11, "1048277": 11, "10715113": 11, "10756643": 11, "10759034": 11, "10759421": 11, "47137171779832e": 11, "6541223974163586e": 11, "compute_grad": 11, "closed_grad": 11, "0625": 11, "8906252": 11, "5257816": 11, "1062894": 11, "6950336": 11, "3181221": 11, "9840758": 11, "6933005": 11, "4427234": 11, "2280239": 11, "0446749": 11, "8884009": 11, "7553544": 11, "64215815": 11, "5458878": 11, "46403134": 11, "39444": 11, "33528066": 11, "28499195": 11, "24224481": 11, "20590894": 11, "17502302": 11, "14876978": 11, "12645441": 11, "10748631": 11, "09136339": 11, "0776589": 11, "06601007": 11, "05610856": 11, "04769228": 11, "04053844": 11, "03445768": 11, "02928903": 11, "02489567": 11, "02116132": 11, "01798713": 11, "01528906": 11, "0129957": 11, "07364222": 11, "890625": 11, "3181224": 11, "9840759": 11, "4427235": 11, "228024": 11, "6421581": 11, "54588777": 11, "46403137": 11, "28499192": 11, "175023": 11, "14876977": 11, "0913634": 11, "05610857": 11, "02489568": 11, "01798712": 11, "074267394571507e": 11, "worth": [11, 16, 23, 27], "worthwhil": [11, 30], "ordin": [11, 22], "ts": 11, "strang": 11, "anywai": 11, "\u03bc_t": 11, "\u03b8_t": [11, 28], "x1_\u03b8": 11, "model1": 11, "results1": 11, "slim": 11, "dep": 11, "adj": 11, "489e": [11, 18], "nonrobust": 11, "90e": 11, "coef": 11, "err": [11, 35], "const": 11, "0645": 11, "42e": 11, "46e": 11, "5995": 11, "14e": 11, "86e": 11, "correctli": [11, 21, 39, 50], "Of": [11, 19, 21, 36], "succeed": 11, "\u03b8_": 11, "\u03b8_t1": 11, "x2_\u03b8": 11, "intercept": [11, 21, 22], "model2": 11, "results2": 11, "nregress": 11, "775e": 11, "41e": 11, "84e": 11, "33e": 11, "4005": 11, "54e": 11, "82e": 11, "backward": [11, 17, 19, 28, 36, 39, 50], "compute_vt": 11, "s_p": 11, "76837158203125e": 11, "inspect": [11, 19, 23, 28], "va": [11, 16], "clip_on": 11, "phrase": 11, "2_t": [11, 15, 25, 30, 44], "x3_\u03b8": 11, "column_stack": 11, "model3": 11, "results3": 11, "474e": 11, "09e": 11, "8052": 11, "91e": 11, "15e": 11, "805": 11, "7581": 11, "6028": 11, "976": 11, "758": 11, "6996": 11, "7131": 11, "888": 11, "701": 11, "698": 11, "5e": 11, "strong": [11, 27, 44], "multicollinear": 11, "printout": 11, "corrcoef": [11, 31], "99942156": 11, "\u03b8_grid": [11, 13, 14], "x3_grid": 11, "peak": 11, "7580": 11, "6991": 11, "assembl": [11, 28], "wouldn": 11, "represen": 11, "isn": [11, 16], "cruder": 11, "6f": 11, "064507": 11, "599536": 11, "400464": 11, "suit": [12, 23, 24, 27, 31, 38, 41], "dle": [12, 23, 24, 25, 26, 27, 41], "instanti": [12, 23, 24, 27, 31, 38, 41], "2013": [12, 17, 23, 24, 25, 27, 31, 33, 38, 41, 51], "rosen": [12, 26, 51], "murphi": [12, 22, 25, 51], "scheinkman": [12, 25, 51], "1994": [12, 25, 44, 51], "recurr": [12, 46, 48], "namedtupl": [12, 29, 41], "static": [12, 20, 22, 25, 33], "curv": [12, 19, 28, 39, 40, 41, 47], "slaughter": [12, 25], "beef": [12, 25], "anim": [12, 25], "h_t": [12, 13, 14, 23, 25, 27], "gamma_1": [12, 23, 25, 27], "yearl": [12, 25], "calf": [12, 25], "breed": [12, 25], "gx_": 12, "calv": [12, 25], "headcount": 12, "adult": [12, 25], "farmer": [12, 25], "p_tc_t": 12, "h_tx_t": 12, "m_tc_t": 12, "psi_1": [12, 25, 41], "psi_2": [12, 25], "psi_3": [12, 25], "psi_4": [12, 25], "fictiti": 12, "a_1p_t": 12, "d_t": [12, 23, 24, 25, 29, 30, 40], "shifter": [12, 25], "delta_h": [12, 23, 25, 27, 38, 41], "alpha_1": [12, 25, 30, 37], "alpha_0": [12, 25, 30, 33], "delta_k": [12, 15, 23, 24, 25, 27, 31, 38], "ccc": [12, 17, 23, 28, 31, 38], "theta_k": [12, 23, 25, 38], "phi_c": [12, 23, 25, 38], "f_7": 12, "phi_g": [12, 23, 25, 38], "f_3": 12, "f_5": 12, "rho_1": [12, 38], "rho_2": [12, 38], "rho_3": 12, "c_2": [12, 19, 22, 23, 25, 38, 41, 46, 47], "u_b": [12, 23, 24, 25, 31, 38, 41], "u_d": [12, 23, 24, 25, 31, 38, 41], "u_h": 12, "f_4": 12, "f_6": 12, "f_8": 12, "2f_1f_2": 12, "2f_3f_4": 12, "gamma_0g": 12, "2f_5f_6": 12, "gamma_1g": 12, "a22": [12, 23, 24, 27, 31, 38, 41, 46, 47, 48], "ud": [12, 23, 24, 27, 31, 38, 41], "\u03d5_c": [12, 23, 24, 27, 31, 38, 41], "\u03d5_g": [12, 23, 24, 27, 31, 38, 41], "\u03d5_i": [12, 23, 24, 27, 31, 38, 41], "\u03b4_k": [12, 23, 24, 27, 31, 38, 41], "\u03b8_k": [12, 23, 24, 27, 31, 38, 41], "l_\u03bb": [12, 23, 24, 27, 31, 38, 41], "\u03c0_h": [12, 23, 24, 27, 31, 38, 41], "\u03b4_h": [12, 23, 24, 27, 31, 38, 41], "\u03b8_h": [12, 23, 24, 27, 31, 38, 41], "909": 12, "l\u03bb": 12, "\u03c0h": 12, "\u03b4h": 12, "\u03b8h": 12, "f1": [12, 17, 19, 33, 39, 50], "f3": 12, "f5": 12, "f7": 12, "\u03d5c": 12, "\u03d5g": 12, "\u03d5i": 12, "\u03b4k": 12, "\u03b8k": 12, "\u03c11": [12, 42], "\u03c12": [12, 42], "\u03c13": 12, "a0": [12, 19, 24, 29, 39], "\u03b30": 12, "\u03b31": [12, 39], "f2": [12, 17, 19, 33, 39], "f4": 12, "f6": 12, "f8": 12, "\u03c0h_scalar": 12, "uh": 12, "um": 12, "white": [12, 15, 21, 30, 35], "nois": [12, 15, 17, 21, 24, 25, 28, 30, 35, 51], "extra": [12, 13, 16, 17, 22, 42], "oppos": 12, "info1": [12, 23, 24, 27, 31, 38, 41], "tech1": [12, 23, 24, 27, 31, 38, 41], "pref1": [12, 23, 24, 27, 31, 38, 41], "\u03c13_2": 12, "a22_2": [12, 31], "info2": [12, 31], "\u03c13_3": 12, "a22_3": 12, "info3": 12, "econ1": [12, 23, 24, 27, 31, 38, 41], "econ2": [12, 23, 27, 31, 41], "econ3": [12, 23, 27, 41], "compute_steadyst": [12, 23, 27], "nnc": 12, "compute_sequ": [12, 19, 23, 27, 31, 33, 38, 46, 47, 48], "ts_length": [12, 17, 18, 19, 21, 23, 24, 27, 28, 31, 33, 38, 41, 46, 47, 48], "abil": [12, 18, 25, 33, 40, 42, 46, 48, 50], "totalstock": 12, "shock_demand": [12, 41], "irf": [12, 24, 25, 26, 41], "ax1": [12, 22, 24, 34, 38, 41, 47, 48], "ax2": [12, 22, 24, 34, 38, 41, 47, 48], "c_irf": [12, 24, 27, 41], "k_irf": 12, "markedli": 12, "transitori": 12, "total1_irf": 12, "total3_irf": 12, "hump": 12, "contribut": [12, 19, 24, 28, 39, 51], "cyclic": [12, 30, 51], "polytop": [13, 14], "tar": [13, 44], "gz": 13, "32m54": 13, "31m4": 13, "25hrequir": 13, "networkx": [13, 14], "wheel": 13, "filenam": 13, "47765": 13, "sha256": 13, "82de03bf4efacc75485ec6b445e64cd2b3e4554a35e1b9aa61b3aa3099d41f52": 13, "directori": 13, "cach": [13, 45], "0a": [13, 25], "dc": [13, 51], "7c": 13, "19db8e9a73e1a551591347b185108f137877f9638ee8f8e3cc": 13, "built": [13, 15, 28, 34, 44, 45], "treatment": [13, 14, 18, 29, 34, 37, 44], "chose": [13, 14], "z_0": [13, 14, 15, 19, 25, 30, 47], "incorpor": [13, 22, 51], "cvxopt": [13, 14], "glpk": [13, 14], "linprog": [13, 14], "review": [13, 18, 32, 34, 39, 51], "retir": [13, 14], "promot": [13, 14], "capita": [13, 14], "clear": [13, 14, 16, 29], "reconcil": [13, 14], "q_t": [13, 14, 19, 20, 30, 36, 39, 47], "overlin": [13, 14, 33], "subsidi": [13, 14], "activ": [13, 16, 39], "frame": [13, 14], "had": [13, 14, 17, 29, 34, 36, 43], "lambda_t": [13, 14, 19], "q_": [13, 14, 18, 19, 30, 33, 39, 42, 43], "h_": [13, 14, 23, 25, 27, 38, 41], "standpoint": [13, 14], "pervad": [13, 14], "five": [13, 31, 43, 50], "chi": 13, "weakli": [13, 18], "lifetim": [13, 50], "adher": 13, "contempl": [13, 25], "sp": [13, 50], "admiss": [13, 14, 22, 39], "ce_": [13, 14], "ce": 13, "compact": [13, 14], "subset": [13, 14, 25, 29, 37, 42, 44], "nonempti": [13, 14], "depict": [13, 22, 24, 35], "abreu": [13, 14, 51], "pearc": [13, 14, 51], "stacchetti": [13, 14, 51], "shot": 13, "lowest": [13, 50], "ensur": [13, 14, 23, 27, 29, 40, 47, 48], "harshest": 13, "punish": [13, 50], "br": [13, 14], "0_": [13, 14, 15, 25, 36], "tempt": 13, "asid": 13, "hyperplan": [13, 14, 40], "subgradi": [13, 14], "h_i": [13, 14, 25], "m_j": [13, 14], "h_j": [13, 14, 17, 19, 34], "x_j": [13, 14, 15, 20, 37], "2mm": [13, 14, 46, 47], "5m": [13, 14], "4x": [13, 14], "accuraci": [13, 14, 19], "changmodel": [13, 14], "parameter": [13, 14, 34, 40], "spatial": [13, 14], "convexhul": [13, 14], "minimize_scalar": [13, 14, 50], "chebyshev": [13, 14], "cheb": [13, 14], "mbar": [13, 14], "h_min": [13, 14], "h_max": [13, 14], "n_h": [13, 14], "n_m": [13, 14], "n_g": [13, 14], "m_min": [13, 14], "m_max": [13, 14], "n_a": [13, 14], "uc_p": [13, 14], "v_p": [13, 14], "concaten": [13, 14, 15, 22, 30], "kron": [13, 14], "euler_vec": [13, 14], "u_vec": [13, 14], "\u03b8_vec": [13, 14], "f_vec": [13, 14], "bell_vec": [13, 14], "extrema": [13, 14], "p_vec": [13, 14], "w_vec": [13, 14], "w_space": [13, 14], "isinf": [13, 14], "p_space": [13, 14], "gradient": [13, 14, 19, 25], "sg_h_v": [13, 14], "radiu": [13, 14], "game": [13, 14, 39, 51], "jl": [13, 14], "2\u03c0": [13, 14], "inc": [13, 14], "c0_c": [13, 14], "c0_": [13, 14], "c1_c": [13, 14], "c1_": [13, 14], "z0_": [13, 14], "z0_c": [13, 14], "z1_": [13, 14], "z1_c": [13, 14], "w_bnds_": [13, 14], "w_bnds_c": [13, 14], "p_bnds_": [13, 14], "p_bnds_c": [13, 14], "dictionari": [13, 14], "c_dic_": [13, 14], "c_dic_c": [13, 14], "solve_worst_sp": [13, 14], "449": [13, 14], "nan": [13, 14, 22], "aineq_mbar": [13, 14], "bineq_mbar": [13, 14], "aineq": [13, 14], "bineq": [13, 14], "aeq": [13, 14], "a_ub": [13, 14], "b_ub": [13, 14], "beq": [13, 14], "a_eq": [13, 14], "b_eq": [13, 14], "br_z": [13, 14], "nanmax": [13, 14], "nanmin": [13, 14], "solve_subgradi": [13, 14], "aineq_c_mbar": [13, 14], "bineq_c_mbar": [13, 14], "aineq_c": [13, 14], "bineq_c": [13, 14], "aeq_c": [13, 14], "aineq_s_mbar": [13, 14], "bineq_s_mbar": [13, 14], "aineq_": [13, 14], "bineq_": [13, 14], "aeq_": [13, 14], "c_a1a2_c": [13, 14], "t_a1a2_c": [13, 14], "c_a1a2_": [13, 14], "t_a1a2_": [13, 14], "beq_c": [13, 14], "beq_": [13, 14], "idx_c": [13, 14], "idx_": [13, 14], "solve_sustain": [13, 14], "wmin_c": [13, 14], "wmax_c": [13, 14], "pmin_c": [13, 14], "pmax_c": [13, 14], "wmin_": [13, 14], "wmax_": [13, 14], "pmin_": [13, 14], "pmax_": [13, 14], "elaps": [13, 14, 18], "solve_bellman": [13, 14], "\u03b8_min": [13, 14], "\u03b8_max": [13, 14], "disp": [13, 14], "lb1": [13, 14, 18], "ub1": [13, 14], "lb2": [13, 14], "ub2": [13, 14], "chebvand": [13, 14], "p_fun": [13, 14], "p_fun2": [13, 14], "cons1": [13, 14], "cons2": [13, 14], "ineq": [13, 14], "bnds1": [13, 14], "bnds2": [13, 14], "p_iter1": [13, 14], "slsqp": [13, 14], "bool": [13, 14, 34], "p_iter": [13, 14, 19], "\u03b8_grid_fin": [13, 14], "resid_grid": [13, 14], "p_grid": [13, 14], "\u03b8_prime_grid": [13, 14], "m_grid": [13, 14], "m_seri": [13, 14], "h_seri": [13, 14], "valfun": [13, 14], "res2": [13, 14, 18], "x_seri": [13, 14], "ch1": [13, 14], "9168": [13, 14], "66782": [13, 14], "49235": [13, 14], "32412": [13, 14], "19022": [13, 14], "10863": [13, 14], "05817": [13, 14], "0262": [13, 14], "01836": [13, 14], "01415": [13, 14], "00297": [13, 14], "00089": [13, 14], "00027": [13, 14], "00008": [13, 14], "00002": [13, 14], "00001": [13, 14, 23, 24, 27, 38], "plot_equilibria": 13, "poly_": 13, "poly_c": [13, 14], "ext_c": [13, 14], "ext_": 13, "zorder": [13, 14], "idx_ramsei": [13, 14], "w_min": [13, 14], "recomput": 13, "ch2": [13, 14], "06369": [13, 14], "02476": [13, 14], "02153": [13, 14], "01915": [13, 14], "01795": [13, 14], "01642": [13, 14], "01507": [13, 14], "01284": [13, 14], "01106": [13, 14], "00694": [13, 14], "0085": [13, 14], "00781": [13, 14], "00433": [13, 14], "00492": [13, 14], "00303": [13, 14], "00182": [13, 14], "00638": [13, 14], "00116": [13, 14], "00093": [13, 14], "00075": [13, 14], "0006": [13, 14], "00494": [13, 14], "00038": [13, 14], "00121": [13, 14], "00024": [13, 14], "0002": [13, 14], "00016": [13, 14], "00013": [13, 14], "0001": [13, 14], "00006": [13, 14], "00005": [13, 14], "00004": [13, 14], "00003": [13, 14], "stachetti": 14, "roberto": [14, 51], "broadli": 14, "textbook": 14, "credibl": [14, 26, 51], "interrel": [14, 33, 39, 46], "princip": [14, 22], "leader": 14, "transpar": [14, 40], "consider": [14, 22], "karush": 14, "kuhn": 14, "tucker": 14, "complementari": [14, 25], "interior": [14, 50], "revolut": 14, "brand": 14, "reset": [14, 19, 34, 48], "reiniti": 14, "benefici": 14, "kydland": [14, 51], "prescott": [14, 25, 51], "1980": [14, 15, 30, 51], "inher": [14, 18], "m_1": [14, 22, 39], "advanc": [14, 16, 20, 37, 51], "knew": 14, "sigma_t": [14, 19, 25, 44], "alpha_t": [14, 25], "wast": 14, "judd": [14, 34, 50, 51], "yeltekin": [14, 51], "conklin": [14, 51], "2003": [14, 22, 46, 47, 48, 51], "convex": [14, 16, 22, 50], "half": 14, "plot_competit": 14, "min_theta": 14, "max_theta": 14, "decompos": [14, 25, 28], "configur": 14, "0088": 14, "0499": 14, "0395": 14, "2193": 14, "ipykernel_6126": 14, "1608401414": 14, "045": 14, "382": 14, "deprecationwarn": [14, 29, 40], "convers": [14, 29, 36, 37, 40], "ndim": [14, 29, 34, 40], "deprec": [14, 29, 40], "309": 14, "444": 14, "quick": [14, 25, 44], "46313155971967e": 14, "875358415925348e": 14, "edg": [14, 21, 44], "sharex": [14, 22, 36], "hit": [14, 16, 18], "clearli": [14, 37, 40], "administr": 14, "lu": [15, 30], "choleski": [15, 30], "intim": [15, 22], "superfici": [15, 25], "essenti": [15, 16, 17, 21, 25, 30, 44], "dualiti": [15, 25], "kalman": [15, 24, 25, 28, 30, 35, 37], "implicitli": [15, 25, 34, 40, 46], "affili": 15, "repeatedli": [15, 50], "crack": 15, "ix": [15, 19, 28, 30], "xiv": [15, 20, 28], "And": [15, 16, 23, 25, 27, 30, 43], "occasion": [15, 20, 25], "whittl": [15, 22, 30, 51], "1963": [15, 30, 51], "orfanidi": [15, 30, 51], "athanasio": [15, 30, 51], "pillai": [15, 30, 51], "muth": [15, 26, 28, 30, 51], "1960": [15, 28, 30, 51], "x_2": [15, 30, 37], "wold": [15, 20, 24], "ij": [15, 30, 33, 42, 43, 47], "g_x": 15, "infty_": [15, 25, 30], "d_k": 15, "d_": [15, 17, 20, 23, 24, 25, 30, 31, 33, 34, 40, 41, 46], "predictor": [15, 20], "triangular": [15, 30, 37], "lx": 15, "nonsingular": [15, 20, 25, 37, 40], "enlighten": [15, 19, 28, 43], "l_": [15, 30, 34, 36], "varepsilon_1": 15, "varepsilon_2": 15, "t1": 15, "varepsilon_t": 15, "componen": 15, "complement": [15, 20, 25, 38], "spst": [15, 30], "lqfilter": [15, 30], "y_m": [15, 20, 30], "h_ep": [15, 30], "r_1": [15, 19, 20, 30, 39], "r_k": [15, 30], "option": [15, 18, 21, 22, 30, 39, 44, 49], "upfront": [15, 30], "\u03d5_r": [15, 30], "construct_w_and_wm": [15, 30], "d_m1": [15, 30], "constuct": [15, 30], "roots_of_characterist": [15, 30], "2m": [15, 30], "characterist": [15, 17, 24, 30], "poly1d": [15, 30], "x_m": [15, 30], "descend": [15, 30], "roots_sort": [15, 30], "argsort": [15, 30], "z_1_to_m": [15, 30], "coeffs_of_c": [15, 30], "c_j": [15, 22, 30, 36, 50], "c_coeff": [15, 30], "c_m": [15, 30], "prod": [15, 30], "\u03bb_j": [15, 30], "complex": [15, 17, 21, 30], "construct_v": [15, 30], "simulate_a": [15, 30], "a_hist": [15, 30], "aux_matrix": [15, 30], "ea_hist": [15, 30], "optimal_i": [15, 30], "diagon": [15, 25, 30], "renorm": [15, 30], "permute_l": [15, 30], "fliplr": [15, 30], "a_bar": [15, 30], "uy": [15, 30], "y_bar": [15, 30], "y_hist": [15, 30, 42], "serial": [15, 17, 20, 32], "wiener": 15, "kolmogorov": 15, "flip": [15, 20, 22], "23606798": 15, "89442719": [15, 37], "04939015": 15, "97590007": 15, "01186954": 15, "99410024": 15, "00293902": 15, "99853265": 15, "000733": 15, "4472136": [15, 37], "19518001": 15, "48795004": 15, "09467621": 15, "23669053": 15, "49705012": 15, "04698977": 15, "11747443": 15, "2466963": 15, "49926632": 15, "02345182": 15, "05862954": 15, "12312203": 15, "24917554": 15, "49981682": 15, "kolomogorov": 15, "hbox": [15, 25, 30], "41421356": 15, "18920712": 15, "4142135623731122": 15, "84089642": 15, "9258201": 15, "46385011": 15, "96609178": 15, "43759058": 15, "57735027": 15, "3086067": 15, "65465367": 15, "41403934": 15, "68313005": 15, "13116517": 15, "27824334": 15, "45907809": 15, "69560834": 15, "principl": [15, 28, 47], "practic": [15, 25, 39], "n_": [15, 25, 30, 34, 41], "a_n": [15, 30], "y_1": [15, 19, 20, 25, 30, 37, 42, 44], "y_n": [15, 20, 30, 37, 44], "certainti": [15, 22, 25, 28, 31], "feedback": [15, 19, 30, 39, 40, 49], "feedforward": [15, 19, 30], "u_t": [15, 17, 19, 23, 24, 25, 33, 40, 46, 47], "d_j": [15, 20, 30], "gamma_j": 15, "jk": [15, 30], "b_j": [15, 43], "c_x": [15, 25], "c_y": [15, 20], "pm": 15, "g_y": 15, "g_": [15, 19, 25, 28, 29, 43, 46, 47], "yx": 15, "1t": [15, 19, 23, 24, 25, 28, 31, 39, 41], "2t": [15, 19, 24, 25, 28, 35, 39], "2_": [15, 25, 29, 30, 46, 47], "2s": 15, "implic": [15, 25, 42, 51], "annihil": [15, 37], "f_j": [15, 30, 39], "phantom": 15, "wish": [15, 29, 42, 44, 48], "g_j": [15, 17], "delta_1": [15, 19], "delta_n": [15, 25, 41], "delta_j": [15, 25], "atop": 15, "zg": 15, "lc": [15, 22, 36], "hy": [15, 30], "blaschk": 15, "pi_j": [15, 22, 25], "z_1": [15, 25, 30, 44], "z_k": 15, "z_2": [15, 30], "z_kz": 15, "1j": 15, "widehat": 15, "2j": [15, 17], "contemporan": [15, 17, 20, 38], "prime_": 15, "rozanov": [15, 51], "1967": [15, 51], "1937": [16, 51], "ronald": [16, 51], "wrote": [16, 35], "brilliant": 16, "essai": 16, "soviet": 16, "union": 16, "industri": [16, 18, 28, 39], "afflict": 16, "pain": 16, "depress": 16, "led": [16, 28], "intens": [16, 18, 50], "debat": 16, "decentr": 16, "versu": [16, 25, 34], "midst": 16, "blend": 16, "coordin": [16, 22], "couldn": 16, "fminbound": 16, "deep": 16, "fascin": 16, "illumin": [16, 22], "busi": [16, 22, 28, 34, 51], "web": 16, "develop": [16, 31, 34, 44], "onlin": 16, "freelanc": 16, "finest": 16, "herself": 16, "familiar": [16, 18, 44], "badli": 16, "failur": [16, 34], "compli": 16, "court": 16, "agreement": 16, "him": [16, 39], "salari": 16, "hire": [16, 34], "haven": [16, 49], "binari": 16, "came": 16, "tend": [16, 27, 34, 46], "organ": [16, 18, 29, 42], "intern": [16, 18, 34, 51], "extern": [16, 25, 49], "envisag": 16, "expens": [16, 34], "diminish": 16, "catch": 16, "increasingli": 16, "pyramid": 16, "worker": [16, 44, 50], "hous": 16, "encourag": 16, "verbal": 16, "wonder": 16, "plain": [16, 22], "english": [16, 51], "exposit": 16, "kikuchi": [16, 51], "undertaken": 16, "buyer": [16, 32], "t_1": [16, 19, 39], "intent": [16, 40, 44], "t_2": [16, 19], "t_3": 16, "unfold": [16, 19], "opposit": [16, 25], "upstream": 16, "downstream": 16, "ell_i": 16, "boundari": [16, 18, 19, 22, 30, 44], "subinterv": 16, "born": 16, "outlai": 16, "paid": [16, 50], "barrier": 16, "simplic": [16, 17, 25, 33, 40, 46], "fring": 16, "competitor": 16, "incumb": 16, "freeli": [16, 34], "exit": [16, 29], "supplier": 16, "raw": 16, "inact": 16, "read": [16, 21, 28, 32, 40], "furthest": 16, "t_i": [16, 43], "t_": [16, 17, 18, 19, 25, 29, 30, 43, 46, 48], "pi_i": [16, 22, 25, 39], "rational": 16, "behind": [16, 19, 37, 44], "Is": [16, 44], "tp": 16, "obviou": [16, 29], "metric": 16, "diverg": [16, 30, 40], "uniformli": [16, 32], "_i": [16, 42], "examin": [16, 21, 30], "adjac": [16, 21], "partner": 16, "inter": 16, "awar": [16, 44], "piecewis": 16, "productionchain": 16, "p_0": [16, 36], "compute_pric": 16, "pc": [16, 39, 40], "new_p": 16, "p_func": 16, "p_function": 16, "optimal_choic": 16, "t_star": 16, "ell_star": 16, "compute_stag": 16, "transaction_stag": 16, "p_star": 16, "num_firm": 16, "v_i": [16, 37, 50], "intut": 16, "phenomenon": 16, "mitig": 16, "set_xtick": [16, 18, 44], "set_xticklabel": [16, 44], "hall": [17, 24, 25, 26, 42, 43, 51], "manifest": [17, 25], "lesson": [17, 28], "ricardian": 17, "cut": [17, 25], "accompani": [17, 36], "foreseen": 17, "fiscal": [17, 24, 26, 29, 36, 43, 51], "eric": [17, 24, 51], "leeper": [17, 24, 51], "todd": [17, 24, 51], "walker": [17, 24, 51], "susan": [17, 24, 51], "yang": [17, 24, 51], "peculiar": 17, "unalt": [17, 28], "sigma_a": [17, 25, 31], "few": [17, 28, 33, 34, 43], "autocovari": [17, 21, 25], "uncomfort": 17, "statistician": 17, "semi": [17, 19, 28, 35], "old": [17, 24], "mental": 17, "roll": [17, 20, 36, 43, 46], "successor": 17, "d_a": 17, "reprent": 17, "backcast": 17, "incometh": 17, "perceiv": [17, 28, 39], "framework": [17, 19, 25, 38, 40, 46, 47, 48], "comparison": [17, 25, 39], "thid": 17, "\u03c3\u03f5": 17, "\u03c3a": 17, "rlq": [17, 40], "qlq": 17, "alq1": 17, "blq1": 17, "clq1": 17, "lq1": [17, 19], "alq2": 17, "blq2": 17, "clq2": 17, "lq2": 17, "d2": [17, 39, 41], "9025": 17, "sb": [17, 29], "abf1": 17, "lss1": 17, "abf2": 17, "lss2": 17, "x_res1": 17, "y_res1": 17, "b_res1": 17, "c_res1": 17, "x_res2": 17, "y_res2": 17, "b_res2": 17, "c_res2": 17, "99998906e": 17, "89473923e": 17, "78947621e": 17, "68421319e": 17, "57895017e": 17, "05263158": 17, "0x7fafbe1da790": 17, "unchang": 17, "0975": 17, "0x7fafbe06bf50": 17, "rest": [17, 33], "pencil": 17, "0x7fafbda90bd0": 17, "0x7fafbda35a10": 17, "throw": 17, "endem": [17, 24], "workhors": 18, "modern": 18, "search": [18, 50, 51], "etc": [18, 37, 44], "spars": 18, "compute_fixed_point": 18, "shortest": 18, "mccall": 18, "interfac": 18, "seamlessli": 18, "hernandez": [18, 51], "lerma": [18, 51], "lasserr": [18, 51], "1996": [18, 28, 51], "puterman": [18, 51], "rust": [18, 51], "miranda": [18, 51], "fackler": [18, 51], "edtc": [18, 44], "speak": 18, "vs": [18, 35], "wait": 18, "fruit": [18, 32], "suffic": [18, 38], "mathit": 18, "sa": 18, "bigcup_": 18, "latter": [18, 40, 44], "comment": [18, 44], "explan": 18, "sup": [18, 32], "greedi": 18, "succinctli": [18, 30, 44], "tv": 18, "tw": 18, "similarli": [18, 30, 39, 50], "lvert": 18, "rvert": 18, "ddp": 18, "howard": 18, "uniform": [18, 20], "notin": [18, 37], "simpleog": 18, "populate_q": 18, "populate_r": 18, "infeas": 18, "signatur": 18, "policy_iter": 18, "got": 18, "dir": 18, "num_it": 18, "tab": 18, "01740222": 18, "43161578": 18, "74945302": 18, "04078099": 18, "30873018": 18, "54479816": 18, "76928181": 18, "98270358": 18, "18824323": 18, "3845048": 18, "57807736": 18, "76109127": 18, "94376708": 18, "11533996": 18, "27761762": 18, "didn": [18, 19, 28], "easili": [18, 28, 37, 44], "stationary_distribut": [18, 28], "01732187": 18, "04121063": 18, "05773956": 18, "07426848": 18, "08095823": 18, "09090909": 18, "07358722": 18, "04969846": 18, "03316953": 18, "01664061": 18, "00995086": 18, "patient": [18, 32], "00546913": 18, "02321342": 18, "03147788": 18, "04800681": 18, "05627127": 18, "08543996": 18, "06769567": 18, "05943121": 18, "04290228": 18, "03463782": 18, "rightward": 18, "s_indic": 18, "a_indic": 18, "introductori": 18, "grid_siz": [18, 32, 40], "grid_max": [18, 32], "degener": 18, "nonposit": 18, "118841": 18, "499": 18, "389": 18, "391": 18, "lil_matrix": 18, "csr": 18, "csr_matrix": 18, "indptr": 18, "prohibit": [18, 34], "translat": [18, 34], "v_star": [18, 50], "c_star": [18, 50], "lb0": 18, "49819147053378": 18, "012681735127500815": 18, "003826523100010082": 18, "decrement": 18, "dec_ind": 18, "001961853339766839": 18, "res1": 18, "value_iter": 18, "294": 18, "array_equ": 18, "modified_policy_iter": 18, "timeit": 18, "91": [18, 45, 51], "\u00b5s": 18, "bellman_oper": 18, "cm": [18, 22], "jet": 18, "true_c": 18, "set_ytick": 18, "print_skip": 18, "compute_greedi": 18, "c_polici": 18, "518e": 18, "293e": 18, "070e": 18, "143e": 18, "989e": 18, "866e": 18, "210e": 18, "673e": 18, "569e": 18, "692e": 18, "574e": 18, "215e": 18, "564e": 18, "908e": 18, "315e": 18, "251e": 18, "_compute_fp": 18, "_non_convergence_msg": 18, "trajectori": [18, 34], "94": [18, 23, 45], "k_0": [18, 25, 44], "discount_factor": 18, "k_init": 18, "k_init_ind": 18, "sample_s": [18, 29], "ddp0": 18, "res0": 18, "k_path_ind": 18, "k_path": 18, "iter_max": 18, "mathrm": [18, 20, 22, 37], "q_i": [19, 20, 22, 33, 39], "pi_1": [19, 20, 22, 25], "pi_2": [19, 22, 25], "abstract": 19, "obscur": [19, 28], "beyond": [19, 22, 25, 50], "delta_2": 19, "unstabl": [19, 28, 30], "delta_": [19, 25], "unpleas": 19, "attack": 19, "cumbersom": 19, "broader": 19, "regul": [19, 40, 51], "n_z": 19, "n_x": 19, "jump": [19, 26, 43, 51], "induct": [19, 39], "artfulli": [19, 36], "enlist": [19, 28, 40], "properli": [19, 22], "parcel": 19, "demonstr": 19, "partit": 19, "0_0": 19, "f_z": 19, "f_x": 19, "t_j": 19, "tol0": 19, "tol1": 19, "tol2": 19, "\u03b2s": 19, "cumprod": [19, 43], "alh": 19, "arh": 19, "alhsinv": 19, "doubl": [19, 39, 43], "p22": 19, "p21": 19, "p22inv": 19, "h_0_0": 19, "\u03c0_leader": 19, "ut": [19, 25], "\u03c0_matrix": 19, "58004454": 19, "29461313": 19, "67480938": 19, "53970594": 19, "q_leader": 19, "q_follow": 19, "v_leader_forward": 19, "v_leader_direct": 19, "0316": 19, "0324": 19, "manual": [19, 34], "p_next": 19, "v_expand": 19, "reborn": 19, "vt_leader": 19, "vt_reset_lead": 19, "yt_reset": 19, "ro": 19, "a_tild": 19, "r_tild": 19, "q_tild": 19, "b_tild": 19, "lq_tild": 19, "p_tild": 19, "f_tild": 19, "d_tild": 19, "y0_tild": 19, "yt_tild": 19, "_tild": 19, "440892098500626e": 19, "x0_tild": 19, "spot": [19, 25], "1032": 19, "963": 19, "54083615": 19, "60534465": 19, "62197962": 19, "5258": 19, "22585724": 19, "3535753": 19, "97712513": 19, "76471234": 19, "34333344": 19, "2517": 19, "05126111": 19, "25556": 19, "16504097": 19, "81991134e": 19, "58003020e": 19, "56048755e": 19, "51229815e": 19, "00000000e": 19, "69465925e": 19, "26007958e": 19, "09764310e": 19, "22759027e": 19, "12791908e": 19, "23823802e": 19, "03132584e": 19, "20000000e": 19, "43823802e": 19, "p_guess": 19, "f_tilde_star": 19, "112": [19, 51], "65590740578115": 19, "65590740578136": 19, "f_iter": 19, "dist_vec": 19, "dist_vec2": 19, "yt_tilde_star": 19, "b_2": [19, 36, 39, 42, 43], "b2": [19, 39, 47], "s1": [19, 33, 34, 35, 39, 46, 47, 48, 51], "s2": [19, 33, 34, 39, 47], "w2": [19, 39, 46, 47], "m1": [19, 39, 46], "m2": [19, 39, 46], "nnash": [19, 39], "af": [19, 32, 35, 39], "22701363": 19, "03129874": 19, "09447113": 19, "881784197001252e": 19, "\u03c0_1": [19, 22], "\u03c0_2": [19, 22], "v1_forward": 19, "v2_forward": 19, "v1_direct": 19, "v2_direct": 19, "v1": [19, 37, 39], "v2": [19, 39], "3303": 19, "3296": 19, "saniti": 19, "\u03bb1": [19, 39], "p1_ih": 19, "f1_ih": 19, "v2_direct_alt": 19, "vt_mpe": 19, "vt_follow": 19, "duopolist": 19, "6559": 19, "9709425620890784": 19, "claud": [20, 51], "shannon": [20, 51], "weaver": [20, 51], "1949": [20, 51], "kullback": [20, 40], "leibler": [20, 40], "p_i": [20, 33, 39], "log_b": 20, "downarrow": 20, "nat": 20, "dit": 20, "s_i": [20, 37, 39], "unfair": 20, "coin": 20, "fair": [20, 44], "die": 20, "di": 20, "isol": 20, "log_2": 20, "585": [20, 51], "p_1": 20, "p_2": 20, "p_n": 20, "r_n": 20, "permut": 20, "event": [20, 22, 51], "bivari": [20, 24], "y_i": 20, "y_j": 20, "sum_j": [20, 22, 33, 42, 43], "josiah": 20, "willard": 20, "gibb": 20, "en": 20, "wikipedia": 20, "org": [20, 49, 51], "wiki": 20, "josiah_willard_gibb": 20, "k_b": 20, "micro": 20, "boltzmann": 20, "energi": 20, "particl": 20, "temperatur": 20, "macro": 20, "ga": 20, "avogadro": 20, "n_1": [20, 34], "ln": [20, 22, 25, 32, 40, 44], "logarithm_of_a_matrix": 20, "quantum": 20, "2014": [20, 51], "l_t": [20, 23, 24, 27, 31, 38], "virtu": 20, "spectral": [20, 21], "s_x": [20, 25, 47], "sigma_x": [20, 35], "uncertain": [20, 40], "tempor": [20, 34], "resembl": [20, 24], "s_y": [20, 25, 42], "disturb": [20, 25, 28], "g_f": 20, "monik": 20, "denomin": 20, "arma": [21, 45], "ar_periodogram": 21, "consecut": 21, "omega_j": 21, "x_r": 21, "stattool": 21, "tj": 21, "elementwis": [21, 44], "snippet": 21, "ma": [21, 24], "lp": 21, "x_sd": 21, "y_sd": 21, "parametr": [21, 22, 50], "nonparametr": [21, 44], "omega_": [21, 34], "2p": [21, 28], "distant": 21, "closer": [21, 28], "hanning_window": 21, "window": 21, "han": [21, 51], "estspec": [21, 45], "github": [21, 40, 45], "ters": [21, 34], "centric": 21, "convolv": 21, "unsmooth": 21, "insuffici": 21, "judgement": 21, "whiten": [21, 25], "recolor": 21, "nearbi": [21, 40], "certainli": 21, "subfigur": [21, 34], "ham": 21, "wl": 21, "175": 21, "y_smooth": 21, "window_len": 21, "y_ar": 21, "knightian": 22, "knight": [22, 51], "1921": [22, 51], "displeasur": 22, "dislik": 22, "kink": 22, "mpl": 22, "rc": [22, 50], "axes3d": [22, 33], "io": 22, "loadmat": 22, "linecollect": 22, "listedcolormap": 22, "boundarynorm": 22, "config": 22, "inlinebackend": 22, "figure_format": 22, "retina": 22, "usetex": 22, "label_s": 22, "label_tick_s": 22, "title_s": 22, "legend_s": 22, "text_siz": 22, "rcparam": 22, "labels": [22, 50], "xtick": [22, 50], "titles": [22, 50], "font": [22, 50], "\u03c0_hat": 22, "ent_val": 22, "t_\u03b8_factori": 22, "t_\u03b8": 22, "jacobson": [22, 51], "1973": [22, 51], "compute_change_measur": 22, "channg": 22, "m_unnorm": 22, "utility_function_factori": 22, "world": [22, 29, 34, 42, 43], "m_i": [22, 25, 39], "doteq": 22, "\u03c0_hat_0": 22, "min_prob": 22, "\u03c0_hat_0_nb": 22, "201": 22, "\u03c0_hat_0_val": 22, "2f": 22, "\u03c0_0_val": 22, "ent_vals_mat": 22, "\u03c0_0": 22, "seismic": 22, "gouraud": 22, "8205752275831846": 22, "ipykernel_6405": 22, "3759713737": 22, "prefernc": 22, "ambigu": [22, 51], "concern": [22, 39, 40], "misppecif": 22, "c_i": [22, 33, 50], "ball": 22, "apprehens": 22, "evil": 22, "ego": [22, 39], "c_bundl": 22, "bundl": 22, "\u03b8_val": 22, "tu": 22, "tuc_val": 22, "envis": 22, "wrt": 22, "avg_c_bundl": 22, "c_grid_nb": 22, "c_grid": 22, "u_c_grid": 22, "u_c_bundl": 22, "avg_u": 22, "first_trnsf_u_c_grid": 22, "first_trnsf_u_c_bundl": 22, "second_trnsf_u_c_bundl": 22, "send": [22, 44], "third_trnsf_u_c_bundl": 22, "portrai": 22, "vanilla": 22, "constinu": 22, "cumul": [22, 29, 43, 44], "kappa_j": 22, "mu_u": 22, "sigma_u": 22, "kappa_1": 22, "kappa_2": 22, "\u03b7_line": 22, "ones_lik": [22, 32], "e_hat_uc": 22, "root_scalar": 22, "bracket": [22, 29], "multi_crit_v": 22, "asymmetr": [22, 33], "dash": 22, "circumscrib": 22, "penal": [22, 40], "pessimist": 22, "bucklew": [22, 51], "2004": [22, 25, 41, 51], "slant": 22, "exponenti": [22, 30, 35, 51], "pessim": 22, "protect": 22, "himself": 22, "undomin": 22, "robust": [22, 25, 45, 51], "slope": [22, 31, 33, 40, 41, 50], "flatter": [22, 33, 47], "multiplier_criterion_factori": 22, "return_entropi": 22, "constraint_criterion_factori": 22, "inner_root_problem": 22, "\u03b8_tild": 22, "return_\u03b8_tild": 22, "bisect": [22, 50], "solve_root_problem": 22, "u_bar": 22, "c_1_grid": 22, "c_2_grid": 22, "u_inv": [22, 50], "conustruct": 22, "c_1_grid_nb": 22, "c_2_grid_eu": 22, "multi_pref_crit": 22, "multi_pref_root_problem": 22, "c_2_grid_mult": 22, "constraint_pref_crit": 22, "constraint_pref_root_problem": 22, "c_2_grid_con": 22, "\u03b7s": 22, "discontinu": 22, "somewhat": 22, "intric": 22, "literari": 22, "eu": 22, "tricki": 22, "graduat": [22, 51], "student": [22, 25, 41], "allocatin": 22, "c_1_grid_num": 22, "multi_crit_bar": 22, "cons_crit_bar": 22, "solid": 22, "boost": 22, "u_prim": 22, "budget_constraint": 22, "1999": [22, 33, 46, 47, 48, 51], "tallarini": [22, 25, 51], "barilla": [22, 51], "2009": [22, 33, 44, 51], "mask": 22, "certainty_equiv": 22, "func_approx": 22, "fp": 22, "fp_ce": 22, "fixed_point": 22, "fp_eu": 22, "fp_mult": 22, "fp_con": 22, "c_3": 22, "make_seg": 22, "segment": 22, "numlin": 22, "colorlin": 22, "get_cmap": 22, "copper": 22, "colormap": 22, "hasattr": 22, "__iter__": 22, "hack": 22, "add_collect": 22, "\u03c0_3": 22, "\u03c0_base": 22, "contour_plot": 22, "\u03c0_vals_nb": 22, "levels_nb": 22, "min_\u03c0_val": 22, "eu_level": 22, "ent_level": 22, "\u03c0_hat_1": 22, "\u03c0_hat_2": 22, "\u03c0_hat_1_val": 22, "\u03c0_hat_2_val": 22, "\u03c0_hat_coord": 22, "spring": 22, "winter": 22, "3904427642": 22, "overflow": 22, "nonumb": 22, "propto": 22, "\u03b7_vals_nb": 22, "\u03b7_val": 22, "min_eu": 22, "max_eu": 22, "m_0_and_1": 22, "m_2": [22, 39], "max_obj_wrapp": 22, "obj_val": 22, "nelder": 22, "mead": 22, "opt_r": 22, "269230769133136": 22, "lower_bound": 22, "lightgrai": 22, "axiom": 22, "vast": 22, "nearli": [22, 23, 25, 29, 33], "quantifi": [22, 40], "anderson": [22, 28, 51], "databh": 22, "mat": 22, "\u03bc_c": 22, "004952": 22, "\u03c3_c": 22, "005050": 22, "\u03bc_c_tild": 22, "304569723799467": 22, "c_growth": 22, "nb_bin": 22, "cnt": 22, "bin": 22, "bins_min": 22, "bins_max": 22, "pdf_x": 22, "worst_cas": 22, "add_subplot": [22, 33], "lns1": 22, "hist": 22, "twinx": [22, 43], "lns2": 22, "lns3": 22, "lab": 22, "1948": 22, "2006": [22, 51], "iv": 22, "maccheroni": [22, 51], "gilboa": [22, 51], "schmeidler": [22, 51], "c_2w_": 23, "u_bz_t": [23, 24, 31], "u_dz_t": [23, 25, 31], "k_": [23, 24, 25, 28, 31, 33, 38, 39, 44], "k_t": [23, 24, 25, 27, 28, 31, 33, 38, 44], "cw_": [23, 25], "fx_t": 23, "ox_t": 23, "ccccc": [23, 27, 31], "\u03b3_1": [23, 24, 27], "hs2013": [23, 24, 27, 31], "endo": [23, 27], "exo": 23, "9999999999904767": 23, "set_printopt": [23, 35, 38], "suppress": [23, 35, 36, 38, 39], "css": [23, 27], "iss": [23, 27], "999": [23, 39, 50], "head": [23, 25, 27], "vicin": 23, "\u03b32": [23, 39], "\u03b322": 23, "\u03d5_12": [23, 27], "\u03d5_i2": [23, 27], "tech2": [23, 27], "x02": 23, "settl": [23, 39], "952": 23, "habit": [23, 25], "jc_": 23, "l_\u03bb2": [23, 27], "pref2": [23, 27, 41], "l_\u03bb3": 23, "pref3": [23, 41], "econ4": [23, 41], "97": [23, 46, 48], "\u03b2_2": 23, "pref4": [23, 41], "econ5": 23, "explod": [23, 46], "downward": [23, 27, 42, 50], "front": 23, "econometrician": 24, "unawar": 24, "misinterpret": 24, "j_0": [24, 25, 27, 31], "cccccc": [24, 28], "9d_": 24, "4w_": 24, "chase": 24, "j_t": [24, 25, 40], "alpha_j": [24, 37], "belatedli": 24, "d_irf": 24, "shock2": 24, "sc": [24, 29, 38, 47], "h_h": 24, "lss_h": 24, "hs_kal": 24, "w_lss": 24, "whitener_lss": 24, "ma_coef": 24, "stationary_coeffici": [24, 35], "jj": 24, "y1_w1": 24, "y2_w1": 24, "y1_w2": 24, "y2_w2": 24, "book": [24, 37, 51], "stationary_innovation_covar": 24, "granger": 24, "causal": 24, "irf_wlss": 24, "ycoef": [24, 28], "a1_w1": 24, "a1_w2": 24, "a2_w1": 24, "a2_w2": 24, "spread": 24, "art": [25, 28, 35], "henri": 25, "poincar": 25, "alik": [25, 50], "reinterpret": [25, 42], "anonym": 25, "thoma": [25, 29, 43, 51], "school": [25, 26], "commod": [25, 51], "dual": 25, "friction": 25, "enforc": [25, 39, 40, 50], "asymmetri": 25, "hick": 25, "chanc": [25, 46, 47], "kenneth": [25, 28, 42, 51], "imperi": 25, "varieti": 25, "quotat": 25, "began": 25, "theoriz": 25, "frequentist": 25, "bayesian": [25, 39, 51], "themselv": 25, "edward": [25, 51], "suscept": 25, "mongrel": 25, "ye": 25, "deeper": 25, "eas": [25, 28], "unleash": 25, "roadmap": 25, "condition": 25, "homoskedast": 25, "ax_t": [25, 46], "nonrecurs": 25, "w_2": [25, 39], "ax_": [25, 43], "cw_t": 25, "acw_": 25, "v_1": [25, 32, 37], "upsilon_": 25, "upsilon_j": 25, "j_": [25, 40], "disutil": 25, "devot": 25, "durabl": 25, "j_h": 25, "_h": 25, "season": [25, 33], "4j": 25, "quarter": 25, "pi_3": 25, "frisch": 25, "numerair": [25, 31, 34], "classif": 25, "_cc_t": 25, "phi_gg_t": 25, "phi_ii_t": 25, "transvers": 25, "_k": 25, "bunch": 25, "_cc_0": 25, "phi_ii_0": 25, "2u_t": 25, "u_g": [25, 47], "m_k": 25, "m_h": 25, "s_b": [25, 29], "m_d": 25, "s_g": [25, 29, 46], "m_c": [25, 31], "0_t": [25, 29, 36], "rent": 25, "prime_h": 25, "prime_k": 25, "perpetu": [25, 28, 31], "ao": [25, 39], "prime_t": 25, "z_a": [25, 31], "prime_a": 25, "prime_0": 25, "mu_a": [25, 31], "e_j": 25, "gx_t": 25, "ev_t": 25, "n_w": 25, "n_y": 25, "f_0": [25, 36, 40], "zi": 25, "kg": 25, "mediat": 25, "1953": 25, "commun": [25, 51], "ell_": [25, 29], "conven": 25, "s_d": [25, 29], "rental": [25, 33], "depreci": [25, 44], "rho_t": 25, "freshli": 25, "feed": [25, 43], "count": [25, 44], "educ": 25, "ryoo": [25, 41, 51], "alpha_d": [25, 41], "sweep": [25, 40, 41], "ddot": [25, 30, 41, 47], "imai": 25, "kean": 25, "flavor": 25, "train": 25, "entrant": [25, 41], "siow": 25, "chi_j": 25, "epsilon_j": 25, "attanasio": [25, 51], "pavoni": [25, 51], "2011": [25, 51], "jt": [25, 39], "bj": 25, "dj": 25, "everybodi": 25, "j0": 25, "punchlin": 25, "0j": 25, "dub": 25, "lambda_i": [25, 30], "bi": 25, "d_i": 25, "0i": 25, "analogu": [25, 42], "hj": 25, "secret": [25, 40], "weapon": [25, 40], "conclud": [25, 28, 50], "wise": 25, "websit": 26, "war": [26, 33, 43], "coas": [26, 45, 51], "firm": [26, 28, 39, 44, 51], "cattl": [26, 51], "etymolog": 26, "spectra": 26, "unemploy": [26, 51], "troubleshoot": [26, 45], "i_irf": 27, "shorter": 27, "99657126": 27, "92940472e": 27, "85879555e": 27, "nonstochast": [27, 28], "\u03d5_13": 27, "\u03d5_i3": 27, "\u03b3_12": 27, "\u03b3_2": 27, "\u03c0_h2": 27, "x01": 27, "tech3": 27, "smoother": [27, 42, 46], "undo": 27, "kasa": [28, 51], "townsend": [28, 51], "elong": 28, "amplifi": 28, "amplif": 28, "pursu": 28, "allen": [28, 51], "pool": 28, "promin": 28, "intract": 28, "pearlman": [28, 51], "1986": [28, 51], "culmin": 28, "machineri": 28, "sneaki": 28, "omit": [28, 37, 44], "sigma_v": 28, "letter": 28, "ridden": 28, "somehow": 28, "phi_": [28, 30, 42], "brace": 28, "preliminari": [28, 30], "solve_discrete_riccati": 28, "extran": 28, "graph_object": 28, "offlin": 28, "pyo": 28, "linear_model": 28, "init_notebook_mod": 28, "\u03c3_v": 28, "\u03c3_e": 28, "poli": 28, "roots_poli": 28, "\u03bb_tild": 28, "\u03b2\u03bb_tild": 28, "a_ricc": 28, "b_ricc": 28, "r_ricc": 28, "q_ricc": 28, "n_ricc": 28, "p_one": 28, "\u03ba_prod": 28, "\u03ba_one": 28, "a_lss": 28, "c_lss": 28, "g_lss": 28, "100_000": 28, "xcoef": 28, "add_trac": 28, "fig1": 28, "\u03c3_x": [28, 35], "\u03c3_y": [28, 35], "\u03c3_yx": 28, "\u03c3_11": 28, "\u03c3_12": 28, "\u03c3_21": 28, "\u03c3_22": 28, "reg_coeff": 28, "275556845219769": 28, "9649461170475457": 28, "r_squar": 28, "9649461170475461": 28, "reg_r": 28, "rsquar": 28, "p_two": 28, "p\u03c1": 28, "2\u03c3_e": 28, "\u03ba_two": 28, "fig2": 28, "1373589171035627": 28, "9242343967443672": 28, "037882801627816154": 28, "9621171983721835": 28, "9621171983721837": 28, "ao_lss": 28, "co_lss": 28, "go_lss": 28, "muo_0": 28, "lsso": 28, "fig3": 28, "noiseless": 28, "fig_comb": 28, "update_trac": 28, "yaxi": 28, "x3": 28, "set_subplot": 28, "subplot_titl": 28, "horizontal_spac": 28, "shared_yax": 28, "nonexist": 28, "idiosyncrat": 28, "coher": 28, "enhanc": 28, "textbf": 28, "36618": 28, "324062": 28, "403404": 28, "25716": 28, "sensibl": 28, "argu": 28, "unobserv": 28, "uninform": 28, "facili": 28, "singleton": [28, 51], "particip": 28, "disappear": [28, 30], "stai": [28, 34, 46], "1927": [29, 51], "manuscript": [29, 51], "francoi": 29, "veld": 29, "nullspac": 29, "mc_sample_path": 29, "var_quadratic_sum": 29, "unrealist": 29, "realist": 29, "coupon": [29, 47], "unscal": 29, "mathscr": [29, 44], "reinsert": 29, "lyapunov": 29, "besid": 29, "reopen": 29, "constitu": 29, "outstand": [29, 44], "tau_": [29, 34], "ow": [29, 36, 43, 46], "clarif": 29, "sg": [29, 46, 47, 48], "govt": [29, 43, 46], "ss": [29, 35, 47], "boolean": 29, "proc": 29, "compute_path": 29, "rvn": 29, "econ": 29, "ndarrai": 29, "x_val": 29, "nw": [29, 47], "warning_msg": 29, "elect": 29, "congress": 29, "disc": 29, "republican": 29, "democrat": 29, "sl": 29, "rinv": 29, "af1": 29, "af2": 29, "gen_fig_1": 29, "docstr": 29, "bbox": 29, "legend_arg": 29, "p_arg": [29, 30], "gen_fig_2": 29, "xi_t": [29, 32, 44], "quadsum": 29, "usag": [29, 44], "135": 29, "mu_g": 29, "c_g": 29, "mg": 29, "ipykernel_7145": 29, "2748685684": 29, "encompass": 30, "monopolist": [30, 34, 40], "belt": 30, "hy_n": 30, "hy_": 30, "shed": 30, "phi_0": [30, 36], "toeplitz": 30, "sub": 30, "super": 30, "everywher": 30, "phi_j": 30, "hi_": 30, "phi_m": 30, "hskip": 30, "75in": 30, "submatrix": 30, "suspect": [30, 39], "suspicion": 30, "moduli": 30, "z_m": 30, "_2": [30, 33, 39], "z_0z_1": 30, "lambda_ml": 30, "prod_": 30, "compel": 30, "exceed": 30, "central": [30, 51], "weaker": 30, "nonoptim": 30, "k_j": 30, "f_m": 30, "a_seq": 30, "testlq": 30, "2y_": 30, "0000001": 30, "u_ax_": 31, "mu_ax_t": 31, "_1m_cx_t": 31, "gam": 31, "147": 31, "pay_pric": 31, "tree": 31, "pay_gross": 31, "r1_gross": 31, "45603798": 31, "r1_net": 31, "r5_net": 31, "tendenc": 31, "vice": 31, "versa": 31, "62216598": 31, "accentu": 31, "beauti": [32, 51], "erad": 32, "costlessli": 32, "markovian": 32, "xi_": [32, 44], "nonstor": [32, 50], "retain": 32, "subscript": [32, 36, 37, 39, 44], "dz": 32, "cb": 32, "banach": 32, "tg": 32, "sup_": 32, "isoelast": 32, "lucastre": 32, "ssd": 32, "grid_min": 32, "operator_factori": 32, "parallel_flag": 32, "z_vec": 32, "mont": 32, "carlo": 32, "solve_model": 32, "price_v": 32, "remov": [32, 36, 49], "cite": 33, "svensson": [33, 51], "william": [33, 51], "handi": 33, "switch": [33, 42, 44], "rho_i": 33, "max_u": 33, "r_i": [33, 39], "w_i": [33, 39], "a_i": [33, 50], "b_i": [33, 39, 43], "p_j": 33, "rho_j": 33, "f_i": [33, 39], "target": [33, 35, 40, 50], "pr": [33, 39], "construct_arrays1": 33, "f1_val": 33, "f2_val": 33, "d_val": 33, "bs": [33, 46, 47, 48], "rs": [33, 46, 47, 48], "qs": [33, 46, 47, 48], "cs": [33, 46, 47, 48], "k_star": 33, "state_vec1": 33, "\u03c01": [33, 39], "ex1_a": 33, "lqmarkov": [33, 46, 47, 48], "ps": 33, "56626026": 33, "78313013": 33, "60843493": 33, "37424214": 33, "68712107": 33, "65643947": 33, "ds": 33, "28313013": 33, "74848427": 33, "k_grid": 33, "u1_star": 33, "u2_star": 33, "cheaper": [33, 36], "x_path": 33, "depart": [33, 51], "\u03c02": [33, 39], "ex1_b": 33, "57291724": 33, "28645862": 33, "74434525": 33, "37217263": 33, "59533259": 33, "2976663": 33, "72818728": 33, "36409364": 33, "\u03bb_val": 33, "state_var": 33, "\u03c03": 33, "57169781": 33, "2858489": 33, "72749075": 33, "36374537": 33, "\u03b4_val": 33, "\u03b4_grid": 33, "f1_grid": 33, "f2_grid": 33, "plot_surfac": 33, "set_zlabel": 33, "wrapper": [33, 43], "construct_func": 33, "vals_dict": 33, "state_vec": 33, "mplq": 33, "str": [33, 40, 44], "absorb": [33, 50], "construct_arrays2": 33, "\u03b10_val": 33, "\u03c1_val": 33, "\u03c3_val": 33, "state_vec2": 33, "kiminori": 34, "matsuyama": [34, 45], "laura": 34, "gardini": 34, "iryna": 34, "sushko": 34, "styliz": [34, 43], "tie": 34, "ti": 34, "1985": [34, 51], "deneckn": 34, "denecker": [34, 51], "helpman": [34, 51], "krugman": [34, 51], "coupl": [34, 46], "oscil": [34, 42, 43], "monopoli": 34, "previous": [34, 42, 50], "strateg": 34, "complementar": 34, "cluster": 34, "burst": 34, "obsolet": 34, "surviv": 34, "obsolesc": 34, "decoupl": 34, "penetr": 34, "inelast": 34, "l_j": 34, "nontrad": 34, "tradeabl": 34, "o_": 34, "homogen": 34, "elast": 34, "l_k": 34, "ship": 34, "iceberg": 34, "proxi": 34, "addition": 34, "symbol": [34, 44], "l_1": 34, "s_j": 34, "s_1": [34, 36, 39, 42, 43, 46, 47], "s_2": [34, 39, 42, 43], "hl": 34, "n_2": 34, "n_j": 34, "n_k": 34, "s_k": 34, "rare": [34, 44, 51], "bodi": 34, "nopython": 34, "_hj": 34, "implicit": 34, "sj": 34, "sk": 34, "dll": 34, "n1": [34, 36, 37], "s1_\u03c1": 34, "s2_\u03c1": 34, "dhh": 34, "dhl": 34, "dlh": 34, "one_step": 34, "branch": 34, "n1_tp1": 34, "n2_tp1": 34, "n_gener": 34, "n1_0": 34, "n2_0": 34, "n1_t": 34, "n2_t": 34, "_pers_till_sync": 34, "nper": 34, "sync": 34, "pers_2_sync": 34, "n_gen": 34, "Will": [34, 51], "counter": 34, "nsync": 34, "becam": [34, 42], "_create_attraction_basi": 34, "unit_rang": 34, "time_2_sync": 34, "msgsync": 34, "worldwid": 34, "percentag": 34, "cutoff": 34, "_calc_s1_\u03c1": 34, "_unpack_param": 34, "simulate_n": 34, "pers_till_sync": 34, "create_attraction_basi": 34, "plot_timeseri": 34, "Not": 34, "dark": 34, "slider": 34, "snapshot": 34, "plot_attraction_basi": 34, "unitrang": 34, "ax0": 34, "475": [34, 51], "axes0": 34, "axes1": 34, "axes2": 34, "ax3": [34, 47], "axes3": 34, "ab0": 34, "cf0": 34, "ab1": 34, "cf1": 34, "ab2": 34, "cf2": 34, "ab3": 34, "cf3": 34, "cbar_ax": 34, "075": 34, "725": 34, "asynchron": 34, "915": [34, 51], "interact_attraction_basi": 34, "colormesh": 34, "750": 34, "reformul": 35, "dispos": 35, "sought": 35, "ramif": 35, "sigx": 35, "sigi": 35, "\u03bc_0": 35, "x_hat_0": 35, "\u03c3_0": 35, "kmuth": 35, "k1": [35, 39], "nest": 35, "ck": [35, 40], "gk": 35, "hk": 35, "ssk": 35, "fell": 35, "swoop": 35, "grand": 35, "gf": 35, "\u03bc_true": 35, "\u03bc_prior": 35, "\u03bc_f": 35, "ssf": 35, "xf": 35, "yf": 35, "1809975124224177": 35, "524937810560442": 35, "coefs_ma": 35, "coefs_var": 35, "coefs_ma_arrai": 35, "coefs_var_arrai": 35, "8190024875775823": 35, "revisit": [36, 40, 44], "surg": [36, 43, 46], "q_0": 36, "compress": 36, "unwound": 36, "pseudo": 36, "geq0": 36, "ell_j": 36, "indirectli": [36, 43], "divis": 36, "3s": 36, "tau_j": 36, "ct": 36, "predetermin": 36, "bequeath": 36, "ell_0": 36, "cl": 36, "recursivel": 36, "z_new": 36, "z1": 36, "xprime1": 36, "tol_f": 36, "ic": 36, "sprime": 36, "euc": 36, "z_sub": 36, "1e9": 36, "shist_h": 36, "shist_l": 36, "sim_seq_h": 36, "sim_seq_l": 36, "sim_h": 36, "dissav": 36, "cheap": [36, 48], "geq1": 36, "tax_seq": 36, "tax_polici": 36, "interest_r": 36, "gov_debt": 36, "tau_1": 36, "\u03c4_reset": 36, "seq_log": 36, "rec_log": 36, "t_length": 36, "sim_rec": 36, "sim_": 36, "sim_b": 36, "xk": 36, "glean": 36, "primer": 37, "roman": [37, 51], "z_i": 37, "cosin": 37, "x_k": 37, "pythagorean": 37, "argmin_": 37, "oplu": 37, "mathop": 37, "canon": 37, "e_1": 37, "e_n": 37, "e_i": 37, "u_k": 37, "u_i": [37, 38], "u_j": [37, 39, 50], "col_1": 37, "col_k": 37, "xb": 37, "empir": [37, 44, 46], "hypothesi": [37, 51], "overfit": 37, "y_2": [37, 42], "1k": 37, "tss": 37, "ess": 37, "ssr": 37, "touch": [37, 49], "col_j": 37, "cap": 37, "idempot": 37, "closest": 37, "gs": 37, "gram_schmidt": 37, "py1": 37, "56521739": 37, "26086957": 37, "2173913": 37, "13187609": 37, "98907071": 37, "06593805": 37, "jupyt": [38, 49], "2i_t": 38, "\u03c1_1": 38, "\u03c1_2": 38, "s_c": [38, 47], "5172": 38, "3448": 38, "player": [39, 40], "misspecif": [39, 40], "fear": [39, 40], "incorrect": 39, "theta_i": 39, "k_i": 39, "unspecifi": 39, "charg": 39, "harm": [39, 40], "malevol": [39, 40], "it_1": 39, "k_1": [39, 41, 44], "k_2": 39, "nnash_robust": 39, "planer": 39, "r_2": 39, "66846615": 39, "29512482": 39, "07584666": 39, "\u03b81": 39, "\u03b82": 39, "nash": 39, "array_lik": [39, 40], "unload": 39, "asmatrix": 39, "f10": 39, "f20": 39, "inv1": 39, "singular": 39, "d1p1": 39, "inv2": 39, "d2p2": 39, "f1_left": 39, "f1_right": 39, "\u03bb2": 39, "dd": 39, "f1r": 39, "f2r": 39, "p1r": 39, "p2r": 39, "markov_perfect": 39, "dai": [39, 51], "erron": 39, "rmpe": 39, "xr": 39, "qr1": 39, "qr2": 39, "qr": 39, "aock1": 39, "k2": 39, "aock2": 39, "xrp1": 39, "xrp2": 39, "qrp11": 39, "qrp12": 39, "qrp21": 39, "qrp22": 39, "qrp1": 39, "qrp2": 39, "prp1": 39, "prp2": 39, "virtual": [39, 42], "cautiou": 39, "666": 39, "682": 39, "074": 39, "671": 39, "694": 39, "998": 39, "664": 39, "685": 39, "669": 39, "665": 39, "683": 39, "695": 39, "insensit": 40, "acknowledg": 40, "explicitli": 40, "uncount": [40, 44], "genuin": 40, "sound": 40, "aid": 40, "chooser": 40, "paranoid": 40, "eig": 40, "somewher": 40, "f_r": 40, "f_b": 40, "skinnier": 40, "fragil": 40, "craft": 40, "seriou": 40, "nobel": 40, "admit": 40, "wrong": [40, 50], "qualiti": 40, "min_u": 40, "max_w": 40, "influenti": 40, "calculu": 40, "20mm": 40, "bu": 40, "circ": 40, "j_f": 40, "nonlinearli": 40, "dw": 40, "discourag": 40, "qf": 40, "p_fx": 40, "d_f": 40, "p_f": 40, "rblq": 40, "d_oper": 40, "b_oper": 40, "robust_rul": 40, "robust_rule_simpl": 40, "k_to_f": 40, "f_to_k": 40, "compute_deterministic_entropi": 40, "evaluate_f": 40, "sigma_d": 40, "stackrel": [40, 44], "\u03c3_d": 40, "ac": 40, "evaluate_polici": 40, "k_f": 40, "o_f": 40, "value_and_entropi": 40, "emax": 40, "bw": 40, "df": 40, "dropna": 40, "optimal_lq": 40, "po": 40, "fo": 40, "baseline_robust": 40, "fb": 40, "breakdown": 40, "test_matrix": 40, "eigenv": 40, "eigenvec": 40, "6e6": 40, "optimal_best_cas": 40, "robust_best_cas": 40, "optimal_worst_cas": 40, "robust_worst_cas": 40, "ticklabel_format": 40, "style": [40, 43], "sci": 40, "scilimit": 40, "plot_arg": 40, "df_pair": 40, "egrid": 40, "ipykernel_8180": 40, "154157873": 40, "line2d": 40, "0x7fec2b2c2990": 40, "0x7fec2b2c3710": 40, "0x7fec2b2ccc90": 40, "0x7fec2b2af790": 40, "lemma": 40, "beta_k": 41, "psi_1i_t": 41, "rho_d": 41, "\u03b1_d": 41, "\u03b1_": 41, "\u03b5_1": 41, "\u03bb_1": 41, "aquir": 41, "detect": [41, 51], "228": 41, "footnot": 41, "\u03b4_n": 41, "\u03c8_1": 41, "\u03c1_": 41, "\u03c1_d": 41, "profess": 41, "counteract": 41, "h_irf": 41, "impact": 41, "tradit": [42, 43], "nonfinanci": [42, 43], "preserv": 42, "followup": 42, "prologomenon": 42, "errat": 42, "commonli": 42, "alon": 42, "complete_ss": 42, "atild": 42, "ctild": 42, "s_ytild": 42, "cbar": 42, "n_simul": [42, 43], "randint": 42, "c_hist_com": 42, "b_hist_com": 42, "y_hist_com": 42, "x_hist_com": 42, "markert": 42, "thoroughli": 42, "forevermor": 42, "decumul": 42, "consumption_complet": [42, 43], "consumptionproblem": [42, 43], "2x2": [42, 43], "s_path": [42, 43], "cp": [42, 43], "c_bar": [42, 43], "augment": [42, 43], "y_aug": [42, 43], "q_aug": [42, 43], "consumption_incomplet": [42, 43], "b_path": [42, 43], "c_path": [42, 43], "db": [42, 43], "isclos": 42, "conclus": [42, 50], "upward": 42, "debt_complet": [42, 43], "debt_path": [42, 43], "fashion": 42, "renam": 43, "deadweight": 43, "elabor": 43, "love": 43, "presid": 43, "jefferson": 43, "secretari": [43, 51], "albert": [43, 51], "gallatin": [43, 51], "1807": [43, 51], "1837": [43, 51], "g_i": 43, "sold": 43, "peacetim": 43, "ex_post_gross_return": 43, "ind": 43, "cumulative_return": 43, "rt_path": 43, "itiniti": 43, "t_bar": 43, "as1": 43, "anymor": 43, "as2": 43, "tb1": 43, "tb2": 43, "exret": 43, "exant": 43, "768": 43, "384": 43, "576": 43, "2716883116883118": 43, "62337662": 43, "895064935064935": 43, "30208333": 43, "20833333": 43, "60416667": 43, "73611111": 43, "04166667": 43, "78635621": 43, "0629085": 43, "5276864": 43, "38432018": 43, "0860704239993675": 43, "wartim": 43, "episod": 43, "taxsmoothingexampl": 43, "debt_valu": 43, "t_path": 43, "asset_path": 43, "g_path": 43, "line1": 43, "get_color": 43, "line2": 43, "g_m": 43, "civil": 43, "prewar": 43, "g_ex1": 43, "p_ex1": 43, "b0_ex1": 43, "states_ex1": 43, "postwar": 43, "ts_ex1": 43, "864": 43, "7548096885813149": 43, "07093426": 43, "12975779": 43, "754809688581315": 43, "825743944636679": 43, "8845674740484442": 43, "1574074074074074": 43, "416666666666666": 43, "0416666666666667": 43, "7969336": 43, "24426428": 43, "12278592": 43, "31159337": 43, "17908622141460231": 43, "ts_s_path": 43, "9045311615620277": 43, "g_ex2": 43, "p_ex2": 43, "b0_ex2": 43, "states_ex2": 43, "ts_ex2": 43, "6053287197231834": 43, "63321799": 43, "51384083": 43, "0278892733564": 43, "1191695501730106": 43, "90470824": 43, "27429251": 43, "37206116": 43, "30985865": 43, "368991732594216": 43, "g_ex3": 43, "p_ex3": 43, "b0_ex3": 43, "states_ex3": 43, "peace1": 43, "peace2": 43, "war1": 43, "war2": 43, "ts_ex3": 43, "6927944572748268": 43, "42494226": 43, "86027714": 43, "43533487": 43, "117736720554273": 43, "553071593533488": 43, "128129330254041": 43, "553071593533487": 43, "83836741": 43, "87135998": 43, "94670854": 43, "89628977": 43, "07983627": 43, "69814023": 43, "2545741": 43, "1291214": 43, "02371440178864222": 43, "ssume": 43, "g_ex4": 43, "p_ex4": 43, "b0_ex4": 43, "states_ex4": 43, "ts_ex4": 43, "6349979047185738": 43, "82289484": 43, "4053292": 43, "77211121": 43, "37494762": 43, "6349979047185736": 43, "4578927455370505": 43, "040327103363229": 43, "4071091102836433": 43, "7399497132457697": 43, "457892745537051": 43, "040327103363228": 43, "407109110283643": 43, "8810589": 43, "48713661": 43, "95436011": 43, "82742569": 43, "11672808": 43, "36611394": 43, "46806216": 43, "79589276": 43, "132109773063616": 43, "seven": 43, "g_ex5": 43, "p_ex5": 43, "b0_ex5": 43, "states_ex5": 43, "war3": 43, "ts_ex5": 43, "5571895472128001": 43, "10123911": 43, "20669652": 43, "58738132": 43, "05773868": 43, "72973868": 43, "42973868": 43, "6584286588928001": 43, "7638860668928005": 43, "1445708668928003": 43, "4994508668928004": 43, "17254913310719955": 43, "5571895472128": 43, "6584286588928003": 43, "7638860668928": 43, "49945086689280027": 43, "17254913310719933": 43, "2775343959060068": 43, "receipt": 43, "albeit": [43, 44], "warm": 43, "toolset": 44, "occupi": 44, "mainstream": 44, "meyn": [44, 51], "tweedi": [44, 51], "lae": 44, "gaussian_kd": 44, "p_w": 44, "arch": 44, "neoclass": 44, "f_u": 44, "f_v": 44, "multidimension": 44, "reserv": [44, 51], "nicer": 44, "justif": 44, "callabl": 44, "a_\u03c3": 44, "\u03c8_0": 44, "cobb": 44, "dougla": 44, "ygrid": 44, "lighter": 44, "darker": 44, "hopenhayn": [44, 50, 51], "rogerson": [44, 51], "1993": [44, 51], "endpoint": 44, "cdf": 44, "outdat": 44, "lasota": [44, 51], "mackei": [44, 51], "depth": 44, "mild": 44, "slight": 44, "psi_n": 44, "tighter": 44, "frequent": 44, "\u03c8_star": 44, "\u03c8_est": 44, "k_est": 44, "ys": 44, "boxplot": 44, "z_n": 44, "quartil": 44, "median": 44, "skew": 44, "initial_condit": 44, "latest": [45, 49], "bcg_complete_mkt": 45, "bcg_incomplete_mkt": 45, "additive_funct": 45, "288": 45, "73": 45, "amss2": 45, "amss3": 45, "244": 45, "asset_pricing_lph": 45, "calvo_machine_learn": 45, "cattle_cycl": 45, "chang_cred": 45, "chang_ramsei": 45, "classical_filt": 45, "cons_new": 45, "discrete_dp": 45, "dyn_stack": 45, "63": 45, "five_prefer": 45, "growth_in_dl": 45, "66": [45, 51], "hs_invertibility_exampl": 45, "hs_recursive_model": 45, "78": 45, "intro": 45, "irfs_in_hall_model": 45, "knowing_forecasts_of_oth": 45, "lqramsei": 45, "lu_trick": 45, "lucas_asset_pricing_dl": 45, "lucas_model": 45, "markov_jump_lq": 45, "7206": 45, "muth_kalman": 45, "opt_tax_recur": 45, "orth_proj": 45, "permanent_income_dl": 45, "rob_markov_perf": 45, "rosen_schooling_model": 45, "smoothing_tax": 45, "stationary_dens": 45, "tax_smoothing_1": 45, "tax_smoothing_2": 45, "tax_smoothing_3": 45, "un_insur": 45, "zrefer": 45, "hardwar": 45, "mccleari": [46, 47, 48, 51], "grain": 46, "sx_t": 46, "m_tu_t": 46, "ug": [46, 47, 48], "a_b": [46, 47, 48], "lqbarro": 46, "mf": 46, "05000002": 46, "79166502": 46, "2083334": 46, "79166504": 46, "fan": 46, "quandrat": 46, "1_": [46, 47], "933": 46, "9515": 46, "ws": [46, 47, 48], "dp": 46, "lqm": [46, 47, 48], "98437712": 46, "20516427": 46, "8314215": 46, "01434301": 46, "5847983": 46, "83851116": 46, "soup": [47, 48], "redeem": 47, "redesign": 47, "c_1q": 47, "lq_markov_map": 47, "condens": 47, "2d": 47, "atleast_2d": 47, "nz": 47, "a11": 47, "qc": 47, "steeper": 47, "p3": 47, "p4": 47, "lqm2": [47, 48], "amend": 47, "hp_": 47, "5mm": 47, "reschedul": 47, "2c_2": 47, "lq_markov_mapping_restruct": 47, "sx": 47, "tsx": 47, "r_c": 47, "q_c": 47, "w_c": 47, "9695": 47, "902": 47, "8369": 47, "9295": 47, "8769": 47, "lqm3": 47, "ax4": 47, "unabl": 48, "yesterdai": 48, "shortli": 48, "1e12": 48, "inabl": 48, "debtor": 48, "wari": 48, "sudden": 48, "experienc": 49, "articl": 49, "reinstal": 49, "remot": 49, "click": 49, "launch": 49, "icon": 49, "hesit": 49, "tracker": 49, "discours": 49, "forum": 49, "contact": 49, "nicolini": [50, 51], "1997": [50, 51], "unemploi": 50, "agenc": 50, "grasp": 50, "fate": 50, "aut": 50, "provis": 50, "award": 50, "unlucki": 50, "spell": 50, "announc": 50, "fulfil": 50, "pictur": 50, "convexifi": 50, "lotteri": 50, "compat": 50, "proper": 50, "durat": 50, "cubic": 50, "params_inst": 50, "uw": 50, "brate": 50, "hazard": 50, "invp_prim": 50, "p_prime": 50, "utilii": 50, "accordingli": 50, "vu_error": 50, "vu": 50, "r_error": 50, "vu_star": 50, "vu_error_\u03bb": 50, "15000": 50, "a_star": 50, "r_error_\u03bb": 50, "r_calibr": 50, "brentq": 50, "vu_aut": 50, "a_aut": 50, "0003431409393866592": 50, "10000000000001996": 50, "_minpack_pi": 50, "jacobian": 50, "variant": 50, "calc_c": 50, "calc_a": 50, "a_temp": 50, "grid_v": 50, "vu_": 50, "iterate_c": 50, "c_old": 50, "vu_grid": 50, "minimis": 50, "c_new": 50, "cons_star": 50, "c_new2": 50, "v_star2": 50, "c_vi_temp": 50, "cons_vi_temp": 50, "a_vi_temp": 50, "vu_i": 50, "c_vi_temp_interp": 50, "interp1d": 50, "cons_vi_temp_interp": 50, "a_vi_temp_interp": 50, "vu_min": 50, "vu_max": 50, "consumpton": 50, "solve_incomplete_info_model": 50, "c_init": 50, "cons_star_interp": 50, "a_star_interp": 50, "v_star_interp": 50, "95964854907824": 50, "222761762480786": 50, "12875960366727668": 50, "0009402349710398994": 50, "115462838351959e": 50, "t_max": 50, "vu_t": 50, "cons_t": 50, "vu_0_hold": 50, "16942": 50, "17000": 50, "vu_0": 50, "tick": 50, "16759": 50, "320": 50, "carrot": 50, "stick": 50, "abr88": 51, "econometrica": 51, "383": 51, "396": 51, "aps90": 51, "david": 51, "ennio": 51, "monitor": 51, "1041": 51, "1063": 51, "septemb": 51, "amsseppala02": 51, "rao": 51, "juha": 51, "sepp": 51, "\u00e4": 51, "journal": 51, "polit": 51, "1220": 51, "1254": 51, "ams02": 51, "franklin": 51, "stephen": 51, "morri": 51, "hyun": 51, "song": 51, "shin": 51, "contest": 51, "bubbl": 51, "mimeo": 51, "ahms96": 51, "evan": 51, "ellen": 51, "mcgrattan": 51, "amman": 51, "kendrick": 51, "editor": 51, "handbook": 51, "elsevi": 51, "north": 51, "holland": 51, "ahs03": 51, "semigroup": 51, "european": 51, "march": 51, "url": 51, "repec": 51, "tpr": 51, "jeurec": 51, "v1y2003i1p68": 51, "html": 51, "doi": 51, "are08": 51, "cristina": 51, "american": 51, "690": 51, "712": 51, "ap91": 51, "papouli": 51, "unnikrishna": 51, "graw": 51, "ap11": 51, "orazio": 51, "nicola": 51, "1027": 51, "1068": 51, "bcz14": 51, "backu": 51, "mikhail": 51, "chernov": 51, "stanlei": 51, "zin": 51, "februari": 51, "bla": 51, "jfinan": 51, "v69y2014i1p51": 51, "bhs09": 51, "francisco": 51, "2388": 51, "2418": 51, "novemb": 51, "eee": 51, "jetheo": 51, "v144y2009i6p2388": 51, "bar79": 51, "940": 51, "971": 51, "bar99": 51, "democraci": 51, "s6": 51, "s158": 51, "s183": 51, "bm03": 51, "rachel": 51, "religion": 51, "bureau": 51, "begs17": 51, "anmol": 51, "golosov": 51, "617": 51, "663": 51, "bcg18": 51, "alberto": 51, "gian": 51, "piero": 51, "nyu": 51, "eui": 51, "bl92": 51, "fischer": 51, "litterman": 51, "analyst": 51, "buc04": 51, "jame": 51, "springer": 51, "verlag": 51, "york": 51, "cag56": 51, "philip": 51, "hyperinfl": 51, "friedman": 51, "univers": 51, "chicago": 51, "press": 51, "cal78": 51, "1411": 51, "1428": 51, "cr83": 51, "gari": 51, "michael": 51, "1281": 51, "1304": 51, "ecm": 51, "emetrp": 51, "v51y1983i5p1281": 51, "304": 51, "cha98": 51, "431": 51, "461": 51, "ck90": 51, "varadarajan": 51, "patrick": 51, "802": 51, "coa37": 51, "harri": 51, "economica": 51, "386": 51, "405": 51, "coc05": 51, "revis": 51, "edit": 51, "princeton": 51, "jersei": 51, "cc08": 51, "dj92": 51, "raymond": 51, "chaotic": 51, "chao": 51, "308": 51, "329": 51, "dic75": 51, "fienberg": 51, "zellner": 51, "515": 51, "554": 51, "amsterdam": 51, "dvgc99": 51, "jbr": 51, "jc": 51, "geromel": 51, "olv": 51, "costa": 51, "311": 51, "fri56": 51, "gal37": 51, "vol": 51, "offic": 51, "washington": 51, "gs89": 51, "itzhak": 51, "maxmin": 51, "apr": 51, "hal78": 51, "life": 51, "987": 51, "hs08a": 51, "han12": 51, "911": 51, "967": 51, "v80y2012i3p911": 51, "3982": 51, "ecta8070": 51, "hj91": 51, "262": 51, "april": 51, "ucp": 51, "jpolec": 51, "v99y1991i2p225": 51, "1086": 51, "261749": 51, "hr87": 51, "testabl": 51, "587": 51, "613": 51, "hs80": 51, "hs00": 51, "stanford": 51, "hs08b": 51, "hs01": 51, "hs13": 51, "hs24": 51, "hst99": 51, "907": 51, "oup": 51, "restud": 51, "v66y1999i4p873": 51, "hk79": 51, "multiperiod": 51, "408": 51, "june": 51, "v20y1979i3p381": 51, "hk85": 51, "elhanan": 51, "paul": 51, "mit": 51, "cambridg": 51, "hll96": 51, "criteria": 51, "hn97": 51, "hugo": 51, "juan": 51, "pablo": 51, "412": 51, "438": 51, "v105y1997i2p412": 51, "262078": 51, "hr93": 51, "turnov": 51, "938": 51, "jac73": 51, "ieee": 51, "jud98": 51, "scientif": 51, "jud85": 51, "patent": 51, "567": 51, "jyc03": 51, "sevin": 51, "supergam": 51, "71": 51, "1239": 51, "v71y2003i4p1239": 51, "kas00": 51, "726": 51, "756": 51, "kns18": 51, "tomoo": 51, "kazuo": 51, "nishimura": 51, "stachurski": 51, "729": 51, "760": 51, "kni21": 51, "frank": 51, "houghton": 51, "mifflin": 51, "kre81": 51, "mateco": 51, "v8y1981i1p15": 51, "kp80": 51, "finn": 51, "lm94": 51, "fractal": 51, "lea78": 51, "hoc": 51, "nonexperiment": 51, "volum": 51, "wilei": 51, "son": 51, "lwy13": 51, "shu": 51, "chun": 51, "1115": 51, "1145": 51, "ls18": 51, "luc87": 51, "oxford": 51, "blackwel": 51, "luc78": 51, "1429": 51, "1445": 51, "ls83": 51, "93": 51, "mmr06": 51, "fabio": 51, "massimo": 51, "marinacci": 51, "aldo": 51, "rustichini": 51, "1147": 51, "1498": 51, "mt09": 51, "mf02": 51, "mario": 51, "mm58": 51, "franco": 51, "modigliani": 51, "merton": 51, "miller": 51, "xlviii": 51, "297": 51, "mut60": 51, "290": 51, "299": 51, "306": 51, "orf88": 51, "sophocl": 51, "mcgraw": 51, "publish": 51, "pcl86": 51, "joseph": 51, "curri": 51, "levin": 51, "ps05": 51, "497": 51, "v8y2005i2p480": 51, "1016": 51, "put05": 51, "martin": 51, "ram27": 51, "61": 51, "rel75": 51, "83": 51, "1113": 51, "1144": 51, "rom05": 51, "steven": 51, "rms94": 51, "sherwin": 51, "kevin": 51, "jose": 51, "ros78": 51, "453": 51, "juli": 51, "jnlbu": 51, "v51y1978i3p453": 51, "ros76": 51, "341": 51, "360": 51, "decemb": 51, "v13y1976i3p341": 51, "roz67": 51, "holden": 51, "san": 51, "rus96": 51, "619": 51, "rr04": 51, "jaewoo": 51, "s110": 51, "s140": 51, "shr91": 51, "westview": 51, "sar77": 51, "sar87": 51, "academ": 51, "sar91": 51, "245": 51, "sw49": 51, "warren": 51, "illinoi": 51, "urbana": 51, "sw79": 51, "shavel": 51, "laurenc": 51, "weiss": 51, "1347": 51, "1362": 51, "shi95": 51, "sin87": 51, "dispar": 51, "trader": 51, "barnett": 51, "apprroach": 51, "slp89": 51, "harvard": 51, "sto89": 51, "reput": 51, "134": 51, "sto91": 51, "627": 51, "octob": 51, "sw09": 51, "noah": 51, "dsge": 51, "klau": 51, "schmidt": 51, "hebbel": 51, "carl": 51, "walsh": 51, "norman": 51, "loayza": 51, "bank": 51, "077": 51, "chile": 51, "sw": 51, "eo": 51, "feder": 51, "loui": 51, "275": 51, "293": 51, "tal00": 51, "tow83": 51, "546": 51, "588": 51, "whi63": 51, "univ": 51, "whi81": 51, "764": 51, "777": 51, "whi83": 51, "minnesota": 51, "minneapoli": 51, "whi90": 51}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"irrelev": 0, "capit": [0, 1, 18], "structur": [0, 1, 6, 8, 10, 11, 23, 28, 42], "complet": [0, 42, 43], "market": [0, 1, 6, 25, 42, 43], "introduct": [0, 1, 7, 11, 28], "setup": [0, 1, 18, 32, 39], "endow": [0, 1, 25], "technolog": [0, 12, 25, 29, 41], "prefer": [0, 1, 12, 22, 25, 36, 41], "parameter": [0, 1], "pareto": 0, "criterion": 0, "plan": [0, 10, 11, 13, 19, 23], "problem": [0, 1, 3, 13, 14, 15, 19, 23, 28, 29, 30, 32, 36, 39, 40, 46, 47, 50], "help": 0, "observ": [0, 28, 35], "bookkeep": 0, "remark": [0, 4, 28], "competit": [0, 3, 13, 14, 25, 36], "equilibrium": [0, 1, 3, 6, 10, 13, 14, 16, 19, 25, 28, 29, 32, 36, 39, 40], "measur": [0, 1, 3, 20, 22, 34, 37], "agent": [0, 1, 26, 39, 40], "firm": [0, 1, 16, 19, 25, 34], "ownership": [0, 1], "asset": [0, 1, 6, 8, 25, 26, 31, 32], "object": [0, 11, 14, 22], "appear": 0, "A": [0, 1, 2, 9, 10, 11, 13, 16, 18, 20, 23, 25, 28, 29, 30, 32, 35, 36, 39, 41, 42, 47, 48], "repres": [0, 25, 28], "s": [0, 1, 6, 10, 13, 14, 16, 19, 40, 46, 50], "consum": [0, 1, 32], "comput": [0, 6, 7, 16, 17, 19, 28, 29, 32, 39, 40, 44, 50], "price": [0, 1, 8, 19, 22, 25, 26, 31, 32, 34, 36], "quantiti": [0, 19, 40], "modigliani": [0, 1], "miller": [0, 1], "theorem": [0, 1, 37], "code": [0, 1, 2, 3, 4, 5, 18, 24, 29, 42, 43], "exampl": [0, 1, 3, 4, 7, 10, 15, 18, 20, 23, 27, 29, 30, 32, 33, 36, 43, 44, 47], "1st": 0, "2nd": 0, "incomplet": [1, 42, 43], "feasibl": [1, 29], "risk": [1, 3, 5, 6, 8, 22, 26, 37, 42, 48], "share": 1, "motiv": 1, "function": [1, 2, 7, 10, 18, 22, 25, 28, 32], "optim": [1, 3, 10, 18, 25, 29, 35, 36, 50], "verif": 1, "pseudo": 1, "first": [1, 5, 36], "equiti": 1, "bond": [1, 47], "comment": [1, 19, 29, 36], "anoth": [1, 14, 17, 48], "economi": [1, 3, 4, 5, 23, 25, 26, 29], "pictur": 1, "worth": 1, "thousand": 1, "word": 1, "addit": [2, 30], "multipl": [2, 10, 26], "overview": [2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 25, 29, 30, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 50], "particular": 2, "linear": [2, 7, 15, 23, 25, 26, 30, 33, 37, 39, 42, 46, 47, 48], "state": [2, 3, 17, 18, 22, 28, 29, 35, 36, 42, 43, 44], "space": [2, 17, 35, 42], "represent": [2, 7, 8, 10, 17, 18, 19, 25, 30, 35, 48], "dynam": [2, 10, 18, 19, 23, 25, 26, 32, 33, 39, 44, 47, 48], "simul": [2, 4, 5, 17, 31, 34], "plot": 2, "decomposit": [2, 25, 37], "associ": [2, 17], "peculiar": 2, "larg": 2, "sampl": [2, 9], "properti": [2, 20, 44], "more": [2, 5, 11, 19, 23, 25, 33, 40, 43], "about": [2, 4, 5], "martingal": [2, 3, 29], "again": 2, "path": [2, 22], "likelihood": [2, 25], "ratio": [2, 8, 50], "process": [2, 7, 17, 20, 35, 42], "taxat": [3, 29, 36], "without": 3, "conting": [3, 36, 43], "debt": [3, 4, 5, 6, 36, 42, 43], "distort": [3, 36], "tax": [3, 36, 43], "free": [3, 42], "One": [3, 17, 28, 36, 41, 42, 47], "period": [3, 13, 25, 36, 42, 47], "onli": [3, 42], "comparison": [3, 10, 13, 18, 28], "luca": [3, 4, 31, 32], "stokei": [3, 4], "ramsei": [3, 10, 11, 14, 29, 36], "lagrangian": [3, 25], "formul": [3, 15, 18, 19, 25, 36], "some": [3, 11, 14, 35, 39], "calcul": [3, 13, 14, 17, 19, 21], "recurs": [3, 10, 19, 25, 36], "version": [3, 36, 42], "amss": 3, "model": [3, 4, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28, 29, 32, 34, 38, 39, 40, 41, 42, 43, 46, 47, 50], "recast": 3, "variabl": [3, 11, 20, 28, 29, 36, 43], "constraint": [3, 22, 29, 32, 36], "two": [3, 9, 11, 17, 18, 19, 28, 36, 40, 47], "bellman": [3, 14, 18, 19, 36, 40], "equat": [3, 4, 8, 14, 18, 19, 31, 33, 36, 37, 40, 44], "superced": 3, "degeneraci": [3, 36], "absenc": 3, "digress": [3, 10, 22], "non": [3, 17, 24, 25, 36], "neg": 3, "transfer": 3, "anticip": [3, 36], "war": [3, 36, 46, 47, 48], "perpetu": 3, "alert": 3, "fluctuat": [4, 6], "interest": [4, 36, 46], "rate": [4, 5, 10, 36, 46], "deliv": 4, "fiscal": [4, 5], "insur": [4, 50], "forc": 4, "work": 4, "logic": 4, "flow": [4, 25], "lectur": [4, 18, 42, 43], "from": [4, 10], "1983": 4, "specif": [4, 22, 36, 47], "crra": [4, 36], "util": [4, 22, 36], "revers": [4, 35], "engin": [4, 25, 35], "strategi": 4, "short": 4, "initi": 4, "long": [4, 5], "beg": 4, "approxim": [4, 5, 11], "limit": [4, 30], "converg": [4, 5, 18], "asymptot": [4, 5], "mean": [4, 5, 8, 9], "formula": [4, 20, 33], "detail": [4, 9, 19, 25, 36, 39, 50], "govern": [5, 6, 10, 13, 14, 29, 36], "The": [5, 11, 12, 13, 14, 16, 18, 21, 28, 29, 32, 36, 37, 38, 40, 42, 44], "second": [5, 19], "moment": [5, 22], "advanc": [5, 26], "topic": 5, "chicken": 5, "egg": 5, "ergod": 5, "step": [5, 14, 28, 32], "execut": [5, 45], "1": [5, 6, 7, 8, 10, 15, 16, 19, 21, 23, 27, 28, 29, 32, 33, 34, 37, 40, 42, 43, 44, 46], "2": [5, 7, 8, 10, 15, 16, 21, 23, 27, 28, 33, 37, 40, 42, 43, 44, 47], "note": [5, 10, 28], "run": 5, "3": [5, 8, 23, 27, 28, 37, 43, 44, 48], "4": [5, 8, 28, 43], "6": 5, "default": 6, "incom": [6, 17, 25, 38, 42], "output": 6, "consumpt": [6, 17, 22, 27, 42, 43], "financi": [6, 17], "decis": [6, 10], "reenter": 6, "intern": 6, "credit": 6, "definit": [6, 7, 16, 18, 25, 37, 44], "result": [6, 44], "exercis": [6, 8, 15, 16, 18, 21, 29, 30, 32, 34, 37, 44], "solut": [6, 8, 16, 18, 21, 29, 32, 34, 36, 37, 38, 39, 44], "13": 6, "covari": [7, 25, 28], "stationari": [7, 28, 44], "arma": 7, "spectral": [7, 25], "analysi": [7, 14], "other": [7, 25, 26, 28, 29, 40, 42], "read": [7, 18, 37], "white": 7, "nois": 7, "gener": [7, 22, 25], "wold": [7, 25], "ar": [7, 21, 35], "ma": [7, 35], "complex": 7, "number": 7, "densiti": [7, 44], "interpret": [7, 9, 16, 19, 21, 42, 50], "invert": [7, 17, 24], "transform": [7, 30], "mathemat": [7, 8, 20, 25], "theori": [7, 8, 9, 16, 20, 25, 30, 32], "implement": [7, 8, 11, 15, 16, 29, 30, 36, 39, 40, 44], "applic": [7, 17, 33, 37, 39, 40, 47, 48], "explan": [7, 19, 43], "autocovari": 7, "elementari": 8, "kei": [8, 28, 34, 37, 39, 42], "implic": 8, "expect": [8, 22, 35], "return": [8, 43], "beta": 8, "varianc": [8, 9], "frontier": 8, "sharp": 8, "multi": 8, "factor": [8, 25], "empir": 8, "35": 8, "5": [8, 28, 43], "modif": 9, "portfolio": 9, "choic": [9, 25], "estim": [9, 21, 35], "black": 9, "litterman": 9, "start": [9, 37], "point": [9, 16, 32], "ad": 9, "view": 9, "bayesian": [9, 22], "curv": [9, 22, 25], "decolletag": 9, "recommend": 9, "regular": 9, "robust": [9, 20, 26, 39, 40], "control": [9, 15, 20, 26, 30, 46, 47], "oper": [9, 14, 18], "appendix": [9, 18, 40, 44], "special": [9, 36], "case": [9, 29, 37, 39, 40, 44], "iid": 9, "depend": 9, "frequenc": [9, 20], "time": [10, 13, 19, 26, 34, 36, 46], "inconsist": [10, 19, 36], "sustain": [10, 13], "compon": [10, 11], "friedman": [10, 35], "deflat": [10, 22], "calvo": 10, "perturb": 10, "intertempor": [10, 36], "four": 10, "protocol": [10, 13], "planner": [10, 14], "subproblem": [10, 19], "timeless": 10, "perspect": 10, "role": 10, "theta_t": [10, 28], "constrain": 10, "constant": 10, "growth": [10, 18, 23], "markov": [10, 19, 29, 33, 39, 42, 43, 44, 46, 47, 48], "perfect": [10, 19, 28, 39], "outcom": [10, 19, 25, 40, 42, 50], "under": [10, 25, 28, 39, 50], "three": 10, "valu": [10, 11, 13, 14, 18, 19, 40, 50], "implaus": 10, "strike": 10, "back": 10, "fourth": 10, "make": 10, "temptat": 10, "deviat": 10, "credibl": [10, 13], "abreu": 10, "self": 10, "enforc": 10, "carrot": 10, "stick": 10, "whose": 10, "program": [10, 18, 19, 25, 26, 32, 33, 47, 48], "squar": [10, 26, 37], "machin": 11, "learn": 11, "paramet": [11, 39, 43, 50], "basic": [11, 22, 32, 39, 44], "gradient": 11, "algorithm": [11, 18, 50], "restrict": 11, "mu_t": 11, "bar": 11, "mu": 11, "all": [11, 14, 28], "t": [11, 28], "ml": 11, "exploratori": 11, "regress": [11, 28, 37], "continu": [11, 14, 20, 29, 36, 43, 44, 50], "what": 11, "ha": 11, "taught": 11, "us": [11, 14, 28, 31, 33, 35, 38, 40], "cattl": [12, 25], "cycl": [12, 25, 34], "map": [12, 37, 41, 47], "hs2013": [12, 41], "framework": [12, 41], "inform": [12, 16, 17, 20, 25, 41, 50], "polici": [13, 18, 40], "chang": [13, 14, 41], "set": [13, 14, 21, 25, 28, 32, 40], "household": [13, 14, 25, 29], "within": 13, "promis": [13, 14], "pair": [13, 14, 18], "equilibria": [14, 16, 39], "inventori": 14, "plai": 14, "notat": 14, "ce": 14, "solv": [14, 18, 28, 32, 40, 46], "next": [14, 32], "classic": [15, 30], "predict": [15, 20, 25], "filter": [15, 17, 21, 28], "With": 15, "algebra": [15, 30, 37], "refer": [15, 18, 30, 40, 51], "finit": [15, 29, 30, 42, 43], "dimension": 15, "combin": 15, "infinit": [15, 30, 39], "horizon": [15, 30, 39], "coas": 16, "why": [16, 22], "exist": 16, "trade": 16, "off": 16, "summari": [16, 42], "quantit": [16, 26], "subcontract": 16, "cost": [16, 25, 27], "formal": [16, 18], "uniqu": 16, "fix": [16, 32, 49], "method": [16, 18, 30], "margin": 16, "condit": [16, 20, 23, 28, 36], "15": 16, "smooth": [17, 21, 36, 42, 43], "same": 17, "differ": [17, 44, 47], "nonfinanci": 17, "kalman": 17, "new": [17, 28, 34], "shock": [17, 24, 25, 28, 39], "less": 17, "epsilon_t": 17, "term": [17, 29, 30], "futur": 17, "y_t": 17, "a_t": 17, "perman": [17, 25, 38], "innov": [17, 34, 35], "wai": 17, "issu": [17, 49], "discret": [18, 29], "how": [18, 46, 47, 48], "thi": 18, "dp": 18, "principl": 18, "iter": 18, "modifi": [18, 39], "defin": 18, "discretedp": 18, "instanc": 18, "action": 18, "speed": 18, "replic": 18, "figur": 18, "stock": 18, "stackelberg": 19, "duopoli": [19, 39], "leader": 19, "follow": 19, "statement": 19, "block": 19, "mechan": 19, "prepar": 19, "consist": [19, 39], "seri": [19, 26, 34], "align": 19, "compar": [19, 22, 39], "etymolog": 20, "entropi": [20, 22], "unpredict": 20, "independ": [20, 37], "maximum": 20, "thermodynam": 20, "statist": [20, 22, 45], "diverg": 20, "distribut": [20, 44], "rel": 20, "gaussian": [20, 43], "von": 20, "neumann": 20, "backu": 20, "chernov": 20, "zin": 20, "wiener": 20, "kolmogorov": 20, "error": [20, 28], "multivari": 20, "domain": 20, "random": 20, "spectra": 21, "periodogram": 21, "pre": 21, "29": 21, "uncertainti": [22, 25, 26], "five": 22, "multipli": [22, 36], "sensit": [22, 23], "ex": 22, "post": 22, "avers": 22, "misspecif": 22, "indiffer": 22, "equival": 22, "iso": 22, "expans": 22, "bound": [22, 40], "detect": 22, "axiomat": 22, "justif": 22, "common": [23, 28], "hall": [23, 27], "1978": [23, 27], "alter": 23, "jone": 23, "manuelli": 23, "1990": 23, "vari": [23, 46], "impati": 23, "suit": 25, "forecast": [25, 28], "econometr": 25, "stochast": [25, 28, 40, 44], "orthogon": [25, 37], "tast": 25, "product": 25, "singl": [25, 30], "adjust": [25, 27], "resourc": 25, "alloc": [25, 36], "infrastructur": 25, "type": 25, "i": 25, "ii": [25, 32], "re": 25, "open": 25, "ident": 25, "vector": 25, "autoregress": 25, "demand": [25, 41], "canon": 25, "gorman": 25, "aggreg": 25, "engel": 25, "attain": 25, "partial": 25, "invest": 25, "rosen": [25, 41], "topel": 25, "hous": 25, "occup": [25, 41], "pai": [25, 46, 47, 48], "skill": 25, "unskil": 25, "worker": 25, "heterogen": [25, 39], "econom": 26, "python": [26, 46, 50], "tool": 26, "techniqu": 26, "lq": [26, 29, 33, 47], "financ": [26, 46], "irf": 27, "higher": 27, "durabl": 27, "good": 27, "know": 28, "sequenc": [28, 36], "tactic": 28, "foresight": 28, "noisi": 28, "signal": 28, "reconstruct": 28, "guess": 28, "verifi": 28, "tild": 28, "lambda": 28, "p": 28, "system": [28, 36, 37], "quantecon": 28, "linearstatespac": 28, "impuls": 28, "respons": 28, "matric": 28, "popul": 28, "an": [28, 29, 30, 32, 37, 43, 44, 47, 49], "benchmark": 28, "histori": [28, 43], "further": [28, 36, 37], "histor": 28, "featur": 29, "exogen": 29, "budget": 29, "quadrat": [29, 33, 46, 47, 48], "12": 29, "matrix": [30, 37], "lag": 30, "altern": 30, "undiscount": 30, "discount": 30, "dle": [31, 38], "tree": 32, "up": 32, "littl": 32, "34": 32, "jump": [33, 46, 47, 48], "review": 33, "link": [33, 43], "riccati": 33, "global": 34, "background": [34, 42], "idea": 34, "synchron": 34, "varieti": 34, "law": 34, "motion": 34, "basin": 34, "attract": 34, "14": 34, "la": 35, "muth": 35, "1956": 35, "1960": 35, "which": 35, "adapt": 35, "math": 35, "unobserv": 35, "relationship": [35, 42], "arrow": 36, "debreu": 36, "primal": 36, "approach": 36, "given": 36, "determin": 36, "lagrang": 36, "deleg": 36, "order": 36, "manifest": 36, "save": 36, "0": 36, "manipul": 36, "project": 37, "Their": 37, "vs": 37, "proof": 37, "suffici": 37, "complement": 37, "orthonorm": 37, "basi": 37, "onto": 37, "via": 37, "overdetermin": 37, "least": 37, "gram": 37, "schmidt": 37, "qr": 37, "class": [38, 46], "coupl": 39, "regul": 39, "insight": 39, "worst": [39, 40], "check": 39, "baselin": 39, "transit": 39, "belief": 39, "impli": 40, "Of": 40, "inspir": 40, "video": 40, "construct": 40, "analyz": 40, "person": 40, "zero": 40, "sum": 40, "game": 40, "lower": 40, "upper": 40, "reshap": 40, "nash": 40, "school": 41, "effect": 41, "educ": 41, "graph": 42, "sequel": 42, "isomorph": 43, "between": 43, "revisit": 43, "relabel": 43, "creat": 43, "chain": [43, 44], "relat": 43, "connect": 44, "beyond": 44, "stabil": 44, "theoret": 44, "part": [46, 47, 48], "reader": 46, "guid": 46, "public": 46, "question": 46, "barro": 46, "1979": 46, "No": 47, "restructur": 47, "penalti": 47, "issuanc": 47, "across": 47, "matur": 47, "roll": 48, "over": 48, "dead": 48, "end": 48, "better": 48, "troubleshoot": 49, "your": 49, "local": 49, "environ": 49, "report": 49, "unemploy": 50, "shavel": 50, "weiss": 50, "autarki": 50, "full": 50, "incent": 50, "privat": 50, "replac": 50}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9, "sphinx": 56}})
\ No newline at end of file
+Search.setIndex({"docnames": ["BCG_complete_mkts", "BCG_incomplete_mkts", "additive_functionals", "amss", "amss2", "amss3", "arellano", "arma", "asset_pricing_lph", "black_litterman", "calvo", "calvo_machine_learn", "cattle_cycles", "chang_credible", "chang_ramsey", "classical_filtering", "coase", "cons_news", "discrete_dp", "dyn_stack", "entropy", "estspec", "five_preferences", "growth_in_dles", "hs_invertibility_example", "hs_recursive_models", "intro", "irfs_in_hall_model", "knowing_forecasts_of_others", "lqramsey", "lu_tricks", "lucas_asset_pricing_dles", "lucas_model", "markov_jump_lq", "matsuyama", "muth_kalman", "opt_tax_recur", "orth_proj", "permanent_income_dles", "rob_markov_perf", "robustness", "rosen_schooling_model", "smoothing", "smoothing_tax", "stationary_densities", "status", "tax_smoothing_1", "tax_smoothing_2", "tax_smoothing_3", "troubleshooting", "un_insure", "zreferences"], "filenames": ["BCG_complete_mkts.md", "BCG_incomplete_mkts.md", "additive_functionals.md", "amss.md", "amss2.md", "amss3.md", "arellano.md", "arma.md", "asset_pricing_lph.md", "black_litterman.md", "calvo.md", "calvo_machine_learn.md", "cattle_cycles.md", "chang_credible.md", "chang_ramsey.md", "classical_filtering.md", "coase.md", "cons_news.md", "discrete_dp.md", "dyn_stack.md", "entropy.md", "estspec.md", "five_preferences.md", "growth_in_dles.md", "hs_invertibility_example.md", "hs_recursive_models.md", "intro.md", "irfs_in_hall_model.md", "knowing_forecasts_of_others.md", "lqramsey.md", "lu_tricks.md", "lucas_asset_pricing_dles.md", "lucas_model.md", "markov_jump_lq.md", "matsuyama.md", "muth_kalman.md", "opt_tax_recur.md", "orth_proj.md", "permanent_income_dles.md", "rob_markov_perf.md", "robustness.md", "rosen_schooling_model.md", "smoothing.md", "smoothing_tax.md", "stationary_densities.md", "status.md", "tax_smoothing_1.md", "tax_smoothing_2.md", "tax_smoothing_3.md", "troubleshooting.md", "un_insure.md", "zreferences.md"], "titles": ["37. Irrelevance of Capital Structures with Complete Markets", "38. Equilibrium Capital Structures with Incomplete Markets", "30. Additive and Multiplicative Functionals", "44. Optimal Taxation without State-Contingent Debt", "45. Fluctuating Interest Rates Deliver Fiscal Insurance", "46. Fiscal Risk and Government Debt", "13. Default Risk and Income Fluctuations", "28. Covariance Stationary Processes", "35. Elementary Asset Pricing Theory", "36. Two Modifications of Mean-Variance Portfolio Theory", "42. Ramsey Plans, Time Inconsistency, Sustainable Plans", "41. Machine Learning a Ramsey Plan", "22. Cattle Cycles", "48. Credible Government Policies in a Model of Chang", "47. Competitive Equilibria of a Model of Chang", "32. Classical Prediction and Filtering With Linear Algebra", "15. Coase\u2019s Theory of the Firm", "5. Information and Consumption Smoothing", "4. Discrete State Dynamic Programming", "40. Stackelberg Plans", "25. Etymology of Entropy", "29. Estimation of Spectra", "24. Risk and Model Uncertainty", "17. Growth in Dynamic Linear Economies", "23. Shock Non Invertibility", "16. Recursive Models of Dynamic Linear Economies", "Advanced Quantitative Economics with Python", "19. IRFs in Hall Models", "33. Knowing the Forecasts of Others", "12. Optimal Taxation in an LQ Economy", "31. Classical Control with Linear Algebra", "18. Lucas Asset Pricing Using DLE", "34. Asset Pricing II: The Lucas Asset Pricing Model", "8. Markov Jump Linear Quadratic Dynamic Programming", "14. Globalization and Cycles", "3. Reverse Engineering a la Muth", "43. Optimal Taxation with State-Contingent Debt", "1. Orthogonal Projections and Their Applications", "20. Permanent Income Model using the DLE Class", "27. Robust Markov Perfect Equilibrium", "26. Robustness", "21. Rosen Schooling Model", "6. Consumption Smoothing with Complete and Incomplete Markets", "7. Tax Smoothing with Complete and Incomplete Markets", "2. Continuous State Markov Chains", "51. Execution Statistics", "9. How to Pay for a War: Part 1", "10. How to Pay for a War: Part 2", "11. How to Pay for a War: Part 3", "49. Troubleshooting", "39. Optimal Unemployment Insurance", "50. References"], "terms": {"In": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 51], "addit": [0, 1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "what": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "anaconda": [0, 1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49], "thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], "lectur": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50], "need": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 18, 19, 20, 21, 23, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 41, 44, 46, 47, 49], "follow": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50], "librari": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49], "pip": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49], "instal": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49], "upgrad": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49], "quantecon": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 25, 27, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50], "conda": [0, 1, 28], "y": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 25, 28, 30, 32, 34, 35, 37, 38, 40, 42, 43, 44, 50, 51], "c": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51], "plotli": [0, 1, 28], "orca": [0, 1, 28], "collect": [0, 1, 3, 10, 11, 12, 13, 14, 22, 28, 29, 34, 41, 43, 46, 47, 48], "download": [0, 3, 11, 13], "0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50], "7": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51], "2": [0, 1, 2, 3, 4, 6, 9, 11, 12, 13, 14, 17, 18, 19, 20, 22, 24, 25, 26, 29, 30, 31, 32, 34, 35, 36, 38, 39, 41, 45, 46, 48, 50, 51], "py3": [0, 3, 11, 13, 37], "none": [0, 1, 2, 3, 4, 5, 6, 7, 11, 13, 15, 22, 24, 27, 30, 33, 34, 36, 43, 46], "ani": [0, 1, 2, 3, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 25, 30, 32, 35, 36, 37, 40, 44, 48, 50], "whl": [0, 3, 11, 13], "metadata": [0, 1, 3, 11, 13, 28], "4": [0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 46, 47, 48, 50, 51], "9": [0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50], "kb": [0, 3, 11, 13, 40], "requir": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "alreadi": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "satisfi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "numba": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "49": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], "home": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "runner": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "miniconda3": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "env": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "lib": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "python3": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "11": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50], "site": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "packag": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "from": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51], "59": [0, 1, 2, 3, 15, 30, 45, 51], "numpi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "1": [0, 1, 2, 3, 4, 9, 11, 12, 13, 14, 17, 18, 20, 22, 24, 25, 26, 30, 31, 35, 36, 38, 39, 41, 45, 47, 48, 50, 51], "17": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 17, 18, 19, 21, 23, 24, 27, 28, 29, 30, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], "26": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51], "request": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "31": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 24, 27, 28, 29, 30, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], "scipi": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "5": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 50, 51], "sympi": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "12": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51], "llvmlite": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "43": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51], "42": [0, 1, 2, 3, 5, 6, 10, 14, 22, 45], "0dev0": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "charset": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "normal": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51], "idna": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "3": [0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 45, 46, 47, 50, 51], "urllib3": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "21": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 15, 17, 18, 19, 21, 23, 24, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], "certifi": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "2017": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51], "2024": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51], "mpmath": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "19": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], "215": 0, "25l": [0, 3, 11, 13], "90m": [0, 3, 11, 13], "0m": [0, 3, 11, 13], "32m0": [0, 3, 11, 13], "31m": [0, 3, 11, 13], "eta": [0, 3, 11, 13, 15, 22, 40, 50], "36m": [0, 3, 11, 13], "2k": [0, 3, 11, 13, 37], "32m215": 0, "31m9": [0, 3], "mb": [0, 3, 11, 13], "36m0": [0, 3, 11, 13], "00": [0, 3, 5, 8, 11, 13, 15, 18, 19, 45], "25h": [0, 3, 11, 13], "successfulli": [0, 3, 4, 11, 13, 22], "channel": [0, 1, 28], "default": [0, 1, 10, 11, 15, 16, 18, 22, 26, 27, 28, 30, 39, 42, 43, 46, 50, 51], "platform": [0, 1, 21, 28], "linux": [0, 1, 28, 45], "64": [0, 1, 3, 16, 28], "repodata": [0, 1, 28], "json": [0, 1, 28], "done": [0, 1, 2, 13, 16, 20, 28, 40, 50], "solv": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 17, 19, 22, 23, 25, 29, 30, 33, 34, 36, 37, 38, 39, 42, 43, 47, 50], "environ": [0, 1, 13, 27, 28, 31], "locat": [0, 22, 44], "ad": [0, 1, 7, 10, 16, 23, 39, 40, 44, 51], "updat": [0, 1, 4, 6, 7, 9, 10, 11, 13, 14, 19, 22, 32, 39, 44, 49, 50], "spec": 0, "The": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 15, 17, 19, 20, 22, 23, 24, 25, 26, 27, 30, 31, 33, 34, 35, 39, 41, 43, 46, 47, 48, 49, 50, 51], "build": [0, 2, 7, 9, 10, 12, 13, 14, 19, 22, 25, 28, 32, 34, 41], "56": [0, 8, 51], "6": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 22, 23, 24, 28, 29, 30, 32, 34, 36, 37, 39, 40, 42, 43, 44, 45, 50, 51], "total": [0, 3, 4, 11, 12, 13, 14, 16, 19, 25, 28, 34, 37, 39, 43, 46, 47], "new": [0, 1, 6, 7, 13, 14, 18, 22, 23, 24, 25, 36, 41, 44, 47, 51], "extract": [0, 6, 14, 16, 28, 29, 35, 39, 40, 51], "100": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 22, 27, 30, 31, 32, 33, 36, 38, 40, 44, 46, 47, 50], "prepar": [0, 11, 12, 13, 14, 25, 29, 36, 39], "transact": [0, 16, 25, 51], "verifi": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 16, 17, 19, 20, 21, 22, 25, 29, 37, 40, 42], "execut": [0, 13, 26, 49, 50], "prolegomenon": 0, "anoth": [0, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 18, 19, 21, 22, 23, 24, 25, 27, 28, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 49, 50], "incomplet": [0, 3, 4, 5, 8, 25, 26, 28, 51], "about": [0, 1, 3, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 25, 28, 31, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 49, 50], "model": [0, 1, 2, 5, 6, 7, 15, 20, 21, 23, 30, 31, 33, 35, 36, 44, 48, 51], "author": [0, 1, 7, 10, 36, 44], "bisin": [0, 1, 51], "clementi": [0, 1, 51], "gottardi": [0, 1, 51], "et": [0, 1, 3, 4, 5, 12, 13, 14, 16, 17, 18, 20, 22, 24, 25, 28, 33, 36, 44], "al": [0, 1, 3, 4, 5, 12, 13, 14, 16, 17, 18, 20, 22, 24, 25, 28, 33, 36, 44], "2018": [0, 1, 7, 8, 10, 14, 16, 18, 19, 44, 50, 51], "we": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50], "adopt": [0, 1, 3, 13, 14, 29, 36, 39, 40, 47], "specif": [0, 1, 2, 7, 8, 9, 13, 14, 16, 19, 24, 25, 27, 28, 29, 39, 40, 41, 42, 43, 44, 45, 48, 49, 51], "veri": [0, 1, 5, 6, 7, 9, 11, 12, 14, 18, 21, 23, 24, 32, 33, 38, 40, 44], "close": [0, 2, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 33, 37, 39, 40, 42, 43, 44], "clement": [0, 1], "unlik": [0, 36, 44], "them": [0, 1, 2, 5, 6, 7, 9, 10, 11, 14, 16, 17, 19, 22, 23, 24, 25, 27, 28, 35, 36, 39, 42, 43, 44, 47, 50], "assum": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 23, 25, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44, 46, 47, 49, 50], "ar": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50], "one": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50], "period": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 22, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 43, 44, 46, 48, 50], "arrow": [0, 1, 3, 25, 29, 42, 43], "secur": [0, 1, 3, 9, 20, 29, 36, 42, 43, 51], "simplif": [0, 13, 25], "bcg": [0, 1], "us": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 34, 36, 37, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], "creat": [0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 22, 23, 25, 27, 28, 30, 34, 35, 36, 37, 39, 41, 42, 44, 46, 47, 50], "benchmark": [0, 9, 18, 40, 50], "economi": [0, 6, 10, 11, 12, 14, 16, 24, 27, 31, 32, 34, 35, 36, 38, 41, 42, 43, 46, 51], "compar": [0, 1, 2, 3, 8, 10, 11, 15, 17, 18, 20, 21, 25, 28, 31, 36, 40, 42, 44], "outcom": [0, 1, 3, 4, 5, 6, 9, 11, 13, 14, 17, 18, 20, 21, 22, 23, 28, 35, 36, 39, 43, 47, 48], "good": [0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 14, 16, 18, 19, 21, 22, 23, 25, 28, 29, 30, 31, 32, 34, 36, 37, 39, 41, 42, 43, 44, 46, 47, 48, 50], "guess": [0, 1, 3, 5, 6, 10, 11, 13, 14, 22, 25, 32, 36, 40, 42, 50], "initi": [0, 1, 2, 3, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 25, 27, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 50], "valu": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 51], "some": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 18, 19, 21, 22, 25, 28, 29, 30, 32, 33, 34, 36, 37, 40, 42, 43, 44, 46, 47, 48, 50], "via": [0, 5, 6, 7, 10, 11, 13, 14, 16, 17, 18, 19, 21, 25, 29, 30, 32, 34, 36, 39, 43, 44], "an": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 46, 48, 50, 51], "iter": [0, 1, 3, 4, 5, 6, 11, 13, 14, 16, 19, 25, 32, 34, 36, 39, 44, 46, 50, 51], "algorithm": [0, 1, 2, 5, 6, 13, 14, 16, 19, 21, 22, 25, 36, 37], "illustr": [0, 1, 2, 7, 8, 9, 10, 11, 13, 16, 17, 20, 23, 24, 25, 27, 28, 30, 32, 33, 34, 36, 37, 39, 43, 44], "classic": [0, 9, 17, 20, 25, 26, 33, 35, 36, 39, 44, 46, 47, 48], "includ": [0, 1, 2, 5, 6, 7, 10, 11, 12, 15, 16, 18, 23, 25, 28, 30, 36, 37, 38, 40, 41, 42, 43, 47], "indeterminaci": 0, "portfolio": [0, 1, 4, 5, 6, 8, 26, 29, 43, 46, 51], "choic": [0, 1, 4, 5, 6, 10, 11, 13, 14, 15, 16, 18, 19, 21, 22, 23, 27, 31, 32, 33, 35, 36, 39, 40, 42, 44, 46, 50], "financi": [0, 1, 7, 24, 42, 48, 51], "underli": [0, 2, 4, 9, 10, 11, 15, 21, 25, 42, 46], "1958": [0, 1, 51], "introduc": [0, 2, 4, 5, 6, 9, 10, 13, 14, 15, 16, 17, 21, 25, 32, 34, 44, 47, 48], "big": [0, 1, 2, 7, 9, 10, 16, 17, 19, 28, 34], "k": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 25, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 51], "littl": [0, 1, 7, 10, 11, 16, 17, 19, 23, 28, 39, 42], "issu": [0, 1, 3, 4, 16, 21, 24, 29, 36, 42, 44, 46, 47, 48, 51], "simpl": [0, 1, 2, 3, 6, 7, 8, 14, 15, 16, 17, 18, 21, 22, 25, 30, 36, 37, 39, 43, 44, 46, 47, 51], "context": [0, 8, 15, 19, 22, 37, 40], "recur": 0, "analysi": [0, 1, 4, 9, 13, 16, 17, 20, 21, 24, 25, 35, 36, 40, 44, 51], "also": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50], "plai": [0, 1, 4, 7, 8, 9, 10, 11, 13, 17, 19, 20, 25, 28, 40, 44], "role": [0, 1, 4, 7, 8, 9, 11, 16, 17, 19, 20, 22, 25, 28, 33, 40, 44, 51], "well": [0, 1, 2, 3, 4, 6, 7, 10, 11, 12, 16, 17, 18, 19, 21, 22, 28, 30, 31, 36, 37, 39, 40, 42, 44, 47, 50], "here": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 46, 47, 49, 50], "last": [0, 1, 2, 4, 5, 7, 11, 14, 15, 22, 29, 32, 42, 47, 50], "two": [0, 1, 2, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 38, 39, 42, 43, 46, 49, 50], "t": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51], "There": [0, 1, 3, 4, 6, 10, 11, 16, 21, 22, 25, 29, 30, 32, 34, 36, 50], "type": [0, 1, 2, 3, 5, 6, 11, 13, 14, 15, 16, 17, 18, 21, 22, 29, 34, 35, 39, 42, 43], "name": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 14, 15, 17, 18, 19, 22, 25, 28, 29, 30, 33, 38, 39, 42, 43], "i": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51], "scalar": [0, 1, 2, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 23, 28, 29, 30, 33, 34, 35, 37, 39, 40, 44, 47], "random": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 17, 18, 21, 22, 23, 24, 25, 27, 28, 29, 30, 33, 35, 36, 39, 40, 42, 43, 44, 46, 51], "variabl": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17, 18, 19, 22, 23, 25, 27, 30, 32, 33, 35, 38, 39, 42, 44, 46, 47, 48, 50, 51], "epsilon": [0, 1, 4, 5, 8, 9, 13, 14, 17, 18, 20, 28], "probabl": [0, 1, 2, 3, 6, 8, 9, 18, 20, 22, 25, 29, 34, 36, 37, 40, 42, 43, 44, 47, 50, 51], "densiti": [0, 1, 2, 3, 6, 9, 20, 21, 22, 25, 29, 36, 40], "g": [0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 25, 28, 29, 32, 35, 36, 38, 39, 43, 44, 46, 47, 48, 51], "affect": [0, 1, 6, 9, 10, 14, 17, 20, 22, 25, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46], "both": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 50], "return": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 42, 44, 47, 50], "invest": [0, 1, 18, 23, 27, 33, 51], "geq": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 30, 31, 32, 34, 36, 37, 38, 39, 40, 42, 43, 44, 50], "physic": [0, 1, 19, 20, 23, 25, 41], "exogen": [0, 1, 4, 6, 10, 12, 13, 14, 19, 23, 25, 32, 34, 36, 38, 42, 43, 44, 46, 47, 48], "consumpt": [0, 1, 3, 4, 8, 12, 13, 14, 18, 23, 24, 25, 26, 29, 31, 32, 36, 38, 46, 47, 48, 50, 51], "correl": [0, 1, 8, 11, 28, 31, 32], "differ": [0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 25, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 46, 50], "wai": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 25, 28, 29, 30, 32, 33, 35, 36, 38, 39, 40, 43, 44, 46, 48, 49, 50], "discuss": [0, 1, 3, 5, 7, 8, 10, 13, 14, 15, 16, 17, 18, 21, 22, 24, 25, 28, 29, 30, 32, 34, 36, 39, 40, 42, 44], "arrang": [0, 28, 30, 50], "command": [0, 49], "which": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 50], "benevol": [0, 6, 10, 11, 13, 14, 25, 29], "planner": [0, 3, 4, 5, 11, 12, 13, 25, 29, 36, 50], "choos": [0, 1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 25, 27, 29, 30, 34, 36, 37, 38, 39, 40, 42, 46, 47, 48, 50], "alloc": [0, 1, 2, 3, 4, 5, 6, 13, 14, 16, 22, 23, 29, 34, 43], "each": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50], "second": [0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 20, 21, 22, 23, 25, 28, 29, 34, 36, 38, 39, 42, 44, 46, 47, 48, 49, 50], "state": [0, 1, 4, 5, 6, 7, 10, 11, 12, 13, 14, 16, 19, 20, 23, 25, 26, 27, 30, 31, 32, 33, 37, 38, 39, 40, 46, 47, 48, 50, 51], "claim": [0, 1, 4, 6, 10, 17, 19, 20, 25, 28, 29, 31, 32, 37, 40, 42, 43], "set": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27, 29, 30, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50], "possibl": [0, 2, 3, 5, 7, 10, 13, 14, 17, 18, 20, 21, 22, 23, 25, 28, 29, 33, 34, 36, 39, 40, 42, 43, 44, 46, 47, 49, 50], "continuum": [0, 28, 42, 44], "pai": [0, 1, 3, 4, 6, 7, 14, 16, 17, 26, 31, 32, 33, 36, 42, 43, 50], "conting": [0, 4, 5, 6, 10, 14, 15, 25, 26, 29, 42, 47, 51], "realiz": [0, 2, 3, 4, 6, 7, 9, 13, 14, 15, 17, 21, 25, 28, 30, 31, 33, 36, 42], "singl": [0, 3, 4, 8, 10, 11, 14, 16, 17, 18, 19, 21, 22, 27, 28, 29, 32, 34, 35, 36, 40, 42, 43, 44, 50], "wide": [0, 1, 8, 9, 15, 28, 37, 39], "begin": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "align": [0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 17, 20, 22, 25, 28, 30, 32, 33, 34, 35, 36, 37, 38, 40, 42, 43, 47, 50], "w_0": [0, 1, 13, 25, 28], "cr": [0, 1, 4, 5, 8, 9, 10, 11, 17, 19, 20, 22, 28, 30, 35, 36, 38, 42, 43, 47, 50], "w_1": [0, 1, 25, 39], "textrm": [0, 1, 20, 22, 30, 40, 44, 47], "end": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 50], "soon": [0, 3, 19, 22, 34, 36, 40, 50], "ll": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 19, 20, 22, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50], "explain": [0, 5, 6, 8, 20, 21, 24, 32, 34, 37, 40, 46, 48, 51], "how": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 49, 50], "aggreg": [0, 1, 28], "divid": [0, 1, 3, 4, 5, 8, 20, 22, 29, 36], "between": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 42, 44, 50], "don": [0, 1, 11, 34, 37, 40, 49], "do": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 21, 23, 24, 25, 28, 30, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 49, 50, 51], "order": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 38, 39, 42, 46, 47, 48, 50], "describ": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "social": [0, 10, 11, 25, 50], "where": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50], "alpha": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 18, 21, 22, 25, 29, 30, 32, 34, 36, 37, 38, 39, 40, 42, 43, 44], "c_0": [0, 1, 3, 4, 13, 14, 15, 19, 25, 29, 30, 36, 50], "c_1": [0, 1, 15, 19, 22, 30, 47, 50], "e": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 40, 41, 42, 43, 44, 47, 50, 51], "quad": [0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 33, 34, 36, 37, 39, 40, 42, 43, 44, 47], "i_1": [0, 1], "u": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 18, 19, 22, 25, 30, 32, 33, 36, 37, 38, 40, 42, 44, 46, 47, 48, 50], "beta": [0, 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "int": [0, 1, 4, 5, 6, 9, 20, 29, 32, 34, 39, 40, 42, 43, 44], "d": [0, 1, 2, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 22, 25, 28, 29, 30, 33, 34, 38, 39, 40, 42, 43, 44, 46, 51], "util": [0, 1, 3, 5, 6, 8, 9, 10, 11, 13, 14, 15, 17, 18, 25, 29, 32, 38, 42, 43, 50, 51], "function": [0, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 50, 51], "case": [0, 1, 2, 3, 4, 5, 7, 8, 12, 13, 15, 18, 21, 22, 25, 28, 30, 33, 34, 36, 42, 43, 46], "frac": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44], "gamma": [0, 1, 3, 4, 5, 7, 8, 9, 12, 14, 17, 19, 20, 21, 23, 24, 25, 30, 32, 36, 38, 39, 40, 42, 43, 44], "neq": [0, 1, 9, 10, 11, 13, 15, 17, 19, 36, 39], "log": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 18, 20, 22, 25, 36, 50], "shall": [0, 1, 3, 4, 8, 9, 10, 11, 14, 15, 17, 19, 22, 23, 25, 28, 30, 33, 35, 36, 38, 42, 50], "emploi": [0, 1, 10, 14, 16, 17, 19, 34, 39, 50], "sim": [0, 1, 2, 4, 8, 9, 18, 19, 22, 25, 28, 33, 35, 36, 40, 42, 44, 46, 47, 48], "mathcal": [0, 1, 2, 4, 5, 8, 9, 13, 14, 16, 20, 22, 25, 28, 35, 37, 39, 40], "n": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 25, 28, 29, 30, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 51], "mu": [0, 1, 3, 7, 8, 9, 10, 13, 14, 21, 22, 25, 29, 42, 44], "sigma": [0, 1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 18, 19, 20, 25, 32, 33, 34, 36, 38, 42, 44, 46, 47], "chi_i": [0, 1], "sometim": [0, 1, 8, 9, 15, 17, 20, 25, 29, 32, 36, 37, 50], "instead": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 15, 22, 25, 28, 30, 32, 34, 36, 37, 40, 42, 44, 48, 49], "asum": [0, 1], "cdot": [0, 1, 2, 7, 8, 9, 10, 11, 13, 14, 18, 23, 24, 25, 30, 37, 41, 42, 43, 44, 47], "mass": [0, 1, 2, 18, 32, 34, 44], "serv": [0, 1, 10, 19], "discret": [0, 1, 6, 7, 9, 14, 19, 20, 21, 22, 26, 28, 30, 32, 33, 34, 39, 44, 47, 51], "approxim": [0, 1, 7, 8, 9, 13, 14, 15, 18, 19, 21, 22, 28, 30, 32, 37, 40, 44, 50], "standard": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 25, 28, 29, 30, 32, 36, 37, 39, 40, 43, 44, 46, 47, 48], "obj": [0, 22, 36], "phi_1": [0, 2, 7, 23, 24, 25, 27, 30, 31, 36], "phi_2": [0, 2, 7], "phi_i": [0, 12, 23, 25, 38], "weight": [0, 9, 10, 11, 12, 21, 30, 51], "attach": [0, 3, 36], "form": [0, 1, 3, 4, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 22, 23, 25, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 44, 46, 47, 50, 51], "lagrangian": [0, 1, 19, 22, 28, 29, 36, 40], "l": [0, 1, 3, 4, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 22, 24, 25, 28, 29, 30, 36, 51], "sum_": [0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "left": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 50], "right": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 50], "lambda_0": 0, "lambda_1": [0, 15, 25, 30], "first": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50], "necessari": [0, 1, 7, 9, 10, 14, 23, 25, 28, 30, 42, 50], "optim": [0, 4, 5, 6, 9, 11, 13, 14, 15, 16, 17, 19, 22, 23, 26, 28, 30, 32, 33, 34, 38, 39, 40, 42, 43, 44, 46, 51], "condit": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 25, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 42, 44, 46, 47, 50, 51], "four": [0, 2, 13, 14, 25, 34, 36, 43, 44, 48], "equat": [0, 1, 2, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 34, 38, 39, 41, 42, 43, 46, 48, 50], "impli": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 22, 24, 25, 28, 29, 30, 36, 37, 42, 43, 44, 50], "These": [0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 22, 23, 25, 27, 29, 30, 34, 35, 36, 37, 39, 40, 42, 43, 45], "togeth": [0, 1, 2, 7, 8, 9, 11, 13, 14, 16, 19, 21, 28, 30, 33, 36, 50], "fifth": 0, "determin": [0, 1, 4, 6, 7, 8, 9, 10, 11, 12, 14, 16, 21, 22, 25, 28, 30, 32, 33, 34, 40, 41, 42, 43, 46, 47, 50, 51], "evid": [0, 1, 3, 7, 8, 9, 10, 11, 13, 14, 17, 19, 20, 22, 25, 30, 33, 36, 37, 39, 42, 46, 47, 50, 51], "understood": [0, 4, 7, 13, 16, 36, 40, 44], "hold": [0, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 25, 29, 30, 32, 37, 40, 43, 46, 48], "1_0": [0, 1], "2_0": [0, 1, 25, 30], "all": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 13, 15, 16, 17, 18, 19, 20, 21, 22, 25, 29, 30, 32, 34, 36, 37, 38, 39, 40, 42, 43, 44, 47, 48, 50], "With": [0, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 21, 22, 25, 26, 28, 29, 30, 33, 34, 35, 36, 40, 42, 43, 44, 47, 48, 50], "same": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 15, 16, 18, 19, 21, 22, 25, 28, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 47, 48], "understand": [0, 1, 2, 4, 10, 11, 12, 15, 19, 22, 25, 32, 34, 36, 40, 42], "let": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 50], "It": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 33, 34, 36, 37, 41, 42, 43, 44, 46, 47, 50], "preced": [0, 5, 7, 10, 13, 17, 18, 21, 22, 28, 32, 33, 34, 36, 37, 40, 42, 44, 50], "consequ": [0, 1, 2, 3, 6, 8, 10, 11, 13, 14, 15, 17, 25, 27, 28, 32, 33, 36, 38, 40, 41, 46, 47, 48, 50], "can": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50], "write": [0, 2, 3, 5, 6, 8, 9, 10, 11, 15, 16, 17, 18, 19, 21, 23, 25, 28, 29, 30, 32, 33, 34, 37, 39, 40, 42, 44, 46, 47, 50], "anticip": [0, 1, 6, 10, 11, 14, 17, 40], "idea": [0, 1, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 21, 22, 24, 25, 30, 31, 32, 33, 35, 36, 37, 39, 40, 44, 46, 48, 51], "macroeconom": [0, 8, 19, 21, 33, 51], "detail": [0, 1, 2, 5, 6, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 27, 29, 31, 34, 37, 38, 40, 41, 43, 44, 49], "below": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50], "so": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], "associ": [0, 1, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 25, 27, 28, 29, 30, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 50, 51], "share": [0, 9, 23, 28, 32, 33, 34, 36, 39, 47, 51], "paramet": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 35, 37, 38, 40, 42, 44, 46, 47, 48], "mention": [0, 2, 32, 46], "abov": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 50], "curvatur": [0, 22], "rel": [0, 6, 7, 8, 9, 10, 15, 16, 21, 22, 28, 29, 31, 32, 34, 36, 37, 39, 40, 44, 50], "doe": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 19, 21, 22, 23, 24, 27, 28, 30, 34, 36, 38, 39, 40, 44, 46, 50], "37": [0, 19, 36, 45, 51], "neither": [0, 1, 10, 25, 27, 35, 42], "influenc": [0, 1, 5, 10, 13, 14, 18, 19, 25, 28, 30, 36, 39], "depend": [0, 1, 3, 4, 5, 6, 7, 10, 12, 13, 14, 15, 19, 20, 22, 24, 25, 28, 29, 30, 32, 33, 34, 35, 36, 39, 40, 42, 44, 46, 47, 50], "sole": [0, 17, 33], "thu": [0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 28, 29, 30, 32, 33, 34, 36, 39, 42, 43, 44, 46, 47, 48, 50], "interact": [0, 1, 6, 9, 28, 34], "want": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 28, 29, 30, 32, 34, 35, 36, 37, 39, 40, 41, 42, 44, 46, 47, 48, 50, 51], "now": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "ha": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 46, 47, 48, 50], "ident": [0, 2, 3, 4, 5, 6, 9, 10, 15, 16, 17, 19, 20, 22, 28, 30, 32, 36, 38, 39, 40], "those": [0, 1, 3, 4, 7, 8, 10, 11, 12, 13, 14, 15, 18, 19, 21, 22, 24, 28, 29, 30, 34, 35, 36, 39, 40, 43, 44, 46, 47, 48], "while": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30, 32, 34, 36, 37, 39, 40, 42, 43, 46, 47, 48, 50], "onli": [0, 1, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 36, 37, 39, 40, 43, 44, 46, 47, 48, 50], "import": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "To": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "relat": [0, 1, 4, 5, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 27, 29, 30, 32, 35, 36, 40, 42, 46, 47, 50, 51], "turn": [0, 1, 3, 4, 6, 7, 9, 10, 17, 18, 19, 21, 22, 25, 28, 29, 32, 36, 40, 41, 42, 43, 44], "distinct": [0, 1, 7, 11, 15, 24, 30], "unit": [0, 1, 2, 3, 6, 7, 13, 14, 15, 16, 20, 21, 22, 23, 25, 27, 29, 30, 31, 32, 34, 36, 37, 42, 43, 44, 50, 51], "access": [0, 1, 3, 6, 17, 48, 50], "product": [0, 1, 7, 12, 13, 14, 15, 16, 22, 27, 28, 30, 32, 33, 34, 36, 37, 40, 44, 51], "convert": [0, 1, 7, 18, 29, 30, 32, 43, 44], "time": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 50, 51], "omega": [0, 1, 7, 10, 13, 14, 19, 20, 21, 25, 28, 34], "index": [0, 1, 4, 5, 6, 7, 8, 9, 10, 16, 18, 19, 22, 25, 28, 29, 34, 36, 40, 42, 43], "particular": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 42, 43, 44, 46, 47, 50], "Then": [0, 1, 2, 3, 4, 8, 9, 10, 11, 13, 14, 15, 19, 20, 22, 25, 28, 30, 35, 36, 37, 43, 47], "defin": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 50], "int_0": [0, 1, 7, 28], "spirit": [0, 1, 10, 13, 19, 25, 29, 42, 46, 47], "zeta": [0, 1, 9, 20], "assumpt": [0, 1, 2, 3, 7, 8, 10, 11, 13, 14, 21, 25, 28, 29, 30, 32, 34, 36, 39, 40, 42, 43, 47, 49, 50], "continua": 0, "our": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 49, 50], "three": [0, 1, 3, 5, 6, 11, 12, 13, 17, 18, 21, 22, 23, 25, 27, 28, 36, 39, 40, 41, 43, 44, 47, 50], "make": [0, 1, 2, 3, 4, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 30, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 47, 48, 50], "individu": [0, 1, 2, 3, 9, 25, 44, 50], "powerless": [0, 1], "taker": [0, 1, 14, 16, 25, 28, 36], "its": [0, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 30, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44], "own": [0, 1, 15, 16, 18, 25, 28, 32, 44], "infinesim": 0, "part": [0, 1, 2, 3, 4, 7, 8, 13, 14, 15, 16, 17, 19, 21, 25, 26, 28, 30, 32, 33, 36, 38, 40, 41, 43, 44], "take": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 50], "given": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 25, 28, 29, 30, 32, 33, 34, 37, 38, 39, 40, 42, 43, 44, 47, 50], "infinitesmim": [0, 1], "nevertheless": [0, 2, 5, 10, 11, 15, 16, 28], "power": [0, 1, 4, 5, 11, 15, 16, 18, 25, 29, 34], "devic": [0, 1, 10, 19], "host": [0, 1], "independ": [0, 1, 2, 3, 5, 9, 25, 28, 29, 33, 36, 44], "decis": [0, 1, 9, 11, 13, 15, 16, 17, 18, 19, 20, 22, 25, 28, 32, 33, 38, 39, 40, 42, 43, 46, 47, 51], "who": [0, 1, 3, 7, 9, 10, 12, 16, 17, 19, 22, 24, 25, 29, 34, 36, 40, 42, 43, 50], "behav": [0, 2, 3, 12, 16, 17, 33, 42], "just": [0, 1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 21, 22, 23, 24, 25, 28, 30, 32, 34, 35, 37, 39, 40, 44, 50], "like": [0, 1, 2, 3, 4, 7, 8, 9, 10, 16, 19, 24, 25, 28, 33, 34, 35, 36, 40, 42, 43, 44, 47, 48, 49], "thei": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 16, 17, 18, 20, 22, 25, 28, 30, 33, 34, 36, 37, 39, 42, 44, 47], "sum_i": [0, 20, 22, 37], "oper": [0, 6, 7, 13, 15, 16, 17, 19, 22, 25, 28, 29, 30, 32, 35, 37, 39, 40, 44, 50], "nonneg": [0, 3, 4, 13, 14, 16, 20, 21, 22, 44], "amount": [0, 3, 4, 7, 9, 17, 18, 19, 21, 23, 25, 29, 34, 37, 40, 42, 43, 48], "produc": [0, 9, 14, 16, 19, 23, 25, 28, 29, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44], "theta_0": [0, 10, 11, 13, 14, 36], "At": [0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 13, 14, 16, 22, 36, 40, 42, 50], "trade": [0, 1, 3, 4, 6, 9, 13, 14, 18, 25, 32, 34, 36, 42, 43, 46, 47, 51], "other": [0, 1, 3, 4, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 30, 32, 33, 34, 36, 37, 38, 39, 41, 43, 44, 46, 47, 48, 50, 51], "equiti": 0, "known": [0, 3, 8, 9, 10, 13, 15, 17, 18, 21, 22, 25, 29, 30, 32, 36, 37, 40, 44, 46], "stock": [0, 10, 11, 12, 23, 25, 27, 28, 41], "when": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50], "shock": [0, 1, 2, 3, 4, 6, 8, 12, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 36, 40, 41, 42, 44, 47], "later": [0, 2, 5, 10, 12, 14, 19, 25, 28, 30, 35, 36, 39, 43, 44, 46, 50], "allow": [0, 2, 3, 5, 6, 7, 9, 10, 12, 13, 14, 18, 19, 22, 25, 27, 28, 29, 30, 34, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50], "bond": [0, 3, 4, 6, 17, 29, 31, 36, 42, 43, 46], "too": [0, 1, 2, 7, 16, 21, 25, 28, 29, 40, 48], "purchas": [0, 1, 3, 4, 6, 14, 16, 29, 32, 36, 42, 43, 46, 47, 48], "q": [0, 1, 6, 7, 8, 10, 11, 13, 14, 18, 19, 20, 22, 25, 28, 29, 33, 36, 37, 39, 40, 42, 43, 46, 47, 48], "kernel": [0, 6, 42, 44], "intial": [0, 3, 22, 36], "theta": [0, 1, 6, 7, 9, 10, 11, 13, 14, 15, 20, 22, 25, 28, 34, 36, 37, 40, 43, 44, 50], "fraction": [0, 1, 17, 30], "v": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 25, 28, 29, 30, 32, 36, 42, 43, 44, 50, 51], "tild": [0, 2, 3, 9, 10, 11, 12, 13, 14, 15, 19, 22, 25, 29, 30, 36, 40, 47], "construct": [0, 2, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 28, 29, 30, 33, 35, 36, 37, 39, 42, 43, 44, 47, 48], "proce": [0, 11, 14, 15, 19, 25, 28, 40, 43, 47, 50], "constrain": [0, 11, 22, 36, 42], "optimum": [0, 1, 6, 11, 15, 19, 25, 30, 33, 51], "face": [0, 1, 3, 6, 13, 14, 16, 19, 25, 28, 30, 33, 36, 40, 42, 43, 46, 48], "financ": [0, 1, 3, 8, 10, 17, 29, 36, 51], "itself": [0, 10, 16, 17, 37, 44], "earn": [0, 3, 4, 6, 9, 19, 36, 43], "owner": 0, "multipli": [0, 3, 4, 5, 9, 13, 14, 15, 16, 19, 25, 28, 29, 39, 40, 47, 50], "over": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 22, 24, 25, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 50, 51], "maxim": [0, 1, 3, 6, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 22, 23, 25, 28, 29, 30, 32, 33, 36, 38, 39, 40, 42, 47], "side": [0, 1, 3, 4, 5, 7, 10, 15, 16, 19, 20, 22, 25, 28, 30, 32, 34, 35, 36, 39, 40, 44, 50], "equal": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 28, 29, 30, 32, 33, 34, 36, 40, 42, 43, 44, 46, 47, 50], "minu": [0, 5, 8, 20, 22, 39, 43], "cost": [0, 4, 6, 7, 9, 10, 11, 12, 13, 14, 19, 22, 23, 28, 30, 33, 34, 36, 39, 40, 42, 47, 48, 50, 51], "pose": [0, 1, 10, 12, 14, 15, 28, 36], "As": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 22, 25, 27, 28, 30, 32, 33, 34, 36, 39, 40, 42, 43, 44, 46, 47, 48, 50], "chosen": [0, 1, 2, 6, 7, 9, 10, 11, 14, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 34, 36, 38, 40, 46, 47, 48, 50], "prospect": [0, 1, 3, 22, 32, 50], "next": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 48, 50], "dividend": [0, 2, 25, 32], "If": [0, 1, 2, 3, 6, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 22, 25, 27, 28, 29, 30, 32, 34, 36, 37, 39, 40, 42, 44, 46, 47, 49, 50], "evalu": [0, 1, 3, 4, 7, 10, 15, 16, 17, 18, 22, 29, 30, 34, 36, 40, 50, 51], "budget": [0, 1, 3, 4, 5, 6, 13, 14, 22, 24, 25, 36, 38, 42, 43, 46, 47, 48, 51], "constraint": [0, 1, 4, 5, 6, 9, 10, 11, 13, 14, 17, 18, 19, 23, 25, 38, 40, 42, 43, 46, 47, 48, 50], "zero": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 25, 27, 28, 29, 30, 33, 34, 36, 37, 38, 39, 41, 42, 43, 46, 47, 48, 50], "obtain": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 30, 32, 33, 34, 36, 37, 40, 42, 43, 44, 50], "bar": [0, 2, 4, 6, 9, 10, 13, 14, 15, 18, 21, 22, 25, 29, 30, 31, 42, 43, 46, 47, 50], "maximum": [0, 1, 6, 8, 9, 10, 11, 13, 14, 19, 21, 22, 29, 30, 34, 39, 40, 47, 50], "feasibl": [0, 4, 10, 16, 18, 19, 36, 42], "repai": [0, 6, 42], "hi": [0, 8, 9, 10, 11, 16, 17, 19, 22, 28, 35, 39, 40, 42, 43, 46, 47, 48, 50], "creditor": [0, 6], "notic": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 15, 17, 18, 20, 22, 28, 30, 33, 36, 37, 39, 40, 42, 43, 44, 50], "represent": [0, 4, 11, 13, 14, 15, 20, 22, 24, 28, 36, 38, 44, 51], "constitut": [0, 9, 10, 13, 22], "sourc": [0, 3, 12, 14, 17, 22, 29, 30, 42, 49, 50, 51], "collater": 0, "back": [0, 3, 7, 9, 15, 22, 23, 29, 30, 32, 37, 40, 43, 50], "off": [0, 3, 5, 9, 11, 13, 14, 18, 22, 23, 25, 36, 39, 42, 43, 44], "subject": [0, 1, 3, 9, 10, 11, 12, 13, 14, 17, 19, 20, 22, 23, 25, 29, 30, 32, 33, 36, 38, 39, 40, 42, 46, 47, 48, 50], "leq": [0, 1, 3, 6, 8, 9, 10, 13, 14, 15, 16, 18, 20, 22, 25, 28, 30, 32, 34, 36, 37, 40, 42, 44, 50], "lagrang": [0, 3, 4, 19, 22, 25, 28, 29, 40, 50], "scale": [0, 1, 2, 7, 13, 14, 18, 22, 24, 25, 29, 36, 44], "corner": [0, 30], "respect": [0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 24, 25, 28, 29, 30, 32, 34, 36, 37, 39, 40, 42, 44, 50], "adjust": [0, 3, 6, 9, 10, 19, 22, 23, 28, 29, 30, 32, 33, 36, 39, 47, 48], "deduc": [0, 8, 9, 10, 19, 25, 28, 35, 37, 39, 42, 51], "restrict": [0, 1, 3, 4, 8, 10, 13, 14, 16, 19, 20, 24, 25, 29, 36, 40, 42, 50], "express": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 25, 28, 29, 30, 32, 34, 35, 36, 37, 39, 40, 42, 43, 44, 48, 50], "substitut": [0, 1, 3, 7, 8, 9, 10, 19, 22, 25, 28, 29, 30, 34, 36, 37, 39, 40, 42, 50], "rearrang": [0, 1, 8, 10, 13, 14, 19, 29, 37, 42, 43, 47], "get": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 16, 18, 19, 22, 25, 28, 29, 30, 32, 34, 38, 40, 42, 43, 44, 48, 49, 50], "intertempor": [0, 1, 8, 11, 13, 14, 30, 39, 42, 43, 46, 47, 48], "inequ": [0, 1, 7, 8, 10, 13, 14, 22, 40, 50], "present": [0, 3, 4, 5, 7, 10, 13, 15, 17, 19, 22, 24, 25, 26, 27, 28, 29, 30, 34, 36, 39, 40, 41, 42, 43, 44, 46, 50, 51], "bui": [0, 1, 42, 43], "find": [0, 1, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 18, 19, 20, 22, 23, 28, 30, 32, 34, 35, 36, 37, 39, 43, 44, 46, 47, 50], "No": [0, 11, 25, 28, 39], "arbitrag": [0, 8, 51], "profit": [0, 6, 16, 19, 34, 40, 51], "unless": [0, 18, 22, 44, 50], "opportun": [0, 6, 8, 10, 14, 42], "would": [0, 1, 3, 4, 7, 8, 9, 10, 11, 14, 15, 21, 22, 24, 25, 28, 29, 30, 34, 36, 37, 38, 39, 42, 44, 46, 48, 50], "open": [0, 2, 6, 16], "could": [0, 1, 2, 3, 4, 5, 9, 10, 11, 14, 15, 16, 17, 18, 25, 28, 30, 36, 42, 44], "afford": 0, "arbitrarili": [0, 7, 43], "high": [0, 1, 6, 8, 9, 10, 11, 13, 14, 18, 22, 24, 29, 31, 33, 34, 36, 42, 43, 46, 48, 50], "larg": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 21, 22, 28, 29, 30, 34, 36, 39, 40, 44, 46, 47, 48, 51], "neg": [0, 4, 6, 7, 8, 9, 13, 15, 16, 25, 29, 31, 40, 41, 48], "number": [0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 28, 29, 30, 33, 34, 36, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51], "posit": [0, 1, 3, 4, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 30, 34, 35, 36, 40, 41, 43, 44, 47, 48, 50], "sinc": [0, 3, 6, 7, 10, 13, 16, 18, 21, 23, 30, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 50], "resourc": [0, 3, 4, 5, 6, 32, 42], "finit": [0, 4, 7, 13, 14, 16, 18, 22, 25, 28, 33, 36, 39, 44, 46], "exist": [0, 3, 7, 8, 9, 11, 13, 14, 15, 18, 22, 25, 29, 30, 34, 37, 44], "therefor": [0, 1, 3, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 22, 23, 28, 30, 32, 36, 39, 42, 43, 46, 47, 50], "must": [0, 1, 3, 6, 8, 9, 10, 13, 14, 15, 16, 19, 22, 28, 30, 32, 34, 36, 42, 44, 46, 47, 48, 50], "true": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 42, 44], "prevail": [0, 1, 4, 5, 11, 15, 25, 28, 29, 33, 36, 40, 50], "assert": [0, 1, 8, 9, 10, 11, 17, 20, 22, 23, 28, 29, 36, 37, 40, 50], "ak": [0, 1, 35], "have": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 49, 50], "sai": [0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 22, 25, 36, 39, 40, 42, 44], "more": [0, 1, 3, 4, 6, 7, 8, 9, 10, 13, 14, 16, 17, 18, 21, 22, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 42, 44, 46, 50], "indetermin": [0, 1], "offset": [0, 10, 24], "appropri": [0, 2, 3, 5, 8, 9, 10, 13, 14, 15, 19, 20, 21, 22, 28, 29, 30, 32, 35, 42, 43, 46, 47], "schedul": [0, 6, 25, 50], "readili": [0, 4, 15], "step": [0, 1, 3, 4, 6, 7, 8, 9, 10, 13, 15, 16, 17, 18, 20, 21, 25, 29, 30, 35, 36, 40, 44, 47, 50], "see": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 50], "reli": [0, 14, 18, 30, 50], "heavili": [0, 9], "logic": [0, 1], "earlier": [0, 1, 3, 4, 5, 7, 10, 11, 13, 14, 15, 17, 20, 21, 22, 23, 25, 27, 30, 32, 36, 37, 40, 42, 47, 48, 50], "equilbrium": [0, 19], "encod": [0, 13, 28], "shadow": [0, 12, 25], "substanti": [0, 9, 13, 29, 39, 40], "procedur": [0, 1, 5, 6, 7, 9, 14, 15, 16, 29, 30, 37, 39, 40, 43, 50], "valid": [0, 3, 22, 30, 32], "hand": [0, 3, 5, 6, 7, 9, 11, 13, 15, 16, 17, 22, 25, 28, 29, 30, 32, 36, 39, 40, 42, 44, 50], "confirm": [0, 1, 4, 5, 7, 10, 13, 17, 19, 22, 23, 27, 28, 30, 38, 42], "consid": [0, 3, 6, 7, 9, 10, 13, 15, 16, 18, 20, 21, 22, 23, 24, 28, 29, 30, 34, 36, 37, 39, 40, 42, 44, 47, 48], "becom": [0, 1, 3, 4, 7, 8, 10, 11, 12, 15, 16, 19, 22, 23, 25, 27, 28, 30, 32, 33, 34, 36, 39, 40, 41, 43, 47, 48, 50], "becaus": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "8": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51], "equival": [0, 4, 5, 6, 9, 10, 11, 13, 14, 15, 17, 23, 24, 25, 28, 30, 33, 37, 40, 42, 44], "formula": [0, 3, 5, 8, 9, 10, 11, 15, 17, 22, 25, 28, 29, 30, 36, 40, 50], "portolio": 0, "directli": [0, 5, 15, 17, 22, 24, 28, 32, 36, 37, 44], "multipl": [0, 7, 9, 17, 18, 22, 25, 36], "distribut": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 17, 18, 22, 24, 25, 28, 32, 36, 37, 40, 42, 46, 49], "wealth": [0, 25, 32, 42], "you": [0, 2, 3, 6, 7, 8, 14, 16, 17, 18, 19, 21, 29, 30, 32, 34, 37, 40, 44, 49, 50], "why": [0, 3, 5, 7, 19, 21, 24, 25, 37, 40, 42, 50], "think": [0, 3, 7, 10, 11, 13, 14, 16, 18, 19, 22, 25, 28, 32, 33, 36, 39, 40, 44], "payout": [0, 8, 29, 31, 43], "b": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 51], "max": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 16, 18, 19, 22, 28, 30, 32, 33, 36, 39, 40, 50], "min": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, 22, 28, 32, 33, 34, 36, 40], "sum": [0, 3, 6, 7, 9, 10, 11, 12, 15, 17, 18, 19, 21, 22, 24, 25, 28, 29, 30, 35, 37, 42, 44, 50], "plu": [0, 5, 11, 18, 25, 28, 30, 33, 35, 42, 43, 46], "denot": [0, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 18, 19, 20, 21, 28, 29, 33, 34, 36, 37, 39, 40, 44, 46, 47, 48, 50], "p": [0, 1, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 51], "continu": [0, 3, 4, 5, 9, 10, 13, 16, 17, 18, 19, 22, 25, 26, 32, 33, 34, 39, 42, 47], "version": [0, 1, 4, 6, 9, 10, 11, 13, 14, 15, 18, 19, 22, 23, 25, 28, 29, 30, 31, 32, 33, 35, 37, 39, 43, 44, 46, 47, 49, 50], "argument": [0, 2, 3, 4, 6, 9, 10, 13, 14, 22, 28, 30, 32, 36, 39, 40, 44], "int_": [0, 1, 7, 20, 34, 42], "infti": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "celebr": [0, 8, 36], "mix": [0, 1, 9, 44], "much": [0, 5, 7, 9, 11, 16, 18, 21, 22, 25, 27, 29, 30, 33, 34, 36, 37, 40, 44, 49], "whether": [0, 1, 3, 4, 6, 10, 13, 15, 16, 19, 22, 34, 36, 40, 44, 46], "pleas": [0, 1, 3, 5, 8, 13, 19, 25, 28, 35, 36, 39, 40, 42, 43, 49], "note": [0, 1, 2, 3, 4, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 30, 34, 35, 36, 37, 39, 40, 42, 44, 46, 47, 50], "shut": [0, 4, 48], "down": [0, 2, 3, 4, 6, 8, 15, 16, 18, 23, 25, 29, 30, 31, 32, 34, 35, 36, 39, 40, 42, 46, 48], "almost": [0, 2, 3, 6, 13, 27, 30, 36, 39, 44], "That": [0, 1, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 25, 28, 30, 33, 35, 36, 43, 50], "pull": [0, 2, 8, 24, 39], "rug": 0, "underneath": 0, "class": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 47, 50], "bcg_complete_market": 0, "list": [0, 1, 6, 7, 9, 10, 15, 21, 22, 25, 29, 30, 34, 35, 36, 40, 42, 43, 46, 47, 48], "consist": [0, 1, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 25, 27, 29, 30, 33, 36, 40, 41, 44, 50, 51], "thing": [0, 1, 3, 4, 5, 6, 7, 10, 11, 15, 16, 18, 19, 20, 22, 25, 28, 30, 36, 37, 40, 41, 42, 43, 46, 49, 50], "opt_k": 0, "grid": [0, 1, 3, 4, 5, 6, 9, 14, 16, 18, 22, 29, 30, 32, 36, 40, 50], "opt_c": 0, "i_0": [0, 1, 21, 25, 47], "chi_1": [0, 1], "chi_2": [0, 1], "w": [0, 1, 3, 7, 9, 13, 14, 15, 18, 19, 20, 21, 22, 25, 28, 29, 30, 33, 36, 39, 40, 46, 47, 48, 50, 51], "psi": [0, 1, 13, 14, 25, 34, 40, 43, 44], "crra": [0, 8, 22, 32], "risk": [0, 4, 9, 17, 20, 29, 31, 32, 36, 38, 43, 46, 47, 51], "mean": [0, 1, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 42, 43, 44, 46, 48, 50, 51], "deviat": [0, 1, 2, 6, 7, 8, 9, 11, 13, 16, 22, 28, 30, 40], "025": [0, 1, 6, 11], "discount": [0, 1, 4, 5, 6, 8, 10, 11, 13, 15, 16, 17, 18, 19, 20, 25, 28, 29, 32, 33, 36, 38, 39, 40, 41, 42, 43, 46, 47, 48, 50, 51], "factor": [0, 1, 4, 5, 6, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 28, 29, 30, 32, 33, 36, 37, 38, 39, 42, 43, 46, 47, 48, 50, 51], "96": [0, 1, 19, 39, 42, 43, 45], "nb_points_integ": 0, "point": [0, 1, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 18, 19, 21, 22, 23, 25, 28, 30, 33, 36, 37, 40, 44, 50], "integr": [0, 1, 7, 16, 25, 32, 34, 44], "through": [0, 1, 2, 4, 6, 9, 10, 13, 14, 16, 18, 19, 21, 22, 25, 29, 32, 33, 34, 36, 37, 40, 42, 45, 47, 49, 50], "gauss": 0, "hermit": 0, "quadratur": [0, 6], "10": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 47, 50, 51], "np": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "matplotlib": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "pyplot": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "plt": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "stat": [0, 1, 2, 9, 15, 22, 30, 32, 44], "norm": [0, 2, 7, 9, 11, 13, 14, 18, 22, 34, 44], "njit": [0, 1, 3, 6, 22, 32, 36], "prang": [0, 3, 6, 32, 36], "root_find": 0, "init": [0, 1, 3, 6, 11, 18, 29, 42, 43], "method": [0, 1, 2, 5, 6, 7, 8, 10, 11, 13, 14, 15, 19, 21, 22, 25, 28, 32, 33, 35, 37, 38, 40, 42, 44, 45, 46, 47, 48, 50, 51], "constructor": [0, 1], "def": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 21, 22, 29, 30, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 47, 50], "__init__": [0, 1, 2, 3, 4, 5, 6, 10, 11, 13, 14, 15, 16, 18, 30, 32, 34, 36, 40, 42, 43, 50], "self": [0, 1, 2, 3, 4, 5, 6, 7, 11, 13, 14, 15, 16, 18, 25, 30, 32, 34, 36, 40, 42, 43, 50], "\ud835\udf121": [0, 1], "\ud835\udf122": [0, 1], "w10": [0, 1], "w20": [0, 1], "\ud835\udf0310": [0, 1], "\ud835\udf0320": [0, 1], "\ud835\udf13": [0, 1], "\ud835\udefc": [0, 1], "\ud835\udf07": [0, 1], "\ud835\udf0e": [0, 1], "\ud835\udefd": [0, 1], "lambda": [0, 1, 2, 4, 5, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 25, 27, 29, 30, 32, 33, 38, 41, 43, 50], "f": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 25, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 46, 50, 51], "\ud835\udf16": [0, 1], "exp": [0, 1, 2, 6, 8, 9, 16, 20, 21, 22, 32, 44, 50], "w0": [0, 1], "w11": [0, 1], "w21": [0, 1], "w1": [0, 1, 19, 39, 46, 47], "pdf": [0, 1, 2, 9, 22, 44], "x": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 20, 21, 22, 25, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "loc": [0, 1, 2, 6, 7, 10, 18, 19, 21, 22, 29, 32, 39, 40, 44], "polynomi": [0, 2, 7, 13, 14, 15, 19, 25, 28, 30, 37, 50], "hermgauss": 0, "points_integr": 0, "sqrt": [0, 2, 7, 8, 9, 12, 13, 14, 15, 19, 24, 25, 28, 29, 30, 32, 34, 37, 39, 44], "k_foc": 0, "k_foc_factori": 0, "plot": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "fals": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 18, 19, 21, 22, 29, 34], "kgrid": [0, 1], "linspac": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 21, 22, 30, 32, 33, 34, 36, 40, 44, 50], "1e": [0, 1, 2, 3, 4, 5, 6, 11, 13, 14, 16, 17, 18, 19, 22, 23, 24, 27, 28, 31, 32, 34, 36, 38, 39, 40, 41, 46, 47, 48, 50], "fonc": [0, 1, 25], "kfoc_list": 0, "kfoc": [0, 1], "append": [0, 1, 2, 4, 5, 6, 9, 10, 11, 16, 18, 40], "fig": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 47, 48], "ax": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 21, 22, 29, 30, 32, 33, 34, 35, 36, 39, 40, 42, 43, 44, 47, 50], "subplot": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 21, 22, 24, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50], "figsiz": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 18, 19, 21, 22, 24, 29, 30, 32, 34, 36, 38, 39, 41, 42, 43, 44, 47, 48, 50], "color": [0, 1, 2, 6, 10, 11, 17, 18, 22, 25, 33, 34, 38, 40, 42, 43, 44, 50], "blue": [0, 1, 4, 8, 10, 13, 22, 25, 33, 40, 43, 50], "label": [0, 1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 27, 29, 30, 31, 32, 33, 34, 35, 38, 39, 41, 42, 43, 44, 50], "r": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 25, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51], "axhlin": [0, 2, 9, 10, 11, 42, 43], "red": [0, 1, 3, 5, 13, 22, 33, 36, 40, 44, 50, 51], "linestyl": [0, 1, 2, 7, 10, 11, 42], "legend": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 21, 22, 23, 24, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 50], "set_xlabel": [0, 1, 6, 7, 9, 10, 13, 14, 18, 19, 21, 22, 29, 32, 33, 35, 36, 40, 42, 43, 44, 47, 48], "show": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "kk": [0, 1], "newton_sec": 0, "arg": [0, 1, 3, 4, 5, 18, 22, 36, 50], "root": [0, 3, 4, 5, 7, 13, 14, 15, 22, 23, 28, 30, 34, 36, 42, 43], "fk": [0, 1], "integ": [0, 5, 11, 17, 21], "pi": [0, 2, 3, 4, 5, 7, 12, 13, 14, 15, 20, 21, 22, 23, 25, 27, 29, 30, 32, 33, 36, 38, 41, 44, 46, 47, 48], "ratio": [0, 9, 20, 22, 29], "\ud835\udf02": 0, "c1": [0, 4, 11, 13, 14, 18, 36, 43, 47], "denom": [0, 15, 30], "w11q": 0, "num": [0, 22], "c10": [0, 1], "c20": [0, 1], "c11": [0, 1], "c21": [0, 1], "integrand": 0, "int_k": 0, "mul": 0, "val": [0, 6, 7, 10, 21, 33, 34, 51], "provid": [0, 1, 4, 5, 7, 8, 11, 13, 14, 18, 21, 22, 25, 28, 29, 30, 32, 33, 37, 40, 44, 47, 49, 50], "bcg_complet": 0, "up": [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 16, 18, 19, 22, 23, 25, 28, 29, 31, 34, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50], "instanc": [0, 1, 2, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 19, 22, 23, 25, 28, 31, 32, 35, 36, 38, 41, 42, 43, 44, 45, 46, 50], "either": [0, 1, 6, 7, 8, 9, 10, 11, 15, 18, 21, 22, 27, 30, 32, 36, 44, 49, 50], "mdl1": 0, "mdl2": 0, "incom": [0, 3, 4, 13, 14, 15, 24, 26, 29, 35, 36, 43, 46, 51], "alter": [0, 1, 3, 10, 22, 28, 36, 39, 47], "figur": [0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 14, 16, 19, 21, 22, 24, 28, 29, 32, 33, 34, 36, 37, 38, 40, 41, 43, 44, 50], "hh": [0, 34], "innov": [0, 24, 25, 27, 28], "epsgrid": 0, "1000": [0, 2, 3, 4, 5, 9, 10, 11, 16, 19, 39, 40, 44, 46], "14": [0, 2, 3, 4, 7, 10, 11, 14, 15, 16, 18, 22, 28, 29, 30, 33, 36, 40, 42, 43, 44, 45, 50], "black": [0, 3, 5, 10, 13, 14, 22, 36, 44, 51], "set_xlim": [0, 6, 10, 12, 16, 18, 21, 22, 40, 44], "set_ylim": [0, 6, 10, 16, 18, 22, 42, 43, 44], "fontsiz": [0, 1, 2, 9, 10, 11, 13, 14, 16, 22, 34, 44, 50], "set_titl": [0, 1, 2, 6, 9, 10, 12, 18, 19, 21, 22, 24, 33, 34, 35, 36, 41, 42, 43, 44, 47, 48], "print": [0, 1, 2, 3, 4, 5, 6, 11, 13, 14, 15, 16, 18, 19, 23, 27, 28, 29, 33, 35, 39, 40, 43, 50, 51], "kk_1": 0, "kk_2": 0, "5f": [0, 1], "format": [0, 1, 13, 14, 18, 22, 28, 29], "c20_1": 0, "c20_2": 0, "14235": 0, "13791": 0, "90205": 0, "92862": 0, "3d": [0, 1, 33], "http": [0, 20, 51], "com": 0, "python": [0, 1, 5, 7, 10, 11, 13, 14, 17, 23, 25, 28, 29, 33, 42, 43, 49], "start": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 27, 29, 30, 32, 33, 34, 36, 39, 40, 42, 43, 44, 46, 47, 48, 50], "further": [0, 7, 8, 11, 13, 14, 15, 16, 25, 27, 29, 30, 32, 34, 46, 50], "instruct": [0, 4, 13, 15, 36, 43, 49, 50], "mesh": 0, "\ud835\udf12": 0, "30": [0, 1, 2, 3, 9, 13, 14, 18, 22, 23, 24, 27, 31, 36, 41, 44, 45], "\ud835\udf121grid": 0, "\ud835\udf122grid": 0, "meshgrid": [0, 1, 9, 22], "zeros_lik": [0, 1, 2, 3], "parallel": [0, 3, 6, 30, 32, 36, 44], "fill_k_grid": 0, "loop": [0, 1, 6, 10, 11, 18, 19, 22, 33, 39], "j": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 47, 50, 51], "x1": [0, 11, 17], "x2": [0, 11, 17, 28], "cpu": [0, 3, 11], "user": [0, 3, 7, 11], "sy": [0, 3, 11, 29], "103": [0, 1, 51], "ms": [0, 11, 18, 19, 30], "69": [0, 3, 7, 10, 36, 45, 51], "wall": [0, 3, 11], "run": [0, 1, 2, 4, 6, 8, 9, 11, 16, 17, 18, 21, 28, 33, 44, 45, 49], "52": [0, 10, 45, 50], "382": [0, 14], "\u00b5s": [0, 18], "15": [0, 2, 5, 7, 8, 9, 10, 11, 12, 14, 15, 21, 22, 23, 27, 28, 29, 30, 34, 36, 39, 40, 42, 44, 51], "ipython": [0, 1, 10, 18, 28], "displai": [0, 1, 2, 4, 5, 8, 10, 19, 20, 21, 22, 24, 28, 31, 34, 35, 39, 43], "imag": [0, 1, 28], "graph_obj": [0, 1], "go": [0, 1, 6, 9, 16, 18, 22, 28, 29, 32, 36, 37, 44], "data": [0, 1, 6, 7, 8, 9, 10, 11, 18, 20, 21, 22, 24, 28, 29, 34, 39, 40, 42, 43, 44, 50, 51], "surfac": [0, 1, 33], "z": [0, 1, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 17, 18, 19, 21, 22, 25, 28, 30, 32, 35, 36, 37, 40, 44, 47], "update_layout": [0, 1, 28], "scene": [0, 1], "dict": [0, 1], "xaxis_titl": [0, 1, 28], "yaxis_titl": [0, 1, 28], "zaxis_titl": [0, 1], "aspectratio": [0, 1], "width": [0, 1, 22, 34], "500": [0, 2, 3, 12, 13, 14, 18, 32, 34, 44, 46, 50], "height": [0, 1, 34], "margin": [0, 1, 4, 5, 13, 14, 20, 25, 28, 32, 34, 36, 50], "50": [0, 1, 3, 12, 14, 22, 24, 29, 34, 35, 40, 47, 50], "65": [0, 1, 10, 11, 18, 21, 38], "90": [0, 1, 3, 22, 32, 51], "scene_camera": [0, 1], "ey": [0, 1, 2, 3, 4, 5, 9, 11, 15, 19, 24, 29, 30, 33, 36, 37, 39, 41, 42, 43, 47], "export": [0, 1, 28], "png": [0, 1, 28], "file": [0, 1, 21, 28], "to_imag": [0, 1, 28], "notebook": [0, 14, 28, 38, 49], "local": [0, 1, 21, 28], "extens": [1, 4, 8, 9, 11, 14, 20, 21, 25, 33, 36, 46], "irrelev": [1, 26], "complet": [1, 3, 4, 5, 8, 9, 13, 14, 16, 22, 23, 25, 26, 36, 37, 39, 40, 47, 50], "contrast": [1, 5, 16, 27, 33, 34, 36, 42, 50], "being": [1, 2, 3, 4, 7, 8, 9, 11, 13, 15, 16, 19, 21, 22, 23, 25, 28, 29, 30, 33, 34, 35, 36, 37, 38, 40, 42, 43, 44, 50], "abl": [1, 3, 4, 7, 16, 19, 21, 28, 30, 34, 37, 40, 47, 50], "full": [1, 3, 4, 5, 6, 10, 13, 14, 23, 34, 36, 37, 41, 42, 43, 47], "watch": [1, 8, 10, 22, 42], "uniqu": [1, 8, 18, 22, 25, 29, 30, 37, 39, 40, 44, 51], "stochast": [1, 3, 4, 6, 7, 8, 9, 12, 15, 17, 18, 20, 21, 22, 23, 27, 29, 30, 33, 35, 36, 39, 42, 43, 46, 47, 48, 50, 51], "embodi": [1, 17, 25], "redund": [1, 4], "studi": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 14, 15, 16, 17, 19, 24, 28, 29, 30, 32, 33, 34, 36, 39, 40, 41, 42, 43, 44, 50, 51], "conform": [1, 8, 9, 17, 19, 25, 29], "previou": [1, 3, 5, 7, 11, 16, 21, 22, 28, 31, 32, 43, 44, 47], "subtl": [1, 13, 19], "featur": [1, 3, 5, 6, 7, 9, 10, 11, 12, 14, 18, 19, 20, 22, 23, 25, 30, 34, 36, 43, 46, 47, 50], "convei": [1, 8, 10, 14, 40], "heart": [1, 16, 35], "call": [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 28, 29, 30, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 50], "ration": [1, 10, 11, 12, 19, 25, 28, 35, 39, 44, 51], "conjectur": [1, 22], "region": [1, 40], "space": [1, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 22, 24, 25, 28, 29, 32, 34, 36, 37, 38, 40, 43, 44, 47], "averag": [1, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 21, 22, 23, 24, 25, 28, 30, 35, 44], "visit": [1, 44], "absenc": [1, 8, 34, 36], "cannot": [1, 3, 9, 22, 23, 25, 37, 40, 44, 48, 50], "comput": [1, 2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 18, 20, 21, 22, 23, 25, 30, 33, 34, 35, 36, 37, 42, 43, 46, 51], "competit": [1, 4, 16, 23, 26, 28, 29, 32, 34, 51], "plan": [1, 3, 4, 14, 15, 16, 22, 25, 26, 28, 29, 32, 36, 38, 46, 47, 48, 50, 51], "did": [1, 8, 14, 16, 19, 34, 40], "system": [1, 2, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 25, 29, 30, 33, 35, 39, 42, 43, 44, 46, 51], "simultan": [1, 4, 10, 11, 17, 30, 34, 39], "address": [1, 9, 16, 19, 34], "interest": [1, 2, 3, 5, 6, 8, 9, 10, 13, 15, 16, 17, 18, 21, 22, 24, 26, 28, 29, 31, 33, 34, 37, 38, 40, 42, 43, 44, 47, 48, 50], "question": [1, 7, 11, 16, 32, 35, 37, 44], "equlibrium": 1, "technolog": [1, 3, 16, 23, 24, 31, 34, 36, 38, 44], "repres": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 44, 46, 48, 50, 51], "companion": [1, 30], "compon": [1, 2, 3, 4, 8, 12, 13, 14, 15, 18, 19, 23, 24, 25, 28, 30, 36], "justifi": [1, 7, 8, 10, 28, 35, 39], "infinitesim": 1, "howev": [1, 3, 4, 7, 9, 11, 15, 16, 18, 21, 22, 23, 28, 30, 32, 34, 37, 39, 40, 41, 44, 48], "object": [1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 15, 17, 18, 19, 20, 21, 24, 25, 28, 29, 30, 33, 35, 36, 39, 40, 42, 43, 44, 46], "out": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 22, 24, 25, 28, 29, 31, 32, 34, 38, 40, 42, 43, 44, 46, 47, 50], "symmetr": [1, 9, 15, 20, 28, 30, 33, 34, 37, 40], "profil": 1, "level": [1, 3, 4, 5, 6, 10, 11, 13, 14, 17, 20, 22, 23, 25, 27, 33, 36, 38, 39, 40, 42, 43, 50], "ourselv": [1, 11], "equilibria": [1, 13, 23, 25, 26, 28, 29, 36, 51], "per": [1, 8, 13, 14, 16, 18, 22, 25, 34, 44, 46, 47, 48, 50], "give": [1, 3, 4, 5, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 44, 47, 49, 50], "incent": [1, 6, 10, 13, 14, 16, 28, 34, 36, 47, 48], "demand": [1, 10, 11, 12, 19, 28, 30, 34, 39, 40, 51], "suppli": [1, 3, 4, 5, 7, 10, 11, 14, 16, 23, 25, 29, 34, 36, 41], "under": [1, 2, 3, 4, 5, 7, 11, 12, 15, 16, 17, 19, 20, 22, 29, 30, 36, 40, 42, 43, 44, 51], "typic": [1, 2, 7, 9, 14, 19, 20, 21, 24, 33], "ex": [1, 4, 5, 7, 16, 32, 39, 43], "cathedra": 1, "builder": 1, "declar": 1, "xi": [1, 8, 15], "post": [1, 7, 39, 43], "promis": [1, 3, 4, 6, 7, 10, 11, 28, 29, 36, 40, 46, 47, 48, 50], "output": [1, 2, 3, 4, 5, 10, 11, 13, 14, 15, 18, 19, 23, 25, 28, 29, 30, 34, 36, 39], "among": [1, 4, 6, 9, 10, 11, 14, 15, 18, 19, 20, 25, 28, 29, 42, 43], "bondhold": 1, "debt": [1, 10, 14, 17, 26, 29, 33, 38, 46, 47, 48, 51], "payoff": [1, 10, 13, 17, 19, 29, 33, 39, 42, 47], "date": [1, 3, 4, 6, 10, 11, 13, 14, 15, 17, 19, 25, 29, 36, 39, 42, 44, 47, 49], "regard": [1, 5, 7, 10, 15, 17, 21, 29, 36, 44], "sens": [1, 5, 6, 7, 9, 10, 11, 14, 15, 17, 18, 20, 21, 22, 24, 25, 29, 30, 33, 35, 36, 37, 40, 42, 44], "check": [1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 19, 22, 23, 34, 38, 40, 42, 43, 46, 50], "know": [1, 2, 5, 6, 10, 11, 14, 16, 17, 19, 22, 25, 26, 34, 36, 37, 39, 40, 42, 44, 51], "expect": [1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 24, 25, 28, 29, 30, 32, 33, 34, 36, 37, 38, 39, 40, 42, 46, 50, 51], "Being": [1, 2, 20], "max_": [1, 3, 6, 9, 10, 13, 14, 18, 19, 25, 30, 32, 33, 36, 40, 50], "text": [1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 22, 29, 30, 31, 33, 34, 37, 39, 40, 42, 44, 47, 50, 51], "i_0v": 1, "foral": [1, 3, 7, 10, 11, 13, 14, 19, 20, 22, 24, 32, 36, 37, 42, 44], "impos": [1, 3, 4, 8, 10, 13, 14, 15, 17, 19, 24, 25, 28, 29, 32, 36, 38, 43, 47, 50], "short": [1, 5, 9, 10, 16, 22, 25, 34, 39, 46, 47], "sell": [1, 3, 6, 16, 25, 28, 29, 32, 36, 42, 43], "theta_0v": 1, "prime": [1, 6, 8, 15, 19, 25, 33], "combin": [1, 3, 6, 7, 8, 9, 11, 13, 14, 16, 17, 19, 20, 25, 29, 30, 32, 33, 34, 35, 37, 38, 44, 46], "max_i": [1, 30], "fix": [1, 5, 8, 9, 10, 14, 15, 18, 19, 22, 25, 28, 30, 33, 36, 37, 39, 40, 42, 44, 46, 50], "38": [1, 34, 36, 51], "appear": [1, 2, 3, 4, 5, 10, 11, 13, 14, 16, 17, 18, 19, 20, 22, 23, 25, 28, 36, 39, 40, 47], "pair": [1, 3, 6, 8, 9, 10, 11, 16, 22, 24, 25, 30, 34, 36, 37, 39, 50], "credit": 1, "makowski": 1, "emphas": [1, 19], "clarifi": 1, "equiv": [1, 3, 5, 8, 9, 10, 13, 14, 15, 17, 19, 20, 25, 28, 33, 40, 42, 43, 46, 47], "attribut": [1, 2, 3, 4, 5, 18, 22, 25, 29, 36, 46], "special": [1, 2, 3, 4, 5, 7, 8, 11, 22, 24, 25, 28, 29, 30, 33, 39, 44, 50], "quantit": [1, 10, 18, 40], "occur": [1, 3, 8, 9, 10, 20, 25, 34, 36, 38, 40, 41, 42, 43, 48, 50], "than": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 50], "hedg": [1, 8, 36, 51], "1_1": 1, "2_1": 1, "recal": [1, 4, 5, 7, 10, 11, 13, 16, 19, 21, 25, 28, 30, 32, 34, 35, 37, 39, 40, 42, 44, 50], "threshold": [1, 44], "rewrit": [1, 7, 15, 29, 34, 40, 47], "_": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 46, 47, 48, 50], "partial": [1, 11, 16, 18, 19, 30, 34, 37, 41], "leibniz": 1, "rule": [1, 3, 6, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 28, 33, 37, 38, 39, 40, 46, 50], "sever": [1, 4, 10, 11, 15, 16, 19, 20, 21, 22, 23, 29, 33, 34, 40], "arriv": [1, 3, 7, 43], "deriv": [1, 3, 4, 5, 7, 8, 9, 11, 16, 17, 20, 22, 28, 29, 30, 32, 34, 36, 40], "confin": [1, 10, 25], "rate": [1, 2, 3, 6, 8, 9, 11, 13, 14, 16, 17, 20, 25, 26, 29, 30, 31, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 50], "again": [1, 8, 9, 10, 11, 12, 17, 19, 21, 28, 29, 31, 37, 39, 40, 43, 48, 50], "On": [1, 7, 16, 34, 44, 51], "page": [1, 3, 5, 7, 49, 51], "correspond": [1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 25, 28, 29, 30, 32, 35, 36, 39, 40, 42, 43, 44, 46, 47, 48], "correct": [1, 2, 5, 7, 22, 32, 50], "immedi": [1, 4, 6, 10, 12, 15, 28, 30, 36, 37], "coincid": [1, 39], "euler": [1, 3, 13, 14, 15, 16, 19, 28, 30], "befor": [1, 2, 3, 5, 7, 8, 9, 10, 11, 14, 18, 21, 22, 25, 28, 29, 30, 32, 39, 40, 44, 47, 50], "sketch": [1, 37, 40], "flow": [1, 3, 6, 18, 23, 51], "goe": [1, 7, 9, 19], "upper": [1, 2, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 21, 22, 30, 32, 37, 39, 44, 50], "lower": [1, 2, 3, 6, 7, 8, 9, 10, 11, 15, 17, 18, 22, 23, 27, 28, 30, 33, 36, 39, 41, 48, 50], "bound": [1, 2, 3, 4, 5, 9, 10, 13, 14, 16, 18, 20, 30, 32, 36, 39, 44, 50], "v_h": 1, "v_l": 1, "k_h": 1, "k_l": 1, "b_h": 1, "b_l": 1, "abus": [1, 10, 29], "notat": [1, 2, 4, 5, 7, 9, 10, 13, 18, 21, 23, 28, 29, 32, 39, 40, 43, 44, 47], "freez": 1, "effect": [1, 4, 5, 6, 9, 10, 12, 13, 14, 16, 17, 21, 22, 23, 25, 27, 28, 30, 34, 36, 43, 48, 50], "temporarili": [1, 4, 33, 36], "treat": [1, 7, 16, 19, 37, 40, 43, 44, 47], "frozen": 1, "foc": [1, 4, 5, 10, 12, 50], "low": [1, 3, 6, 8, 9, 10, 11, 13, 22, 28, 29, 31, 33, 34, 36, 40, 42, 43, 46, 50], "1_h": 1, "1_l": 1, "valuat": [1, 51], "q_1": [1, 19, 39], "1_0v": 1, "pb": [1, 10, 40], "q_2": [1, 19, 39], "theta_l": 1, "otherwis": [1, 3, 7, 15, 18, 22, 44, 50], "theta_h": [1, 12, 23, 25, 27, 38, 41], "repeat": [1, 3, 6, 10, 13, 16, 33, 40, 44, 50, 51], "6aa": 1, "6ad": 1, "until": [1, 2, 3, 6, 14, 16, 20, 32, 34, 40, 44, 50], "small": [1, 2, 6, 7, 9, 10, 11, 12, 13, 14, 16, 18, 21, 22, 23, 24, 25, 28, 38, 40, 46, 47], "2_0v": 1, "confess": 1, "interpret": [1, 2, 3, 4, 5, 6, 8, 10, 15, 18, 22, 25, 29, 36, 40, 43, 44], "7a": 1, "bfoc": 1, "7b": 1, "synthet": [1, 10], "v_x": [1, 3, 36], "ultim": [1, 3, 5, 14, 17, 19, 28, 40, 41, 44, 50], "_0": [1, 12, 15, 30], "_1": [1, 14, 22, 31, 32, 33, 39], "bcg_incomplete_market": 1, "solve_eq": 1, "eq_valu": 1, "input": [1, 3, 4, 5, 9, 10, 11, 16, 22, 25, 34, 36, 50], "consumpion": 1, "truncat": [1, 11, 28], "truncnorm": 1, "\ud835\udf131": 1, "\ud835\udf132": 1, "vl": 1, "vh": 1, "kbot": 1, "01": [1, 2, 3, 4, 5, 10, 11, 14, 16, 19, 22, 25, 39, 44, 45, 47], "ktop": 1, "25": [1, 2, 7, 8, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 29, 30, 34, 38, 40, 41, 45, 46, 48, 51], "bbot": 1, "btop": 1, "ta": 1, "tb": [1, 43], "rv": [1, 9, 15, 30, 32, 44], "\ud835\udf16_rang": 1, "1000000": 1, "pdf_rang": 1, "interp": [1, 4, 5, 16, 22, 32, 36, 40], "print_crit": 1, "load": [1, 22, 23, 50], "v_crit": 1, "intqq1": 1, "\ud835\udf031": 1, "intp1": 1, "intp2": 1, "\ud835\udf032": 1, "intqq2": 1, "intk1": 1, "intk2": 1, "intb1": 1, "intb2": 1, "ww10": 1, "ww20": 1, "bl": [1, 9], "bh": 1, "b_crit": 1, "kl": [1, 20, 25, 40], "kh": 1, "k_crit": 1, "epstar": 1, "converg": [1, 2, 3, 6, 9, 10, 11, 13, 14, 15, 16, 19, 22, 23, 30, 32, 39, 44, 50], "\ud835\udf091": 1, "\ud835\udf031a": 1, "\ud835\udf031b": 1, "ab": [1, 3, 4, 5, 6, 11, 13, 14, 15, 16, 18, 19, 21, 28, 30, 32, 34, 36, 39, 44, 50], "001": [1, 2, 9, 11, 12, 23, 39], "qq1": 1, "constant": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 20, 21, 22, 24, 28, 30, 33, 36, 38, 40, 42, 43, 44, 46, 47, 50], "term": [1, 2, 3, 4, 5, 7, 9, 10, 11, 15, 16, 19, 20, 21, 22, 24, 25, 28, 31, 33, 34, 36, 39, 40, 42, 43, 44, 46, 47, 50], "\ud835\udefde": 1, "const_qq1": 1, "qq1l": 1, "qq1h": 1, "diff": [1, 3, 4, 5, 13, 14, 18, 36], "rh": [1, 3, 6, 9, 22, 36, 50], "els": [1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15, 16, 18, 19, 22, 29, 30, 34, 36, 39, 40, 43], "\ud835\udf092": 1, "const_p": 1, "pl": 1, "ph": 1, "qq2": 1, "const_qq2": 1, "qq2l": 1, "qq2h": 1, "base": [1, 2, 5, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 28, 30, 32, 35, 36, 39, 40, 44], "criterion": [1, 4, 5, 9, 10, 11, 20, 22, 25, 30], "imr": 1, "relev": [1, 10, 16, 22, 23, 28, 32, 38], "kfoc_num": 1, "kfoc_denom": 1, "critic": 1, "bfoc1": 1, "bfoc2": 1, "value_x": 1, "formattedlist": 1, "3f": [1, 10], "member": [1, 12, 16, 23, 24, 27, 28, 40], "result": [1, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 27, 28, 29, 30, 32, 34, 37, 39, 42, 43, 47, 50], "kss": [1, 23, 27], "bss": 1, "vss": 1, "qss": 1, "pss": 1, "c10ss": 1, "c11ss": 1, "c20ss": 1, "c21ss": 1, "\ud835\udf031ss": 1, "finish": [1, 47], "valuations_by_ag": 1, "imrs1": 1, "imrs2": 1, "intq1": 1, "q1": [1, 19, 39, 46, 47], "p1": [1, 17, 19, 39, 47], "intq2": 1, "q2": [1, 19, 39, 46, 47], "p2": [1, 17, 19, 39, 47], "bgrid": 1, "vgrid": 1, "qgrid": 1, "pgrid": 1, "rang": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 29, 30, 33, 34, 36, 37, 38, 39, 40, 43, 44, 46, 48, 50], "bcg_incomplet": 1, "mdl": 1, "178": 1, "503": 1, "407": 1, "092": 1, "000": [1, 5, 11], "568": 1, "250": [1, 6, 13, 14, 18, 34, 46], "131": [1, 10, 51], "155": 1, "487": 1, "381": [1, 51], "073": [1, 39], "518": 1, "125": [1, 10, 23], "021": 1, "144": [1, 51], "479": 1, "368": 1, "065": [1, 11], "492": [1, 51], "062": 1, "034": 1, "150": [1, 2, 3, 13, 14, 19, 21, 23, 24, 27, 31, 38, 44, 50], "484": 1, "374": 1, "069": [1, 39], "504": 1, "094": 1, "006": [1, 10], "153": [1, 51], "486": 1, "377": 1, "071": [1, 10, 39], "510": 1, "109": 1, "008": 1, "151": 1, "376": 1, "070": 1, "508": 1, "102": [1, 5, 10, 22, 29, 51], "483": 1, "375": 1, "507": [1, 51], "098": 1, "003": [1, 9, 10], "101": [1, 5, 22, 51], "10073912888808995": 1, "100830078125": 1, "98564453125": 1, "report": [1, 4, 6, 10, 19, 22, 28, 51], "truli": 1, "found": [1, 2, 3, 7, 11, 14, 15, 18, 21, 28, 34, 36, 37, 40, 42, 43, 44, 46, 50], "actual": [1, 5, 7, 8, 9, 10, 11, 16, 18, 19, 21, 22, 23, 28, 29, 32, 39, 40, 44], "10074": 1, "10083": 1, "involv": [1, 3, 5, 7, 8, 9, 10, 15, 16, 21, 28, 30, 34, 36, 40, 44, 50], "comfort": 1, "inde": [1, 3, 7, 11, 25, 44, 50], "seem": [1, 4, 7, 11, 22, 27, 28, 32, 35, 43, 44], "top": [1, 2, 7, 10, 16, 21, 35, 44], "hill": [1, 51], "plane": [1, 7], "mpl_toolkit": [1, 22, 33], "mplot3d": [1, 22, 33], "scatter3d": 1, "mode": [1, 29, 37], "marker": [1, 10, 33], "size": [1, 2, 6, 8, 9, 10, 13, 16, 18, 21, 22, 33, 34, 39, 40, 44, 50], "colorscal": 1, "green": [1, 2, 5, 8, 10, 22, 32, 43, 50], "opac": 1, "700": [1, 3], "titl": [1, 3, 4, 5, 6, 7, 8, 9, 14, 17, 19, 22, 28, 30, 34, 36, 43, 50], "dot": [1, 2, 8, 10, 11, 13, 14, 22, 29, 30, 34], "graph": [1, 2, 4, 5, 7, 10, 11, 12, 16, 18, 20, 22, 27, 28, 31, 33, 39, 40, 43, 50], "But": [1, 2, 3, 4, 5, 6, 10, 11, 14, 15, 16, 19, 22, 25, 32, 33, 35, 36, 37, 39, 40, 42, 50], "nor": [1, 10, 25, 35, 42], "care": [1, 2, 10, 30, 36, 42], "ridg": [1, 9], "long": [1, 2, 3, 6, 7, 9, 10, 16, 17, 28, 29, 43, 44, 46, 47, 50], "remain": [1, 2, 6, 10, 13, 14, 15, 16, 22, 28, 29, 30, 40, 42, 50], "even": [1, 2, 3, 5, 7, 8, 9, 10, 15, 16, 17, 19, 21, 22, 25, 32, 36, 39, 40, 42, 44], "within": [1, 2, 4, 6, 7, 10, 11, 12, 14, 16, 19, 23, 24, 25, 27, 31, 34, 36, 37, 38, 39, 40, 41, 46, 49, 51], "qualifi": 1, "sit": [1, 22], "sharpli": [1, 17], "unqualifi": 1, "descib": 1, "wa": [1, 3, 6, 8, 9, 10, 11, 14, 16, 19, 21, 23, 25, 36, 37, 44], "bear": [1, 16, 17, 28, 42], "thought": [1, 15, 16, 44, 48], "explor": [1, 2, 3, 10, 21, 25, 36, 39], "calcul": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 22, 25, 28, 29, 30, 31, 36, 39, 42, 43, 48, 50], "ferret": [1, 11], "stabl": [1, 2, 10, 19, 28, 38, 44, 46], "ask": [1, 11, 16, 32, 34, 35, 37, 40, 44], "intertermpor": 1, "conduct": [1, 3, 39, 40], "off_eq_check": 1, "perturb": [1, 40], "importantli": 1, "relax": [1, 3, 47], "xi_1": 1, "intpp1a": 1, "intpp1b": 1, "intpp2a": 1, "intpp2b": 1, "\ud835\udf091a": 1, "\ud835\udf091b": 1, "pp1": 1, "const_pp1": 1, "pp1l": 1, "pp1h": 1, "pp2": 1, "const_pp2": 1, "pp2l": 1, "pp2h": 1, "strategi": [1, 8, 13, 14, 25, 50], "stabil": [1, 6, 10, 19, 51], "hunch": [1, 9], "indic": [1, 4, 5, 6, 7, 10, 11, 14, 16, 18, 19, 21, 22, 24, 25, 28, 29, 30, 31, 34, 36, 37, 39, 40, 42, 43, 44], "experi": [1, 3, 6, 7, 14, 17, 23, 34, 43, 48], "ve1": 1, "ke1": 1, "be1": 1, "pe1": 1, "qe1": 1, "c10e1": 1, "c11e1": 1, "c20e1": 1, "c21e1": 1, "\ud835\udf091e1": 1, "kgride1": 1, "bgride1": 1, "vgride1": 1, "qgride1": 1, "pgride1": 1, "20": [1, 3, 4, 9, 10, 11, 14, 18, 19, 22, 23, 24, 28, 30, 33, 36, 38, 39, 44, 45, 51], "4f": [1, 19], "1191": 1, "1118": 1, "attain": [1, 2, 6, 10, 11, 13, 14, 18, 19, 20, 22, 29, 36, 40, 50], "higher": [1, 6, 8, 9, 13, 22, 28, 33, 36, 39, 40, 41, 43, 44, 46, 50], "ve2": 1, "ke2": 1, "be2": 1, "pe2": 1, "qe2": 1, "c10e2": 1, "c11e2": 1, "c20e2": 1, "c21e2": 1, "\ud835\udf091e2": 1, "kgride2": 1, "bgride2": 1, "vgride2": 1, "qgride2": 1, "pgride2": 1, "1082": 1, "0974": 1, "o": [1, 8, 9, 13, 14, 18, 22, 23, 25, 30, 31, 37, 39, 51], "decreas": [1, 9, 10, 11, 17, 22, 27, 36, 43, 50], "issuanc": [1, 48], "interestingli": 1, "were": [1, 4, 5, 8, 14, 15, 16, 22, 23, 25, 29, 30, 46, 50], "corpor": [1, 51], "For": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 49, 50], "039": 1, "suggest": [1, 18, 21, 23, 46, 47, 50], "though": [1, 10, 17, 19, 22, 39, 50], "willing": 1, "refin": 1, "look": [1, 5, 7, 8, 9, 10, 12, 15, 18, 19, 21, 25, 28, 29, 30, 32, 33, 35, 36, 37, 40, 44, 47, 48, 50], "orang": [1, 9, 10, 32], "merit": [1, 16], "reflect": [1, 3, 7, 9, 11, 23, 25, 30, 36, 50], "reveal": [1, 7, 10, 11, 17, 19, 24, 28, 33, 46, 50], "countervail": 1, "lie": [1, 2, 7, 11, 15, 16, 25], "beneath": [1, 39], "appar": [1, 5, 22], "held": [1, 28, 32, 43, 50], "storag": [1, 2, 18], "wlist": 1, "klist": 1, "blist": 1, "qlist": 1, "plist": 1, "vlist": 1, "tlist": 1, "q1list": 1, "q2list": 1, "p1list": 1, "p2list": 1, "save": [1, 3, 6, 9, 13, 14, 17, 18, 28, 38, 42, 43, 44, 46, 47, 50], "05": [1, 3, 4, 5, 6, 8, 9, 10, 11, 16, 17, 19, 22, 23, 24, 27, 29, 31, 34, 38, 40, 41, 48], "store": [1, 4, 5, 6, 10, 13, 16, 18, 21, 22, 23, 25, 27, 29, 32, 34, 42, 43, 44, 46], "502": 1, "570": 1, "022": [1, 10], "145": [1, 51], "480": [1, 51], "367": 1, "490": 1, "485": 1, "378": 1, "511": [1, 19], "506": 1, "180": [1, 3, 7, 13, 14, 21], "544": 1, "404": [1, 4, 5, 14], "081": [1, 10], "498": 1, "130": [1, 3], "158": 1, "531": 1, "063": 1, "443": 1, "020": 1, "148": [1, 31], "525": 1, "364": 1, "055": 1, "414": 1, "036": [1, 22], "528": 1, "371": 1, "059": 1, "428": 1, "156": 1, "530": 1, "061": 1, "435": 1, "154": 1, "529": 1, "373": 1, "060": 1, "432": 1, "433": 1, "105": [1, 23, 27, 51], "002": [1, 39, 40], "104": 1, "184": 1, "590": 1, "400": [1, 3, 11, 21], "427": [1, 14], "128": 1, "162": 1, "581": 1, "053": [1, 8], "366": 1, "017": [1, 6, 46], "152": [1, 18], "577": 1, "359": 1, "046": 1, "335": 1, "157": 1, "579": 1, "049": 1, "351": 1, "011": [1, 51], "159": 1, "580": 1, "369": 1, "051": 1, "050": 1, "355": 1, "004": 1, "357": 1, "358": 1, "107": [1, 10, 45, 51], "106": [1, 18, 27], "187": 1, "642": 1, "395": [1, 16], "354": 1, "166": 1, "638": 1, "044": [1, 10], "289": [1, 11], "014": 1, "637": 1, "037": 1, "255": 1, "042": 1, "161": [1, 11], "040": 1, "273": [1, 51], "164": 1, "363": 1, "282": [1, 6, 11], "192": [1, 11, 43], "702": 1, "387": 1, "281": 1, "122": 1, "172": 1, "704": 1, "035": 1, "211": 1, "010": 1, "706": 1, "342": 1, "029": 1, "173": 1, "167": [1, 10], "705": 1, "350": 1, "032": 1, "018": 1, "170": [1, 3], "033": 1, "202": 1, "171": [1, 51], "356": 1, "206": 1, "117": [1, 51], "204": 1, "113": 1, "205": 1, "115": 1, "114": [1, 51], "198": 1, "771": 1, "118": 1, "781": 1, "346": 1, "027": 1, "129": 1, "169": 1, "788": 1, "330": 1, "088": 1, "174": [1, 18], "784": [1, 19], "338": 1, "024": 1, "176": 1, "783": [1, 51], "026": 1, "119": 1, "177": [1, 50], "344": 1, "345": 1, "127": 1, "121": [1, 10, 14, 18], "782": 1, "851": 1, "030": 1, "126": 1, "186": 1, "872": 1, "333": 1, "043": 1, "885": 1, "316": 1, "016": 1, "181": 1, "878": 1, "324": 1, "875": 1, "328": 1, "019": 1, "013": [1, 23], "185": [1, 11], "874": 1, "038": [1, 10], "873": [1, 51], "332": 1, "041": 1, "123": [1, 30, 51], "124": [1, 51], "212": 1, "945": [1, 6], "108": 1, "194": [1, 19], "980": 1, "047": 1, "005": [1, 2, 9, 10], "203": 1, "961": 1, "334": [1, 45], "188": [1, 24], "052": 1, "199": [1, 5], "970": 1, "325": 1, "023": [1, 23], "196": 1, "975": [1, 11], "321": 1, "015": [1, 8], "141": [1, 51], "195": 1, "977": 1, "319": 1, "133": [1, 11, 19], "979": 1, "318": 1, "978": 1, "221": 1, "056": 1, "110": [1, 3, 23, 51], "298": 1, "009": 1, "143": [1, 10], "012": [1, 10], "208": 1, "095": 1, "307": 1, "302": 1, "300": [1, 3, 6, 19, 23, 27, 47, 48], "137": 1, "301": 1, "139": [1, 11, 51], "132": [1, 51], "138": 1, "231": 1, "189": [1, 24], "315": 1, "096": [1, 43], "214": 1, "269": 1, "277": [1, 11], "247": [1, 19], "222": [1, 11], "226": 1, "296": 1, "190": [1, 3], "218": [1, 11], "286": [1, 7], "216": 1, "258": 1, "233": [1, 11], "217": 1, "252": [1, 51], "284": 1, "225": [1, 51], "256": 1, "283": [1, 51], "229": 1, "230": 1, "13": [1, 4, 7, 10, 11, 14, 20, 22, 28, 29, 30, 40, 42, 43, 44, 45, 50, 51], "epslist": 1, "len": [1, 2, 3, 4, 5, 6, 7, 10, 11, 16, 18, 21, 22, 29, 30, 32, 33, 36, 42, 43], "bb": 1, "ep": 1, "cont": 1, "stare": [1, 5, 10, 11, 17, 22, 28, 43], "panel": [1, 2, 6, 7, 8, 10, 19, 22, 23, 27, 28, 31, 35, 41], "quantiti": [1, 4, 6, 12, 13, 14, 18, 20, 21, 25, 28, 29, 36, 39, 43, 47, 51], "respond": [1, 3, 9, 10, 13, 14, 17, 24, 39, 40], "societi": [1, 51], "desir": [1, 21, 22, 25, 32, 40, 50], "across": [1, 3, 4, 9, 13, 14, 16, 20, 22, 23, 25, 28, 33, 34, 36, 39, 40, 42, 46, 50], "keep": [1, 2, 9, 10, 22, 25, 28, 29, 49, 50], "mind": [1, 7, 9, 13, 33, 39, 40], "highest": [1, 11, 13, 14], "pertin": [1, 15, 28], "16": [1, 3, 7, 9, 10, 11, 13, 14, 15, 18, 19, 22, 29, 30, 36, 40, 44, 45, 51], "reward": [1, 18, 40], "highli": [1, 11, 18, 40, 44], "taken": [1, 4, 5, 9, 10, 14, 18, 19, 22, 25, 29, 39, 43], "s": [2, 3, 4, 5, 7, 8, 9, 11, 12, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 49, 51], "mani": [2, 3, 4, 6, 7, 8, 10, 11, 16, 18, 25, 30, 31, 34, 36, 37, 44, 51], "econom": [2, 7, 8, 10, 11, 13, 15, 18, 24, 25, 27, 30, 31, 33, 34, 37, 44, 47, 51], "seri": [2, 5, 6, 7, 8, 10, 15, 17, 18, 21, 25, 28, 29, 33, 44, 48, 51], "persist": [2, 3, 6, 9, 10, 12, 23, 25, 28, 41, 46, 47], "growth": [2, 8, 11, 13, 14, 17, 22, 25, 26, 27, 30, 31, 44, 51], "prevent": [2, 5, 16, 37, 47, 48], "asymptot": [2, 9, 35, 44], "stationari": [2, 11, 15, 18, 20, 21, 26, 30, 32, 35, 38, 42, 46, 47, 51], "ergod": [2, 4, 9, 44], "exampl": [2, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 25, 37, 38, 39, 42, 46, 48], "price": [2, 3, 6, 9, 10, 11, 12, 13, 14, 16, 18, 20, 28, 29, 39, 42, 43, 47, 51], "irregular": [2, 21], "stationar": [2, 44], "kei": [2, 3, 4, 5, 9, 10, 11, 13, 14, 15, 18, 19, 20, 21, 25, 29, 33, 35, 36], "learn": [2, 7, 17, 22, 26, 36, 37, 44, 51], "appli": [2, 3, 5, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 32, 33, 35, 36, 37, 38, 39, 40, 46, 50, 51], "statist": [2, 8, 9, 11, 25, 26, 37, 39, 51], "still": [2, 9, 25, 27, 28, 49], "enabl": [2, 34], "law": [2, 3, 8, 10, 12, 16, 19, 20, 22, 23, 25, 28, 30, 33, 37, 39, 40, 44, 46, 47], "hansen": [2, 8, 9, 12, 15, 20, 22, 23, 24, 25, 27, 30, 31, 33, 38, 39, 40, 41, 51], "2012": [2, 51], "accommod": [2, 44], "arithmet": [2, 25], "geometr": [2, 10, 15, 25, 29, 30, 35, 37], "connect": [2, 7, 9, 13, 15, 21, 22, 25, 28, 30, 37, 39], "y_t": [2, 6, 7, 12, 13, 14, 15, 19, 20, 25, 28, 30, 32, 35, 38, 40, 42, 43], "phi_t": [2, 28], "trend": [2, 27], "concept": [2, 3, 8, 9, 10, 13, 19, 20, 25, 28, 34, 37, 39], "sargent": [2, 3, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 36, 38, 39, 40, 41, 44, 50, 51], "linalg": [2, 3, 4, 5, 8, 9, 11, 13, 14, 15, 19, 28, 29, 30, 36, 37, 39, 40, 42, 43], "la": [2, 15, 19, 26, 30, 42], "qe": [2, 6, 7, 13, 14, 17, 18, 19, 24, 28, 33, 39, 40, 42, 43, 46, 47, 48], "lognorm": [2, 32, 44], "gener": [2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 27, 28, 29, 30, 32, 34, 35, 37, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51], "focus": [2, 10, 11, 18, 30, 44], "subclass": 2, "whose": [2, 3, 8, 11, 13, 14, 19, 22, 28, 30, 35, 36, 40, 42, 46], "increment": [2, 17, 34, 42], "driven": [2, 4, 5, 17, 25, 41, 42], "gaussian": [2, 7, 9, 22, 23, 25, 28, 29, 30, 37, 38, 40, 42, 51], "vector": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 18, 19, 20, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48], "autoregress": [2, 7, 9, 15, 24, 28, 31, 35, 38, 42, 44], "behavior": [2, 3, 5, 9, 10, 11, 16, 17, 19, 29, 32, 39, 40, 44, 51], "easi": [2, 7, 14, 20, 25, 30, 32, 36, 42], "analyz": [2, 3, 4, 13, 14, 21, 24, 25, 28, 33, 39], "tool": [2, 5, 8, 15, 16, 22, 25, 28, 30, 35, 40], "piec": [2, 15, 28], "var": [2, 4, 5, 8, 9, 29, 35], "x_": [2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 19, 21, 23, 25, 28, 29, 30, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47], "x_t": [2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 25, 28, 29, 30, 31, 33, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47], "z_": [2, 3, 13, 14, 17, 19, 23, 24, 25, 28, 30, 31, 38, 46, 47, 48], "matrix": [2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 18, 19, 20, 22, 25, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48], "eigenvalu": [2, 10, 23, 25, 27, 38], "circl": [2, 3, 7, 13, 14, 15, 25, 30], "cal": [2, 3, 20, 22, 25, 33, 36, 42, 46, 47, 48], "m": [2, 4, 5, 8, 9, 11, 13, 14, 15, 18, 20, 21, 22, 25, 29, 30, 33, 34, 37, 39, 46, 47, 48, 51], "iid": [2, 4, 5, 28, 30, 32, 35, 36, 38, 40, 42, 44], "x_0": [2, 3, 9, 10, 13, 14, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 40, 42, 44], "mu_0": [2, 10, 11, 20, 25, 28, 35, 42], "sigma_0": [2, 14, 20, 25], "nu": [2, 29, 34], "y_": [2, 6, 7, 9, 15, 17, 19, 20, 25, 28, 30, 31, 32, 34, 35, 38, 40, 42], "y_0": [2, 15, 17, 19, 25, 30], "mu_": [2, 9, 10, 11, 25], "y0": [2, 19], "sigma_": [2, 8, 17, 18, 20, 25, 28, 33], "nonstationari": 2, "systemat": [2, 18, 34, 44], "conveni": [2, 3, 7, 8, 10, 13, 14, 15, 17, 19, 21, 22, 25, 28, 29, 35, 36, 39, 40, 44], "observ": [2, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 20, 21, 24, 25, 32, 37, 40, 42, 44, 50, 51], "hat": [2, 4, 5, 8, 9, 10, 11, 13, 15, 17, 19, 20, 21, 22, 25, 28, 35, 37, 39, 40, 47], "_t": [2, 4, 5, 10, 15, 25, 28, 32, 33, 47], "bmatrix": [2, 10, 11, 17, 19, 25, 28, 33, 35, 38, 39, 40, 41, 42, 43, 46, 47, 48], "written": [2, 6, 7, 9, 15, 17, 18, 19, 21, 28, 29, 30, 32, 40, 46], "map": [2, 4, 5, 6, 7, 10, 13, 14, 16, 18, 19, 22, 23, 25, 28, 32, 33, 34, 35, 36, 38, 39, 40, 44, 46], "linearstatespac": [2, 17, 24, 35, 42], "py": [2, 4, 5, 7, 11, 13, 14, 18, 21, 22, 29, 37, 40, 44, 49, 50], "reason": [2, 4, 7, 10, 11, 12, 19, 21, 22, 25, 28, 32, 36, 44, 50], "intuit": [2, 7, 9, 16, 29, 32, 37, 40, 44], "4th": 2, "phi_3": 2, "phi_4": 2, "phi": [2, 3, 4, 7, 9, 20, 21, 25, 30, 32, 36, 40, 42, 43, 44], "strictli": [2, 3, 6, 10, 13, 14, 15, 16, 23, 25, 32, 33, 36, 38, 40, 44, 50], "greater": [2, 6, 22, 30, 37, 40], "uniti": [2, 3, 11, 15, 23, 25, 27, 30, 36, 38, 43], "absolut": [2, 7, 10, 13, 14, 19, 22, 25, 32], "obei": [2, 7, 27, 29, 42, 44], "fact": [2, 3, 4, 6, 7, 8, 9, 12, 14, 15, 16, 17, 18, 22, 23, 25, 29, 30, 32, 34, 37, 40, 42, 44, 50], "whole": [2, 9, 32, 44], "definit": [2, 4, 8, 10, 13, 14, 15, 19, 20, 28, 29, 34, 40, 41], "select": [2, 16, 25, 30, 38], "matric": [2, 9, 10, 11, 12, 15, 17, 18, 20, 23, 25, 29, 30, 33, 35, 37, 38, 39, 40, 42, 43, 46, 47, 48], "try": [2, 5, 6, 8, 11, 13, 14, 16, 19, 21, 22, 25, 32, 34, 37, 42, 43, 44, 49], "exercis": [2, 4, 7, 11, 50], "emb": 2, "bigger": [2, 9, 14, 40], "propos": [2, 5, 13, 20, 22, 28, 30], "amf_lss_var": 2, "transform": [2, 3, 4, 9, 15, 20, 21, 22, 25, 35, 37, 42], "\u03bd": [2, 29], "unpack": [2, 3, 6, 34, 42, 43], "element": [2, 3, 6, 11, 13, 14, 15, 18, 25, 29, 30, 33, 34, 36, 37, 38, 40, 48], "nx": [2, 29], "nk": [2, 34, 37], "shape": [2, 4, 5, 6, 7, 10, 12, 13, 14, 15, 18, 29, 30, 37, 39, 40, 42, 43, 44, 47], "dimens": [2, 13, 15, 25, 34, 36, 46, 47, 50], "extend": [2, 4, 5, 7, 22, 25, 28, 30, 33, 39, 42, 43, 44, 46, 47, 48], "nm": 2, "elif": [2, 34, 36], "expand_dim": 2, "add_decomp": 2, "mult_decomp": 2, "float": [2, 7, 21, 29, 34, 39, 40], "asarrai": [2, 4, 5, 7, 9, 15, 21, 22, 30, 37, 40, 42, 43], "rais": [2, 3, 4, 5, 10, 13, 14, 15, 17, 23, 27, 30, 36, 39, 40, 41, 43, 46, 48, 49, 50], "valueerror": [2, 3, 15, 30, 39], "inconsist": [2, 11, 13, 14, 26, 50], "lss": [2, 28, 42], "construct_ss": 2, "pass": [2, 6, 7, 8, 15, 18, 29, 30], "info": 2, "h": [2, 3, 6, 7, 9, 13, 14, 15, 17, 19, 20, 25, 28, 29, 30, 32, 34, 35, 36, 39, 44, 46, 47, 51], "additive_decomp": 2, "auxiliari": [2, 3, 15, 30, 36], "block": [2, 7], "fill": [2, 13, 14, 16, 22, 40], "nx0c": 2, "nx0r": 2, "nx1": 2, "ones": [2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 18, 19, 21, 22, 28, 29, 36, 41, 42, 43, 50], "nk0": 2, "ny0c": 2, "ny0r": 2, "ny1m": 2, "ny0m": 2, "nyx0m": 2, "xt": 2, "yt": [2, 19], "mt": 2, "a1": [2, 12, 13, 14, 19, 39, 47], "hstack": [2, 3, 4, 5, 9, 11, 41, 42, 46, 47, 48], "transit": [2, 3, 4, 5, 6, 10, 17, 18, 19, 25, 28, 29, 30, 33, 36, 40, 42, 43, 44, 46, 47, 48], "a2": [2, 13, 14, 47], "a3": 2, "a4": 2, "m_": [2, 8, 10, 11, 13, 14, 15, 20, 22, 25, 30, 34], "a5": 2, "abar": [2, 15, 30], "vstack": [2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 17, 19, 24, 30, 35, 41, 42, 46, 47, 48], "bbar": 2, "st": [2, 25, 29, 41, 51], "tt": [2, 15], "selector": [2, 27, 29], "g1": [2, 4, 10, 11, 17, 39, 43], "g2": [2, 4, 10, 11, 17, 39, 43], "g3": 2, "g4": 2, "g5": 2, "gbar": [2, 46, 47, 48], "hbar": 2, "x0": [2, 3, 4, 5, 12, 19, 22, 23, 24, 27, 29, 31, 33, 38, 40, 42, 46, 47, 48], "s0": [2, 3, 4, 5, 36, 42, 43], "uncondit": [2, 5, 9, 20, 46], "coeffici": [2, 4, 5, 7, 8, 9, 13, 14, 15, 17, 19, 22, 25, 28, 30, 31, 32, 33, 34, 35], "\u03ba_a": 2, "should": [2, 3, 4, 5, 7, 9, 11, 16, 18, 19, 21, 32, 36, 37, 39, 43, 44, 46, 47, 49, 50], "a_r": 2, "multiplicative_decomp": 2, "\u03bd_tild": 2, "jensen": 2, "diag": [2, 11, 15, 30], "loglikelihood_path": 2, "ff": 2, "ffinv": 2, "inv": [2, 9, 11, 15, 19, 23, 27, 28, 29, 30, 37, 42, 43], "temp": [2, 29], "ob": [2, 36, 37], "obssum": 2, "cumsum": [2, 29], "det": [2, 15, 20, 25, 40], "arang": [2, 4, 5, 9, 10, 11, 13, 14, 15, 18, 30, 34, 42, 43], "loglikelihood": 2, "llh": 2, "add": [2, 3, 8, 10, 11, 13, 14, 16, 21, 22, 25, 28, 33, 38, 39, 42, 46, 47], "plot_given_path": 2, "amf": 2, "ypath": 2, "mpath": 2, "spath": 2, "tpath": 2, "mbound": 2, "sbound": 2, "horlin": 2, "show_trend": 2, "trang": 2, "sharei": [2, 22], "m_t": [2, 8, 10, 11, 12, 13, 14, 25, 29, 46, 47], "s_t": [2, 3, 4, 5, 13, 14, 18, 23, 24, 25, 27, 29, 31, 33, 36, 42, 43, 47], "t_t": [2, 3, 19, 43, 46, 47, 48], "One": [2, 6, 7, 8, 9, 14, 16, 18, 21, 22, 23, 25, 29, 31, 33, 34, 37, 38, 40, 44, 48, 49], "45": [2, 4, 6, 10, 14, 22, 33, 51], "ub": [2, 12, 23, 24, 27, 31, 38, 41], "lb": [2, 18], "fill_between": [2, 6, 22, 40], "plot_addit": 2, "npath": 2, "act": [2, 10, 13, 16, 19, 21, 22, 28, 44], "empti": [2, 3, 4, 5, 6, 8, 14, 16, 18, 19, 22, 24, 29, 32, 33, 34, 36, 37, 39, 42, 43, 44, 50], "moment_gener": 2, "moment_sequ": 2, "popul": [2, 4, 5, 8, 18, 21], "moment": [2, 4, 8, 30, 40, 44], "tmom": 2, "ymean": 2, "yvar": 2, "ii": [2, 22, 26, 38, 42, 43], "li": [2, 11, 15, 16, 22, 25], "ui": 2, "mscale": 2, "sscale": 2, "avoid": [2, 14, 34, 43], "runtimewarn": [2, 4, 5, 14, 18, 22, 50], "ppf": 2, "std": [2, 11, 18, 35], "dev": [2, 6, 18], "madd_dist": 2, "sadd_dist": 2, "99": [2, 5, 8, 10, 11, 14, 18, 22, 45, 51], "add_fig": 2, "suptitl": [2, 10, 14, 34], "plot_multipl": 2, "mpath_mult": 2, "mbounds_mult": 2, "spath_mult": 2, "sbounds_mult": 2, "tpath_mult": 2, "ypath_mult": 2, "mdist": 2, "item": [2, 3, 4, 12, 28, 35, 36], "sdist": 2, "mult_fig": 2, "plot_martingale_path": 2, "ffccff": 2, "linewidth": [2, 22, 35], "4c4c4c": 2, "plot_martingal": 2, "mart_fig": 2, "postpon": 2, "descript": [2, 5, 6, 10, 11, 22, 23, 29, 37, 40], "exactli": [2, 7, 16, 17, 21, 28, 32, 34, 35, 40, 44], "\u03d5_1": [2, 23, 24, 27, 31, 38], "\u03d5_2": 2, "\u03d5_3": 2, "\u03d5_4": 2, "\u03c3": [2, 3, 4, 5, 7, 9, 18, 32, 36, 38, 42, 46, 47, 48, 50], "arrai": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50], "inherit": [2, 4, 10, 14, 19, 32, 36, 42, 46, 47, 48], "underbrac": [2, 8, 9, 17, 28, 33], "overbrac": 2, "z_j": [2, 3, 30], "stage": [2, 10, 11, 16, 17, 23, 39, 50], "paus": [2, 8, 11], "tau_t": [2, 3, 4, 5, 29, 36], "determinist": [2, 15, 18, 30, 40, 43, 44], "character": [2, 3, 7, 9, 10, 13, 14, 20, 25, 36, 39, 50], "routin": [2, 3, 7, 8, 18, 22, 37, 39], "By": [2, 3, 7, 8, 11, 13, 14, 16, 17, 18, 19, 21, 22, 28, 34, 36, 37, 40, 44, 46, 50], "pick": [2, 4, 5, 6, 32], "track": [2, 10, 29, 30], "hint": [2, 11, 29, 40], "stand": [2, 25, 47], "embed": [2, 18, 19, 22], "modulo": [2, 18, 21], "2nd": [2, 51], "3rd": 2, "95": [2, 6, 17, 18, 20, 23, 27, 29, 31, 32, 33, 34, 38, 40, 41, 42, 45, 46, 47, 48], "coverag": 2, "non": [2, 6, 7, 8, 9, 13, 23, 26, 27, 29, 35, 39, 40, 42, 43, 51], "tell": [2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 19, 28, 32, 35, 37, 44, 49], "shade": [2, 22, 40], "area": [2, 22], "tale": [2, 4, 19, 25, 35], "sign": [2, 4, 5, 10, 19, 20, 22, 25, 29, 35], "purpl": [2, 22], "grow": [2, 9, 12, 16, 23, 30], "band": 2, "m_0": [2, 13, 14], "bigl": [2, 3, 4, 13, 14, 22, 25, 30, 36], "bigr": [2, 4, 13, 14, 22, 25, 30, 36], "biggl": [2, 3, 15, 22, 25, 30, 50], "biggr": [2, 3, 15, 22, 25, 30, 50], "widetild": 2, "cell": [2, 5, 8, 11], "confid": 2, "help": [2, 3, 4, 6, 7, 8, 10, 11, 14, 15, 16, 19, 21, 22, 28, 29, 34, 39, 40, 44, 47, 48, 50], "limit": [2, 3, 5, 6, 9, 10, 11, 14, 17, 18, 20, 25, 33, 35, 39, 40, 42, 43, 44, 50], "horizon": [2, 7, 18, 27, 29, 33, 35, 40, 46, 47, 50, 51], "rightarrow": [2, 5, 8, 10, 11, 13, 14, 15, 19, 22, 25, 30, 33, 34, 39], "happen": [2, 10, 16, 18, 22, 30, 32, 33, 43, 44], "12000": 2, "ch": [2, 15, 30], "e_0": [2, 3, 25, 28, 33, 38, 46, 47, 48], "ldot": [2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 33, 35, 36, 37, 39, 40, 43, 44, 46, 47], "sure": [2, 3, 7, 9, 10, 16, 18, 30, 36, 39, 42, 44, 47], "prove": [2, 9, 15, 30, 37], "seed": [2, 6, 9, 30, 42], "10021987": 2, "line": [2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 16, 17, 21, 22, 28, 32, 33, 36, 40, 44, 46, 49], "percent": [2, 4], "frequenc": [2, 7, 21, 28, 51], "interv": [2, 7, 16, 20, 22, 32, 44], "collaps": 2, "around": [2, 11, 21, 22, 23, 27, 35, 48], "drill": [2, 15], "seen": [2, 6, 7, 12, 24, 25, 27, 36], "program": [2, 5, 9, 11, 12, 13, 14, 15, 17, 23, 29, 30, 36, 39, 40, 42, 44, 46, 50, 51], "5000": [2, 16, 34, 44, 47], "length": [2, 6, 8, 9, 15, 16, 17, 18, 21, 22, 23, 27, 29, 30, 44], "after": [2, 3, 4, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 28, 31, 34, 36, 37, 39, 40, 42, 43, 44, 50], "accomplish": [2, 4, 10, 15, 17, 28, 48, 50], "histogram": [2, 5, 22, 44], "variou": [2, 4, 8, 10, 20, 25, 44], "task": [2, 16, 40, 49], "formul": [2, 6, 16, 20, 22, 28, 30, 39, 40, 46, 48, 50, 51], "put": [2, 4, 5, 7, 9, 15, 16, 17, 19, 21, 22, 25, 28, 30, 33, 35, 41, 43, 44, 47, 48, 50], "work": [2, 3, 5, 7, 8, 10, 13, 14, 15, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 49, 50], "proposit": [2, 10, 13, 14, 15, 36], "kappa_a": 2, "heavi": [2, 32], "lift": 2, "insid": [2, 15, 24, 25, 29, 32, 37, 39, 44], "straightforward": [2, 9, 21, 28, 29, 32], "simulate_xi": 2, "foo": 2, "simulate_path": 2, "storex": 2, "storei": 2, "population_mean": 2, "xmean": 2, "toolkit": [2, 25], "simulate_martingale_compon": 2, "add_mart_comp": 2, "third": [2, 7, 10, 11, 17, 19, 21, 22, 23, 24, 25, 27, 28, 38, 39, 42, 44, 50], "mul_mart_comp": 2, "amf_2": 2, "amc": 2, "mmc": 2, "amct": 2, "mmct": 2, "8379907335579106": 2, "011040789361757435": 2, "4697384727035145": 2, "14222026893384476": 2, "006753060146832": 2, "8858858377907133": 2, "10000": [2, 42, 44, 50], "100000": 2, "investig": [2, 4, 9, 15, 16, 28, 35], "evolv": [2, 16, 19, 25, 29, 30, 39, 44], "th": [2, 7, 15, 16, 17, 18, 22, 25, 29, 36, 37, 44, 50], "expon": 2, "keyword": 2, "h2": [2, 11, 39], "document": [2, 7, 18, 45], "tackl": [2, 15, 30], "mtilde_t_dens": 2, "xmin": 2, "xmax": [2, 44], "npt": [2, 34], "\u03bdtild": 2, "logmtilde_t_dens": 2, "lmdist": 2, "times_to_plot": 2, "2500": 2, "dens_to_plot": 2, "ldens_to_plot": 2, "flatten": [2, 3, 4, 5, 7, 9, 14, 19, 29, 36, 43, 44], "18": [2, 3, 10, 11, 13, 14, 15, 22, 28, 30, 36, 40, 42, 43, 44, 45, 51], "02": [2, 5, 6, 8, 9, 10, 11, 19, 22, 25, 28, 29, 39, 40, 45, 46, 47, 48], "dens_t": 2, "enumer": [2, 5, 6, 7, 15, 16, 18, 21, 22, 30, 32, 33, 34, 42, 43, 50], "tight_layout": [2, 3, 4, 5, 7, 10, 11, 13, 14, 19, 34, 36, 47], "mechan": [2, 20, 28, 34, 51], "most": [2, 4, 7, 9, 13, 16, 18, 20, 21, 28, 29, 30, 32, 34, 42, 43, 44, 49, 50], "shift": [2, 18, 23, 25, 29, 32, 37, 44], "leftward": 2, "toward": [2, 5, 7, 9, 10, 21, 27, 33, 36, 44, 51], "tail": [2, 3, 4, 5], "lengthen": [2, 50], "enough": [2, 7, 11, 13, 14, 17, 23, 25, 30, 36, 40, 47], "move": [2, 3, 4, 5, 7, 12, 15, 17, 22, 23, 24, 25, 28, 31, 32, 35, 40, 46, 47, 48], "exhibit": [2, 7, 10, 14, 30], "natur": [2, 3, 4, 11, 16, 18, 19, 21, 30, 36, 40, 42, 44, 50, 51], "interpol": [3, 4, 5, 13, 14, 16, 22, 50], "913": 3, "byte": [3, 11], "60": [3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51], "cp311": [3, 11], "manylinux2014_x86_64": [3, 11], "manylinux_2_17_x86_64": [3, 11], "44": [3, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 21, 23, 24, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], "22": [3, 10, 11, 12, 15, 18, 19, 23, 25, 28, 30, 34, 36, 37, 38, 40, 41, 42, 45, 46, 47, 48], "80": [3, 9, 42, 43, 51], "32m80": 3, "32m3": [3, 11], "31m128": 3, "25hdownload": [3, 11], "91m": [3, 11], "32m7": 3, "31m212": 3, "32m14": 3, "31m207": 3, "32m21": 3, "31m205": 3, "32m28": 3, "32m35": 3, "31m204": 3, "32m42": 3, "31m206": 3, "32m43": [3, 11], "31m71": 3, "attempt": [3, 7, 11, 32], "uninstal": [3, 11], "spline": [3, 50], "eval_linear": 3, "ucgrid": 3, "node": 3, "markovchain": [3, 4, 5, 6, 18, 36, 42, 43], "float64": [3, 4, 34, 36], "experiment": [3, 36], "jitclass": [3, 36], "due": [3, 4, 5, 6, 15, 16, 36, 38, 42, 43, 47, 48], "robert": [3, 24, 25, 28, 29, 36, 51], "jr": [3, 25, 28, 36, 51], "nanci": [3, 29, 36, 51], "1983": [3, 6, 8, 15, 28, 29, 36, 42, 43, 51], "aiyagari": [3, 4, 5, 8, 36, 51], "marcet": [3, 36, 51], "sepp\u00e4l\u00e4": [3, 36], "2002": [3, 4, 5, 18, 28, 36, 51], "hereaft": 3, "implement": [3, 4, 5, 10, 13, 14, 17, 18, 19, 21, 25, 27, 28, 37, 46, 47, 48], "numer": [3, 6, 7, 10, 11, 14, 20, 22, 30, 37, 44, 50, 51], "polici": [3, 4, 5, 6, 10, 11, 14, 17, 19, 26, 29, 30, 32, 33, 36, 39, 43, 44, 46, 50, 51], "market": [3, 4, 5, 8, 9, 10, 13, 14, 16, 22, 23, 26, 28, 29, 34, 36, 39, 48, 51], "introduct": [3, 17, 22, 35, 50, 51], "histori": [3, 4, 5, 7, 13, 14, 15, 17, 19, 20, 24, 25, 29, 34, 35, 36, 39, 40, 50], "s_": [3, 4, 5, 13, 14, 17, 18, 25, 29, 33, 36, 37, 42, 43, 47], "s_0": [3, 4, 5, 13, 14, 18, 25, 33, 36, 42, 43], "govern": [3, 4, 9, 11, 12, 17, 19, 20, 22, 23, 25, 26, 28, 30, 33, 39, 40, 42, 43, 46, 47, 48, 51], "exact": [3, 8, 18, 36, 37, 42], "invari": [3, 4, 7, 10, 11, 25, 28, 35, 36, 39, 40, 42, 50], "c_t": [3, 4, 5, 6, 8, 12, 13, 14, 17, 22, 23, 24, 25, 27, 29, 31, 32, 36, 38, 41, 42, 43, 47, 50], "ell_t": [3, 25, 29, 36], "n_t": [3, 4, 5, 25, 34, 36, 41], "leisur": [3, 4, 5, 36], "labor": [3, 4, 5, 16, 18, 23, 25, 29, 34, 36, 51], "household": [3, 6, 10, 11, 12, 17, 18, 23, 24, 27, 32, 34, 36, 38, 41], "endow": [3, 6, 7, 17, 22, 24, 27, 29, 31, 32, 36, 38], "storabl": [3, 29, 32], "pin": [3, 6, 18, 25, 29, 30, 32, 36, 40, 46], "pre": [3, 13, 14, 36, 50], "wage": [3, 25, 34, 36, 41, 50], "A": [3, 4, 6, 7, 8, 12, 14, 15, 17, 19, 21, 22, 24, 31, 33, 34, 37, 38, 40, 43, 44, 46, 50, 51], "prefer": [3, 4, 5, 6, 23, 24, 27, 29, 31, 32, 38, 39, 40, 42, 44, 50, 51], "pi_t": [3, 29, 30, 32, 36], "joint": [3, 7, 8, 9, 20, 35, 36], "sequenc": [3, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 29, 30, 32, 37, 38, 39, 40, 42, 43, 44, 46], "increas": [3, 6, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 30, 32, 34, 36, 40, 41, 48, 50], "concav": [3, 6, 8, 13, 14, 30, 32, 36, 38, 50], "differenti": [3, 11, 13, 14, 16, 22, 30, 32, 34, 36, 44, 50, 51], "flat": [3, 4, 7, 20, 29, 36], "smooth": [3, 4, 6, 22, 24, 26, 27, 29, 30, 33, 35, 44, 45, 46, 47, 48, 50, 51], "modifi": [3, 6, 9, 28, 29, 36, 40, 45, 46], "direct": [3, 4, 7, 8, 9, 11, 16, 19, 25, 33, 34, 36, 44, 46, 49], "prescrib": [3, 10, 13, 14, 19, 43, 50], "barro": [3, 29, 33, 42, 43, 47, 48, 51], "1979": [3, 8, 29, 33, 42, 43, 47, 48, 50, 51], "b_": [3, 4, 5, 6, 17, 25, 29, 33, 36, 38, 39, 42, 43, 46, 47, 48], "r_t": [3, 4, 5, 8, 10, 25, 29, 36, 40, 47], "gross": [3, 4, 8, 16, 17, 20, 29, 31, 36, 38, 42, 43, 46, 47], "lump": [3, 6, 10, 17], "captur": [3, 9, 12, 13, 14, 19, 25, 33, 36, 41, 43], "charact": [3, 23], "matur": [3, 6, 12, 25, 38, 43, 46], "b_t": [3, 4, 5, 6, 10, 11, 12, 17, 23, 24, 25, 27, 29, 31, 36, 38, 41, 42, 43, 47], "tau": [3, 4, 5, 9, 15, 25, 31, 34, 36, 41], "z_t": [3, 13, 14, 17, 19, 23, 24, 25, 31, 38, 46, 47, 48], "net": [3, 6, 9, 10, 11, 24, 31, 42, 43, 50], "surplu": [3, 5, 24, 28], "ponzi": [3, 6, 38, 46, 47], "scheme": [3, 6, 16, 22, 28, 35, 38, 46, 47, 50], "forthcom": 3, "vert": [3, 9, 15, 25, 28, 30], "pi_": [3, 19, 22, 29, 32, 33, 34, 36, 39, 47], "u_c": [3, 4, 5, 25, 36], "yield": [3, 6, 9, 10, 29, 30, 32, 34, 40, 44, 47], "rise": [3, 10, 12, 16, 19, 22, 32, 41, 50], "replac": [3, 4, 9, 15, 16, 17, 18, 21, 28, 33, 36, 40, 44, 46], "r_": [3, 4, 5, 8, 9, 10, 16, 18, 20, 25, 29, 32, 33, 40, 44, 47], "similar": [3, 6, 13, 14, 16, 21, 36, 39, 40, 44, 46], "futur": [3, 6, 7, 10, 11, 12, 13, 14, 15, 18, 19, 25, 28, 29, 30, 32, 35, 38, 40, 44, 46], "occurr": 3, "indebted": [3, 6, 42], "invok": [3, 15, 32], "u_": [3, 4, 5, 8, 15, 17, 19, 24, 25, 30, 33, 36, 39, 46, 47, 48, 50], "ell": [3, 4, 16, 21, 25, 29, 36], "elimin": [3, 4, 32, 36, 50], "b_0": [3, 4, 10, 11, 25, 29, 36, 38, 42, 43], "mathbb": [3, 6, 7, 9, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 27, 29, 31, 32, 34, 36, 37, 40, 41, 42, 43, 44, 50], "e_t": [3, 4, 5, 20, 25, 28, 29, 36, 38, 42, 43, 46], "stream": [3, 6, 25, 29, 31, 32, 36, 38, 51], "surplus": 3, "debreu": [3, 25, 29], "languag": 3, "literatur": [3, 10, 17, 20, 25, 39, 44], "said": [3, 7, 10, 13, 14, 22, 25, 37], "belong": [3, 10, 11, 14, 25, 36], "subspac": [3, 15, 28, 37], "e_": [3, 4, 5, 25, 28, 33, 36, 37], "gamma_0": [3, 12, 25], "resort": 3, "distortionari": [3, 29], "process": [3, 4, 5, 6, 9, 12, 14, 15, 16, 19, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 36, 38, 41, 43, 44, 46, 47, 48, 50, 51], "gamma_t": [3, 4], "bind": [3, 4, 6], "reduc": [3, 9, 11, 12, 19, 29, 31, 32, 36, 41, 50], "effici": [3, 8, 11, 16, 18, 21, 40, 44, 50], "qquad": [3, 7, 15, 18, 21, 25, 30, 32, 40, 44], "psi_t": [3, 7, 44], "psi_": [3, 7, 44], "abel": 3, "summat": [3, 29], "cc": [3, 4, 23, 24, 25, 28, 31, 36, 37, 42], "z_c": 3, "hspace": [3, 6, 7, 13, 14, 29, 40, 46, 47], "35mm": 3, "gamma_": [3, 15, 39], "mai": [3, 36, 37, 39, 40, 44, 47, 51], "chang": [3, 4, 5, 7, 9, 10, 11, 17, 19, 22, 23, 26, 27, 30, 33, 34, 43, 51], "respons": [3, 6, 7, 10, 11, 12, 13, 17, 19, 23, 24, 25, 27, 35, 36, 39, 41, 42, 50], "sequenti": [3, 4, 5, 10, 14, 16, 32, 36], "sequential": [3, 36], "expenditur": [3, 4, 5, 29, 36, 42, 43, 46, 47, 48], "\u03c6": [3, 4, 13, 14, 36], "pref": [3, 36], "\u03c0": [3, 4, 5, 7, 22, 29, 33, 36, 43, 46, 47, 48], "\u03b2": [3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 17, 18, 19, 23, 24, 27, 28, 29, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 46, 47, 48, 50], "mc": [3, 4, 5, 6, 18, 36, 42, 43, 51], "best": [3, 4, 5, 10, 13, 14, 19, 21, 22, 29, 36, 37, 39, 40, 50], "find_first_best": [3, 4, 5, 36], "foc_first_best": [3, 36], "uc": [3, 4, 5, 13, 14, 36], "ul": [3, 4, 36], "re": [3, 4, 5, 6, 8, 13, 14, 18, 21, 22, 36, 37, 39, 50], "fun": [3, 5, 8, 13, 14, 22, 36, 50], "except": [3, 4, 5, 9, 11, 18, 22, 25, 28, 30, 36, 44], "cfb": [3, 4, 5, 36], "nfb": [3, 4, 5, 36], "foc_time1": [3, 36], "ucc": [3, 4, 5, 36], "ull": [3, 36], "ulc": [3, 36], "lh": [3, 22, 34, 36, 50], "time1_alloc": [3, 4, 5, 36], "ls": [3, 4, 5, 9, 36, 42, 43], "foc_time0": [3, 36], "c0": [3, 4, 5, 10, 36], "g0": [3, 4, 10, 11, 36], "b0": [3, 4, 10, 11, 29, 36, 42, 43], "n0": [3, 4, 5, 36], "l0": [3, 36], "cn0_arr": [3, 36], "time0_alloc": [3, 4, 5, 36], "\u03c4": [3, 4, 5, 9, 29, 36], "simul": [3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 21, 23, 25, 27, 28, 29, 30, 35, 36, 39, 42, 43, 44, 46, 47, 48, 51], "shist": [3, 4, 5, 36], "chist": [3, 4, 5, 36], "nhist": [3, 4, 5, 36], "bhist": [3, 4, 5, 36], "\u03c4hist": [3, 4, 5, 36], "\u03c6hist": [3, 36], "rhist": [3, 4, 5, 36], "onward": [3, 4, 5, 10, 36], "eu_c": [3, 4, 5, 36], "ghist": [3, 36], "yhist": [3, 36], "techniqu": [3, 5, 8, 18, 21, 28, 38, 42, 43, 44, 50], "dynam": [3, 4, 6, 7, 11, 12, 13, 14, 15, 17, 24, 27, 29, 30, 31, 34, 35, 36, 38, 40, 41, 42, 46, 50, 51], "stackelberg": [3, 10, 13, 14, 26, 36], "view": [3, 7, 13, 14, 15, 19, 21, 22, 24, 25, 30, 32, 42, 44, 46], "leav": [3, 9, 10, 17, 28, 29, 30], "intact": 3, "g_t": [3, 4, 5, 23, 24, 25, 27, 28, 29, 31, 36, 41, 43, 46, 47, 48], "throughout": [3, 7, 10, 25, 28, 36, 37, 43], "linear": [3, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 27, 28, 29, 31, 34, 35, 36, 38, 40, 41, 43, 44, 50, 51], "markov": [3, 4, 5, 6, 11, 18, 25, 26, 28, 36, 51], "entri": [3, 15, 16, 25, 30, 41], "distinguish": [3, 8, 10, 18, 19, 22, 28], "u_l": [3, 4, 36], "n_0": [3, 20, 34, 36], "g_0": [3, 4, 10, 11, 17, 25, 36], "23": [3, 11, 15, 18, 28, 30, 40, 45], "envelop": [3, 16, 22, 36, 50], "theorem": [3, 7, 9, 16, 18, 22, 23, 25, 32, 44], "27": [3, 11, 13, 15, 22, 36, 39], "28": [3, 7, 10, 15, 40, 51], "twist": [3, 9, 22], "along": [3, 5, 10, 11, 17, 18, 19, 22, 32, 36, 42, 46, 50], "counterpart": [3, 15, 28, 36, 39, 42, 43], "vari": [3, 4, 6, 9, 10, 21, 22, 33, 41, 42, 47, 48], "accord": [3, 5, 6, 8, 9, 10, 11, 15, 17, 19, 21, 22, 25, 29, 30, 32, 34, 39, 50], "properti": [3, 7, 9, 10, 14, 17, 21, 25, 30, 35, 37, 39, 51], "transmit": 3, "employ": [3, 50], "quasi": [3, 36], "furthermor": [3, 9, 10, 30, 36, 40, 50], "chain": [3, 4, 6, 16, 18, 26, 29, 33, 36, 42, 46, 51], "accumul": [3, 6, 18, 38, 42, 48, 51], "suffici": [3, 4, 6, 7, 10, 13, 14, 16, 17, 22, 23, 29, 30, 36, 40, 44, 50], "asset": [3, 4, 5, 9, 18, 20, 22, 36, 42, 43, 46, 48, 51], "excess": [3, 8, 9, 29, 51], "revenu": [3, 13, 14, 19, 29, 36, 43], "warn": [3, 4, 5, 11, 14, 16, 18, 50], "THE": 3, "IS": 3, "extrem": [3, 9, 13, 14, 39], "sensit": [3, 5, 9, 40, 51], "TO": 3, "choci": 3, "OF": 3, "NOT": [3, 15, 30], "AND": 3, "IT": 3, "x_grid": [3, 13, 14, 36], "bounds_v": 3, "t_v": 3, "t_w": 3, "bellman_operator_factori": 3, "v_solv": 3, "w_solv": 3, "compute_v": [3, 11], "\u03c3_v_star": 3, "tol_vfi": 3, "maxitr": 3, "print_itr": 3, "success": [3, 4, 5, 7, 13, 14, 16, 22, 28, 39], "v_new": [3, 36, 50], "\u03b4": [3, 9, 12, 22, 33, 34, 44], "itr": 3, "vfi": 3, "break": [3, 11, 13, 14, 36, 39, 40, 43], "error": [3, 5, 7, 8, 9, 11, 14, 15, 16, 17, 22, 24, 25, 29, 32, 40, 44, 49, 50], "compute_w": 3, "\u03c3_w_star": 3, "succesfulli": 3, "s_hist": 3, "msg": [3, 34, 43, 50], "n_hist": 3, "x_hist": [3, 42], "c_hist": [3, 42], "\u03c4_hist": 3, "b_hist": [3, 42], "g_hist": 3, "l_0": [3, 25], "t_0": [3, 16, 39], "x_arr": 3, "c_next": 3, "l_next": 3, "obj_factori": 3, "obj_v": [3, 36], "v_next": 3, "obj_w": 3, "x_node": 3, "\u03c3_star": 3, "x_i": [3, 9, 15, 20, 22, 37], "nelder_mead": [3, 36], "fail": [3, 10, 11, 13, 14, 22, 23, 34, 44], "bounds_w": 3, "manag": [3, 9, 10, 16, 28, 36, 46, 51], "uncertainti": [3, 10, 11, 15, 20, 28, 40, 51], "match": [3, 6, 7, 11, 16, 24, 28, 36, 50], "rather": [3, 4, 5, 9, 14, 18, 21, 28, 29, 32, 35, 36, 40, 43, 44, 48], "g_l": [3, 36, 43], "g_3": [3, 36], "g_h": [3, 24, 36, 43], "trick": [3, 10, 19, 24, 25, 35, 41], "six": [3, 11, 36], "pmatrix": [3, 39], "crra_util_data": [3, 36], "\u03b3": [3, 4, 5, 6, 12, 19, 23, 24, 27, 30, 31, 32, 36, 38, 39, 40, 41, 43], "crrautil": [3, 4, 5, 36], "ucl": [3, 36], "path": [3, 4, 7, 11, 13, 14, 15, 17, 18, 19, 23, 25, 29, 30, 33, 36, 39, 40, 42, 43, 44], "peac": [3, 43], "triangl": 3, "IF": 3, "x_min": 3, "5555": 3, "x_max": 3, "339": 3, "x_num": 3, "crra_pref": [3, 36], "amss_model": 3, "110064840137854": 3, "30784885876438395": 3, "03221851531398379": 3, "40": [3, 9, 11, 13, 14, 18, 19, 21, 24, 27, 36, 44], "014347598008733087": 3, "0031219444631354065": 3, "0010783647355108172": 3, "70": 3, "0003761255356202753": 3, "0001318127597098595": 3, "650031579878089e": 3, "801377708510188e": 3, "175872600877597e": 3, "06": [3, 4, 5, 8, 10, 11, 14, 22, 50], "120": [3, 13, 19, 21, 35, 42], "4450291853383987e": 3, "0836745989450947e": 3, "140": 3, "682877084467464e": 3, "07": [3, 4, 5, 10, 11, 14, 22, 51], "567560966644123e": 3, "160": 3, "5837734796141376e": 3, "047536575844333e": 3, "7066849622437985e": 3, "4622035848788073e": 3, "200": [3, 4, 5, 6, 9, 10, 11, 22, 36, 44, 50], "27387780324284e": 3, "210": [3, 44], "1226231499961159e": 3, "220": 3, "2min": 3, "51": [3, 6, 40, 51], "ls_model": 3, "s_hist_h": 3, "s_hist_l": 3, "sim_h_amss": 3, "sim_l_amss": 3, "sim_h_l": 3, "sim_l_l": 3, "spend": [3, 4, 29, 36, 42, 43, 47], "ls_l": 3, "ls_h": 3, "amss_l": 3, "amss_h": 3, "zip": [3, 4, 5, 6, 7, 10, 14, 36, 40, 44], "ok": [3, 4, 36], "structur": [3, 7, 12, 13, 14, 16, 18, 19, 25, 26, 31, 33, 36, 39, 41, 43, 47, 51], "design": [3, 4, 9, 10, 13, 14, 18, 19, 20, 21, 25, 36, 40, 43, 46, 50], "sale": [3, 6, 36, 42], "regardless": [3, 17, 36, 44, 50], "pattern": [3, 8, 11, 12, 17, 20, 22, 33, 43, 46], "facil": 3, "enter": [3, 6, 16, 23, 27, 34, 36], "fall": [3, 4, 6, 7, 12, 31, 34, 36, 38, 40, 42, 43, 50], "unusu": 3, "carri": [3, 5, 13, 14, 16, 19, 22], "servic": [3, 17, 23, 25, 27, 36], "burden": [3, 34], "lead": [3, 4, 6, 9, 10, 11, 22, 24, 25, 28, 29, 30, 32, 34, 36, 39, 40, 42, 44, 46, 50], "current": [3, 4, 6, 10, 14, 17, 18, 22, 25, 28, 29, 30, 32, 34, 35, 36, 39, 42, 44, 46, 48], "caus": [3, 4, 6, 10, 13, 14, 22, 23, 24, 25, 27, 46, 47, 48], "perman": [3, 12, 15, 24, 26, 27, 31, 35, 42, 43, 46, 50, 51], "reduct": [3, 10], "dramat": 3, "final": [3, 6, 11, 13, 14, 16, 18, 34, 37, 47, 49], "log_util_data": [3, 36], "\u03c8": [3, 7, 36, 43, 44], "logutil": [3, 36], "4107": 3, "709": 3, "log_pref": 3, "55": [3, 21, 45, 51], "3e": [3, 22], "3000": 3, "0011569123052908026": 3, "0005024948171925558": 3, "0002995649778405607": 3, "00020753209923363158": 3, "00015556566848218267": 3, "600": [3, 11], "0001228034492957164": 3, "00010068689697462219": 3, "800": 3, "474340939912395e": 3, "900": 3, "290920770763876e": 3, "375694017535238e": 3, "1100": 3, "642689428775327e": 3, "1200": [3, 21], "045426282634935e": 3, "1300": 3, "561168914030134e": 3, "1400": [3, 4], "150059282892471e": 3, "1500": [3, 9], "799110186264443e": 3, "1600": 3, "5163266918658564e": 3, "1700": 3, "263979350620616e": 3, "1800": 3, "0359381506528393e": 3, "1818": 3, "41": [3, 10, 11, 13, 16], "sim_amss": 3, "sim_l": [3, 36], "prolong": 3, "borrow": [3, 4, 6, 17, 29, 38, 42, 46, 47, 48, 50], "drift": [3, 8, 23, 42, 43, 44], "awai": [3, 8, 9, 10, 17, 40], "evolut": [3, 13, 33, 39], "presenc": [3, 5, 22, 28, 36], "forc": [3, 5, 11, 16, 28, 30, 39, 48], "precautionari": 3, "impart": [3, 11, 28], "subsequ": [3, 4, 6, 10, 11, 13, 14, 17, 25, 28, 36, 41], "s_hist_long": 3, "random_st": [3, 28, 42, 43], "levi": [3, 4, 10, 11, 17], "ever": [3, 28], "privat": [3, 4, 10, 13, 14, 36, 43, 51], "sector": [3, 4, 10, 13, 14, 29, 43, 44], "improv": [3, 18, 50], "circumst": [3, 13], "tax": [4, 5, 6, 10, 11, 13, 14, 17, 26, 29, 33, 42, 46, 47, 48, 50], "ramsei": [4, 5, 13, 26, 51], "amss": [4, 5, 36, 45], "taxat": [4, 5, 10, 14, 26, 43, 46, 48, 51], "without": [4, 5, 6, 9, 11, 16, 19, 21, 26, 28, 29, 34, 39, 44, 51], "equilibrium": [4, 8, 11, 12, 23, 26, 31, 34, 41, 43, 44, 50, 51], "distort": [4, 9, 10, 11, 13, 14, 20, 22, 29, 39, 40, 43, 46, 47, 48], "measur": [4, 5, 8, 9, 10, 11, 13, 14, 16, 24, 25, 28, 29, 35, 36, 40, 44, 46, 47, 48, 50], "inform": [4, 6, 7, 9, 11, 15, 18, 21, 22, 23, 24, 26, 28, 30, 31, 32, 33, 35, 38, 39, 43, 46, 51], "free": [4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 17, 19, 20, 22, 29, 31, 36, 38, 43, 46, 47, 50], "least": [4, 7, 8, 9, 11, 13, 14, 15, 18, 20, 28, 30, 35, 40, 44, 50, 51], "violat": [4, 22, 25, 30, 36, 50], "nonzero": [4, 30], "arbitrari": [4, 5, 7, 10, 18, 22, 23, 27, 32, 36, 37, 40], "eventu": [4, 5, 6, 10, 11, 19, 28, 30, 34, 40, 43], "stop": [4, 6, 13, 34, 48], "evermor": 4, "longer": [4, 23, 41], "vanish": [4, 9], "par": [4, 5], "alwai": [4, 7, 10, 17, 22, 25, 30, 34, 43, 44, 47], "loan": [4, 17, 29, 36, 47], "never": [4, 6, 10, 16, 28, 50], "fulli": [4, 11, 28, 29, 44, 50], "payment": [4, 5, 6, 17, 29, 32, 36, 43, 50, 51], "against": [4, 8, 10, 11, 22, 28, 36, 40, 42, 43], "recurs": [4, 6, 7, 11, 12, 13, 14, 15, 16, 23, 24, 26, 27, 28, 31, 35, 38, 39, 40, 41, 43, 50, 51], "agre": [4, 5, 11, 16, 17, 20, 22, 36, 39], "tomorrow": [4, 10, 32, 33, 42, 43, 44], "situat": [4, 5, 7, 9, 16, 19, 24, 28, 33, 40, 43, 44, 48], "lose": [4, 6], "noth": [4, 7, 9], "exchang": [4, 16, 32, 51], "emerg": [4, 9, 10, 15, 17, 19, 28, 30, 42, 43, 51], "nutshel": 4, "strike": [4, 11, 40, 42], "fsolv": [4, 50], "fmin": 4, "drive": [4, 5, 10, 36, 39], "bhandari": [4, 5, 51], "nontrivi": [4, 5, 16, 21, 40], "martingal": [4, 23, 25, 30, 46, 51], "imperfectli": 4, "slowli": [4, 10, 27], "push": [4, 9, 33], "weak": [4, 5, 9, 50], "unrel": 4, "domin": [4, 18, 30], "facilit": [4, 7, 19, 25], "imperfect": [4, 28, 51], "trivial": [4, 34], "altern": [4, 7, 9, 10, 15, 17, 18, 19, 21, 22, 25, 28, 29, 32, 37, 39, 40, 42, 44, 51], "todai": [4, 6, 10, 17, 18, 32, 33, 36, 42, 43, 44, 47, 48], "accur": [4, 5], "although": [4, 17, 19, 21, 25, 29, 40, 44], "avail": [4, 6, 9, 10, 17, 18, 19, 21, 28, 34, 37, 40, 42, 44, 49], "tau_0": [4, 36], "r_0": [4, 10, 15, 30], "agent": [4, 5, 9, 10, 11, 13, 14, 16, 18, 22, 24, 25, 28, 30, 32, 36, 51], "onc": [4, 6, 10, 13, 14, 19, 21, 23, 25, 28, 29, 34, 36, 40, 44, 50], "u_n": [4, 36, 37], "nn": [4, 36], "simplifi": [4, 9, 10, 11, 14, 18, 28, 29, 32, 36, 37, 39, 43, 47], "\u03b8": [4, 5, 6, 7, 10, 11, 13, 14, 21, 22, 34, 40, 43, 44], "transfer": [4, 5, 16, 17, 32, 42], "un": [4, 5], "unn": [4, 5], "mostli": [4, 8, 15, 30], "adapt": [4, 14, 20, 25, 42], "sequentialalloc": [4, 5], "cesutil": [4, 5], "bgputil": [4, 5], "\u03bc": [4, 5, 9, 10, 11], "\u03befb": [4, 5], "zfb": [4, 5], "\u03be": [4, 5, 8, 29], "problem": [4, 5, 6, 8, 9, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 25, 33, 37, 38, 42, 43, 48, 49, 51], "xprime": [4, 5, 36], "time1_valu": [4, 5], "\u03bchist": [4, 5], "fmin_slsqp": [4, 5], "recursiveallocationamss": [4, 5], "\u03bcgrid": [4, 5], "tol_diff": [4, 5], "tol": [4, 5, 6, 13, 14, 16, 19, 28, 32, 36, 39, 50], "solve_time1_bellman": [4, 5], "time_0": [4, 5], "bellman": [4, 5, 6, 10, 11, 13, 16, 25, 33, 39, 42, 50], "calibr": [4, 5, 8, 22, 50], "\u03bcgrid0": [4, 5], "fit": [4, 5, 8, 11, 21, 22, 25, 28, 37, 40, 44, 46], "solut": [4, 5, 9, 11, 14, 15, 19, 22, 23, 30, 40, 50, 51], "ant": [4, 5, 16, 43], "pp": [4, 5], "interpolator_factori": [4, 5], "incomplete_alloc": [4, 5], "\u03bc_": [4, 5], "cf": [4, 5, 34, 35], "nf": [4, 5], "xgrid": [4, 5], "vf": [4, 5], "xprimef": [4, 5], "fun_vstack": [4, 5], "fun_hstack": [4, 5], "xbar": [4, 5], "bellmanequ": [4, 5], "pf": [4, 5], "vfnew": [4, 5], "fit_policy_funct": [4, 5], "tf": [4, 5, 32], "pfvec": [4, 5], "z0": [4, 5, 19, 36], "xprime0": [4, 5, 36], "t0": [4, 5], "simulate_markov": [4, 5], "xhist": [4, 5, 36], "thist": [4, 5], "policies0": [4, 5], "maxit": [4, 5, 13, 14, 34], "ifb": [4, 5], "xfb": [4, 5], "__call__": [4, 5, 40, 44], "get_policies_time1": [4, 5], "get_policies_time0": [4, 5], "objf": [4, 5], "vprime": [4, 5, 36], "objf_prim": [4, 5], "asfarrai": [4, 5], "f0": [4, 5], "atleast_1d": [4, 5], "jac": [4, 5], "dx": [4, 5, 20, 40, 44], "transpos": [4, 5, 29], "con": [4, 5, 23, 27], "fx": [4, 5], "imod": [4, 5], "smode": [4, 5], "f_eqcon": [4, 5], "fprime": [4, 5], "full_output": [4, 5], "iprint": [4, 5], "acc": [4, 5], "univariatesplin": [4, 5, 13, 14], "interpolate_wrapp": [4, 5], "__getitem__": [4, 5], "reshap": [4, 5, 6, 9, 13, 14, 15, 18, 22, 24, 29, 30, 35, 44], "__len__": [4, 5], "xvec": [4, 5], "fhat": [4, 5], "fs": [4, 5, 33, 46], "sort": [4, 5, 15, 17, 30], "fun_list": [4, 5], "iw": [4, 5], "dtype": [4, 5, 6, 11, 15, 30, 39, 40], "render": [4, 9, 10, 19, 22, 35], "recogn": [4, 8, 9, 15, 22, 25, 39, 43], "insight": [4, 7, 8, 9, 10, 11, 14, 15, 16, 19, 22, 25, 35, 37], "fundament": [4, 7, 10, 15, 17, 21, 32, 35], "jointli": [4, 16, 46, 47], "vec": [4, 9, 10, 11, 13, 14, 19, 36, 42], "minim": [4, 5, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 25, 33, 36, 37, 39, 40, 46, 47, 48, 50], "min_\u03c6": 4, "unknown": [4, 21, 28, 32, 36, 37, 42, 44], "c2": [4, 11, 12, 18, 23, 24, 27, 31, 38, 41, 43, 46, 47, 48], "eq": [4, 13, 14], "global": [4, 18, 26, 29, 44, 51], "loss": [4, 6, 10, 19, 33, 34, 39, 40, 43], "\u03c6_star": 4, "ftol": 4, "termin": [4, 6, 15, 18, 19, 30, 39], "000000": 4, "24": [4, 5, 13, 14, 22, 30, 36, 40, 41, 45], "48": [4, 10, 13, 45, 51], "recov": [4, 7, 11, 14, 16, 17, 19, 24, 25, 28, 32, 36, 37, 39], "b_bar": 4, "0757576567504166": 4, "solve_cb": 4, "\u03c4_0": 4, "eq1": 4, "eq2": 4, "xtol": 4, "0e": 4, "9344994030900681": 4, "0386984075517638": 4, "038698407551764": 4, "ought": 4, "slack": [4, 14, 25], "\u03bc_grid": [4, 5], "09": [4, 5, 10, 45], "log_exampl": [4, 5, 36], "log_sequenti": [4, 5], "log_bellman": [4, 5], "sim_seq": [4, 36], "03869841": 4, "sim_bel": 4, "seq": [4, 36], "bel": 4, "_optim": [4, 5, 14], "outsid": [4, 5, 7, 8, 14, 15, 16, 30, 43], "dure": [4, 5, 6, 14, 43, 50, 51], "clip": [4, 5, 14], "tmp": [4, 5, 7, 14, 22, 29, 40], "ipykernel_5562": 4, "108196118": [4, 5], "encount": [4, 5, 14, 20, 22, 36, 50], "reciproc": [4, 5, 13, 14, 15, 17, 20, 30, 42, 43, 46], "29": [4, 5, 10, 36, 40], "1277371586": [4, 5], "249": [4, 5, 7], "invalid": [4, 5, 14, 22], "04094445433232542": 4, "001673211146137493": 4, "001484674847917127": 4, "001313772136887205": 4, "0011814037130420663": 4, "001055965336102068": 4, "0009446661649946108": 4, "0008463807319492324": 4, "0007560453788611131": 4, "0006756001033938903": 4, "000604152845540819": 4, "0005396004518747859": 4, "00048207169166290613": 4, "00043082732064067867": 4, "00038481851351225495": 4, "000343835217593145": 4, "0003072436935049677": 4, "0002745009146233244": 4, "00024531773293589513": 4, "00021923324298642947": 4, "00019593539310787213": 4, "00017514303481690137": 4, "0001565593985003591": 4, "00013996737081815812": 4, "00012514457789841946": 4, "00011190070823325749": 4, "0001000702000922041": 4, "949728534363834e": 4, "00497532414663e": 4, "160585250570457e": 4, "405840591557493e": 4, "731160522780524e": 4, "1279701373366633e": 4, "588651722582404e": 4, "106390497232627e": 4, "6750969979187823e": 4, "289357328148953e": 4, "9443322731171715e": 4, "6356778254647064e": 4, "3595477005441402e": 4, "1124867549068547e": 4, "8914292342161616e": 4, "6935989661294087e": 4, "5165570482803087e": 4, "3581075188566359e": 4, "2162766163347089e": 4, "0893227516817513e": 4, "756678182519297e": 4, "739234428152772e": 4, "828320614508025e": 4, "012602839408298e": 4, "2821988113865695e": 4, "628118884533389e": 4, "0424276120745635e": 4, "517800318375349e": 4, "048011435284343e": 4, "6271819852132397e": 4, "250228025571809e": 4, "91255521672949e": 4, "6100632205124585e": 4, "339096372677708e": 4, "096300057053759e": 4, "8787856014677842e": 4, "6838896002658147e": 4, "5092763000475938e": 4, "352790440377663e": 4, "2125870135921682e": 4, "0869367592654264e": 4, "74329344948381e": 4, "734258726613521e": 4, "82979401245993e": 4, "019280421759928e": 4, "292786681149374e": 4, "641636376342722e": 4, "058008139530142e": 4, "5348427330256424e": 4, "0659062310367744e": 4, "6455314441729855e": 4, "2687002299145745e": 4, "930882045255147e": 4, "6280345786809706e": 4, "356529429295176e": 4, "1131168850248635e": 4, "8948851788438695e": 4, "6992245629426705e": 4, "5237965358488245e": 4, "3665054480740185e": 4, "2254729288266142e": 4, "0990157880047098e": 4, "85625196806722e": 4, "08": [4, 5, 8, 10, 11, 22, 45, 51], "839490296454315e": 4, "927751099544721e": 4, "110169892267009e": 4, "377012234144897e": 4, "719543299951795e": 4, "129944108294742e": 4, "6011930465755267e": 4, "127024907212617e": 4, "7017901411273995e": 4, "320421136675924e": 4, "9783836454122435e": 4, "6716185879207155e": 4, "3964828404060055e": 4, "1497111441656643e": 4, "928376711102591e": 4, "7298534286134342e": 4, "5517887041510468e": 4, "3920711115842077e": 4, "2488086772484325e": 4, "120303914946054e": 4, "0050349805051883e": 4, "016372957223345e": 4, "088867717275256e": 4, "256860052028448e": 4, "5105080491085e": 4, "8409842196277625e": 4, "240371187393206e": 4, "701571286205833e": 4, "2182149401635156e": 4, "784594252430241e": 4, "3955835551064364e": 4, "0465910785331343e": 4, "7334965385949916e": 4, "4526029798499404e": 4, "2005967896788517e": 4, "9745023230252437e": 4, "7716540861495694e": 4, "5896779606666392e": 4, "4263644656786832e": 4, "279915801041798e": 4, "1484611488603225e": 4, "0305702313922867e": 4, "247647878021015e": 4, "298468061604299e": 4, "446744286173443e": 4, "682506157688693e": 4, "996765544062293e": 4, "381420956749845e": 4, "829271458904042e": 4, "3337871811544764e": 4, "8891892933983235e": 4, "4902066124392655e": 4, "1321799130111273e": 4, "8109002457092086e": 4, "5225950288597284e": 4, "263868938948011e": 4, "0316830484184638e": 4, "8233409175417047e": 4, "6363582056463494e": 4, "4685617665861112e": 4, "3179940303096093e": 4, "1828486777347211e": 4, "0615888599012755e": 4, "527490070407684e": 4, "sampl": [4, 5, 7, 8, 17, 21, 22, 23, 25, 28, 36, 37, 42, 43, 44], "grai": [4, 22], "approx": [4, 5, 7, 22, 28, 39], "public": [4, 8, 10, 11, 13, 51], "2000": [4, 5, 8, 22, 28, 40, 46, 51], "sim_seq_long": [4, 5], "shist_long": [4, 5], "sim_bel_long": [4, 5], "id": [4, 5], "ceas": 4, "seek": [4, 5, 11, 18, 19, 20, 37, 40, 50], "link": [4, 6, 22, 28, 39, 42], "slightli": [4, 6, 10, 13, 14, 23, 27, 44], "reader": [4, 5, 10, 11, 15, 21, 28, 30, 44, 49], "quickli": [4, 5, 14, 15, 23, 38], "remind": [4, 5, 8, 11, 33], "variat": [4, 5, 9, 10, 22, 33, 46, 51], "compos": 4, "deficit": [4, 5, 24, 43], "rm": [4, 5, 8, 9, 13, 14, 15, 19, 20, 25, 33, 36, 40, 42, 50], "cov": [4, 5, 8, 9], "superscript": [4, 5], "regress": [4, 5, 8, 9, 21], "varianc": [4, 5, 7, 15, 17, 20, 21, 22, 26, 28, 35, 51], "argmin": [4, 5, 22], "minimand": [4, 5], "47": [4, 5, 10, 14, 22, 45, 51], "steadi": [4, 12, 17, 23, 27, 39, 44], "plug": [4, 21, 43], "covari": [4, 5, 8, 9, 11, 15, 17, 20, 21, 26, 29, 30, 35, 38, 40, 42], "mu_x": 4, "mu_i": 4, "940580824225584": 4, "8943592757759343": 4, "055169547122964": 4, "1670526750992583": 4, "06357685646224803": 4, "19251010100512958": 4, "ingredi": [4, 22, 28], "bstar": 4, "div": [4, 5], "bhat": 4, "0757585378303758": 4, "810799592140484e": 4, "job": [4, 6, 18, 28, 42, 44, 50, 51], "jmin": 4, "020562075079397e": 4, "machin": [4, 26, 49], "verif": [4, 25], "succe": [4, 11], "luck": 4, "speed": [4, 11, 13, 14, 25, 44], "den2": 4, "speedrev": 4, "9974715478249827": 4, "meantim": 4, "ttime": 4, "1819": 4, "0360880098472": 4, "slow": 4, "highlight": [4, 10], "discov": [4, 10, 11, 28, 30, 42, 48], "applic": [5, 8, 10, 11, 18, 22, 25, 26, 28, 30, 35, 44, 46, 51], "648": 5, "650": 5, "section": [5, 6, 7, 8, 11, 13, 14, 15, 16, 17, 18, 21, 23, 28, 30, 32, 36, 37, 38, 39, 40, 44, 50], "iii": [5, 25], "beg": 5, "endogen": [5, 6, 10, 16, 19, 23, 27, 28, 29, 34, 42, 43, 46, 47, 48, 51], "fluctuat": [5, 22, 26, 33, 42, 48, 51], "support": [5, 14], "span": [5, 15, 18, 24, 25, 35, 37, 51], "insur": [5, 10, 26, 42, 43, 51], "lack": 5, "concentr": [5, 24], "establish": [5, 13, 14, 17, 20, 25, 30, 37, 50], "steer": 5, "come": [5, 6, 8, 9, 10, 13, 15, 16, 17, 22, 23, 25, 28, 29, 30, 32, 35, 36, 40, 43, 44, 50], "precis": [5, 6, 7, 9, 10, 11, 17, 18, 23, 35, 37, 38, 46], "deliv": [5, 6, 10, 11, 13, 14, 16, 17, 22, 26, 36, 50], "typo": 5, "recycl": 5, "luca": [5, 22, 25, 26, 28, 29, 36, 42, 43, 51], "stokei": [5, 10, 13, 18, 29, 36, 42, 43, 44, 51], "102000": 5, "ipykernel_5606": 5, "038266353387659546": 5, "0015144378246632448": 5, "0013387575049931865": 5, "0011833202400662248": 5, "0010600307116134505": 5, "0009506620324908642": 5, "0008518776517238551": 5, "0007625857031042564": 5, "0006819563061669217": 5, "0006094002927240671": 5, "0005443007356805235": 5, "00048599500343956094": 5, "0004338395935928358": 5, "00038722730865154364": 5, "00034559541217657187": 5, "00030842870645340995": 5, "00027525901875688697": 5, "0002456631291987257": 5, "00021925988533911457": 5, "0001957069581927878": 5, "00017469751641633328": 5, "00015595697131045533": 5, "00013923987965580473": 5, "0001243270476244632": 5, "00011102285954170156": 5, "915283206080047e": 5, "856139177373994e": 5, "910986485356134e": 5, "067466534026614e": 5, "314566737649043e": 5, "6424746008715835e": 5, "04244714230645e": 5, "5066942129829506e": 5, "028274354582181e": 5, "601001917066026e": 5, "219364287744318e": 5, "878448158073308e": 5, "5738738366349524e": 5, "3017369974638877e": 5, "0585562530972924e": 5, "8412273759209572e": 5, "6470096733078585e": 5, "4734148603737835e": 5, "3182214255360329e": 5, "1794654716176686e": 5, "0553942898779478e": 5, "444436197515114e": 5, "452171093491432e": 5, "564681603048501e": 5, "770836606096674e": 5, "060699172057158e": 5, "4253876343226e": 5, "856977544060761e": 5, "348382732427091e": 5, "893276456302588e": 5, "4860028420224977e": 5, "1215110784890745e": 5, "7952840260155024e": 5, "503284254157189e": 5, "241904747465382e": 5, "0079209145832687e": 5, "7984472260187192e": 5, "610904141295967e": 5, "4429883256895489e": 5, "2926354365994746e": 5, "1580011940576491e": 5, "0374362190402233e": 5, "294651286343194e": 5, "327660623755013e": 5, "461585686381671e": 5, "68586648784756e": 5, "991017296865946e": 5, "368606502407216e": 5, "811037017633464e": 5, "3115434615062044e": 5, "8640500348483447e": 5, "4631274740294855e": 5, "1039146715661056e": 5, "782060642970499e": 5, "493665449692665e": 5, "235241683944158e": 5, "0036660045892633e": 5, "796140357496926e": 5, "610161234596195e": 5, "4434845857135709e": 5, "29410194199688e": 5, "1602140686642469e": 5, "04020962175412e": 5, "326451087350253e": 5, "362279520562034e": 5, "49799979528415e": 5, "723237810210067e": 5, "028699653820159e": 5, "4060588066801066e": 5, "847855517381241e": 5, "347405660607874e": 5, "898720608840536e": 5, "496434157686767e": 5, "135737680533792e": 5, "8123222131646282e": 5, "5223262308472423e": 5, "2622892571432625e": 5, "0291098813063476e": 5, "820008555543109e": 5, "6324938418135388e": 5, "4643330672610771e": 5, "3135245110419445e": 5, "178274355586975e": 5, "0569743803546048e": 5, "48183058751907e": 5, "506079544395937e": 5, "630907318911004e": 5, "845926774203295e": 5, "141826797773109e": 5, "510259068441386e": 5, "943738281315066e": 5, "435554859709816e": 5, "979736766026741e": 5, "5708317622814044e": 5, "2040044801866767e": 5, "874916539533131e": 5, "579680212253616e": 5, "3148068175021918e": 5, "077170148801081e": 5, "8639635474165993e": 5, "6726726276855955e": 5, "5010414936033808e": 5, "3470449992327086e": 5, "2088698423920761e": 5, "0848882197883804e": 5, "736395405805598e": 5, "738135346705384e": 5, "842367703299733e": 5, "03855297579472e": 5, "317225605423774e": 5, "669925787732949e": 5, "089032105148693e": 5, "5677367318159076e": 5, "0999013116379334e": 5, "680044560697966e": 5, "3032415368561477e": 5, "96506010211222e": 5, "6615516244191936e": 5, "389139399385772e": 5, "144649644252697e": 5, "9252092177853976e": 5, "7282471699749249e": 5, "551454449875162e": 5, "3927730577138407e": 5, "2503449048385917e": 5, "1224916676355658e": 5, "0077318342152794e": 5, "047094182757221e": 5, "reach": [5, 18, 28, 33, 39, 40, 50], "forecast": [5, 7, 10, 13, 15, 17, 19, 26, 35, 38, 39, 51], "discard": [5, 7, 19, 21], "vertic": [5, 6, 13, 14, 16, 22, 33], "been": [5, 8, 9, 16, 18, 21, 23, 25, 28, 29, 31, 33, 34, 36, 39, 50], "earli": [5, 10, 23, 24, 50], "conceal": [5, 25], "inexor": 5, "far": [5, 16, 21, 37], "theori": [5, 10, 11, 15, 17, 18, 21, 22, 26, 31, 37, 39, 40, 44, 51], "meant": 5, "46": [5, 51], "mathemat": [5, 11, 15, 16, 22, 28, 29, 30, 32, 33, 38, 39, 40, 42, 43, 44, 46, 51], "remaind": [5, 25, 36], "technic": [5, 12, 13, 17, 19, 24, 25, 28, 34, 40, 42, 46, 47, 48, 51], "materi": [5, 7, 8, 13, 16, 25, 39], "estim": [5, 8, 11, 22, 24, 25, 26, 28, 37, 44, 50, 51], "primari": 5, "revers": [5, 9, 11, 15, 21, 24, 25, 26, 30, 44], "engin": [5, 9, 26, 41, 51], "forth": [5, 10], "might": [5, 9, 11, 16, 18, 22, 29, 34, 40, 44, 48, 50], "confus": 5, "sight": 5, "digest": 5, "c_": [5, 8, 13, 14, 15, 17, 22, 24, 25, 29, 30, 32, 33, 34, 36, 38, 42, 46, 47, 48, 50], "nonlinear": [5, 6, 11, 44], "alert": 5, "middl": [5, 6, 21], "made": [5, 10, 11, 16, 17, 19, 21, 28, 32, 33, 39, 43, 44], "solver": 5, "induc": [5, 6, 9, 10, 11, 13, 14, 16, 19, 29, 32, 36, 39, 46, 47, 50], "composit": [5, 34, 35, 46, 47], "string": [5, 22, 40], "divisor": 5, "circumv": 5, "surround": [5, 22, 40], "better": [5, 7, 9, 10, 16, 17, 18, 21, 22, 44, 50], "enlarg": 5, "fairli": [5, 21, 44], "perfect": [5, 11, 26], "calc": 5, "solve_c": 5, "93852387": 5, "89231015": 5, "84858872": 5, "messag": 5, "statu": [5, 8, 13, 14, 34, 45], "618e": 5, "769e": 5, "175e": 5, "385e": 5, "923e": 5, "486e": 5, "nfev": 5, "fjac": 5, "999e": 5, "954e": 5, "03": [5, 10, 13, 14, 18, 19, 22, 34, 45], "261e": 5, "156e": 5, "610e": 5, "253e": 5, "616e": 5, "998e": 5, "269e": 5, "685e": 5, "301e": 5, "713e": 5, "433e": 5, "508e": 5, "qtf": 5, "556e": 5, "283e": 5, "899e": 5, "rememb": [5, 7, 8, 11, 19, 28, 50], "row": [5, 10, 15, 18, 29, 30, 34, 44], "place": [5, 6, 7, 13, 14, 16, 42], "spin": 5, "compute_r_x": 5, "25997521": 5, "33333333": 5, "00116313": 5, "10755123": 5, "22461897": 5, "1111111111111112": 5, "05457803": 5, "18259396": 5, "33685546": 5, "19134248445303795": 5, "19134248": 5, "solve_\u03c4": 5, "2740159773695818": 5, "min_j": 5, "035564405653720765": 5, "b_star": [5, 6], "199483167941158": 5, "b_hat": [5, 8], "0577661126390971": 5, "\u03c4_star": 5, "09572916798461703": 5, "r_star": 5, "x_star": 5, "9998398": 5, "10746593": 5, "2260276": 5, "0020272": 5, "12464752": 5, "27315299": 5, "9931353432732218": 5, "9264382": 5, "88027117": 5, "83662635": 5, "arellano": [6, 45, 51], "2008": [6, 7, 9, 20, 21, 22, 33, 39, 40, 51], "sovereign": 6, "premium": [6, 9], "maker": [6, 9, 10, 13, 18, 22, 28, 33, 39, 40], "neutral": [6, 20], "foreign": 6, "lender": 6, "compens": [6, 22, 50], "lend": [6, 46, 47, 48, 50], "abroad": 6, "citizen": 6, "declin": [6, 10, 35, 50], "advers": [6, 10, 22, 40], "countercycl": 6, "balanc": [6, 10, 11, 13, 14, 16, 24, 36, 51], "volatil": [6, 20, 32, 39], "notabl": 6, "recess": 6, "bad": [6, 48], "draw": [6, 8, 10, 15, 17, 21, 22, 30, 32, 35, 40, 41, 44], "spike": [6, 48], "temporari": [6, 10, 17, 24, 34, 36, 43, 46], "drop": [6, 32, 40, 44], "welfar": [6, 10, 11, 13, 14, 23, 25, 29, 43], "capit": [6, 8, 23, 25, 26, 27, 28, 33, 44, 51], "outflow": 6, "Such": [6, 21], "countri": [6, 34], "main": [6, 7, 15, 18, 30, 34, 40], "potenti": 6, "honor": [6, 36], "consum": [6, 8, 9, 10, 16, 17, 18, 22, 23, 24, 25, 28, 29, 34, 35, 38, 42, 43, 50], "rank": [6, 22, 25, 32, 37], "enjoi": [6, 33, 38], "internation": 6, "aim": [6, 8, 18, 23, 35, 37, 40, 44], "domest": 6, "actor": 6, "avers": [6, 8, 9, 32, 51], "instrument": [6, 10, 22], "seller": [6, 16, 32], "receiv": [6, 16, 17, 28, 34, 43, 46, 47, 48, 50], "exclud": 6, "nation": [6, 51], "everi": [6, 7, 8, 13, 15, 16, 25, 32, 34, 37, 44, 47, 48, 50], "delta": [6, 9, 12, 15, 16, 18, 25, 33, 34, 44], "meet": [6, 15, 44], "oblig": [6, 29, 36], "regain": 6, "account": [6, 9, 10, 14, 19, 22, 28, 40, 42, 50], "repaid": 6, "compris": [6, 19, 28], "v_c": 6, "v_d": 6, "dy": [6, 44], "henc": [6, 7, 9, 14, 16, 18, 25, 30, 32, 36, 37, 40, 42, 44, 50], "tripl": [6, 10, 13, 14, 22, 33, 40], "code": [6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 25, 30, 33, 34, 36, 39, 40, 44, 46, 49, 50], "replic": [6, 7, 12, 21, 29, 32, 34, 38, 44], "perform": [6, 7, 9, 11, 14, 16, 19, 28, 29, 40, 50, 51], "recommend": [6, 10, 40, 43], "appendix": [6, 19, 24], "approach": [6, 9, 10, 11, 17, 18, 19, 22, 25, 28, 30, 32, 33, 37, 38, 39, 40, 44, 50, 51], "faster": [6, 18, 23, 33], "tauchen": 6, "acceler": 6, "arellano_economi": 6, "primit": [6, 16, 29, 32, 40, 44, 47], "b_grid_siz": 6, "251": 6, "b_grid_min": 6, "smallest": [6, 14, 28], "b_grid_max": 6, "largest": [6, 14, 23, 27, 28], "y_grid_siz": 6, "953": 6, "\u03c1": [6, 9, 28, 29, 34, 40, 46, 47, 48], "\u03b7": [6, 22], "prob": [6, 11, 20, 33, 36], "def_y_param": 6, "969": 6, "b_grid": 6, "y_grid": 6, "state_valu": 6, "b0_idx": 6, "searchsort": [6, 18], "reciev": 6, "def_i": 6, "minimum": [6, 9, 16, 19, 22, 50], "param": [6, 8, 10, 11, 28, 34, 39, 50], "jit": [6, 11, 18, 22, 32, 34], "infer": [6, 25, 28, 51], "easier": [6, 7, 9, 16, 40], "compute_q": 6, "b_idx": 6, "y_idx": 6, "t_d": 6, "current_util": 6, "cont_valu": 6, "t_c": 6, "current_max": 6, "1e10": 6, "bp_idx": 6, "bp": 6, "bp_star_idx": 6, "fast": [6, 21, 34], "update_values_and_pric": 6, "memori": [6, 18], "new_v_c": 6, "empty_lik": [6, 16, 19, 22, 32, 36], "new_v_d": 6, "compil": [6, 18, 22, 34], "outer": [6, 13, 14, 19], "hard": [6, 21, 22], "handl": [6, 9, 10, 21, 34, 50], "strip": 6, "basic": [6, 8, 16, 21, 27, 31, 46, 47, 48, 49, 51], "max_it": [6, 11, 13, 14, 16, 18, 32, 39, 50], "10_000": [6, 11], "current_it": 6, "dist": 6, "inf": [6, 13, 14, 16, 18, 22], "toler": [6, 9, 39], "in_default": 6, "y_sim_indic": 6, "simulate_indic": 6, "y_sim": 6, "y_a_sim": 6, "b_sim": 6, "q_sim": 6, "d_sim": 6, "rand": [6, 9], "shown": [6, 7, 8, 14, 15, 16, 18, 23, 29, 34, 37, 40, 44, 47], "quarterli": [6, 8, 22, 51], "year": [6, 12, 41], "treasuri": [6, 43, 51], "2001": [6, 9, 22, 51], "y_l": 6, "y_h": 6, "fine": [6, 14, 46], "minor": [6, 44], "arrelano": 6, "larger": [6, 7, 9, 10, 13, 16, 18, 21, 22, 23, 28, 32, 34, 39, 40, 41], "likelihood": [6, 9, 20, 22, 29], "heat": [6, 22], "grei": [6, 11, 44], "past": [6, 7, 10, 15, 17, 18, 19, 23, 25, 28, 30, 35, 42, 46, 47, 48], "sharp": [6, 9], "extent": [6, 34], "cours": [6, 11, 19, 21, 36], "ae": 6, "399": 6, "iy_high": 6, "iy_low": 6, "suitabl": [6, 16, 22, 29, 36], "q_low": 6, "q_high": 6, "35": [6, 10, 13, 14, 16, 18, 22, 29, 34, 51], "lw": [6, 7, 9, 10, 18, 19, 21, 29, 30, 32, 34, 36, 39, 40, 44], "frameon": [6, 19, 39], "xlabel": [6, 7, 8, 9, 10, 11, 14, 19, 22, 30, 32, 36, 39, 43, 46, 50], "ylabel": [6, 7, 8, 10, 11, 14, 22, 32, 39, 46, 50], "xx": [6, 15], "yy": 6, "zz": [6, 12], "hm": 6, "pcolormesh": [6, 22, 34], "cax": [6, 34], "add_ax": [6, 34], "92": [6, 10], "colorbar": [6, 22, 34], "axi": [6, 7, 10, 11, 13, 14, 15, 22, 34, 40], "major": [6, 29], "start_end_pair": 6, "start_default": 6, "end_default": 6, "plot_seri": 6, "subplots_adjust": [6, 7, 29], "s_max": 6, "s_min": 6, "s_rang": 6, "y_max": 6, "y_min": 6, "advantag": [7, 11, 18, 25, 33], "eleg": [7, 32, 44], "comprehens": [7, 13], "broad": [7, 30], "kind": [7, 21, 22, 25, 37, 42, 44, 50], "domain": [7, 14, 16, 18, 28, 31, 51], "focu": [7, 9, 10, 13, 14, 15, 21, 34, 37, 39, 43, 44], "attent": [7, 10, 11], "cornerston": [7, 37], "valuabl": [7, 32], "separ": [7, 10, 20, 22, 25, 28, 32, 40], "essenc": [7, 18, 25, 44], "shine": 7, "light": [7, 9, 11, 28, 30, 34], "simpler": [7, 13, 16, 47], "tractabl": [7, 25, 39, 40, 42, 46, 47], "famou": [7, 9, 21, 32, 37], "fourier": [7, 21, 25], "invers": [7, 8, 10, 11, 13, 14, 19, 20, 22, 25, 28, 30, 39, 40, 41, 46, 47], "supplementari": [7, 21], "ljungqvist": [7, 8, 10, 14, 18, 19, 44, 50, 51], "chapter": [7, 8, 10, 14, 17, 18, 19, 20, 24, 28, 30, 33, 37, 39, 51], "1987": [7, 8, 15, 19, 20, 21, 22, 28, 30, 51], "john": [7, 25, 35, 51], "cochran": [7, 8, 51], "shiriaev": [7, 51], "1995": [7, 51], "cryer": [7, 21, 51], "chan": [7, 21, 51], "infinit": [7, 10, 11, 13, 14, 16, 17, 18, 20, 22, 25, 28, 29, 33, 35, 40, 44, 46, 50, 51], "field": 7, "real": [7, 10, 11, 13, 14, 15, 21, 29, 30, 34, 40, 44, 51], "Its": [7, 34, 36, 40], "colon": [7, 16, 18, 19, 29, 32, 37, 44], "exclus": [7, 44], "perhap": [7, 16, 17, 18, 21, 44], "simplest": [7, 46], "epsilon_t": [7, 20, 21, 28, 32], "mathbf": [7, 9, 11, 18, 22, 40, 44], "complic": [7, 42, 44, 50], "flexibl": [7, 18, 25], "famili": [7, 18, 44], "psi_j": [7, 12], "epsilon_": [7, 8, 9, 17, 21, 22, 25, 28, 32, 33, 35, 41], "squar": [7, 8, 9, 11, 14, 15, 17, 20, 25, 28, 30, 35, 44, 50, 51], "summabl": [7, 10, 11, 17, 25, 35], "often": [7, 8, 9, 15, 18, 19, 24, 37, 39, 42, 43, 44, 47], "filter": [7, 25, 26, 30, 35, 37], "manipul": [7, 8, 19, 34, 43], "cauchi": [7, 8], "schwartz": [7, 8], "remark": [7, 8, 9, 10, 12, 14, 19, 22, 25, 32, 42], "entir": [7, 13, 14, 16, 17, 19, 29, 30, 32, 36, 40, 44, 50], "decomposit": [7, 9, 15, 30, 51], "eta_t": [7, 15], "psi_0": [7, 44], "ahead": [7, 15, 17, 20, 25, 35, 40, 42, 44], "predict": [7, 11, 16, 17, 26, 30, 35, 37, 39, 51], "perfectli": [7, 8, 11, 36, 42], "especi": [7, 24, 28, 50], "num_row": [7, 29], "num_col": [7, 29], "\u03d5": [7, 9, 15, 21, 30, 32, 43, 44], "acov": 7, "bo": [7, 19], "xlim": [7, 9, 22, 30, 32, 36], "hline": [7, 10], "likewis": 7, "phi_p": 7, "theta_1": [7, 11, 39], "theta_q": 7, "lag": [7, 9, 15, 17, 19, 24, 25, 28, 35], "succinct": 7, "algebra": [7, 10, 11, 17, 19, 21, 25, 26, 29, 33, 34, 35, 40, 51], "ordinari": [7, 10, 11, 19, 21, 28, 29, 37, 39, 40, 46], "legitim": [7, 8, 29], "guarante": [7, 10, 25, 30, 50], "outlin": [7, 9, 25, 29, 38, 40], "79": [7, 45, 51], "mapsto": [7, 9, 37, 40], "impuls": [7, 12, 17, 24, 27, 35, 41], "great": [7, 16, 24], "deal": [7, 13, 16], "signific": [7, 16, 44], "invit": 7, "skip": [7, 16, 32, 40], "formal": [7, 9, 34, 44], "notion": [7, 13, 18, 20, 25, 40, 44], "imaginari": [7, 21, 39, 40], "modulu": [7, 18, 21, 23, 30, 38], "euclidean": [7, 34], "usual": [7, 9, 17, 21, 28, 29, 39, 40, 44], "xu": 7, "vy": 7, "xv": 7, "yu": 7, "pointwis": [7, 18], "proceed": [7, 28], "naiv": [7, 11, 30, 44], "yv": 7, "polar": 7, "co": [7, 13, 14, 21, 22, 37], "sin": [7, 13, 14, 21, 30], "arctan": 7, "tan": 7, "convent": [7, 16, 43, 44, 47], "difficult": [7, 9, 16, 18, 50], "proof": [7, 16, 18, 20, 40, 44], "refer": [7, 8, 10, 13, 14, 17, 25, 26, 29, 32, 33, 37, 44], "visibl": [7, 21, 44], "spectrum": 7, "origin": [7, 11, 13, 14, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 34, 35, 36, 39, 40, 42, 46], "bit": [7, 16, 20, 21], "effort": [7, 11, 21, 50], "261": [7, 51], "convolut": 7, "nice": [7, 25, 37], "ar1_sd": 7, "\u03c9": 7, "\u03c9s": 7, "sd": [7, 24, 29, 31], "center": [7, 10, 11, 17, 21, 44], "damp": 7, "cycl": [7, 22, 26, 28, 51], "horizont": [7, 8, 10, 11, 22, 40], "y1": [7, 17], "y2": [7, 17, 28], "y3": [7, 28], "ytick": [7, 22, 50], "stem": [7, 23], "ylim": [7, 22, 34, 39, 50], "contain": [7, 14, 17, 18, 22, 25, 29, 31, 32, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47], "smaller": [7, 9, 13, 14, 16, 21, 24, 28, 40], "summari": [7, 8, 9, 11, 25, 28, 36], "perspect": [7, 11, 22], "loos": [7, 18], "253": 7, "background": [7, 8, 18, 37], "hilbert": 7, "feel": 7, "progress": [7, 13, 14, 28, 50], "countabl": [7, 16], "orthonorm": [7, 15], "basi": [7, 13, 14, 15, 34, 50], "h_k": 7, "sum_k": [7, 34], "alpha_k": [7, 37], "langl": [7, 37], "rangl": [7, 37], "inner": [7, 15, 19, 22, 25, 37, 40], "degre": [7, 10, 13, 14, 21, 22, 33, 34], "linearli": [7, 16, 37], "word": [7, 9, 14, 15, 16, 18, 21, 25, 32, 40, 44], "ell_2": 7, "expans": [7, 14, 15, 16, 30], "elementari": [7, 9, 15, 26, 30, 44], "onto": 7, "preimag": 7, "isometri": 7, "summar": [7, 8, 9, 10, 13, 14, 15, 19, 25, 28, 36, 42], "isometr": 7, "isomorph": [7, 46], "l_2": [7, 15, 34], "trigonometr": 7, "apart": [7, 29, 47], "certain": [7, 34], "tsa": [7, 21], "submodul": 7, "statsmodel": [7, 8, 11, 21, 28], "doesn": [7, 22, 40], "quit": [7, 18], "cover": [7, 17, 18, 21, 29, 44], "particularli": 7, "vi": 7, "ve": [7, 18, 21, 40, 44, 50], "modul": [7, 29, 33, 34, 50], "68": [7, 10, 45, 51], "plot_impulse_respons": 7, "gca": [7, 22], "yi": 7, "impulse_respons": [7, 17, 24, 28], "plot_spectral_dens": 7, "spect": 7, "spectral_dens": [7, 21], "two_pi": [7, 21], "semilog": [7, 21], "plot_autocovari": 7, "plot_simul": [7, 30], "x_out": 7, "quad_plot": 7, "plot_funct": 7, "plot_func": 7, "warmup": 7, "pure": [7, 12, 24, 32, 33, 36], "cbook": [7, 21], "1699": [7, 21], "complexwarn": [7, 21], "cast": [7, 17, 19, 21, 22, 25, 28, 36], "math": [7, 10, 12, 21, 24, 39], "isfinit": [7, 21, 22], "1345": [7, 21], "ipykernel_5733": 7, "4271821819": 7, "userwarn": 7, "ignor": [7, 10, 14, 15, 39, 42], "992": 7, "_point": 7, "carefulli": [7, 11, 18, 21, 32], "covariogram": [7, 15, 20], "challeng": [7, 11, 19, 28], "visual": [7, 18, 20, 22, 44], "surpris": [7, 20, 21, 44], "pretti": 7, "laboratori": [7, 10, 11], "quartet": [7, 51], "teach": 7, "ljunqvist": 7, "fourth": [7, 25], "98": [7, 11, 18, 32], "theta_2": [7, 11, 39], "permit": [7, 9, 18], "signal": [7, 51], "fft": [7, 21], "manner": [7, 18, 39, 42], "dimpuls": 7, "ma_poli": 7, "ar_poli": 7, "impulse_length": 7, "maintain": [7, 36, 43, 44], "automat": [7, 11, 51], "decid": [7, 16, 22], "assign": [7, 8, 10, 17, 25, 29, 50], "achiev": [7, 9, 10, 13, 14, 15, 23, 30, 36, 42], "descriptor": 7, "easiest": 7, "wrap": [7, 22, 43], "fortran": [7, 44], "fftpack": 7, "ifft": 7, "a_0": [7, 10, 12, 15, 17, 19, 21, 25, 29, 30, 39, 40], "a_1": [7, 15, 19, 25, 30, 39, 40, 44], "a_": [7, 8, 10, 12, 15, 17, 19, 21, 23, 25, 30, 33, 34, 38, 41, 44, 46, 47, 48], "a_k": 7, "a_t": [7, 10, 15, 18, 19, 21, 25, 28, 30, 31, 35, 43, 44, 46, 47, 48, 50], "ik": 7, "omega_t": [7, 25, 34], "divers": [8, 25, 37], "monetari": [8, 14, 18, 33, 51], "brought": [8, 10], "lar": [8, 25, 40, 51], "peter": [8, 25, 40, 51], "richard": [8, 51], "ravi": [8, 51], "jagannathan": [8, 20, 51], "1991": [8, 10, 15, 17, 20, 25, 28, 30, 51], "footstep": 8, "practition": 8, "cross": [8, 15, 20, 25, 44], "project": [8, 15, 22, 25, 26, 33, 35], "orthogon": [8, 15, 24, 26], "sequel": [8, 15, 30, 46, 47, 48], "modif": [8, 24, 26, 28, 44], "live": [8, 13, 14, 24, 28, 50], "common": [8, 9, 18, 21, 25, 32, 34, 37, 39, 44, 49, 50], "bring": [8, 10, 14, 16, 21, 42, 48], "someth": [8, 11, 21, 39], "theoret": [8, 10, 18, 20, 37, 51], "concis": [8, 10, 35], "foundat": [8, 22, 30, 37], "ross": [8, 51], "1976": [8, 51], "1978": [8, 9, 10, 11, 13, 14, 17, 24, 25, 31, 32, 42, 43, 51], "harrison": [8, 51], "krep": [8, 51], "1981": [8, 22, 51], "chamberlain": [8, 51], "rothschild": [8, 51], "operatornam": [8, 18], "simpli": [8, 9, 10, 11, 13, 14, 17, 18, 19, 21, 25, 28, 29, 30, 32, 40, 43, 44, 48, 49, 50], "beta_": [8, 9], "lambda_": [8, 19, 39], "lambda_m": [8, 15, 30], "sdf": 8, "dive": 8, "logarithm": [8, 20, 22], "whom": [8, 10, 39], "popular": [8, 29, 36], "rho": [8, 12, 25, 28, 29, 33, 34, 40, 44, 46, 47], "twice": [8, 13, 14, 50], "diffenti": 8, "sigma_c": [8, 22], "walk": [8, 17, 23, 24, 27, 29, 35, 42, 43, 44], "poor": [8, 21], "deploi": [8, 10, 11, 13, 14, 17, 25, 28, 46, 47, 48], "scott": [8, 51], "2005": [8, 18, 28, 37, 51], "Their": [8, 26], "schwarz": 8, "less": [8, 9, 10, 11, 21, 22, 23, 25, 27, 28, 29, 30, 33, 34, 36, 39, 40, 41], "rho_": [8, 25, 33, 34, 41], "parenthes": 8, "leqslant": 8, "delin": 8, "roughli": [8, 9], "sigmam": 8, "em": 8, "y_valu": 8, "z_valu": 8, "straight": [8, 22, 40], "locu": [8, 22], "uncorrel": [8, 15, 17, 20, 25], "diversifi": 8, "mv": 8, "affin": [8, 9, 11, 22, 25, 33, 42], "residu": [8, 13, 14, 21, 37], "lambda_j": [8, 15, 30], "expos": 8, "f_t": [8, 25, 44], "exposur": 8, "uncov": [8, 11], "specifi": [8, 10, 11, 13, 14, 16, 18, 20, 22, 25, 27, 31, 39, 40, 42, 43, 44, 46, 47], "f_": [8, 17, 25, 33, 39, 44, 46], "perp": [8, 37], "f_a": 8, "briefli": [8, 18, 25, 30, 39, 40], "importnt": 8, "entail": [8, 22], "test": [8, 9, 22, 25, 29, 34, 37, 39, 42, 51], "regressor": [8, 37], "alpha_": [8, 25, 33, 41], "alpha_i": [8, 37], "presum": [8, 17], "ei": 8, "aspect": [8, 10, 14, 19, 20, 28, 50, 51], "artifici": [8, 11, 44], "convinc": 8, "api": [8, 11], "sm": [8, 11, 29], "lot": [8, 22, 47, 48], "ol": [8, 9, 11, 21, 25, 28], "univari": [8, 15, 17, 20, 35, 38], "simple_ol": 8, "add_const": [8, 11], "\u03b2_hat": 8, "\u03c3_hat": 8, "resid": [8, 25], "df_resid": 8, "i_t": [8, 12, 23, 24, 25, 27, 28, 31, 38, 41], "sigma_i": [8, 35], "varepsilon_": [8, 15], "mutual": [8, 15, 28], "scienc": [8, 51], "manifold": 8, "sigma_f": 8, "04": [8, 9, 11, 16, 18, 39, 45], "sigma_1": [8, 20, 24], "sigma_2": [8, 24], "sigma_3": 8, "sigma_4": 8, "sigma_5": 8, "erf": 8, "\u03c3f": 8, "zejin": 8, "tom": 8, "\u03bb": [8, 9, 11, 15, 28, 30, 33, 43], "\u03b2i": 8, "\u03c3i": 8, "\u03f5": 8, "rf": [8, 10, 14, 30, 32], "excess_rm": 8, "ri": 8, "erf_hat": 8, "\u03c3f_hat": 8, "020000000000000046": 8, "5114090308141905e": 8, "\u03be_hat": 8, "\u03bb_hat": 8, "06185596875196789": 8, "08016600446606582": 8, "\u03b2i_hat": 8, "\u03c3i_hat": 8, "20160114": 8, "40768703": 8, "59634019": 8, "82506218": 8, "99882213": 8, "04038332": 8, "03998863": 8, "03992771": 8, "04072763": 8, "04013323": 8, "your": [8, 14, 16, 29, 40], "r_f": [8, 9], "invert": [8, 15, 19, 22, 25, 26, 35], "solve_ab": 8, "condm": 8, "cond": 8, "87": [8, 18, 45, 51], "49999999999999": 8, "468": [8, 14, 51], "7499999999999": 8, "54": [8, 10, 13, 45], "406619883717504": 8, "a_hat": 8, "m_hat": 8, "89": 8, "39322102912662": 8, "481": 8, "2504406183535": 8, "586215352255515": 8, "trust": [9, 11, 39, 40], "he": [9, 14, 17, 22, 28, 40, 42, 46, 50], "distrust": [9, 22], "1992": [9, 34, 51], "imput": [9, 39], "histor": [9, 22], "doubt": [9, 39, 40, 51], "motiv": [9, 10, 36], "moder": [9, 40], "grant": 9, "theorist": 9, "plausibl": [9, 22, 35, 42], "confront": [9, 11, 13, 14, 19, 25, 28, 36, 38], "embarrass": 9, "widespread": 9, "investor": 9, "belief": [9, 10, 28], "ipywidget": [9, 34], "floatslid": 9, "riski": [9, 20, 22, 51], "bf": [9, 10, 19, 23, 40, 46], "multivari": [9, 15, 37, 42], "36": [9, 10, 22, 36], "reaction": [9, 10], "implaus": 9, "custom": 9, "w_m": [9, 15, 30], "premia": 9, "randn": [9, 29, 30, 39, 44], "psd": 9, "holder": 9, "excess_return": 9, "multivariate_norm": [9, 15, 30], "\u03bc_est": 9, "\u03c3_est": 9, "vline": 9, "xaxi": [9, 28], "set_tick": 9, "numpoint": 9, "accept": [9, 18, 37, 40, 50], "her": [9, 10, 35, 50], "peopl": [9, 10, 25, 44], "r_m": 9, "sr": 9, "_m": 9, "delta_m": 9, "philosophi": 9, "drawn": [9, 13, 14, 18, 21], "mu_m": 9, "\u03c3_m": 9, "sr_m": 9, "d_m": [9, 15, 30], "\u03bc_m": 9, "baselin": [9, 11, 12, 22, 40], "she": [9, 16, 40], "believ": [9, 10, 19, 50], "advis": 9, "imagin": [9, 14, 25, 36], "suppos": [9, 15, 16, 21, 22, 25, 29, 30, 35, 36, 37, 40, 42], "w_": [9, 13, 23, 24, 25, 27, 28, 29, 31, 33, 34, 38, 39, 40, 41, 42, 46, 47, 48], "black_litterman": [9, 45], "\u03bc1": 9, "\u03bc2": 9, "\u03c31": 9, "\u03c32": 9, "mixtur": 9, "\u03c31_inv": 9, "\u03c32_inv": 9, "\u03bc_tild": 9, "w_tild": 9, "\u03c4_slider": 9, "bl_plot": 9, "subj": 9, "relationship": [9, 10, 11, 25, 37, 40], "prior": [9, 10, 21, 22, 35, 51], "mid": [9, 15, 18, 25, 33], "bay": 9, "posterior": 9, "compet": [9, 34], "r_e": 9, "euclidiean": 9, "dimension": [9, 13, 14, 25, 28, 32, 40, 44], "ellips": 9, "iso": 9, "possess": 9, "spheric": 9, "symmetri": [9, 37], "81": [9, 10, 19, 51], "leamer": [9, 51], "d_1": [9, 10, 11, 15, 30, 33, 39], "d_2": [9, 30, 33], "tangenc": [9, 10, 22], "reminisc": [9, 20], "pareto": [9, 25], "edgeworth": 9, "box": [9, 44], "dickei": [9, 51], "1975": [9, 28, 51], "contract": [9, 16, 18, 32, 33, 50], "prespecifi": 9, "identifi": [9, 29, 33, 38], "trace": [9, 14, 20, 22, 25, 29, 31, 33, 40], "1987102": 9, "n_r1": 9, "n_r2": 9, "r1": [9, 13, 14, 19, 39, 47, 48], "r2": [9, 13, 14, 19, 39, 47, 48], "\u03bb_grid": [9, 33], "\u03bb_slider": 9, "dist_r_bl": 9, "squeez": [9, 42], "dist_r_hat": 9, "z_bl": 9, "z_hat": 9, "contourf": 9, "cmap": [9, 22, 34], "viridi": [9, 34], "contour": [9, 22], "scatter": [9, 10, 11, 13, 14, 28, 33], "axvlin": [9, 10, 16], "set_ylabel": [9, 10, 13, 14, 18, 21, 22, 32, 33, 40, 43], "proport": [9, 16, 22, 41], "necessarili": [9, 20, 37], "bend": 9, "20000": 9, "min_": [9, 13, 14, 16, 22, 33, 37, 40, 50], "mse": 9, "beta_0": 9, "bia": [9, 21], "overal": [9, 21, 47], "scenario": 9, "tikhonov": 9, "reg": 9, "shrink": 9, "shrinkag": 9, "stack": [9, 33, 35, 39], "i_": [9, 15, 21, 25, 30, 33, 34], "otim": 9, "iota_t": 9, "i_n": 9, "column": [9, 10, 15, 18, 25, 29, 30, 37, 40, 44], "correspondingli": [9, 18], "person": [9, 17, 25, 50], "shrunk": 9, "conserv": [9, 22], "compromis": 9, "partli": [9, 19, 36, 38, 46, 47], "inspir": [9, 20, 46], "econometr": [9, 37, 51], "gave": [9, 44], "licens": 9, "percept": 9, "tamper": 9, "hing": 9, "sf": [9, 22, 44], "entropi": [9, 26, 39, 40, 45, 51], "ent": [9, 20, 22, 40], "discrep": [9, 22, 36, 40], "discrimin": [9, 22], "readi": [9, 17, 25, 30, 33], "indirect": [9, 14, 22, 32], "adversari": [9, 22], "penalti": [9, 17, 22, 36, 38, 39, 40, 46, 48], "underlin": [9, 13, 14, 20, 22, 39], "scope": 9, "acquir": [9, 10, 11, 14, 25, 28, 43], "worst": [9, 10, 11, 13, 22], "_f": 9, "rob": 9, "folk": 9, "operation": 9, "statement": [9, 16, 22, 25, 32, 34, 36, 37], "analog": [9, 16, 21, 36, 40, 42, 43, 44], "x_n": [9, 20, 37, 44], "s_n": 9, "difficulti": [9, 25], "infin": [9, 16, 30], "varepsilon": [9, 15, 18, 20], "lim_": [9, 10, 11, 13, 14, 15, 19, 20, 22, 25, 30], "underset": [9, 17, 33], "significantli": [9, 11, 23], "unbias": 9, "n2": [9, 34, 37], "revert": [9, 10, 36], "dx_t": 9, "kappa": [9, 28, 40], "dt": [9, 41], "dw_t": 9, "w_t": [9, 13, 24, 25, 28, 29, 33, 40, 41, 47], "brownian": 9, "motion": [9, 10, 12, 19, 23, 25, 28, 33, 39, 40, 44, 47], "aris": [9, 22, 34], "nh": 9, "sigma_h": 9, "wherea": [9, 14], "distanc": [9, 13, 14, 18, 22], "autocorrel": [9, 21], "gamma_h": 9, "corr": 9, "auto": 9, "irrespect": 9, "moreov": [9, 37, 39, 40], "\u03ba": [9, 28], "var_uncond": 9, "n_grid": [9, 50], "autocorr_h1": 9, "autocorr_h2": 9, "autocorr_h5": 9, "autocorr_h1000": 9, "1e8": 9, "darkblu": [9, 22], "darkr": [9, 22], "darkgreen": 9, "explicit": [9, 10, 18], "inflat": [9, 10, 11], "everyth": [9, 15, 25, 39], "slower": 9, "stronger": [9, 44], "content": [9, 29, 40], "saw": [9, 15, 28, 39, 42, 50], "unfortun": 9, "harder": [9, 11], "nonetheless": 9, "sample_gener": 9, "mean_uncond": 9, "std_uncond": 9, "\u03b5_path": 9, "y_path": [9, 42, 43], "n_app": 9, "m_app": 9, "30000": 9, "h_grid": [9, 13, 14], "var_est_stor": 9, "mean_est_stor": 9, "mse_mean": 9, "mse_var": 9, "benchmark_r": 9, "rate_h": 9, "pronounc": 9, "deterior": 9, "quadrat": [10, 11, 12, 15, 17, 19, 23, 25, 26, 28, 30, 31, 34, 36, 38, 39, 40, 42, 43, 51], "guillermo": [10, 11, 51], "1998": [10, 11, 13, 14, 50, 51], "tradeoff": [10, 11], "benefit": [10, 13, 14, 16, 25, 29, 32, 41, 44, 50, 51], "monei": [10, 11, 13, 14, 51], "therebi": [10, 11, 13, 14, 16, 17, 36, 50], "liquid": [10, 11], "paper": [10, 11, 12, 14, 17, 34, 35, 36, 44], "destroi": [10, 11, 34], "costli": [10, 11, 16, 33, 50], "action": [10, 11, 13, 14, 19, 44, 45, 47], "theme": [10, 28, 43], "cagan": [10, 11, 51], "1956": [10, 11, 51], "1989": [10, 13, 18, 22, 25, 44, 51], "chari": [10, 13, 51], "keho": [10, 13, 51], "1990": [10, 13, 14, 22, 51], "1988": [10, 15, 30, 51], "control": [10, 17, 18, 19, 22, 23, 25, 32, 33, 35, 39, 40, 48, 50, 51], "lq": [10, 11, 15, 17, 19, 23, 24, 25, 30, 38, 39, 40, 42, 43, 46, 48], "ticker": 10, "formatstrformatt": 10, "panda": [10, 11, 40], "pd": [10, 40], "p_t": [10, 11, 12, 14, 19, 25, 28, 29, 30, 32, 36, 39, 40, 47], "nomin": [10, 11, 13, 14], "p_": [10, 11, 19, 20, 25, 28, 32, 33, 34, 36, 39, 42, 43, 46, 47, 50], "mu_t": [10, 13, 14, 25, 28, 29], "foresight": [10, 11, 17, 24, 51], "1977": [10, 51], "subtract": [10, 11], "theta_": [10, 11, 13, 14, 25, 28, 39, 40], "forward": [10, 11, 17, 19, 25, 28, 30, 34, 36, 42, 43], "intermedi": [10, 11, 13, 14, 23, 25, 34, 47], "imping": [10, 11], "analsi": 10, "creation": [10, 11, 14], "matter": [10, 16, 40, 42], "ordinarili": 10, "threaten": 10, "destabil": 10, "u_0": [10, 11, 19, 50], "u_1": [10, 11, 37], "u_2": [10, 11, 37], "bliss": [10, 11, 23, 25, 38, 42], "milton": [10, 35, 51], "withdraw": [10, 14, 28], "incur": [10, 11, 16, 19, 34], "rx_t": [10, 25], "v_0": [10, 11, 25, 50], "v_t": [10, 11, 17, 25, 28, 41, 42], "v_": [10, 11, 15, 17, 18, 19, 25, 28, 39, 40, 42, 50], "mp": 10, "policymak": 10, "unaffect": [10, 42], "topic": [10, 13, 14, 21, 44], "split": [10, 13, 14, 33, 34, 39], "overrightarrow": 10, "x_1": [10, 15, 20, 25, 30, 36, 37, 44], "lbrace": 10, "rbrace": 10, "px": [10, 40], "riccati": [10, 19, 25, 28, 39, 40, 46, 48], "pa": 10, "g_1": [10, 11, 25, 43], "g_2": [10, 11, 43], "f_1": [10, 12, 19, 25, 30, 39], "f_2": [10, 12, 19, 25, 39], "b_1": [10, 11, 19, 36, 39, 43, 47], "d_0": [10, 11, 15, 25, 30], "regular": [10, 21, 40], "assur": [10, 19, 36, 40, 42], "liberti": [10, 11], "purpos": [10, 13, 14, 15, 28, 32, 42], "meanwhil": 10, "symptom": [10, 28, 36], "reap": [10, 14], "monoton": [10, 11, 13, 14, 18, 37], "fond": 10, "transient": 10, "movement": 10, "destin": [10, 34], "fade": 10, "pretend": 10, "ago": [10, 34], "stuck": 10, "commit": [10, 14, 29], "guidanc": 10, "telltal": 10, "yet": [10, 16, 29, 34, 35, 41], "mirror": 10, "forev": [10, 17, 38, 50], "expand": [10, 16, 29, 34, 46, 47], "mpe": [10, 11, 19, 39], "nonstandard": 10, "changlq": [10, 11], "\u03b1": [10, 11, 18, 22, 32, 38, 42, 44], "u0": [10, 11], "u1": [10, 11, 19], "u2": [10, 11, 19], "\u03b8_n": [10, 11], "record": [10, 11, 13, 14, 22, 25, 36, 43], "setup_lq_matric": [10, 11], "solve_lq_problem": [10, 11], "compute_policy_funct": [10, 11], "simulate_ramsey_plan": [10, 11], "compute_\u03b8_rang": [10, 11], "compute_value_and_polici": [10, 11], "stationary_valu": [10, 11, 17, 19, 33, 35, 40, 46, 47, 48], "b1": [10, 11, 19, 39, 47], "d0": [10, 11], "d1": [10, 11, 17, 39, 41], "cl_mat": [10, 11], "\u03b8_r": [10, 11], "\u03b8_b": [10, 11], "\u03bc_mpe": [10, 11], "\u03b8_mpe": [10, 11], "\u03bc_cr": [10, 11], "\u03b8_cr": [10, 11], "j_\u03b8": [10, 11], "\u03b8_arrai": [10, 11], "v_\u03b8": [10, 11], "j_mpe": [10, 11], "j_cr": [10, 11], "\u03b8_seri": [10, 11, 13, 14], "\u03bc_seri": [10, 11], "j_seri": [10, 11], "\u03b8_lb": [10, 11], "\u03b8_ub": [10, 11], "\u03b8_rang": [10, 11], "\u03b8_space": [10, 11], "j_space": [10, 11], "\u03bc_space": [10, 11], "x_prime": [10, 11], "\u03b8_prime": [10, 11], "cr_space": [10, 11], "j_rang": [10, 11], "j_lb": [10, 11], "j_ub": [10, 11], "ptp": [10, 11], "clq": [10, 11], "85": [10, 11, 12, 45], "compute_\u03b8": [10, 11], "\u03b8_point": 10, "argmax": 10, "\u03b8_color": 10, "c5": 10, "plot_policy_funct": 10, "\u03bc_min": 10, "\u03bc_max": 10, "\u03bc_rang": 10, "annot": [10, 13, 14, 22], "xy": [10, 13, 14], "xytext": [10, 13, 14], "intersect": [10, 14, 22], "plot_value_funct": 10, "\u03b8s": [10, 11, 22, 40], "gap": [10, 17, 22], "disarm": 10, "exce": [10, 11, 17, 19, 22, 30, 36, 40, 43], "anyth": [10, 11, 22, 44, 50], "\u03b8_inf": 10, "allclos": [10, 11, 39], "strict": [10, 50], "wors": 10, "compare_ramsey_cr": 10, "min_cr": 10, "max_cr": 10, "range_cr": 10, "l_cr": 10, "u_cr": 10, "j_line": 10, "cr_line": 10, "mark": [10, 34], "ymin": 10, "v_cr": [10, 11], "vcr_line": 10, "plt_clq": 10, "helper": [10, 36, 50], "bottom": [10, 15, 21, 34, 44], "line_handl": 10, "scatter_handl": 10, "fr": 10, "tick_param": 10, "rotat": 10, "get_label": [10, 22], "gcf": 10, "ncol": [10, 29], "bbox_to_anchor": [10, 29, 33], "prop": 10, "generate_t": 10, "dig": [10, 39], "tabl": [10, 45], "latex": [10, 28], "digit": 10, "round": [10, 13, 14, 19, 28, 39], "label_map": 10, "data_fram": 10, "datafram": [10, 40], "join": [10, 43], "col": [10, 37], "latex_cod": 10, "\u03b2_valu": 10, "displaystyl": 10, "cccc": [10, 12, 37], "111": [10, 22, 27, 29, 33], "083": 10, "079": 10, "respectfulli": 10, "tangent": [10, 22, 40], "c_valu": 10, "028": 10, "c_limit": 10, "drove": 10, "wedg": [10, 16], "decai": [10, 35], "plot_ramsey_mp": 10, "rect": 10, "generate_param_t": 10, "param_nam": 10, "iterrow": 10, "cccccccc": [10, 28], "39": [10, 11, 36, 45, 50], "75": [10, 11, 18, 21, 22, 34, 39, 51], "76": [10, 13], "58": [10, 51], "84": 10, "72": [10, 14, 45, 50], "53": [10, 51], "67": [10, 14, 39], "62": [10, 51], "82": [10, 45, 51], "32": [10, 15, 18, 30, 36], "33": [10, 14, 28, 30, 36], "74": [10, 45, 51], "390": [10, 18], "88": [10, 11], "constel": 10, "offer": [10, 18, 44, 46, 50], "reoptim": 10, "economist": [10, 36, 44], "attract": [10, 22], "research": [10, 11, 28, 40, 51], "rescu": 10, "complaint": 10, "deter": [10, 13, 47], "disappoint": [10, 13, 21], "a_j": [10, 15, 21, 30, 50], "mu_j": 10, "whenev": [10, 19, 37, 44, 49], "gain": [10, 17, 19, 25, 28, 35], "resist": 10, "outweigh": 10, "explos": [10, 23], "unbound": 10, "dilip": [10, 51], "kept": 10, "superscipt": 10, "restart": 10, "v_j": [10, 25], "theta_j": 10, "taught": 10, "invent": [10, 14], "imit": [10, 34], "insist": [10, 14], "thereaft": [10, 43], "candid": [10, 13, 14, 36], "t_a": 10, "gradual": [10, 13, 14, 28, 33, 36], "10th": 10, "abreu_plan": 10, "\u03bc_bar": [10, 11], "t_plot": 10, "\u03bc_a": 10, "\u03b8_a": 10, "u_a": [10, 25, 31], "v_a": [10, 14], "v_dev": 10, "34": [10, 30, 36], "check_ramsei": 10, "r_dev": 10, "tupl": [10, 12, 13, 14, 29, 50], "nu_": [10, 17], "nu_v": 10, "favor": [10, 16, 18, 33, 36], "gather": 10, "unrestrict": [10, 29], "776447396127581": 10, "756756756756755": 10, "70875734810947": 10, "nicknam": [10, 14], "angl": [11, 37], "sustain": [11, 14, 23, 26, 51], "analyt": [11, 18, 25, 28, 44, 50], "guid": [11, 28], "calvo": [11, 13, 14, 45, 51], "pave": 11, "sophist": [11, 13, 14], "brute": 11, "growh": 11, "exploit": [11, 14, 15, 16, 18, 25, 34, 36, 43], "prolifer": 11, "sister": 11, "appreci": [11, 28], "realli": [11, 18, 25, 28, 32], "lazi": 11, "descent": [11, 22], "exert": [11, 39, 50], "hidden": [11, 28, 35], "answer": [11, 15, 16, 19, 21, 25, 32, 35, 37, 42, 44, 46], "human": 11, "intellig": 11, "deflat": [11, 13, 14], "theta_t": [11, 13, 14, 19, 36], "h_0": [11, 14, 25, 36], "h_1": [11, 14, 34], "h_2": [11, 34], "gotten": 11, "mu_1": [11, 20], "hope": [11, 39, 43], "jax": 11, "optax": 11, "absl": 11, "absl_pi": 11, "chex": 11, "86": [11, 51], "jaxlib": 11, "983": 11, "etil": 11, "epi": 11, "toolz": 11, "ml_dtype": 11, "opt": [11, 37], "einsum": 11, "opt_einsum": 11, "32m289": 11, "31m52": 11, "32m133": 11, "31m44": 11, "32m98": 11, "31m38": 11, "32m2": 11, "31m113": 11, "32m6": 11, "31m187": 11, "32m12": 11, "31m189": 11, "32m19": 11, "32m25": 11, "31m181": 11, "32m31": 11, "31m177": 11, "32m37": 11, "31m174": 11, "31m170": 11, "32m48": 11, "32m54": [11, 13], "32m60": 11, "31m172": 11, "32m66": 11, "31m171": 11, "32m72": 11, "32m77": 11, "32m83": 11, "31m169": 11, "32m88": 11, "31m184": 11, "31m42": 11, "31m121": 11, "32m161": 11, "31m54": 11, "32m65": 11, "31m28": 11, "patsi": 11, "py2": [11, 37], "dateutil": 11, "pytz": 11, "2020": 11, "2023": 11, "post1": 11, "tzdata": 11, "2022": 11, "31m90": 11, "32m8": 11, "31m118": 11, "32m10": 11, "31m147": 11, "31m104": 11, "32m233": 11, "31m67": 11, "jnp": 11, "grad": 11, "copi": [11, 13, 14, 19, 22, 48, 50], "hide": 11, "subproblem": [11, 14], "setup": [11, 13, 19, 33, 36, 47], "protocol": [11, 19], "\u03bcbar": 11, "\u03bb_power": 11, "weighted_sum": 11, "compute_h": 11, "h0": 11, "h1": [11, 39], "v_sum": 11, "v_final": 11, "v_val": 11, "430511474609375e": 11, "adam": 11, "adam_optim": 11, "grad_func": 11, "init_param": 11, "lr": 11, "error_tol": 11, "learning_r": 11, "opt_stat": 11, "apply_upd": 11, "\u03bc_init": 11, "grad_v": 11, "optimized_\u03bc": 11, "8627105951309204": 11, "0033030672930181026": 11, "701549808785785e": 11, "06450703": 11, "09033976": 11, "10068483": 11, "10482766": 11, "10648672": 11, "10715112": 11, "10741719": 11, "10752375": 11, "10756642": 11, "10758351": 11, "10759035": 11, "10759308": 11, "10759415": 11, "10759459": 11, "10759478": 11, "10759482": 11, "10759486": 11, "10759488": 11, "10759487": 11, "10759485": 11, "10759489": 11, "1075949": 11, "10759491": 11, "10759493": 11, "10759494": 11, "10759497": 11, "10759496": 11, "10759495": 11, "10759499": 11, "509": 11, "609": 11, "601": 11, "06450708": 11, "09033982": 11, "10068489": 11, "10482772": 11, "10648677": 11, "10715115": 11, "10741722": 11, "10752377": 11, "10756644": 11, "10758352": 11, "10759037": 11, "10759311": 11, "1075942": 11, "10759464": 11, "10759492": 11, "9737057616330276e": 11, "8357825": 11, "float32": 11, "835783": 11, "brief": [11, 22, 40], "digress": 11, "optimized_\u03bc_cr": 11, "333333969116211": 11, "004979133605957031": 11, "818771362304688e": 11, "10000004": 11, "7252903e": 11, "8333354": 11, "8333344": 11, "vdot": [11, 15, 17, 19, 25, 30, 37, 41, 47], "mu_2": 11, "construct_b": 11, "\u03bcs": 11, "rewritten": [11, 14, 29, 30, 34], "compute_j": 11, "\u03b2_vec": 11, "\u03b2\u03b8_sum": 11, "\u03b2\u03b8_square_sum": 11, "\u03b2\u03bc_square_sum": 11, "grad_j": 11, "003303033299744129": 11, "6926183889154345e": 11, "280": [11, 45], "06450712": 11, "09033988": 11, "10068493": 11, "10482774": 11, "1064868": 11, "1071512": 11, "10741723": 11, "10752378": 11, "10758355": 11, "10759039": 11, "10759313": 11, "10759424": 11, "10759471": 11, "10759498": 11, "107595": 11, "213": 11, "3748542332668876e": 11, "v_r": 11, "knowledg": [11, 15, 25, 27, 31, 44], "compute_\u03bc": 11, "\u03bc_close": 11, "0645071": 11, "1006849": 11, "1048277": 11, "10715113": 11, "10756643": 11, "10759034": 11, "10759421": 11, "47137171779832e": 11, "6541223974163586e": 11, "compute_grad": 11, "closed_grad": 11, "0625": 11, "8906252": 11, "5257816": 11, "1062894": 11, "6950336": 11, "3181221": 11, "9840758": 11, "6933005": 11, "4427234": 11, "2280239": 11, "0446749": 11, "8884009": 11, "7553544": 11, "64215815": 11, "5458878": 11, "46403134": 11, "39444": 11, "33528066": 11, "28499195": 11, "24224481": 11, "20590894": 11, "17502302": 11, "14876978": 11, "12645441": 11, "10748631": 11, "09136339": 11, "0776589": 11, "06601007": 11, "05610856": 11, "04769228": 11, "04053844": 11, "03445768": 11, "02928903": 11, "02489567": 11, "02116132": 11, "01798713": 11, "01528906": 11, "0129957": 11, "07364222": 11, "890625": 11, "3181224": 11, "9840759": 11, "4427235": 11, "228024": 11, "6421581": 11, "54588777": 11, "46403137": 11, "28499192": 11, "175023": 11, "14876977": 11, "0913634": 11, "05610857": 11, "02489568": 11, "01798712": 11, "074267394571507e": 11, "worth": [11, 16, 23, 27], "worthwhil": [11, 30], "ordin": [11, 22], "ts": 11, "strang": 11, "anywai": 11, "\u03bc_t": 11, "\u03b8_t": [11, 28], "x1_\u03b8": 11, "model1": 11, "results1": 11, "slim": 11, "dep": 11, "adj": 11, "489e": [11, 18], "nonrobust": 11, "90e": 11, "coef": 11, "err": [11, 35], "const": 11, "0645": 11, "42e": 11, "46e": 11, "5995": 11, "14e": 11, "86e": 11, "correctli": [11, 21, 39, 50], "Of": [11, 19, 21, 36], "succeed": 11, "\u03b8_": 11, "\u03b8_t1": 11, "x2_\u03b8": 11, "intercept": [11, 21, 22], "model2": 11, "results2": 11, "nregress": 11, "775e": 11, "41e": 11, "84e": 11, "33e": 11, "4005": 11, "54e": 11, "82e": 11, "backward": [11, 17, 19, 28, 36, 39, 50], "compute_vt": 11, "s_p": 11, "76837158203125e": 11, "inspect": [11, 19, 23, 28], "va": [11, 16], "clip_on": 11, "phrase": 11, "2_t": [11, 15, 25, 30, 44], "x3_\u03b8": 11, "column_stack": 11, "model3": 11, "results3": 11, "474e": 11, "09e": 11, "8052": 11, "91e": 11, "15e": 11, "805": 11, "7581": 11, "6028": 11, "976": 11, "758": 11, "6996": 11, "7131": 11, "888": 11, "701": 11, "698": 11, "5e": 11, "strong": [11, 27, 44], "multicollinear": 11, "printout": 11, "corrcoef": [11, 31], "99942156": 11, "\u03b8_grid": [11, 13, 14], "x3_grid": 11, "peak": 11, "7580": 11, "6991": 11, "assembl": [11, 28], "wouldn": 11, "represen": 11, "isn": [11, 16], "cruder": 11, "6f": 11, "064507": 11, "599536": 11, "400464": 11, "suit": [12, 23, 24, 27, 31, 38, 41], "dle": [12, 23, 24, 25, 26, 27, 41], "instanti": [12, 23, 24, 27, 31, 38, 41], "2013": [12, 17, 23, 24, 25, 27, 31, 33, 38, 41, 51], "rosen": [12, 26, 51], "murphi": [12, 22, 25, 51], "scheinkman": [12, 25, 51], "1994": [12, 25, 44, 51], "recurr": [12, 46, 48], "namedtupl": [12, 29, 41], "static": [12, 20, 22, 25, 33], "curv": [12, 19, 28, 39, 40, 41, 47], "slaughter": [12, 25], "beef": [12, 25], "anim": [12, 25], "h_t": [12, 13, 14, 23, 25, 27], "gamma_1": [12, 23, 25, 27], "yearl": [12, 25], "calf": [12, 25], "breed": [12, 25], "gx_": 12, "calv": [12, 25], "headcount": 12, "adult": [12, 25], "farmer": [12, 25], "p_tc_t": 12, "h_tx_t": 12, "m_tc_t": 12, "psi_1": [12, 25, 41], "psi_2": [12, 25], "psi_3": [12, 25], "psi_4": [12, 25], "fictiti": 12, "a_1p_t": 12, "d_t": [12, 23, 24, 25, 29, 30, 40], "shifter": [12, 25], "delta_h": [12, 23, 25, 27, 38, 41], "alpha_1": [12, 25, 30, 37], "alpha_0": [12, 25, 30, 33], "delta_k": [12, 15, 23, 24, 25, 27, 31, 38], "ccc": [12, 17, 23, 28, 31, 38], "theta_k": [12, 23, 25, 38], "phi_c": [12, 23, 25, 38], "f_7": 12, "phi_g": [12, 23, 25, 38], "f_3": 12, "f_5": 12, "rho_1": [12, 38], "rho_2": [12, 38], "rho_3": 12, "c_2": [12, 19, 22, 23, 25, 38, 41, 46, 47], "u_b": [12, 23, 24, 25, 31, 38, 41], "u_d": [12, 23, 24, 25, 31, 38, 41], "u_h": 12, "f_4": 12, "f_6": 12, "f_8": 12, "2f_1f_2": 12, "2f_3f_4": 12, "gamma_0g": 12, "2f_5f_6": 12, "gamma_1g": 12, "a22": [12, 23, 24, 27, 31, 38, 41, 46, 47, 48], "ud": [12, 23, 24, 27, 31, 38, 41], "\u03d5_c": [12, 23, 24, 27, 31, 38, 41], "\u03d5_g": [12, 23, 24, 27, 31, 38, 41], "\u03d5_i": [12, 23, 24, 27, 31, 38, 41], "\u03b4_k": [12, 23, 24, 27, 31, 38, 41], "\u03b8_k": [12, 23, 24, 27, 31, 38, 41], "l_\u03bb": [12, 23, 24, 27, 31, 38, 41], "\u03c0_h": [12, 23, 24, 27, 31, 38, 41], "\u03b4_h": [12, 23, 24, 27, 31, 38, 41], "\u03b8_h": [12, 23, 24, 27, 31, 38, 41], "909": 12, "l\u03bb": 12, "\u03c0h": 12, "\u03b4h": 12, "\u03b8h": 12, "f1": [12, 17, 19, 33, 39, 50], "f3": 12, "f5": 12, "f7": 12, "\u03d5c": 12, "\u03d5g": 12, "\u03d5i": 12, "\u03b4k": 12, "\u03b8k": 12, "\u03c11": [12, 42], "\u03c12": [12, 42], "\u03c13": 12, "a0": [12, 19, 24, 29, 39], "\u03b30": 12, "\u03b31": [12, 39], "f2": [12, 17, 19, 33, 39], "f4": 12, "f6": 12, "f8": 12, "\u03c0h_scalar": 12, "uh": 12, "um": 12, "white": [12, 15, 21, 30, 35], "nois": [12, 15, 17, 21, 24, 25, 28, 30, 35, 51], "extra": [12, 13, 16, 17, 22, 42], "oppos": 12, "info1": [12, 23, 24, 27, 31, 38, 41], "tech1": [12, 23, 24, 27, 31, 38, 41], "pref1": [12, 23, 24, 27, 31, 38, 41], "\u03c13_2": 12, "a22_2": [12, 31], "info2": [12, 31], "\u03c13_3": 12, "a22_3": 12, "info3": 12, "econ1": [12, 23, 24, 27, 31, 38, 41], "econ2": [12, 23, 27, 31, 41], "econ3": [12, 23, 27, 41], "compute_steadyst": [12, 23, 27], "nnc": 12, "compute_sequ": [12, 19, 23, 27, 31, 33, 38, 46, 47, 48], "ts_length": [12, 17, 18, 19, 21, 23, 24, 27, 28, 31, 33, 38, 41, 46, 47, 48], "abil": [12, 18, 25, 33, 40, 42, 46, 48, 50], "totalstock": 12, "shock_demand": [12, 41], "irf": [12, 24, 25, 26, 41], "ax1": [12, 22, 24, 34, 38, 41, 47, 48], "ax2": [12, 22, 24, 34, 38, 41, 47, 48], "c_irf": [12, 24, 27, 41], "k_irf": 12, "markedli": 12, "transitori": 12, "total1_irf": 12, "total3_irf": 12, "hump": 12, "contribut": [12, 19, 24, 28, 39, 51], "cyclic": [12, 30, 51], "polytop": [13, 14], "tar": [13, 44], "gz": 13, "31m6": 13, "25hrequir": 13, "networkx": [13, 14], "wheel": 13, "filenam": 13, "47765": 13, "sha256": 13, "5fe49608a089f69cebd6252f0143c8ddec2e101ccf9df6ad731408a515f5ee1c": 13, "directori": 13, "cach": [13, 45], "0a": [13, 25], "dc": [13, 51], "7c": 13, "19db8e9a73e1a551591347b185108f137877f9638ee8f8e3cc": 13, "built": [13, 15, 28, 34, 44, 45], "treatment": [13, 14, 18, 29, 34, 37, 44], "chose": [13, 14], "z_0": [13, 14, 15, 19, 25, 30, 47], "incorpor": [13, 22, 51], "cvxopt": [13, 14], "glpk": [13, 14], "linprog": [13, 14], "review": [13, 18, 32, 34, 39, 51], "retir": [13, 14], "promot": [13, 14], "capita": [13, 14], "clear": [13, 14, 16, 29], "reconcil": [13, 14], "q_t": [13, 14, 19, 20, 30, 36, 39, 47], "overlin": [13, 14, 33], "subsidi": [13, 14], "activ": [13, 16, 39], "frame": [13, 14], "had": [13, 14, 17, 29, 34, 36, 43], "lambda_t": [13, 14, 19], "q_": [13, 14, 18, 19, 30, 33, 39, 42, 43], "h_": [13, 14, 23, 25, 27, 38, 41], "standpoint": [13, 14], "pervad": [13, 14], "five": [13, 31, 43, 50], "chi": 13, "weakli": [13, 18], "lifetim": [13, 50], "adher": 13, "contempl": [13, 25], "sp": [13, 50], "admiss": [13, 14, 22, 39], "ce_": [13, 14], "ce": 13, "compact": [13, 14], "subset": [13, 14, 25, 29, 37, 42, 44], "nonempti": [13, 14], "depict": [13, 22, 24, 35], "abreu": [13, 14, 51], "pearc": [13, 14, 51], "stacchetti": [13, 14, 51], "shot": 13, "lowest": [13, 50], "ensur": [13, 14, 23, 27, 29, 40, 47, 48], "harshest": 13, "punish": [13, 50], "br": [13, 14], "0_": [13, 14, 15, 25, 36], "tempt": 13, "asid": 13, "hyperplan": [13, 14, 40], "subgradi": [13, 14], "h_i": [13, 14, 25], "m_j": [13, 14], "h_j": [13, 14, 17, 19, 34], "x_j": [13, 14, 15, 20, 37], "2mm": [13, 14, 46, 47], "5m": [13, 14], "4x": [13, 14], "accuraci": [13, 14, 19], "changmodel": [13, 14], "parameter": [13, 14, 34, 40], "spatial": [13, 14], "convexhul": [13, 14], "minimize_scalar": [13, 14, 50], "chebyshev": [13, 14], "cheb": [13, 14], "mbar": [13, 14], "h_min": [13, 14], "h_max": [13, 14], "n_h": [13, 14], "n_m": [13, 14], "n_g": [13, 14], "m_min": [13, 14], "m_max": [13, 14], "n_a": [13, 14], "uc_p": [13, 14], "v_p": [13, 14], "concaten": [13, 14, 15, 22, 30], "kron": [13, 14], "euler_vec": [13, 14], "u_vec": [13, 14], "\u03b8_vec": [13, 14], "f_vec": [13, 14], "bell_vec": [13, 14], "extrema": [13, 14], "p_vec": [13, 14], "w_vec": [13, 14], "w_space": [13, 14], "isinf": [13, 14], "p_space": [13, 14], "gradient": [13, 14, 19, 25], "sg_h_v": [13, 14], "radiu": [13, 14], "game": [13, 14, 39, 51], "jl": [13, 14], "2\u03c0": [13, 14], "inc": [13, 14], "c0_c": [13, 14], "c0_": [13, 14], "c1_c": [13, 14], "c1_": [13, 14], "z0_": [13, 14], "z0_c": [13, 14], "z1_": [13, 14], "z1_c": [13, 14], "w_bnds_": [13, 14], "w_bnds_c": [13, 14], "p_bnds_": [13, 14], "p_bnds_c": [13, 14], "dictionari": [13, 14], "c_dic_": [13, 14], "c_dic_c": [13, 14], "solve_worst_sp": [13, 14], "449": [13, 14], "nan": [13, 14, 22], "aineq_mbar": [13, 14], "bineq_mbar": [13, 14], "aineq": [13, 14], "bineq": [13, 14], "aeq": [13, 14], "a_ub": [13, 14], "b_ub": [13, 14], "beq": [13, 14], "a_eq": [13, 14], "b_eq": [13, 14], "br_z": [13, 14], "nanmax": [13, 14], "nanmin": [13, 14], "solve_subgradi": [13, 14], "aineq_c_mbar": [13, 14], "bineq_c_mbar": [13, 14], "aineq_c": [13, 14], "bineq_c": [13, 14], "aeq_c": [13, 14], "aineq_s_mbar": [13, 14], "bineq_s_mbar": [13, 14], "aineq_": [13, 14], "bineq_": [13, 14], "aeq_": [13, 14], "c_a1a2_c": [13, 14], "t_a1a2_c": [13, 14], "c_a1a2_": [13, 14], "t_a1a2_": [13, 14], "beq_c": [13, 14], "beq_": [13, 14], "idx_c": [13, 14], "idx_": [13, 14], "solve_sustain": [13, 14], "wmin_c": [13, 14], "wmax_c": [13, 14], "pmin_c": [13, 14], "pmax_c": [13, 14], "wmin_": [13, 14], "wmax_": [13, 14], "pmin_": [13, 14], "pmax_": [13, 14], "elaps": [13, 14, 18], "solve_bellman": [13, 14], "\u03b8_min": [13, 14], "\u03b8_max": [13, 14], "disp": [13, 14], "lb1": [13, 14, 18], "ub1": [13, 14], "lb2": [13, 14], "ub2": [13, 14], "chebvand": [13, 14], "p_fun": [13, 14], "p_fun2": [13, 14], "cons1": [13, 14], "cons2": [13, 14], "ineq": [13, 14], "bnds1": [13, 14], "bnds2": [13, 14], "p_iter1": [13, 14], "slsqp": [13, 14], "bool": [13, 14, 34], "p_iter": [13, 14, 19], "\u03b8_grid_fin": [13, 14], "resid_grid": [13, 14], "p_grid": [13, 14], "\u03b8_prime_grid": [13, 14], "m_grid": [13, 14], "m_seri": [13, 14], "h_seri": [13, 14], "valfun": [13, 14], "res2": [13, 14, 18], "x_seri": [13, 14], "ch1": [13, 14], "9168": [13, 14], "66782": [13, 14], "49235": [13, 14], "32412": [13, 14], "19022": [13, 14], "10863": [13, 14], "05817": [13, 14], "0262": [13, 14], "01836": [13, 14], "01415": [13, 14], "00297": [13, 14], "00089": [13, 14], "00027": [13, 14], "00008": [13, 14], "00002": [13, 14], "00001": [13, 14, 23, 24, 27, 38], "plot_equilibria": 13, "poly_": 13, "poly_c": [13, 14], "ext_c": [13, 14], "ext_": 13, "zorder": [13, 14], "idx_ramsei": [13, 14], "w_min": [13, 14], "recomput": 13, "ch2": [13, 14], "06369": [13, 14], "02476": [13, 14], "02153": [13, 14], "01915": [13, 14], "01795": [13, 14], "01642": [13, 14], "01507": [13, 14], "01284": [13, 14], "01106": [13, 14], "00694": [13, 14], "0085": [13, 14], "00781": [13, 14], "00433": [13, 14], "00492": [13, 14], "00303": [13, 14], "00182": [13, 14], "00638": [13, 14], "00116": [13, 14], "00093": [13, 14], "00075": [13, 14], "0006": [13, 14], "00494": [13, 14], "00038": [13, 14], "00121": [13, 14], "00024": [13, 14], "0002": [13, 14], "00016": [13, 14], "00013": [13, 14], "0001": [13, 14], "00006": [13, 14], "00005": [13, 14], "00004": [13, 14], "00003": [13, 14], "stachetti": 14, "roberto": [14, 51], "broadli": 14, "textbook": 14, "credibl": [14, 26, 51], "interrel": [14, 33, 39, 46], "princip": [14, 22], "leader": 14, "transpar": [14, 40], "currenc": 14, "circul": 14, "burn": 14, "dollar": 14, "meassur": 14, "consider": [14, 22], "karush": 14, "kuhn": 14, "tucker": 14, "complementari": [14, 25], "interior": [14, 50], "revolut": 14, "brand": 14, "reset": [14, 19, 34, 48], "reiniti": 14, "benefici": 14, "kydland": [14, 51], "prescott": [14, 25, 51], "1980": [14, 15, 30, 51], "inher": [14, 18], "m_1": [14, 22, 39], "advanc": [14, 16, 20, 37, 51], "knew": 14, "sigma_t": [14, 19, 25, 44], "alpha_t": [14, 25], "wast": 14, "judd": [14, 34, 50, 51], "yeltekin": [14, 51], "conklin": [14, 51], "2003": [14, 22, 46, 47, 48, 51], "convex": [14, 16, 22, 50], "half": 14, "plot_competit": 14, "min_theta": 14, "max_theta": 14, "decompos": [14, 25, 28], "configur": 14, "0088": 14, "0499": 14, "0395": 14, "2193": 14, "ipykernel_6086": 14, "1608401414": 14, "045": 14, "deprecationwarn": [14, 29, 40], "convers": [14, 29, 36, 37, 40], "ndim": [14, 29, 34, 40], "deprec": [14, 29, 40], "309": 14, "444": 14, "quick": [14, 25, 44], "46313155971967e": 14, "875358415925348e": 14, "edg": [14, 21, 44], "sharex": [14, 22, 36], "hit": [14, 16, 18], "clearli": [14, 37, 40], "administr": 14, "lu": [15, 30], "choleski": [15, 30], "intim": [15, 22], "superfici": [15, 25], "essenti": [15, 16, 17, 21, 25, 30, 44], "dualiti": [15, 25], "kalman": [15, 24, 25, 28, 30, 35, 37], "implicitli": [15, 25, 34, 40, 46], "affili": 15, "repeatedli": [15, 50], "crack": 15, "ix": [15, 19, 28, 30], "xiv": [15, 20, 28], "And": [15, 16, 23, 25, 27, 30, 43], "occasion": [15, 20, 25], "whittl": [15, 22, 30, 51], "1963": [15, 30, 51], "orfanidi": [15, 30, 51], "athanasio": [15, 30, 51], "pillai": [15, 30, 51], "muth": [15, 26, 28, 30, 51], "1960": [15, 28, 30, 51], "x_2": [15, 30, 37], "wold": [15, 20, 24], "ij": [15, 30, 33, 42, 43, 47], "g_x": 15, "infty_": [15, 25, 30], "d_k": 15, "d_": [15, 17, 20, 23, 24, 25, 30, 31, 33, 34, 40, 41, 46], "predictor": [15, 20], "triangular": [15, 30, 37], "lx": 15, "nonsingular": [15, 20, 25, 37, 40], "enlighten": [15, 19, 28, 43], "l_": [15, 30, 34, 36], "varepsilon_1": 15, "varepsilon_2": 15, "t1": 15, "varepsilon_t": 15, "componen": 15, "complement": [15, 20, 25, 38], "spst": [15, 30], "lqfilter": [15, 30], "y_m": [15, 20, 30], "h_ep": [15, 30], "r_1": [15, 19, 20, 30, 39], "r_k": [15, 30], "option": [15, 18, 21, 22, 30, 39, 44, 49], "upfront": [15, 30], "\u03d5_r": [15, 30], "construct_w_and_wm": [15, 30], "d_m1": [15, 30], "constuct": [15, 30], "roots_of_characterist": [15, 30], "2m": [15, 30], "characterist": [15, 17, 24, 30], "poly1d": [15, 30], "x_m": [15, 30], "descend": [15, 30], "roots_sort": [15, 30], "argsort": [15, 30], "z_1_to_m": [15, 30], "coeffs_of_c": [15, 30], "c_j": [15, 22, 30, 36, 50], "c_coeff": [15, 30], "c_m": [15, 30], "prod": [15, 30], "\u03bb_j": [15, 30], "complex": [15, 17, 21, 30], "construct_v": [15, 30], "simulate_a": [15, 30], "a_hist": [15, 30], "aux_matrix": [15, 30], "ea_hist": [15, 30], "optimal_i": [15, 30], "diagon": [15, 25, 30], "renorm": [15, 30], "permute_l": [15, 30], "fliplr": [15, 30], "a_bar": [15, 30], "uy": [15, 30], "y_bar": [15, 30], "y_hist": [15, 30, 42], "serial": [15, 17, 20, 32], "wiener": 15, "kolmogorov": 15, "flip": [15, 20, 22], "23606798": 15, "89442719": [15, 37], "04939015": 15, "97590007": 15, "01186954": 15, "99410024": 15, "00293902": 15, "99853265": 15, "000733": 15, "4472136": [15, 37], "19518001": 15, "48795004": 15, "09467621": 15, "23669053": 15, "49705012": 15, "04698977": 15, "11747443": 15, "2466963": 15, "49926632": 15, "02345182": 15, "05862954": 15, "12312203": 15, "24917554": 15, "49981682": 15, "kolomogorov": 15, "hbox": [15, 25, 30], "41421356": 15, "18920712": 15, "4142135623731122": 15, "84089642": 15, "9258201": 15, "46385011": 15, "96609178": 15, "43759058": 15, "57735027": 15, "3086067": 15, "65465367": 15, "41403934": 15, "68313005": 15, "13116517": 15, "27824334": 15, "45907809": 15, "69560834": 15, "principl": [15, 28, 47], "practic": [15, 25, 39], "n_": [15, 25, 30, 34, 41], "a_n": [15, 30], "y_1": [15, 19, 20, 25, 30, 37, 42, 44], "y_n": [15, 20, 30, 37, 44], "certainti": [15, 22, 25, 28, 31], "feedback": [15, 19, 30, 39, 40, 49], "feedforward": [15, 19, 30], "u_t": [15, 17, 19, 23, 24, 25, 33, 40, 46, 47], "d_j": [15, 20, 30], "gamma_j": 15, "jk": [15, 30], "b_j": [15, 43], "c_x": [15, 25], "c_y": [15, 20], "pm": 15, "g_y": 15, "g_": [15, 19, 25, 28, 29, 43, 46, 47], "yx": 15, "1t": [15, 19, 23, 24, 25, 28, 31, 39, 41], "2t": [15, 19, 24, 25, 28, 35, 39], "2_": [15, 25, 29, 30, 46, 47], "2s": 15, "implic": [15, 25, 42, 51], "annihil": [15, 37], "f_j": [15, 30, 39], "phantom": 15, "wish": [15, 29, 42, 44, 48], "g_j": [15, 17], "delta_1": [15, 19], "delta_n": [15, 25, 41], "delta_j": [15, 25], "atop": 15, "zg": 15, "lc": [15, 22, 36], "hy": [15, 30], "blaschk": 15, "pi_j": [15, 22, 25], "z_1": [15, 25, 30, 44], "z_k": 15, "z_2": [15, 30], "z_kz": 15, "1j": 15, "widehat": 15, "2j": [15, 17], "contemporan": [15, 17, 20, 38], "prime_": 15, "rozanov": [15, 51], "1967": [15, 51], "1937": [16, 51], "ronald": [16, 51], "wrote": [16, 35], "brilliant": 16, "essai": 16, "soviet": 16, "union": 16, "industri": [16, 18, 28, 39], "afflict": 16, "pain": 16, "depress": 16, "led": [16, 28], "intens": [16, 18, 50], "debat": 16, "decentr": 16, "versu": [16, 25, 34], "midst": 16, "blend": 16, "coordin": [16, 22], "couldn": 16, "fminbound": 16, "deep": 16, "fascin": 16, "illumin": [16, 22], "busi": [16, 22, 28, 34, 51], "web": 16, "develop": [16, 31, 34, 44], "onlin": 16, "freelanc": 16, "finest": 16, "herself": 16, "familiar": [16, 18, 44], "badli": 16, "failur": [16, 34], "compli": 16, "court": 16, "agreement": 16, "him": [16, 39], "salari": 16, "hire": [16, 34], "haven": [16, 49], "binari": 16, "came": 16, "tend": [16, 27, 34, 46], "organ": [16, 18, 29, 42], "intern": [16, 18, 34, 51], "extern": [16, 25, 49], "envisag": 16, "expens": [16, 34], "diminish": 16, "catch": 16, "increasingli": 16, "pyramid": 16, "worker": [16, 44, 50], "hous": 16, "encourag": 16, "verbal": 16, "wonder": 16, "plain": [16, 22], "english": [16, 51], "exposit": 16, "kikuchi": [16, 51], "undertaken": 16, "buyer": [16, 32], "t_1": [16, 19, 39], "intent": [16, 40, 44], "t_2": [16, 19], "t_3": 16, "unfold": [16, 19], "opposit": [16, 25], "upstream": 16, "downstream": 16, "ell_i": 16, "boundari": [16, 18, 19, 22, 30, 44], "subinterv": 16, "born": 16, "outlai": 16, "paid": [16, 50], "barrier": 16, "simplic": [16, 17, 25, 33, 40, 46], "fring": 16, "competitor": 16, "incumb": 16, "freeli": [16, 34], "exit": [16, 29], "supplier": 16, "raw": 16, "inact": 16, "read": [16, 21, 28, 32, 40], "furthest": 16, "t_i": [16, 43], "t_": [16, 17, 18, 19, 25, 29, 30, 43, 46, 48], "pi_i": [16, 22, 25, 39], "rational": 16, "behind": [16, 19, 37, 44], "Is": [16, 44], "tp": 16, "obviou": [16, 29], "metric": 16, "diverg": [16, 30, 40], "uniformli": [16, 32], "_i": [16, 42], "examin": [16, 21, 30], "adjac": [16, 21], "partner": 16, "inter": 16, "awar": [16, 44], "piecewis": 16, "productionchain": 16, "p_0": [16, 36], "compute_pric": 16, "pc": [16, 39, 40], "new_p": 16, "p_func": 16, "p_function": 16, "optimal_choic": 16, "t_star": 16, "ell_star": 16, "compute_stag": 16, "transaction_stag": 16, "p_star": 16, "num_firm": 16, "v_i": [16, 37, 50], "intut": 16, "phenomenon": 16, "mitig": 16, "set_xtick": [16, 18, 44], "set_xticklabel": [16, 44], "hall": [17, 24, 25, 26, 42, 43, 51], "manifest": [17, 25], "lesson": [17, 28], "ricardian": 17, "cut": [17, 25], "accompani": [17, 36], "foreseen": 17, "fiscal": [17, 24, 26, 29, 36, 43, 51], "eric": [17, 24, 51], "leeper": [17, 24, 51], "todd": [17, 24, 51], "walker": [17, 24, 51], "susan": [17, 24, 51], "yang": [17, 24, 51], "peculiar": 17, "unalt": [17, 28], "sigma_a": [17, 25, 31], "few": [17, 28, 33, 34, 43], "autocovari": [17, 21, 25], "uncomfort": 17, "statistician": 17, "semi": [17, 19, 28, 35], "old": [17, 24], "mental": 17, "roll": [17, 20, 36, 43, 46], "successor": 17, "d_a": 17, "reprent": 17, "backcast": 17, "incometh": 17, "perceiv": [17, 28, 39], "framework": [17, 19, 25, 38, 40, 46, 47, 48], "comparison": [17, 25, 39], "thid": 17, "\u03c3\u03f5": 17, "\u03c3a": 17, "rlq": [17, 40], "qlq": 17, "alq1": 17, "blq1": 17, "clq1": 17, "lq1": [17, 19], "alq2": 17, "blq2": 17, "clq2": 17, "lq2": 17, "d2": [17, 39, 41], "9025": 17, "sb": [17, 29], "abf1": 17, "lss1": 17, "abf2": 17, "lss2": 17, "x_res1": 17, "y_res1": 17, "b_res1": 17, "c_res1": 17, "x_res2": 17, "y_res2": 17, "b_res2": 17, "c_res2": 17, "99998906e": 17, "89473923e": 17, "78947621e": 17, "68421319e": 17, "57895017e": 17, "05263158": 17, "0x7f6ab8b02650": 17, "unchang": 17, "0975": 17, "0x7f6ab8ae2110": 17, "rest": [17, 33], "pencil": 17, "0x7f6ab833ae10": 17, "0x7f6ab810fdd0": 17, "throw": 17, "endem": [17, 24], "workhors": 18, "modern": 18, "search": [18, 50, 51], "etc": [18, 37, 44], "spars": 18, "compute_fixed_point": 18, "shortest": 18, "mccall": 18, "interfac": 18, "seamlessli": 18, "hernandez": [18, 51], "lerma": [18, 51], "lasserr": [18, 51], "1996": [18, 28, 51], "puterman": [18, 51], "rust": [18, 51], "miranda": [18, 51], "fackler": [18, 51], "edtc": [18, 44], "speak": 18, "vs": [18, 35], "wait": 18, "fruit": [18, 32], "suffic": [18, 38], "mathit": 18, "sa": 18, "bigcup_": 18, "latter": [18, 40, 44], "comment": [18, 44], "explan": 18, "sup": [18, 32], "greedi": 18, "succinctli": [18, 30, 44], "tv": 18, "tw": 18, "similarli": [18, 30, 39, 50], "lvert": 18, "rvert": 18, "ddp": 18, "howard": 18, "uniform": [18, 20], "notin": [18, 37], "simpleog": 18, "populate_q": 18, "populate_r": 18, "infeas": 18, "signatur": 18, "policy_iter": 18, "got": 18, "dir": 18, "num_it": 18, "tab": 18, "01740222": 18, "43161578": 18, "74945302": 18, "04078099": 18, "30873018": 18, "54479816": 18, "76928181": 18, "98270358": 18, "18824323": 18, "3845048": 18, "57807736": 18, "76109127": 18, "94376708": 18, "11533996": 18, "27761762": 18, "didn": [18, 19, 28], "easili": [18, 28, 37, 44], "stationary_distribut": [18, 28], "01732187": 18, "04121063": 18, "05773956": 18, "07426848": 18, "08095823": 18, "09090909": 18, "07358722": 18, "04969846": 18, "03316953": 18, "01664061": 18, "00995086": 18, "patient": [18, 32], "00546913": 18, "02321342": 18, "03147788": 18, "04800681": 18, "05627127": 18, "08543996": 18, "06769567": 18, "05943121": 18, "04290228": 18, "03463782": 18, "rightward": 18, "s_indic": 18, "a_indic": 18, "introductori": 18, "grid_siz": [18, 32, 40], "grid_max": [18, 32], "degener": 18, "nonposit": 18, "118841": 18, "499": 18, "389": 18, "391": 18, "lil_matrix": 18, "csr": 18, "csr_matrix": 18, "indptr": 18, "prohibit": [18, 34], "translat": [18, 34], "v_star": [18, 50], "c_star": [18, 50], "lb0": 18, "49819147053378": 18, "012681735127500815": 18, "003826523100010082": 18, "decrement": 18, "dec_ind": 18, "001961853339766839": 18, "res1": 18, "value_iter": 18, "294": 18, "array_equ": 18, "modified_policy_iter": 18, "timeit": 18, "bellman_oper": 18, "cm": [18, 22], "jet": 18, "true_c": 18, "set_ytick": 18, "print_skip": 18, "compute_greedi": 18, "c_polici": 18, "518e": 18, "930e": 18, "070e": 18, "452e": 18, "626e": 18, "164e": 18, "866e": 18, "057e": 18, "673e": 18, "393e": 18, "796e": 18, "293e": 18, "066e": 18, "402e": 18, "736e": 18, "315e": 18, "_compute_fp": 18, "_non_convergence_msg": 18, "trajectori": [18, 34], "94": [18, 23, 45], "k_0": [18, 25, 44], "discount_factor": 18, "k_init": 18, "k_init_ind": 18, "sample_s": [18, 29], "ddp0": 18, "res0": 18, "k_path_ind": 18, "k_path": 18, "iter_max": 18, "mathrm": [18, 20, 22, 37], "q_i": [19, 20, 22, 33, 39], "pi_1": [19, 20, 22, 25], "pi_2": [19, 22, 25], "abstract": 19, "obscur": [19, 28], "beyond": [19, 22, 25, 50], "delta_2": 19, "unstabl": [19, 28, 30], "delta_": [19, 25], "unpleas": 19, "attack": 19, "cumbersom": 19, "broader": 19, "regul": [19, 40, 51], "n_z": 19, "n_x": 19, "jump": [19, 26, 43, 51], "induct": [19, 39], "artfulli": [19, 36], "enlist": [19, 28, 40], "properli": [19, 22], "parcel": 19, "demonstr": 19, "partit": 19, "0_0": 19, "f_z": 19, "f_x": 19, "t_j": 19, "tol0": 19, "tol1": 19, "tol2": 19, "\u03b2s": 19, "cumprod": [19, 43], "alh": 19, "arh": 19, "alhsinv": 19, "doubl": [19, 39, 43], "p22": 19, "p21": 19, "p22inv": 19, "h_0_0": 19, "\u03c0_leader": 19, "ut": [19, 25], "\u03c0_matrix": 19, "58004454": 19, "29461313": 19, "67480938": 19, "53970594": 19, "q_leader": 19, "q_follow": 19, "v_leader_forward": 19, "v_leader_direct": 19, "0316": 19, "0324": 19, "manual": [19, 34], "p_next": 19, "v_expand": 19, "reborn": 19, "vt_leader": 19, "vt_reset_lead": 19, "yt_reset": 19, "ro": 19, "a_tild": 19, "r_tild": 19, "q_tild": 19, "b_tild": 19, "lq_tild": 19, "p_tild": 19, "f_tild": 19, "d_tild": 19, "y0_tild": 19, "yt_tild": 19, "_tild": 19, "440892098500626e": 19, "x0_tild": 19, "spot": [19, 25], "1032": 19, "963": 19, "54083615": 19, "60534465": 19, "62197962": 19, "5258": 19, "22585724": 19, "3535753": 19, "97712513": 19, "76471234": 19, "34333344": 19, "2517": 19, "05126111": 19, "25556": 19, "16504097": 19, "81991134e": 19, "58003020e": 19, "56048755e": 19, "51229815e": 19, "00000000e": 19, "69465925e": 19, "26007958e": 19, "09764310e": 19, "22759027e": 19, "12791908e": 19, "23823802e": 19, "03132584e": 19, "20000000e": 19, "43823802e": 19, "p_guess": 19, "f_tilde_star": 19, "112": [19, 51], "65590740578115": 19, "65590740578136": 19, "f_iter": 19, "dist_vec": 19, "dist_vec2": 19, "yt_tilde_star": 19, "b_2": [19, 36, 39, 42, 43], "b2": [19, 39, 47], "s1": [19, 33, 34, 35, 39, 46, 47, 48, 51], "s2": [19, 33, 34, 39, 47], "w2": [19, 39, 46, 47], "m1": [19, 39, 46], "m2": [19, 39, 46], "nnash": [19, 39], "af": [19, 32, 35, 39], "22701363": 19, "03129874": 19, "09447113": 19, "881784197001252e": 19, "\u03c0_1": [19, 22], "\u03c0_2": [19, 22], "v1_forward": 19, "v2_forward": 19, "v1_direct": 19, "v2_direct": 19, "v1": [19, 37, 39], "v2": [19, 39], "3303": 19, "3296": 19, "saniti": 19, "\u03bb1": [19, 39], "p1_ih": 19, "f1_ih": 19, "v2_direct_alt": 19, "vt_mpe": 19, "vt_follow": 19, "duopolist": 19, "6559": 19, "9709425620890784": 19, "claud": [20, 51], "shannon": [20, 51], "weaver": [20, 51], "1949": [20, 51], "kullback": [20, 40], "leibler": [20, 40], "p_i": [20, 33, 39], "log_b": 20, "downarrow": 20, "nat": 20, "dit": 20, "s_i": [20, 37, 39], "unfair": 20, "coin": 20, "fair": [20, 44], "die": 20, "di": 20, "isol": 20, "log_2": 20, "585": [20, 51], "p_1": 20, "p_2": 20, "p_n": 20, "r_n": 20, "permut": 20, "event": [20, 22, 51], "bivari": [20, 24], "y_i": 20, "y_j": 20, "sum_j": [20, 22, 33, 42, 43], "josiah": 20, "willard": 20, "gibb": 20, "en": 20, "wikipedia": 20, "org": [20, 49, 51], "wiki": 20, "josiah_willard_gibb": 20, "k_b": 20, "micro": 20, "boltzmann": 20, "energi": 20, "particl": 20, "temperatur": 20, "macro": 20, "ga": 20, "avogadro": 20, "n_1": [20, 34], "ln": [20, 22, 25, 32, 40, 44], "logarithm_of_a_matrix": 20, "quantum": 20, "2014": [20, 51], "l_t": [20, 23, 24, 27, 31, 38], "virtu": 20, "spectral": [20, 21], "s_x": [20, 25, 47], "sigma_x": [20, 35], "uncertain": [20, 40], "tempor": [20, 34], "resembl": [20, 24], "s_y": [20, 25, 42], "disturb": [20, 25, 28], "g_f": 20, "monik": 20, "denomin": 20, "arma": [21, 45], "ar_periodogram": 21, "consecut": 21, "omega_j": 21, "x_r": 21, "stattool": 21, "tj": 21, "elementwis": [21, 44], "snippet": 21, "ma": [21, 24], "lp": 21, "x_sd": 21, "y_sd": 21, "parametr": [21, 22, 50], "nonparametr": [21, 44], "omega_": [21, 34], "2p": [21, 28], "distant": 21, "closer": [21, 28], "hanning_window": 21, "window": 21, "han": [21, 51], "estspec": [21, 45], "github": [21, 40, 45], "ters": [21, 34], "centric": 21, "convolv": 21, "unsmooth": 21, "insuffici": 21, "judgement": 21, "whiten": [21, 25], "recolor": 21, "nearbi": [21, 40], "certainli": 21, "subfigur": [21, 34], "ham": 21, "wl": 21, "175": 21, "y_smooth": 21, "window_len": 21, "y_ar": 21, "knightian": 22, "knight": [22, 51], "1921": [22, 51], "displeasur": 22, "dislik": 22, "kink": 22, "mpl": 22, "rc": [22, 50], "axes3d": [22, 33], "io": 22, "loadmat": 22, "linecollect": 22, "listedcolormap": 22, "boundarynorm": 22, "config": 22, "inlinebackend": 22, "figure_format": 22, "retina": 22, "usetex": 22, "label_s": 22, "label_tick_s": 22, "title_s": 22, "legend_s": 22, "text_siz": 22, "rcparam": 22, "labels": [22, 50], "xtick": [22, 50], "titles": [22, 50], "font": [22, 50], "\u03c0_hat": 22, "ent_val": 22, "t_\u03b8_factori": 22, "t_\u03b8": 22, "jacobson": [22, 51], "1973": [22, 51], "compute_change_measur": 22, "channg": 22, "m_unnorm": 22, "utility_function_factori": 22, "world": [22, 29, 34, 42, 43], "m_i": [22, 25, 39], "doteq": 22, "\u03c0_hat_0": 22, "min_prob": 22, "\u03c0_hat_0_nb": 22, "201": 22, "\u03c0_hat_0_val": 22, "2f": 22, "\u03c0_0_val": 22, "ent_vals_mat": 22, "\u03c0_0": 22, "seismic": 22, "gouraud": 22, "8205752275831846": 22, "ipykernel_6423": 22, "3759713737": 22, "prefernc": 22, "ambigu": [22, 51], "concern": [22, 39, 40], "misppecif": 22, "c_i": [22, 33, 50], "ball": 22, "apprehens": 22, "evil": 22, "ego": [22, 39], "c_bundl": 22, "bundl": 22, "\u03b8_val": 22, "tu": 22, "tuc_val": 22, "envis": 22, "wrt": 22, "avg_c_bundl": 22, "c_grid_nb": 22, "c_grid": 22, "u_c_grid": 22, "u_c_bundl": 22, "avg_u": 22, "first_trnsf_u_c_grid": 22, "first_trnsf_u_c_bundl": 22, "second_trnsf_u_c_bundl": 22, "send": [22, 44], "third_trnsf_u_c_bundl": 22, "portrai": 22, "vanilla": 22, "constinu": 22, "cumul": [22, 29, 43, 44], "kappa_j": 22, "mu_u": 22, "sigma_u": 22, "kappa_1": 22, "kappa_2": 22, "\u03b7_line": 22, "ones_lik": [22, 32], "e_hat_uc": 22, "root_scalar": 22, "bracket": [22, 29], "multi_crit_v": 22, "asymmetr": [22, 33], "dash": 22, "circumscrib": 22, "penal": [22, 40], "pessimist": 22, "bucklew": [22, 51], "2004": [22, 25, 41, 51], "slant": 22, "exponenti": [22, 30, 35, 51], "pessim": 22, "protect": 22, "himself": 22, "undomin": 22, "robust": [22, 25, 45, 51], "slope": [22, 31, 33, 40, 41, 50], "flatter": [22, 33, 47], "multiplier_criterion_factori": 22, "return_entropi": 22, "constraint_criterion_factori": 22, "inner_root_problem": 22, "\u03b8_tild": 22, "return_\u03b8_tild": 22, "bisect": [22, 50], "solve_root_problem": 22, "u_bar": 22, "c_1_grid": 22, "c_2_grid": 22, "u_inv": [22, 50], "conustruct": 22, "c_1_grid_nb": 22, "c_2_grid_eu": 22, "multi_pref_crit": 22, "multi_pref_root_problem": 22, "c_2_grid_mult": 22, "constraint_pref_crit": 22, "constraint_pref_root_problem": 22, "c_2_grid_con": 22, "\u03b7s": 22, "discontinu": 22, "somewhat": 22, "intric": 22, "literari": 22, "eu": 22, "tricki": 22, "graduat": [22, 51], "student": [22, 25, 41], "allocatin": 22, "c_1_grid_num": 22, "multi_crit_bar": 22, "cons_crit_bar": 22, "solid": 22, "boost": 22, "u_prim": 22, "budget_constraint": 22, "1999": [22, 33, 46, 47, 48, 51], "tallarini": [22, 25, 51], "barilla": [22, 51], "2009": [22, 33, 44, 51], "mask": 22, "certainty_equiv": 22, "func_approx": 22, "fp": 22, "fp_ce": 22, "fixed_point": 22, "fp_eu": 22, "fp_mult": 22, "fp_con": 22, "c_3": 22, "make_seg": 22, "segment": 22, "numlin": 22, "colorlin": 22, "get_cmap": 22, "copper": 22, "colormap": 22, "hasattr": 22, "__iter__": 22, "hack": 22, "add_collect": 22, "\u03c0_3": 22, "\u03c0_base": 22, "contour_plot": 22, "\u03c0_vals_nb": 22, "levels_nb": 22, "min_\u03c0_val": 22, "eu_level": 22, "ent_level": 22, "\u03c0_hat_1": 22, "\u03c0_hat_2": 22, "\u03c0_hat_1_val": 22, "\u03c0_hat_2_val": 22, "\u03c0_hat_coord": 22, "spring": 22, "winter": 22, "3904427642": 22, "overflow": 22, "nonumb": 22, "propto": 22, "\u03b7_vals_nb": 22, "\u03b7_val": 22, "min_eu": 22, "max_eu": 22, "m_0_and_1": 22, "m_2": [22, 39], "max_obj_wrapp": 22, "obj_val": 22, "nelder": 22, "mead": 22, "opt_r": 22, "269230769133136": 22, "lower_bound": 22, "lightgrai": 22, "axiom": 22, "vast": 22, "nearli": [22, 23, 25, 29, 33], "quantifi": [22, 40], "anderson": [22, 28, 51], "databh": 22, "mat": 22, "\u03bc_c": 22, "004952": 22, "\u03c3_c": 22, "005050": 22, "\u03bc_c_tild": 22, "304569723799467": 22, "c_growth": 22, "nb_bin": 22, "cnt": 22, "bin": 22, "bins_min": 22, "bins_max": 22, "pdf_x": 22, "worst_cas": 22, "add_subplot": [22, 33], "lns1": 22, "hist": 22, "twinx": [22, 43], "lns2": 22, "lns3": 22, "lab": 22, "1948": 22, "2006": [22, 51], "iv": 22, "maccheroni": [22, 51], "gilboa": [22, 51], "schmeidler": [22, 51], "c_2w_": 23, "u_bz_t": [23, 24, 31], "u_dz_t": [23, 25, 31], "k_": [23, 24, 25, 28, 31, 33, 38, 39, 44], "k_t": [23, 24, 25, 27, 28, 31, 33, 38, 44], "cw_": [23, 25], "fx_t": 23, "ox_t": 23, "ccccc": [23, 27, 31], "\u03b3_1": [23, 24, 27], "hs2013": [23, 24, 27, 31], "endo": [23, 27], "exo": 23, "9999999999904767": 23, "set_printopt": [23, 35, 38], "suppress": [23, 35, 36, 38, 39], "css": [23, 27], "iss": [23, 27], "999": [23, 39, 50], "head": [23, 25, 27], "vicin": 23, "\u03b32": [23, 39], "\u03b322": 23, "\u03d5_12": [23, 27], "\u03d5_i2": [23, 27], "tech2": [23, 27], "x02": 23, "settl": [23, 39], "952": 23, "habit": [23, 25], "jc_": 23, "l_\u03bb2": [23, 27], "pref2": [23, 27, 41], "l_\u03bb3": 23, "pref3": [23, 41], "econ4": [23, 41], "97": [23, 45, 46, 48], "\u03b2_2": 23, "pref4": [23, 41], "econ5": 23, "explod": [23, 46], "downward": [23, 27, 42, 50], "front": 23, "econometrician": 24, "unawar": 24, "misinterpret": 24, "j_0": [24, 25, 27, 31], "cccccc": [24, 28], "9d_": 24, "4w_": 24, "chase": 24, "j_t": [24, 25, 40], "alpha_j": [24, 37], "belatedli": 24, "d_irf": 24, "shock2": 24, "sc": [24, 29, 38, 47], "h_h": 24, "lss_h": 24, "hs_kal": 24, "w_lss": 24, "whitener_lss": 24, "ma_coef": 24, "stationary_coeffici": [24, 35], "jj": 24, "y1_w1": 24, "y2_w1": 24, "y1_w2": 24, "y2_w2": 24, "book": [24, 37, 51], "stationary_innovation_covar": 24, "granger": 24, "causal": 24, "irf_wlss": 24, "ycoef": [24, 28], "a1_w1": 24, "a1_w2": 24, "a2_w1": 24, "a2_w2": 24, "spread": 24, "art": [25, 28, 35], "henri": 25, "poincar": 25, "alik": [25, 50], "reinterpret": [25, 42], "anonym": 25, "thoma": [25, 29, 43, 51], "school": [25, 26], "commod": [25, 51], "dual": 25, "friction": 25, "enforc": [25, 39, 40, 50], "asymmetri": 25, "hick": 25, "chanc": [25, 46, 47], "kenneth": [25, 28, 42, 51], "imperi": 25, "varieti": 25, "quotat": 25, "began": 25, "theoriz": 25, "frequentist": 25, "bayesian": [25, 39, 51], "themselv": 25, "edward": [25, 51], "suscept": 25, "mongrel": 25, "ye": 25, "deeper": 25, "eas": [25, 28], "unleash": 25, "roadmap": 25, "condition": 25, "homoskedast": 25, "ax_t": [25, 46], "nonrecurs": 25, "w_2": [25, 39], "ax_": [25, 43], "cw_t": 25, "acw_": 25, "v_1": [25, 32, 37], "upsilon_": 25, "upsilon_j": 25, "j_": [25, 40], "disutil": 25, "devot": 25, "durabl": 25, "j_h": 25, "_h": 25, "season": [25, 33], "4j": 25, "quarter": 25, "pi_3": 25, "frisch": 25, "numerair": [25, 31, 34], "classif": 25, "_cc_t": 25, "phi_gg_t": 25, "phi_ii_t": 25, "transvers": 25, "_k": 25, "bunch": 25, "_cc_0": 25, "phi_ii_0": 25, "2u_t": 25, "u_g": [25, 47], "m_k": 25, "m_h": 25, "s_b": [25, 29], "m_d": 25, "s_g": [25, 29, 46], "m_c": [25, 31], "0_t": [25, 29, 36], "rent": 25, "prime_h": 25, "prime_k": 25, "perpetu": [25, 28, 31], "ao": [25, 39], "prime_t": 25, "z_a": [25, 31], "prime_a": 25, "prime_0": 25, "mu_a": [25, 31], "e_j": 25, "gx_t": 25, "ev_t": 25, "n_w": 25, "n_y": 25, "f_0": [25, 36, 40], "zi": 25, "kg": 25, "mediat": 25, "1953": 25, "commun": [25, 51], "ell_": [25, 29], "conven": 25, "s_d": [25, 29], "rental": [25, 33], "depreci": [25, 44], "rho_t": 25, "freshli": 25, "feed": [25, 43], "count": [25, 44], "educ": 25, "ryoo": [25, 41, 51], "alpha_d": [25, 41], "sweep": [25, 40, 41], "ddot": [25, 30, 41, 47], "imai": 25, "kean": 25, "flavor": 25, "train": 25, "entrant": [25, 41], "siow": 25, "chi_j": 25, "epsilon_j": 25, "attanasio": [25, 51], "pavoni": [25, 51], "2011": [25, 51], "jt": [25, 39], "bj": 25, "dj": 25, "everybodi": 25, "j0": 25, "punchlin": 25, "0j": 25, "dub": 25, "lambda_i": [25, 30], "bi": 25, "d_i": 25, "0i": 25, "analogu": [25, 42], "hj": 25, "secret": [25, 40], "weapon": [25, 40], "conclud": [25, 28, 50], "wise": 25, "websit": 26, "war": [26, 33, 43], "coas": [26, 45, 51], "firm": [26, 28, 39, 44, 51], "cattl": [26, 51], "etymolog": 26, "spectra": 26, "unemploy": [26, 51], "troubleshoot": [26, 45], "i_irf": 27, "shorter": 27, "99657126": 27, "92940472e": 27, "85879555e": 27, "nonstochast": [27, 28], "\u03d5_13": 27, "\u03d5_i3": 27, "\u03b3_12": 27, "\u03b3_2": 27, "\u03c0_h2": 27, "x01": 27, "tech3": 27, "smoother": [27, 42, 46], "undo": 27, "kasa": [28, 51], "townsend": [28, 51], "elong": 28, "amplifi": 28, "amplif": 28, "pursu": 28, "allen": [28, 51], "pool": 28, "promin": 28, "intract": 28, "pearlman": [28, 51], "1986": [28, 51], "culmin": 28, "machineri": 28, "sneaki": 28, "omit": [28, 37, 44], "sigma_v": 28, "letter": 28, "ridden": 28, "somehow": 28, "phi_": [28, 30, 42], "brace": 28, "preliminari": [28, 30], "solve_discrete_riccati": 28, "extran": 28, "graph_object": 28, "offlin": 28, "pyo": 28, "linear_model": 28, "init_notebook_mod": 28, "\u03c3_v": 28, "\u03c3_e": 28, "poli": 28, "roots_poli": 28, "\u03bb_tild": 28, "\u03b2\u03bb_tild": 28, "a_ricc": 28, "b_ricc": 28, "r_ricc": 28, "q_ricc": 28, "n_ricc": 28, "p_one": 28, "\u03ba_prod": 28, "\u03ba_one": 28, "a_lss": 28, "c_lss": 28, "g_lss": 28, "100_000": 28, "xcoef": 28, "add_trac": 28, "fig1": 28, "\u03c3_x": [28, 35], "\u03c3_y": [28, 35], "\u03c3_yx": 28, "\u03c3_11": 28, "\u03c3_12": 28, "\u03c3_21": 28, "\u03c3_22": 28, "reg_coeff": 28, "275556845219769": 28, "9649461170475457": 28, "r_squar": 28, "9649461170475461": 28, "reg_r": 28, "rsquar": 28, "p_two": 28, "p\u03c1": 28, "2\u03c3_e": 28, "\u03ba_two": 28, "fig2": 28, "1373589171035627": 28, "9242343967443672": 28, "037882801627816154": 28, "9621171983721835": 28, "9621171983721837": 28, "ao_lss": 28, "co_lss": 28, "go_lss": 28, "muo_0": 28, "lsso": 28, "fig3": 28, "noiseless": 28, "fig_comb": 28, "update_trac": 28, "yaxi": 28, "x3": 28, "set_subplot": 28, "subplot_titl": 28, "horizontal_spac": 28, "shared_yax": 28, "nonexist": 28, "idiosyncrat": 28, "coher": 28, "enhanc": 28, "textbf": 28, "36618": 28, "324062": 28, "403404": 28, "25716": 28, "sensibl": 28, "argu": 28, "unobserv": 28, "uninform": 28, "facili": 28, "singleton": [28, 51], "particip": 28, "disappear": [28, 30], "stai": [28, 34, 46], "1927": [29, 51], "manuscript": [29, 51], "francoi": 29, "veld": 29, "nullspac": 29, "mc_sample_path": 29, "var_quadratic_sum": 29, "unrealist": 29, "realist": 29, "coupon": [29, 47], "unscal": 29, "mathscr": [29, 44], "reinsert": 29, "lyapunov": 29, "besid": 29, "reopen": 29, "constitu": 29, "outstand": [29, 44], "tau_": [29, 34], "ow": [29, 36, 43, 46], "clarif": 29, "sg": [29, 46, 47, 48], "govt": [29, 43, 46], "ss": [29, 35, 47], "boolean": 29, "proc": 29, "compute_path": 29, "rvn": 29, "econ": 29, "ndarrai": 29, "x_val": 29, "nw": [29, 47], "ns": [29, 33, 46, 47, 48], "warning_msg": 29, "elect": 29, "congress": 29, "disc": 29, "republican": 29, "democrat": 29, "sl": 29, "rinv": 29, "af1": 29, "af2": 29, "gen_fig_1": 29, "docstr": 29, "bbox": 29, "legend_arg": 29, "p_arg": [29, 30], "gen_fig_2": 29, "xi_t": [29, 32, 44], "quadsum": 29, "usag": [29, 44], "135": 29, "mu_g": 29, "c_g": 29, "mg": 29, "ipykernel_7164": 29, "2748685684": 29, "encompass": 30, "monopolist": [30, 34, 40], "belt": 30, "hy_n": 30, "hy_": 30, "shed": 30, "phi_0": [30, 36], "toeplitz": 30, "sub": 30, "super": 30, "everywher": 30, "phi_j": 30, "hi_": 30, "phi_m": 30, "hskip": 30, "75in": 30, "submatrix": 30, "suspect": [30, 39], "suspicion": 30, "moduli": 30, "z_m": 30, "_2": [30, 33, 39], "z_0z_1": 30, "lambda_ml": 30, "prod_": 30, "compel": 30, "exceed": 30, "central": [30, 51], "weaker": 30, "nonoptim": 30, "k_j": 30, "f_m": 30, "a_seq": 30, "testlq": 30, "2y_": 30, "0000001": 30, "u_ax_": 31, "mu_ax_t": 31, "_1m_cx_t": 31, "gam": 31, "147": 31, "pay_pric": 31, "tree": 31, "pay_gross": 31, "r1_gross": 31, "48109711": 31, "r1_net": 31, "r5_net": 31, "tendenc": 31, "vice": 31, "versa": 31, "6582152": 31, "accentu": 31, "beauti": [32, 51], "erad": 32, "costlessli": 32, "markovian": 32, "xi_": [32, 44], "nonstor": [32, 50], "retain": 32, "subscript": [32, 36, 37, 39, 44], "dz": 32, "cb": 32, "banach": 32, "tg": 32, "sup_": 32, "isoelast": 32, "lucastre": 32, "ssd": 32, "grid_min": 32, "operator_factori": 32, "parallel_flag": 32, "z_vec": 32, "mont": 32, "carlo": 32, "solve_model": 32, "price_v": 32, "remov": [32, 36, 49], "cite": 33, "svensson": [33, 51], "william": [33, 51], "handi": 33, "switch": [33, 42, 44], "rho_i": 33, "max_u": 33, "r_i": [33, 39], "w_i": [33, 39], "a_i": [33, 50], "b_i": [33, 39, 43], "p_j": 33, "rho_j": 33, "f_i": [33, 39], "target": [33, 35, 40, 50], "pr": [33, 39], "construct_arrays1": 33, "f1_val": 33, "f2_val": 33, "d_val": 33, "bs": [33, 46, 47, 48], "rs": [33, 46, 47, 48], "qs": [33, 46, 47, 48], "cs": [33, 46, 47, 48], "k_star": 33, "state_vec1": 33, "\u03c01": [33, 39], "ex1_a": 33, "lqmarkov": [33, 46, 47, 48], "ps": 33, "56626026": 33, "78313013": 33, "60843493": 33, "37424214": 33, "68712107": 33, "65643947": 33, "ds": 33, "28313013": 33, "74848427": 33, "k_grid": 33, "u1_star": 33, "u2_star": 33, "cheaper": [33, 36], "x_path": 33, "depart": [33, 51], "\u03c02": [33, 39], "ex1_b": 33, "57291724": 33, "28645862": 33, "74434525": 33, "37217263": 33, "59533259": 33, "2976663": 33, "72818728": 33, "36409364": 33, "\u03bb_val": 33, "state_var": 33, "\u03c03": 33, "57169781": 33, "2858489": 33, "72749075": 33, "36374537": 33, "\u03b4_val": 33, "\u03b4_grid": 33, "f1_grid": 33, "f2_grid": 33, "plot_surfac": 33, "set_zlabel": 33, "wrapper": [33, 43], "construct_func": 33, "vals_dict": 33, "state_vec": 33, "mplq": 33, "str": [33, 40, 44], "absorb": [33, 50], "construct_arrays2": 33, "\u03b10_val": 33, "\u03c1_val": 33, "\u03c3_val": 33, "state_vec2": 33, "kiminori": 34, "matsuyama": [34, 45], "laura": 34, "gardini": 34, "iryna": 34, "sushko": 34, "styliz": [34, 43], "tie": 34, "ti": 34, "1985": [34, 51], "deneckn": 34, "denecker": [34, 51], "helpman": [34, 51], "krugman": [34, 51], "coupl": [34, 46], "oscil": [34, 42, 43], "monopoli": 34, "previous": [34, 42, 50], "strateg": 34, "complementar": 34, "cluster": 34, "burst": 34, "obsolet": 34, "surviv": 34, "obsolesc": 34, "decoupl": 34, "penetr": 34, "inelast": 34, "l_j": 34, "nontrad": 34, "tradeabl": 34, "o_": 34, "homogen": 34, "elast": 34, "l_k": 34, "ship": 34, "iceberg": 34, "proxi": 34, "addition": 34, "symbol": [34, 44], "l_1": 34, "s_j": 34, "s_1": [34, 36, 39, 42, 43, 46, 47], "s_2": [34, 39, 42, 43], "hl": 34, "n_2": 34, "n_j": 34, "n_k": 34, "s_k": 34, "rare": [34, 44, 51], "bodi": 34, "nopython": 34, "_hj": 34, "implicit": 34, "sj": 34, "sk": 34, "dll": 34, "n1": [34, 36, 37], "s1_\u03c1": 34, "s2_\u03c1": 34, "dhh": 34, "dhl": 34, "dlh": 34, "one_step": 34, "branch": 34, "n1_tp1": 34, "n2_tp1": 34, "n_gener": 34, "n1_0": 34, "n2_0": 34, "n1_t": 34, "n2_t": 34, "_pers_till_sync": 34, "nper": 34, "sync": 34, "pers_2_sync": 34, "n_gen": 34, "Will": [34, 51], "counter": 34, "nsync": 34, "becam": [34, 42], "_create_attraction_basi": 34, "unit_rang": 34, "time_2_sync": 34, "msgsync": 34, "worldwid": 34, "percentag": 34, "cutoff": 34, "_calc_s1_\u03c1": 34, "_unpack_param": 34, "simulate_n": 34, "pers_till_sync": 34, "create_attraction_basi": 34, "plot_timeseri": 34, "Not": 34, "dark": 34, "slider": 34, "snapshot": 34, "plot_attraction_basi": 34, "unitrang": 34, "ax0": 34, "475": [34, 51], "axes0": 34, "axes1": 34, "axes2": 34, "ax3": [34, 47], "axes3": 34, "ab0": 34, "cf0": 34, "ab1": 34, "cf1": 34, "ab2": 34, "cf2": 34, "ab3": 34, "cf3": 34, "cbar_ax": 34, "075": 34, "725": 34, "asynchron": 34, "915": [34, 51], "interact_attraction_basi": 34, "colormesh": 34, "750": 34, "reformul": 35, "dispos": 35, "sought": 35, "ramif": 35, "sigx": 35, "sigi": 35, "\u03bc_0": 35, "x_hat_0": 35, "\u03c3_0": 35, "kmuth": 35, "k1": [35, 39], "nest": 35, "ck": [35, 40], "gk": 35, "hk": 35, "ssk": 35, "fell": 35, "swoop": 35, "grand": 35, "gf": 35, "\u03bc_true": 35, "\u03bc_prior": 35, "\u03bc_f": 35, "ssf": 35, "xf": 35, "yf": 35, "1809975124224177": 35, "524937810560442": 35, "coefs_ma": 35, "coefs_var": 35, "coefs_ma_arrai": 35, "coefs_var_arrai": 35, "8190024875775823": 35, "revisit": [36, 40, 44], "surg": [36, 43, 46], "q_0": 36, "compress": 36, "unwound": 36, "pseudo": 36, "geq0": 36, "ell_j": 36, "indirectli": [36, 43], "divis": 36, "3s": 36, "tau_j": 36, "ct": 36, "predetermin": 36, "bequeath": 36, "ell_0": 36, "cl": 36, "recursivel": 36, "z_new": 36, "z1": 36, "xprime1": 36, "tol_f": 36, "ic": 36, "sprime": 36, "euc": 36, "z_sub": 36, "1e9": 36, "shist_h": 36, "shist_l": 36, "sim_seq_h": 36, "sim_seq_l": 36, "sim_h": 36, "dissav": 36, "cheap": [36, 48], "geq1": 36, "tax_seq": 36, "tax_polici": 36, "interest_r": 36, "gov_debt": 36, "tau_1": 36, "\u03c4_reset": 36, "seq_log": 36, "rec_log": 36, "t_length": 36, "sim_rec": 36, "sim_": 36, "sim_b": 36, "xk": 36, "glean": 36, "primer": 37, "roman": [37, 51], "z_i": 37, "cosin": 37, "x_k": 37, "pythagorean": 37, "argmin_": 37, "oplu": 37, "mathop": 37, "canon": 37, "e_1": 37, "e_n": 37, "e_i": 37, "u_k": 37, "u_i": [37, 38], "u_j": [37, 39, 50], "col_1": 37, "col_k": 37, "xb": 37, "empir": [37, 44, 46], "hypothesi": [37, 51], "overfit": 37, "y_2": [37, 42], "1k": 37, "tss": 37, "ess": 37, "ssr": 37, "touch": [37, 49], "col_j": 37, "cap": 37, "idempot": 37, "closest": 37, "gs": 37, "gram_schmidt": 37, "py1": 37, "56521739": 37, "26086957": 37, "2173913": 37, "13187609": 37, "98907071": 37, "06593805": 37, "jupyt": [38, 49], "2i_t": 38, "\u03c1_1": 38, "\u03c1_2": 38, "s_c": [38, 47], "5172": 38, "3448": 38, "player": [39, 40], "misspecif": [39, 40], "fear": [39, 40], "incorrect": 39, "theta_i": 39, "k_i": 39, "unspecifi": 39, "charg": 39, "harm": [39, 40], "malevol": [39, 40], "it_1": 39, "k_1": [39, 41, 44], "k_2": 39, "nnash_robust": 39, "planer": 39, "r_2": 39, "66846615": 39, "29512482": 39, "07584666": 39, "\u03b81": 39, "\u03b82": 39, "nash": 39, "array_lik": [39, 40], "unload": 39, "asmatrix": 39, "f10": 39, "f20": 39, "inv1": 39, "singular": 39, "d1p1": 39, "inv2": 39, "d2p2": 39, "f1_left": 39, "f1_right": 39, "\u03bb2": 39, "dd": 39, "f1r": 39, "f2r": 39, "p1r": 39, "p2r": 39, "markov_perfect": 39, "dai": [39, 51], "erron": 39, "rmpe": 39, "xr": 39, "qr1": 39, "qr2": 39, "qr": 39, "aock1": 39, "k2": 39, "aock2": 39, "xrp1": 39, "xrp2": 39, "qrp11": 39, "qrp12": 39, "qrp21": 39, "qrp22": 39, "qrp1": 39, "qrp2": 39, "prp1": 39, "prp2": 39, "virtual": [39, 42], "cautiou": 39, "666": 39, "682": 39, "074": 39, "671": 39, "694": 39, "998": 39, "664": 39, "685": 39, "669": 39, "665": 39, "683": 39, "695": 39, "insensit": 40, "acknowledg": 40, "explicitli": 40, "uncount": [40, 44], "genuin": 40, "sound": 40, "aid": 40, "chooser": 40, "paranoid": 40, "eig": 40, "somewher": 40, "f_r": 40, "f_b": 40, "skinnier": 40, "fragil": 40, "craft": 40, "seriou": 40, "nobel": 40, "admit": 40, "wrong": [40, 50], "qualiti": 40, "min_u": 40, "max_w": 40, "influenti": 40, "calculu": 40, "20mm": 40, "bu": 40, "circ": 40, "j_f": 40, "nonlinearli": 40, "dw": 40, "discourag": 40, "qf": 40, "p_fx": 40, "d_f": 40, "p_f": 40, "rblq": 40, "d_oper": 40, "b_oper": 40, "robust_rul": 40, "robust_rule_simpl": 40, "k_to_f": 40, "f_to_k": 40, "compute_deterministic_entropi": 40, "evaluate_f": 40, "sigma_d": 40, "stackrel": [40, 44], "\u03c3_d": 40, "ac": 40, "evaluate_polici": 40, "k_f": 40, "o_f": 40, "value_and_entropi": 40, "emax": 40, "bw": 40, "df": 40, "dropna": 40, "optimal_lq": 40, "po": 40, "fo": 40, "baseline_robust": 40, "fb": 40, "breakdown": 40, "test_matrix": 40, "eigenv": 40, "eigenvec": 40, "6e6": 40, "optimal_best_cas": 40, "robust_best_cas": 40, "optimal_worst_cas": 40, "robust_worst_cas": 40, "ticklabel_format": 40, "style": [40, 43], "sci": 40, "scilimit": 40, "plot_arg": 40, "df_pair": 40, "egrid": 40, "ipykernel_8169": 40, "154157873": 40, "line2d": 40, "0x7f589ce101d0": 40, "0x7f589ce7a050": 40, "0x7f589ce7b250": 40, "0x7f589d5eab50": 40, "lemma": 40, "beta_k": 41, "psi_1i_t": 41, "rho_d": 41, "\u03b1_d": 41, "\u03b1_": 41, "\u03b5_1": 41, "\u03bb_1": 41, "aquir": 41, "detect": [41, 51], "228": 41, "footnot": 41, "\u03b4_n": 41, "\u03c8_1": 41, "\u03c1_": 41, "\u03c1_d": 41, "profess": 41, "counteract": 41, "h_irf": 41, "impact": 41, "tradit": [42, 43], "nonfinanci": [42, 43], "preserv": 42, "followup": 42, "prologomenon": 42, "errat": 42, "commonli": 42, "alon": 42, "complete_ss": 42, "atild": 42, "ctild": 42, "s_ytild": 42, "cbar": 42, "n_simul": [42, 43], "randint": 42, "c_hist_com": 42, "b_hist_com": 42, "y_hist_com": 42, "x_hist_com": 42, "markert": 42, "thoroughli": 42, "forevermor": 42, "decumul": 42, "consumption_complet": [42, 43], "consumptionproblem": [42, 43], "2x2": [42, 43], "s_path": [42, 43], "cp": [42, 43], "c_bar": [42, 43], "augment": [42, 43], "y_aug": [42, 43], "q_aug": [42, 43], "consumption_incomplet": [42, 43], "b_path": [42, 43], "c_path": [42, 43], "db": [42, 43], "isclos": 42, "conclus": [42, 50], "upward": 42, "debt_complet": [42, 43], "debt_path": [42, 43], "fashion": 42, "renam": 43, "deadweight": 43, "elabor": 43, "love": 43, "presid": 43, "jefferson": 43, "secretari": [43, 51], "albert": [43, 51], "gallatin": [43, 51], "1807": [43, 51], "1837": [43, 51], "g_i": 43, "sold": 43, "peacetim": 43, "ex_post_gross_return": 43, "ind": 43, "cumulative_return": 43, "rt_path": 43, "itiniti": 43, "t_bar": 43, "as1": 43, "anymor": 43, "as2": 43, "tb1": 43, "tb2": 43, "exret": 43, "exant": 43, "768": 43, "384": 43, "576": 43, "2716883116883118": 43, "62337662": 43, "895064935064935": 43, "30208333": 43, "20833333": 43, "60416667": 43, "73611111": 43, "04166667": 43, "78635621": 43, "0629085": 43, "5276864": 43, "38432018": 43, "0860704239993675": 43, "wartim": 43, "episod": 43, "taxsmoothingexampl": 43, "debt_valu": 43, "t_path": 43, "asset_path": 43, "g_path": 43, "line1": 43, "get_color": 43, "line2": 43, "g_m": 43, "civil": 43, "prewar": 43, "g_ex1": 43, "p_ex1": 43, "b0_ex1": 43, "states_ex1": 43, "postwar": 43, "ts_ex1": 43, "864": 43, "7548096885813149": 43, "07093426": 43, "12975779": 43, "754809688581315": 43, "825743944636679": 43, "8845674740484442": 43, "1574074074074074": 43, "416666666666666": 43, "0416666666666667": 43, "7969336": 43, "24426428": 43, "12278592": 43, "31159337": 43, "17908622141460231": 43, "ts_s_path": 43, "9045311615620277": 43, "g_ex2": 43, "p_ex2": 43, "b0_ex2": 43, "states_ex2": 43, "ts_ex2": 43, "6053287197231834": 43, "63321799": 43, "51384083": 43, "0278892733564": 43, "1191695501730106": 43, "90470824": 43, "27429251": 43, "37206116": 43, "30985865": 43, "368991732594216": 43, "g_ex3": 43, "p_ex3": 43, "b0_ex3": 43, "states_ex3": 43, "peace1": 43, "peace2": 43, "war1": 43, "war2": 43, "ts_ex3": 43, "6927944572748268": 43, "42494226": 43, "86027714": 43, "43533487": 43, "117736720554273": 43, "553071593533488": 43, "128129330254041": 43, "553071593533487": 43, "83836741": 43, "87135998": 43, "94670854": 43, "89628977": 43, "07983627": 43, "69814023": 43, "2545741": 43, "1291214": 43, "02371440178864222": 43, "ssume": 43, "g_ex4": 43, "p_ex4": 43, "b0_ex4": 43, "states_ex4": 43, "ts_ex4": 43, "6349979047185738": 43, "82289484": 43, "4053292": 43, "77211121": 43, "37494762": 43, "6349979047185736": 43, "4578927455370505": 43, "040327103363229": 43, "4071091102836433": 43, "7399497132457697": 43, "457892745537051": 43, "040327103363228": 43, "407109110283643": 43, "8810589": 43, "48713661": 43, "95436011": 43, "82742569": 43, "11672808": 43, "36611394": 43, "46806216": 43, "79589276": 43, "132109773063616": 43, "seven": 43, "g_ex5": 43, "p_ex5": 43, "b0_ex5": 43, "states_ex5": 43, "war3": 43, "ts_ex5": 43, "5571895472128001": 43, "10123911": 43, "20669652": 43, "58738132": 43, "05773868": 43, "72973868": 43, "42973868": 43, "6584286588928001": 43, "7638860668928005": 43, "1445708668928003": 43, "4994508668928004": 43, "17254913310719955": 43, "5571895472128": 43, "6584286588928003": 43, "7638860668928": 43, "49945086689280027": 43, "17254913310719933": 43, "2775343959060068": 43, "receipt": 43, "albeit": [43, 44], "warm": 43, "toolset": 44, "occupi": 44, "mainstream": 44, "meyn": [44, 51], "tweedi": [44, 51], "lae": 44, "gaussian_kd": 44, "p_w": 44, "arch": 44, "neoclass": 44, "f_u": 44, "f_v": 44, "multidimension": 44, "reserv": [44, 51], "nicer": 44, "justif": 44, "callabl": 44, "a_\u03c3": 44, "\u03c8_0": 44, "cobb": 44, "dougla": 44, "ygrid": 44, "lighter": 44, "darker": 44, "hopenhayn": [44, 50, 51], "rogerson": [44, 51], "1993": [44, 51], "endpoint": 44, "cdf": 44, "outdat": 44, "lasota": [44, 51], "mackei": [44, 51], "depth": 44, "mild": 44, "slight": 44, "psi_n": 44, "tighter": 44, "frequent": 44, "\u03c8_star": 44, "\u03c8_est": 44, "k_est": 44, "ys": 44, "boxplot": 44, "z_n": 44, "quartil": 44, "median": 44, "skew": 44, "initial_condit": 44, "latest": [45, 49], "bcg_complete_mkt": 45, "bcg_incomplete_mkt": 45, "additive_funct": 45, "amss2": 45, "amss3": 45, "246": 45, "asset_pricing_lph": 45, "calvo_machine_learn": 45, "cattle_cycl": 45, "chang_cred": 45, "168": 45, "chang_ramsei": 45, "classical_filt": 45, "66": [45, 51], "cons_new": 45, "discrete_dp": 45, "dyn_stack": 45, "five_prefer": 45, "growth_in_dl": 45, "hs_invertibility_exampl": 45, "hs_recursive_model": 45, "intro": 45, "irfs_in_hall_model": 45, "knowing_forecasts_of_oth": 45, "lqramsei": 45, "lu_trick": 45, "lucas_asset_pricing_dl": 45, "lucas_model": 45, "markov_jump_lq": 45, "73": 45, "7206": 45, "61": [45, 51], "muth_kalman": 45, "77": 45, "opt_tax_recur": 45, "83": [45, 51], "orth_proj": 45, "permanent_income_dl": 45, "rob_markov_perf": 45, "rosen_schooling_model": 45, "93": [45, 51], "smoothing_tax": 45, "stationary_dens": 45, "tax_smoothing_1": 45, "tax_smoothing_2": 45, "tax_smoothing_3": 45, "un_insur": 45, "zrefer": 45, "hardwar": 45, "mccleari": [46, 47, 48, 51], "grain": 46, "sx_t": 46, "m_tu_t": 46, "ug": [46, 47, 48], "a_b": [46, 47, 48], "lqbarro": 46, "mf": 46, "05000002": 46, "79166502": 46, "2083334": 46, "79166504": 46, "fan": 46, "quandrat": 46, "1_": [46, 47], "933": 46, "9515": 46, "ws": [46, 47, 48], "dp": 46, "lqm": [46, 47, 48], "98437712": 46, "20516427": 46, "8314215": 46, "01434301": 46, "5847983": 46, "83851116": 46, "soup": [47, 48], "redeem": 47, "redesign": 47, "c_1q": 47, "lq_markov_map": 47, "condens": 47, "2d": 47, "atleast_2d": 47, "nz": 47, "a11": 47, "qc": 47, "steeper": 47, "p3": 47, "p4": 47, "lqm2": [47, 48], "amend": 47, "hp_": 47, "5mm": 47, "reschedul": 47, "2c_2": 47, "lq_markov_mapping_restruct": 47, "sx": 47, "tsx": 47, "r_c": 47, "q_c": 47, "w_c": 47, "9695": 47, "902": 47, "8369": 47, "9295": 47, "8769": 47, "lqm3": 47, "ax4": 47, "unabl": 48, "yesterdai": 48, "shortli": 48, "1e12": 48, "inabl": 48, "debtor": 48, "wari": 48, "sudden": 48, "experienc": 49, "articl": 49, "reinstal": 49, "remot": 49, "click": 49, "launch": 49, "icon": 49, "hesit": 49, "tracker": 49, "discours": 49, "forum": 49, "contact": 49, "nicolini": [50, 51], "1997": [50, 51], "unemploi": 50, "agenc": 50, "grasp": 50, "fate": 50, "aut": 50, "provis": 50, "award": 50, "unlucki": 50, "spell": 50, "announc": 50, "fulfil": 50, "pictur": 50, "convexifi": 50, "lotteri": 50, "compat": 50, "proper": 50, "durat": 50, "cubic": 50, "params_inst": 50, "uw": 50, "brate": 50, "hazard": 50, "invp_prim": 50, "p_prime": 50, "utilii": 50, "accordingli": 50, "vu_error": 50, "vu": 50, "r_error": 50, "vu_star": 50, "vu_error_\u03bb": 50, "15000": 50, "a_star": 50, "r_error_\u03bb": 50, "r_calibr": 50, "brentq": 50, "vu_aut": 50, "a_aut": 50, "0003431409393866592": 50, "10000000000001996": 50, "_minpack_pi": 50, "jacobian": 50, "variant": 50, "calc_c": 50, "calc_a": 50, "a_temp": 50, "grid_v": 50, "vu_": 50, "iterate_c": 50, "c_old": 50, "vu_grid": 50, "minimis": 50, "c_new": 50, "cons_star": 50, "c_new2": 50, "v_star2": 50, "c_vi_temp": 50, "cons_vi_temp": 50, "a_vi_temp": 50, "vu_i": 50, "c_vi_temp_interp": 50, "interp1d": 50, "cons_vi_temp_interp": 50, "a_vi_temp_interp": 50, "vu_min": 50, "vu_max": 50, "consumpton": 50, "solve_incomplete_info_model": 50, "c_init": 50, "cons_star_interp": 50, "a_star_interp": 50, "v_star_interp": 50, "95964854907824": 50, "222761762480786": 50, "12875960366727668": 50, "0009402349710398994": 50, "115462838351959e": 50, "t_max": 50, "vu_t": 50, "cons_t": 50, "vu_0_hold": 50, "16942": 50, "17000": 50, "vu_0": 50, "tick": 50, "16759": 50, "320": 50, "carrot": 50, "stick": 50, "abr88": 51, "econometrica": 51, "383": 51, "396": 51, "aps90": 51, "david": 51, "ennio": 51, "monitor": 51, "1041": 51, "1063": 51, "septemb": 51, "amsseppala02": 51, "rao": 51, "juha": 51, "sepp": 51, "\u00e4": 51, "journal": 51, "polit": 51, "1220": 51, "1254": 51, "ams02": 51, "franklin": 51, "stephen": 51, "morri": 51, "hyun": 51, "song": 51, "shin": 51, "contest": 51, "bubbl": 51, "mimeo": 51, "ahms96": 51, "evan": 51, "ellen": 51, "mcgrattan": 51, "amman": 51, "kendrick": 51, "editor": 51, "handbook": 51, "elsevi": 51, "north": 51, "holland": 51, "ahs03": 51, "semigroup": 51, "european": 51, "march": 51, "url": 51, "repec": 51, "tpr": 51, "jeurec": 51, "v1y2003i1p68": 51, "html": 51, "doi": 51, "are08": 51, "cristina": 51, "american": 51, "690": 51, "712": 51, "ap91": 51, "papouli": 51, "unnikrishna": 51, "graw": 51, "ap11": 51, "orazio": 51, "nicola": 51, "1027": 51, "1068": 51, "bcz14": 51, "backu": 51, "mikhail": 51, "chernov": 51, "stanlei": 51, "zin": 51, "februari": 51, "bla": 51, "jfinan": 51, "v69y2014i1p51": 51, "bhs09": 51, "francisco": 51, "2388": 51, "2418": 51, "novemb": 51, "eee": 51, "jetheo": 51, "v144y2009i6p2388": 51, "bar79": 51, "940": 51, "971": 51, "bar99": 51, "democraci": 51, "s6": 51, "s158": 51, "s183": 51, "bm03": 51, "rachel": 51, "religion": 51, "bureau": 51, "begs17": 51, "anmol": 51, "golosov": 51, "617": 51, "663": 51, "bcg18": 51, "alberto": 51, "gian": 51, "piero": 51, "nyu": 51, "eui": 51, "bl92": 51, "fischer": 51, "litterman": 51, "analyst": 51, "buc04": 51, "jame": 51, "springer": 51, "verlag": 51, "york": 51, "cag56": 51, "philip": 51, "hyperinfl": 51, "friedman": 51, "univers": 51, "chicago": 51, "press": 51, "cal78": 51, "1411": 51, "1428": 51, "cr83": 51, "gari": 51, "michael": 51, "1281": 51, "1304": 51, "ecm": 51, "emetrp": 51, "v51y1983i5p1281": 51, "304": 51, "cha98": 51, "431": 51, "461": 51, "ck90": 51, "varadarajan": 51, "patrick": 51, "802": 51, "coa37": 51, "harri": 51, "economica": 51, "386": 51, "405": 51, "coc05": 51, "revis": 51, "edit": 51, "princeton": 51, "jersei": 51, "cc08": 51, "dj92": 51, "raymond": 51, "chaotic": 51, "chao": 51, "308": 51, "329": 51, "dic75": 51, "fienberg": 51, "zellner": 51, "515": 51, "554": 51, "amsterdam": 51, "dvgc99": 51, "jbr": 51, "jc": 51, "geromel": 51, "olv": 51, "costa": 51, "311": 51, "fri56": 51, "gal37": 51, "vol": 51, "offic": 51, "washington": 51, "gs89": 51, "itzhak": 51, "maxmin": 51, "apr": 51, "hal78": 51, "life": 51, "987": 51, "hs08a": 51, "han12": 51, "911": 51, "967": 51, "v80y2012i3p911": 51, "3982": 51, "ecta8070": 51, "hj91": 51, "262": 51, "april": 51, "ucp": 51, "jpolec": 51, "v99y1991i2p225": 51, "1086": 51, "261749": 51, "hr87": 51, "testabl": 51, "587": 51, "613": 51, "hs80": 51, "hs00": 51, "stanford": 51, "hs08b": 51, "hs01": 51, "91": 51, "hs13": 51, "hs24": 51, "hst99": 51, "907": 51, "oup": 51, "restud": 51, "v66y1999i4p873": 51, "hk79": 51, "multiperiod": 51, "408": 51, "june": 51, "v20y1979i3p381": 51, "hk85": 51, "elhanan": 51, "paul": 51, "mit": 51, "cambridg": 51, "hll96": 51, "criteria": 51, "hn97": 51, "hugo": 51, "juan": 51, "pablo": 51, "412": 51, "438": 51, "v105y1997i2p412": 51, "262078": 51, "hr93": 51, "turnov": 51, "938": 51, "jac73": 51, "ieee": 51, "jud98": 51, "scientif": 51, "jud85": 51, "patent": 51, "567": 51, "jyc03": 51, "sevin": 51, "supergam": 51, "71": 51, "1239": 51, "v71y2003i4p1239": 51, "kas00": 51, "726": 51, "756": 51, "kns18": 51, "tomoo": 51, "kazuo": 51, "nishimura": 51, "stachurski": 51, "729": 51, "760": 51, "kni21": 51, "frank": 51, "houghton": 51, "mifflin": 51, "kre81": 51, "mateco": 51, "v8y1981i1p15": 51, "kp80": 51, "finn": 51, "lm94": 51, "fractal": 51, "lea78": 51, "hoc": 51, "nonexperiment": 51, "volum": 51, "wilei": 51, "son": 51, "lwy13": 51, "shu": 51, "chun": 51, "1115": 51, "1145": 51, "ls18": 51, "luc87": 51, "oxford": 51, "blackwel": 51, "luc78": 51, "1429": 51, "1445": 51, "ls83": 51, "mmr06": 51, "fabio": 51, "massimo": 51, "marinacci": 51, "aldo": 51, "rustichini": 51, "1147": 51, "1498": 51, "mt09": 51, "mf02": 51, "mario": 51, "mm58": 51, "franco": 51, "modigliani": 51, "merton": 51, "miller": 51, "xlviii": 51, "297": 51, "mut60": 51, "290": 51, "299": 51, "306": 51, "orf88": 51, "sophocl": 51, "mcgraw": 51, "publish": 51, "pcl86": 51, "joseph": 51, "curri": 51, "levin": 51, "ps05": 51, "497": 51, "v8y2005i2p480": 51, "1016": 51, "put05": 51, "martin": 51, "ram27": 51, "rel75": 51, "1113": 51, "1144": 51, "rom05": 51, "steven": 51, "rms94": 51, "sherwin": 51, "kevin": 51, "jose": 51, "ros78": 51, "453": 51, "juli": 51, "jnlbu": 51, "v51y1978i3p453": 51, "ros76": 51, "341": 51, "360": 51, "decemb": 51, "v13y1976i3p341": 51, "roz67": 51, "holden": 51, "san": 51, "rus96": 51, "619": 51, "rr04": 51, "jaewoo": 51, "s110": 51, "s140": 51, "shr91": 51, "westview": 51, "sar77": 51, "sar87": 51, "academ": 51, "sar91": 51, "245": 51, "sw49": 51, "warren": 51, "illinoi": 51, "urbana": 51, "sw79": 51, "shavel": 51, "laurenc": 51, "weiss": 51, "1347": 51, "1362": 51, "shi95": 51, "sin87": 51, "dispar": 51, "trader": 51, "barnett": 51, "apprroach": 51, "slp89": 51, "harvard": 51, "sto89": 51, "reput": 51, "134": 51, "sto91": 51, "627": 51, "656": 51, "octob": 51, "sw09": 51, "noah": 51, "dsge": 51, "klau": 51, "schmidt": 51, "hebbel": 51, "carl": 51, "walsh": 51, "norman": 51, "loayza": 51, "bank": 51, "077": 51, "chile": 51, "sw": 51, "eo": 51, "feder": 51, "loui": 51, "275": 51, "293": 51, "tal00": 51, "532": 51, "tow83": 51, "546": 51, "588": 51, "whi63": 51, "univ": 51, "whi81": 51, "764": 51, "777": 51, "whi83": 51, "minnesota": 51, "minneapoli": 51, "whi90": 51}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"irrelev": 0, "capit": [0, 1, 18], "structur": [0, 1, 6, 8, 10, 11, 23, 28, 42], "complet": [0, 42, 43], "market": [0, 1, 6, 25, 42, 43], "introduct": [0, 1, 7, 11, 28], "setup": [0, 1, 18, 32, 39], "endow": [0, 1, 25], "technolog": [0, 12, 25, 29, 41], "prefer": [0, 1, 12, 22, 25, 36, 41], "parameter": [0, 1], "pareto": 0, "criterion": 0, "plan": [0, 10, 11, 13, 19, 23], "problem": [0, 1, 3, 13, 14, 15, 19, 23, 28, 29, 30, 32, 36, 39, 40, 46, 47, 50], "help": 0, "observ": [0, 28, 35], "bookkeep": 0, "remark": [0, 4, 28], "competit": [0, 3, 13, 14, 25, 36], "equilibrium": [0, 1, 3, 6, 10, 13, 14, 16, 19, 25, 28, 29, 32, 36, 39, 40], "measur": [0, 1, 3, 20, 22, 34, 37], "agent": [0, 1, 26, 39, 40], "firm": [0, 1, 16, 19, 25, 34], "ownership": [0, 1], "asset": [0, 1, 6, 8, 25, 26, 31, 32], "object": [0, 11, 14, 22], "appear": 0, "A": [0, 1, 2, 9, 10, 11, 13, 16, 18, 20, 23, 25, 28, 29, 30, 32, 35, 36, 39, 41, 42, 47, 48], "repres": [0, 25, 28], "s": [0, 1, 6, 10, 13, 14, 16, 19, 40, 46, 50], "consum": [0, 1, 32], "comput": [0, 6, 7, 16, 17, 19, 28, 29, 32, 39, 40, 44, 50], "price": [0, 1, 8, 19, 22, 25, 26, 31, 32, 34, 36], "quantiti": [0, 19, 40], "modigliani": [0, 1], "miller": [0, 1], "theorem": [0, 1, 37], "code": [0, 1, 2, 3, 4, 5, 18, 24, 29, 42, 43], "exampl": [0, 1, 3, 4, 7, 10, 15, 18, 20, 23, 27, 29, 30, 32, 33, 36, 43, 44, 47], "1st": 0, "2nd": 0, "incomplet": [1, 42, 43], "feasibl": [1, 29], "risk": [1, 3, 5, 6, 8, 22, 26, 37, 42, 48], "share": 1, "motiv": 1, "function": [1, 2, 7, 10, 18, 22, 25, 28, 32], "optim": [1, 3, 10, 18, 25, 29, 35, 36, 50], "verif": 1, "pseudo": 1, "first": [1, 5, 36], "equiti": 1, "bond": [1, 47], "comment": [1, 19, 29, 36], "anoth": [1, 14, 17, 48], "economi": [1, 3, 4, 5, 23, 25, 26, 29], "pictur": 1, "worth": 1, "thousand": 1, "word": 1, "addit": [2, 30], "multipl": [2, 10, 26], "overview": [2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 25, 29, 30, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 50], "particular": 2, "linear": [2, 7, 15, 23, 25, 26, 30, 33, 37, 39, 42, 46, 47, 48], "state": [2, 3, 17, 18, 22, 28, 29, 35, 36, 42, 43, 44], "space": [2, 17, 35, 42], "represent": [2, 7, 8, 10, 17, 18, 19, 25, 30, 35, 48], "dynam": [2, 10, 18, 19, 23, 25, 26, 32, 33, 39, 44, 47, 48], "simul": [2, 4, 5, 17, 31, 34], "plot": 2, "decomposit": [2, 25, 37], "associ": [2, 17], "peculiar": 2, "larg": 2, "sampl": [2, 9], "properti": [2, 20, 44], "more": [2, 5, 11, 19, 23, 25, 33, 40, 43], "about": [2, 4, 5], "martingal": [2, 3, 29], "again": 2, "path": [2, 22], "likelihood": [2, 25], "ratio": [2, 8, 50], "process": [2, 7, 17, 20, 35, 42], "taxat": [3, 29, 36], "without": 3, "conting": [3, 36, 43], "debt": [3, 4, 5, 6, 36, 42, 43], "distort": [3, 36], "tax": [3, 36, 43], "free": [3, 42], "One": [3, 17, 28, 36, 41, 42, 47], "period": [3, 13, 25, 36, 42, 47], "onli": [3, 42], "comparison": [3, 10, 13, 18, 28], "luca": [3, 4, 31, 32], "stokei": [3, 4], "ramsei": [3, 10, 11, 14, 29, 36], "lagrangian": [3, 25], "formul": [3, 15, 18, 19, 25, 36], "some": [3, 11, 14, 35, 39], "calcul": [3, 13, 14, 17, 19, 21], "recurs": [3, 10, 19, 25, 36], "version": [3, 36, 42], "amss": 3, "model": [3, 4, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28, 29, 32, 34, 38, 39, 40, 41, 42, 43, 46, 47, 50], "recast": 3, "variabl": [3, 11, 20, 28, 29, 36, 43], "constraint": [3, 22, 29, 32, 36], "two": [3, 9, 11, 17, 18, 19, 28, 36, 40, 47], "bellman": [3, 14, 18, 19, 36, 40], "equat": [3, 4, 8, 14, 18, 19, 31, 33, 36, 37, 40, 44], "superced": 3, "degeneraci": [3, 36], "absenc": 3, "digress": [3, 10, 22], "non": [3, 17, 24, 25, 36], "neg": 3, "transfer": 3, "anticip": [3, 36], "war": [3, 36, 46, 47, 48], "perpetu": 3, "alert": 3, "fluctuat": [4, 6], "interest": [4, 36, 46], "rate": [4, 5, 10, 36, 46], "deliv": 4, "fiscal": [4, 5], "insur": [4, 50], "forc": 4, "work": 4, "logic": 4, "flow": [4, 25], "lectur": [4, 18, 42, 43], "from": [4, 10], "1983": 4, "specif": [4, 22, 36, 47], "crra": [4, 36], "util": [4, 22, 36], "revers": [4, 35], "engin": [4, 25, 35], "strategi": 4, "short": 4, "initi": 4, "long": [4, 5], "beg": 4, "approxim": [4, 5, 11], "limit": [4, 30], "converg": [4, 5, 18], "asymptot": [4, 5], "mean": [4, 5, 8, 9], "formula": [4, 20, 33], "detail": [4, 9, 19, 25, 36, 39, 50], "govern": [5, 6, 10, 13, 14, 29, 36], "The": [5, 11, 12, 13, 14, 16, 18, 21, 28, 29, 32, 36, 37, 38, 40, 42, 44], "second": [5, 19], "moment": [5, 22], "advanc": [5, 26], "topic": 5, "chicken": 5, "egg": 5, "ergod": 5, "step": [5, 14, 28, 32], "execut": [5, 45], "1": [5, 6, 7, 8, 10, 15, 16, 19, 21, 23, 27, 28, 29, 32, 33, 34, 37, 40, 42, 43, 44, 46], "2": [5, 7, 8, 10, 15, 16, 21, 23, 27, 28, 33, 37, 40, 42, 43, 44, 47], "note": [5, 10, 28], "run": 5, "3": [5, 8, 23, 27, 28, 37, 43, 44, 48], "4": [5, 8, 28, 43], "6": 5, "default": 6, "incom": [6, 17, 25, 38, 42], "output": 6, "consumpt": [6, 17, 22, 27, 42, 43], "financi": [6, 17], "decis": [6, 10, 14], "reenter": 6, "intern": 6, "credit": 6, "definit": [6, 7, 16, 18, 25, 37, 44], "result": [6, 44], "exercis": [6, 8, 15, 16, 18, 21, 29, 30, 32, 34, 37, 44], "solut": [6, 8, 16, 18, 21, 29, 32, 34, 36, 37, 38, 39, 44], "13": 6, "covari": [7, 25, 28], "stationari": [7, 28, 44], "arma": 7, "spectral": [7, 25], "analysi": [7, 14], "other": [7, 25, 26, 28, 29, 40, 42], "read": [7, 18, 37], "white": 7, "nois": 7, "gener": [7, 22, 25], "wold": [7, 25], "ar": [7, 21, 35], "ma": [7, 35], "complex": 7, "number": 7, "densiti": [7, 44], "interpret": [7, 9, 16, 19, 21, 42, 50], "invert": [7, 17, 24], "transform": [7, 30], "mathemat": [7, 8, 20, 25], "theori": [7, 8, 9, 16, 20, 25, 30, 32], "implement": [7, 8, 11, 15, 16, 29, 30, 36, 39, 40, 44], "applic": [7, 17, 33, 37, 39, 40, 47, 48], "explan": [7, 19, 43], "autocovari": 7, "elementari": 8, "kei": [8, 28, 34, 37, 39, 42], "implic": 8, "expect": [8, 22, 35], "return": [8, 43], "beta": 8, "varianc": [8, 9], "frontier": 8, "sharp": 8, "multi": 8, "factor": [8, 25], "empir": 8, "35": 8, "5": [8, 28, 43], "modif": 9, "portfolio": 9, "choic": [9, 25], "estim": [9, 21, 35], "black": 9, "litterman": 9, "start": [9, 37], "point": [9, 16, 32], "ad": 9, "view": 9, "bayesian": [9, 22], "curv": [9, 22, 25], "decolletag": 9, "recommend": 9, "regular": 9, "robust": [9, 20, 26, 39, 40], "control": [9, 15, 20, 26, 30, 46, 47], "oper": [9, 14, 18], "appendix": [9, 18, 40, 44], "special": [9, 36], "case": [9, 29, 37, 39, 40, 44], "iid": 9, "depend": 9, "frequenc": [9, 20], "time": [10, 13, 19, 26, 34, 36, 46], "inconsist": [10, 19, 36], "sustain": [10, 13], "compon": [10, 11], "friedman": [10, 35], "deflat": [10, 22], "calvo": 10, "perturb": 10, "intertempor": [10, 36], "four": 10, "protocol": [10, 13], "planner": [10, 14], "subproblem": [10, 19], "timeless": 10, "perspect": 10, "role": 10, "theta_t": [10, 28], "constrain": 10, "constant": 10, "growth": [10, 18, 23], "markov": [10, 19, 29, 33, 39, 42, 43, 44, 46, 47, 48], "perfect": [10, 19, 28, 39], "outcom": [10, 19, 25, 40, 42, 50], "under": [10, 25, 28, 39, 50], "three": 10, "valu": [10, 11, 13, 14, 18, 19, 40, 50], "implaus": 10, "strike": 10, "back": 10, "fourth": 10, "make": 10, "temptat": 10, "deviat": 10, "credibl": [10, 13], "abreu": 10, "self": 10, "enforc": 10, "carrot": 10, "stick": 10, "whose": 10, "program": [10, 18, 19, 25, 26, 32, 33, 47, 48], "squar": [10, 26, 37], "machin": 11, "learn": 11, "paramet": [11, 39, 43, 50], "basic": [11, 22, 32, 39, 44], "gradient": 11, "algorithm": [11, 18, 50], "restrict": 11, "mu_t": 11, "bar": 11, "mu": 11, "all": [11, 14, 28], "t": [11, 28], "ml": 11, "exploratori": 11, "regress": [11, 28, 37], "continu": [11, 14, 20, 29, 36, 43, 44, 50], "what": 11, "ha": 11, "taught": 11, "us": [11, 14, 28, 31, 33, 35, 38, 40], "cattl": [12, 25], "cycl": [12, 25, 34], "map": [12, 37, 41, 47], "hs2013": [12, 41], "framework": [12, 41], "inform": [12, 16, 17, 20, 25, 41, 50], "polici": [13, 18, 40], "chang": [13, 14, 41], "set": [13, 14, 21, 25, 28, 32, 40], "household": [13, 14, 25, 29], "within": 13, "promis": [13, 14], "pair": [13, 14, 18], "equilibria": [14, 16, 39], "inventori": 14, "plai": 14, "notat": 14, "ce": 14, "solv": [14, 18, 28, 32, 40, 46], "next": [14, 32], "classic": [15, 30], "predict": [15, 20, 25], "filter": [15, 17, 21, 28], "With": 15, "algebra": [15, 30, 37], "refer": [15, 18, 30, 40, 51], "finit": [15, 29, 30, 42, 43], "dimension": 15, "combin": 15, "infinit": [15, 30, 39], "horizon": [15, 30, 39], "coas": 16, "why": [16, 22], "exist": 16, "trade": 16, "off": 16, "summari": [16, 42], "quantit": [16, 26], "subcontract": 16, "cost": [16, 25, 27], "formal": [16, 18], "uniqu": 16, "fix": [16, 32, 49], "method": [16, 18, 30], "margin": 16, "condit": [16, 20, 23, 28, 36], "15": 16, "smooth": [17, 21, 36, 42, 43], "same": 17, "differ": [17, 44, 47], "nonfinanci": 17, "kalman": 17, "new": [17, 28, 34], "shock": [17, 24, 25, 28, 39], "less": 17, "epsilon_t": 17, "term": [17, 29, 30], "futur": 17, "y_t": 17, "a_t": 17, "perman": [17, 25, 38], "innov": [17, 34, 35], "wai": 17, "issu": [17, 49], "discret": [18, 29], "how": [18, 46, 47, 48], "thi": 18, "dp": 18, "principl": 18, "iter": 18, "modifi": [18, 39], "defin": 18, "discretedp": 18, "instanc": 18, "action": 18, "speed": 18, "replic": 18, "figur": 18, "stock": 18, "stackelberg": 19, "duopoli": [19, 39], "leader": 19, "follow": 19, "statement": 19, "block": 19, "mechan": 19, "prepar": 19, "consist": [19, 39], "seri": [19, 26, 34], "align": 19, "compar": [19, 22, 39], "etymolog": 20, "entropi": [20, 22], "unpredict": 20, "independ": [20, 37], "maximum": 20, "thermodynam": 20, "statist": [20, 22, 45], "diverg": 20, "distribut": [20, 44], "rel": 20, "gaussian": [20, 43], "von": 20, "neumann": 20, "backu": 20, "chernov": 20, "zin": 20, "wiener": 20, "kolmogorov": 20, "error": [20, 28], "multivari": 20, "domain": 20, "random": 20, "spectra": 21, "periodogram": 21, "pre": 21, "29": 21, "uncertainti": [22, 25, 26], "five": 22, "multipli": [22, 36], "sensit": [22, 23], "ex": 22, "post": 22, "avers": 22, "misspecif": 22, "indiffer": 22, "equival": 22, "iso": 22, "expans": 22, "bound": [22, 40], "detect": 22, "axiomat": 22, "justif": 22, "common": [23, 28], "hall": [23, 27], "1978": [23, 27], "alter": 23, "jone": 23, "manuelli": 23, "1990": 23, "vari": [23, 46], "impati": 23, "suit": 25, "forecast": [25, 28], "econometr": 25, "stochast": [25, 28, 40, 44], "orthogon": [25, 37], "tast": 25, "product": 25, "singl": [25, 30], "adjust": [25, 27], "resourc": 25, "alloc": [25, 36], "infrastructur": 25, "type": 25, "i": 25, "ii": [25, 32], "re": 25, "open": 25, "ident": 25, "vector": 25, "autoregress": 25, "demand": [25, 41], "canon": 25, "gorman": 25, "aggreg": 25, "engel": 25, "attain": 25, "partial": 25, "invest": 25, "rosen": [25, 41], "topel": 25, "hous": 25, "occup": [25, 41], "pai": [25, 46, 47, 48], "skill": 25, "unskil": 25, "worker": 25, "heterogen": [25, 39], "econom": 26, "python": [26, 46, 50], "tool": 26, "techniqu": 26, "lq": [26, 29, 33, 47], "financ": [26, 46], "irf": 27, "higher": 27, "durabl": 27, "good": 27, "know": 28, "sequenc": [28, 36], "tactic": 28, "foresight": 28, "noisi": 28, "signal": 28, "reconstruct": 28, "guess": 28, "verifi": 28, "tild": 28, "lambda": 28, "p": 28, "system": [28, 36, 37], "quantecon": 28, "linearstatespac": 28, "impuls": 28, "respons": 28, "matric": 28, "popul": 28, "an": [28, 29, 30, 32, 37, 43, 44, 47, 49], "benchmark": 28, "histori": [28, 43], "further": [28, 36, 37], "histor": 28, "featur": 29, "exogen": 29, "budget": 29, "quadrat": [29, 33, 46, 47, 48], "12": 29, "matrix": [30, 37], "lag": 30, "altern": 30, "undiscount": 30, "discount": 30, "dle": [31, 38], "tree": 32, "up": 32, "littl": 32, "34": 32, "jump": [33, 46, 47, 48], "review": 33, "link": [33, 43], "riccati": 33, "global": 34, "background": [34, 42], "idea": 34, "synchron": 34, "varieti": 34, "law": 34, "motion": 34, "basin": 34, "attract": 34, "14": 34, "la": 35, "muth": 35, "1956": 35, "1960": 35, "which": 35, "adapt": 35, "math": 35, "unobserv": 35, "relationship": [35, 42], "arrow": 36, "debreu": 36, "primal": 36, "approach": 36, "given": 36, "determin": 36, "lagrang": 36, "deleg": 36, "order": 36, "manifest": 36, "save": 36, "0": 36, "manipul": 36, "project": 37, "Their": 37, "vs": 37, "proof": 37, "suffici": 37, "complement": 37, "orthonorm": 37, "basi": 37, "onto": 37, "via": 37, "overdetermin": 37, "least": 37, "gram": 37, "schmidt": 37, "qr": 37, "class": [38, 46], "coupl": 39, "regul": 39, "insight": 39, "worst": [39, 40], "check": 39, "baselin": 39, "transit": 39, "belief": 39, "impli": 40, "Of": 40, "inspir": 40, "video": 40, "construct": 40, "analyz": 40, "person": 40, "zero": 40, "sum": 40, "game": 40, "lower": 40, "upper": 40, "reshap": 40, "nash": 40, "school": 41, "effect": 41, "educ": 41, "graph": 42, "sequel": 42, "isomorph": 43, "between": 43, "revisit": 43, "relabel": 43, "creat": 43, "chain": [43, 44], "relat": 43, "connect": 44, "beyond": 44, "stabil": 44, "theoret": 44, "part": [46, 47, 48], "reader": 46, "guid": 46, "public": 46, "question": 46, "barro": 46, "1979": 46, "No": 47, "restructur": 47, "penalti": 47, "issuanc": 47, "across": 47, "matur": 47, "roll": 48, "over": 48, "dead": 48, "end": 48, "better": 48, "troubleshoot": 49, "your": 49, "local": 49, "environ": 49, "report": 49, "unemploy": 50, "shavel": 50, "weiss": 50, "autarki": 50, "full": 50, "incent": 50, "privat": 50, "replac": 50}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9, "sphinx": 56}})
\ No newline at end of file
diff --git a/smoothing.html b/smoothing.html
index d37feda9..3bc538ef 100644
--- a/smoothing.html
+++ b/smoothing.html
@@ -277,7 +277,9 @@ 6. Consumption Smoothing with Complete a
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
+
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -552,7 +554,7 @@ 6.3. Linear State Space Version of Compl
-
+
diff --git a/smoothing_tax.html b/smoothing_tax.html
index 44311a33..a2938bba 100644
--- a/smoothing_tax.html
+++ b/smoothing_tax.html
@@ -285,7 +285,9 @@ 7. Tax Smoothing with Complete and Incom
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
+
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
diff --git a/stationary_densities.html b/stationary_densities.html
index 19ad3ccc..623db16e 100644
--- a/stationary_densities.html
+++ b/stationary_densities.html
@@ -277,7 +277,9 @@ 2. Continuous State Markov Chains
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -630,7 +632,7 @@ 2.2.6. Example
-
+
The figure shows part of the density sequence \(\{\psi_t\}\), with each
@@ -880,7 +882,7 @@
2.5. Exercises
-
+
@@ -952,7 +954,7 @@ 2.5. Exercises
-
+
@@ -990,7 +992,7 @@ 2.5. Exercises
-
+
Each data set is represented by a box, where the top and bottom of the box are the third and first quartiles of the data, and the red line in the center is the median.
@@ -1053,7 +1055,7 @@ 2.5. Exercises
-
+
diff --git a/status.html b/status.html
index 30860bee..70cabbbc 100644
--- a/status.html
+++ b/status.html
@@ -233,315 +233,315 @@ 51. Execution Statistics
-2024-08-07 02:06
+2024-08-11 19:47
cache
-52.69
+47.2
✅
-2024-08-07 02:07
+2024-08-11 19:49
cache
-91.31
+87.14
✅
-2024-08-07 02:08
+2024-08-11 19:49
cache
-14.59
+14.03
✅
-2024-08-07 02:12
+2024-08-11 19:54
cache
-288.73
+280.82
✅
-2024-08-07 02:13
+2024-08-11 19:54
cache
-55.36
+55.24
✅
-2024-08-07 02:17
+2024-08-11 19:59
cache
-244.02
+246.99
✅
-2024-08-07 02:19
+2024-08-11 20:00
cache
-86.37
+85.52
✅
-2024-08-07 02:19
+2024-08-11 20:00
cache
-9.1
+8.23
✅
-2024-08-07 02:19
+2024-08-11 20:00
cache
-2.6
+2.39
✅
-2024-08-07 02:20
+2024-08-11 20:01
cache
-32.41
+31.97
✅
-2024-08-07 02:20
+2024-08-11 20:01
cache
-13.31
+12.08
✅
-2024-08-07 02:20
+2024-08-11 20:01
cache
-23.95
+22.2
✅
-2024-08-07 02:20
+2024-08-11 20:01
cache
-5.91
+5.48
✅
-2024-08-07 02:23
+2024-08-11 20:04
cache
-172.5
+168.21
✅
-2024-08-07 02:29
+2024-08-11 20:10
cache
-338.19
+334.02
✅
-2024-08-07 02:29
+2024-08-11 20:10
cache
-1.3
+1.42
✅
-2024-08-07 02:29
+2024-08-11 20:10
cache
-3.65
+3.66
✅
-2024-08-07 02:29
+2024-08-11 20:10
cache
-6.24
+5.68
✅
-2024-08-07 02:30
+2024-08-11 20:11
cache
-31.49
+30.72
✅
-2024-08-07 02:30
+2024-08-11 20:11
cache
-7.63
+7.3
✅
-2024-08-07 02:30
+2024-08-11 20:11
cache
-0.84
+0.87
✅
-2024-08-07 02:30
+2024-08-11 20:11
cache
-6.6
+6.2
✅
-2024-08-07 02:30
+2024-08-11 20:11
cache
-39.01
+37.74
✅
-2024-08-07 02:31
+2024-08-11 20:11
cache
-5.66
+5.5
✅
-2024-08-07 02:31
+2024-08-11 20:12
cache
-6.08
+5.44
✅
-2024-08-07 02:31
+2024-08-11 20:12
cache
-0.78
+0.79
✅
-2024-08-07 02:31
+2024-08-11 20:12
cache
-0.78
+0.79
✅
-2024-08-07 02:31
+2024-08-11 20:12
cache
-5.95
+5.52
✅
-2024-08-07 02:31
+2024-08-11 20:12
cache
-26.04
+44.8
✅
-2024-08-07 02:31
+2024-08-11 20:13
cache
-7.42
+6.96
✅
-2024-08-07 02:31
+2024-08-11 20:13
cache
-2.29
+2.09
✅
-2024-08-07 02:31
+2024-08-11 20:13
cache
-5.82
+5.5
✅
-2024-08-07 02:32
+2024-08-11 20:13
cache
-16.91
+16.39
✅
-2024-08-07 02:33
+2024-08-11 20:14
cache
-74.99
+73.73
✅
-2024-08-07 04:33
+2024-08-11 22:14
cache
-7206.94
+7206.61
✅
-2024-08-07 04:33
+2024-08-11 22:14
cache
-6.19
+5.77
✅
-2024-08-07 04:35
+2024-08-11 22:16
cache
-111.82
+107.83
✅
-2024-08-07 04:35
+2024-08-11 22:16
cache
-1.17
+0.94
✅
-2024-08-07 04:35
+2024-08-11 22:16
cache
-5.74
+5.39
✅
-2024-08-07 04:35
+2024-08-11 22:16
cache
-5.73
+5.39
✅
-2024-08-07 04:35
+2024-08-11 22:17
cache
-7.07
+6.69
✅
-2024-08-07 04:36
+2024-08-11 22:17
cache
-5.87
+5.47
✅
-2024-08-07 04:36
+2024-08-11 22:17
cache
-6.15
+5.93
✅
-2024-08-07 04:36
+2024-08-11 22:17
cache
-8.64
+7.95
✅
-2024-08-07 04:36
+2024-08-11 22:17
cache
-10.48
+10.0
✅
-2024-08-07 02:31
+2024-08-11 20:12
cache
-0.78
+0.79
✅
-2024-08-07 04:36
+2024-08-11 22:17
cache
-12.25
+11.83
✅
-2024-08-07 04:36
+2024-08-11 22:17
cache
-6.6
+5.99
✅
-2024-08-07 04:36
+2024-08-11 22:17
cache
-6.48
+5.77
✅
-2024-08-07 02:31
+2024-08-11 20:12
cache
-0.78
+0.79
✅
-2024-08-07 04:37
+2024-08-11 22:18
cache
-11.39
+11.25
✅
-2024-08-07 02:31
+2024-08-11 20:12
cache
-0.78
+0.79
✅
diff --git a/tax_smoothing_1.html b/tax_smoothing_1.html
index d3bd0d7e..973d25a2 100644
--- a/tax_smoothing_1.html
+++ b/tax_smoothing_1.html
@@ -259,7 +259,9 @@
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
+
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -596,7 +598,7 @@ 9.3. Barro (1979) Model
-
+
We can see a similar, but a smoother pattern, if we plot government debt
@@ -614,7 +616,7 @@
9.3. Barro (1979) Model
-
+
@@ -733,7 +735,7 @@ 9.5. Barro Model with a Time-varying Int
-
+
diff --git a/tax_smoothing_2.html b/tax_smoothing_2.html
index a7db7e05..3851b619 100644
--- a/tax_smoothing_2.html
+++ b/tax_smoothing_2.html
@@ -264,13 +264,13 @@
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
+
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
-
-
-Requirement already satisfied: mpmath>=0.19 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from sympy->quantecon) (1.3.0)
+Requirement already satisfied: mpmath>=0.19 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from sympy->quantecon) (1.3.0)
@@ -675,7 +675,7 @@ 10.5. Penalty on Different Issuance Acro
-
+
The above simulations show that when no penalty is imposed on different
@@ -725,7 +725,7 @@
10.5. Penalty on Different Issuance Acro
-
+
@@ -1008,7 +1008,7 @@ 10.7.1. Example with Restructuring
-
+
-
+
diff --git a/tax_smoothing_3.html b/tax_smoothing_3.html
index e3de3252..32c2d855 100644
--- a/tax_smoothing_3.html
+++ b/tax_smoothing_3.html
@@ -258,7 +258,9 @@
Requirement already satisfied: scipy>=1.5.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.11.4)
Requirement already satisfied: sympy in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from quantecon) (1.12)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from numba>=0.49.0->quantecon) (0.43.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
+
+
+Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages (from requests->quantecon) (2024.2.2)
@@ -486,7 +488,7 @@ 11.4. Better Representation of Roll-Over
-
+
We can adjust the model so that, rather than having debt fluctuate
@@ -531,7 +533,7 @@
11.4. Better Representation of Roll-Over
-
+
With a lower interest rate, the government has an incentive to