-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathQcer.py
371 lines (315 loc) · 14 KB
/
Qcer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#!/usr/bin/env python3.11
# -*- coding: utf-8 -*-
"""
QubitCreator Script
This script creates and manages qubits in "neuron" groupings, where each
neuron has 50 qubits. It uses a 3-layer quantum scheme (middle layer is in
superposition) and leverages Grover's algorithm for search across neurons.
The structure can keep expanding "graphene-lattice style," adding new layers
as needed. Error handling is included to ensure stability.
- Gate manipulations on each neuron (50-qubit group).
- Grover’s search bar for quick searching within or across neurons.
- Logging of any errors and results.
"""
import sys
import os
import traceback
import numpy as np
import tkinter as tk
from tkinter import ttk, scrolledtext, messagebox, filedialog
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit.circuit import Parameter
from qiskit_aer import AerSimulator
class QubitNeuron:
"""
A single "neuron" grouping of 50 qubits, arranged in 3 layers:
- First layer: optional rotation / pre-processing
- Second layer: place all qubits in superposition (middle layer)
- Third layer: optional mild transform or pass
We set up robust error handling to track any issues.
"""
def __init__(self, neuron_id: int, enable_logging: bool = True):
self.neuron_id = neuron_id
self.num_qubits = 50
self.enable_logging = enable_logging
self.last_error = None
# Create quantum + classical registers for this neuron.
self.qr = QuantumRegister(self.num_qubits, f"qr_{neuron_id}")
self.cr = ClassicalRegister(self.num_qubits, f"cr_{neuron_id}")
self.circuit = QuantumCircuit(self.qr, self.cr, name=f"Neuron_{neuron_id}")
# We'll use an AerSimulator with method='statevector' by default.
# This aligns with the style used in QELM code.
try:
self.backend = AerSimulator(method='statevector')
if self.enable_logging:
print(f"[Neuron {self.neuron_id}] Using AerSimulator(method='statevector').")
except Exception as e:
self.last_error = traceback.format_exc()
# Build the 3-layer structure
self._build_3_layers()
def _build_3_layers(self):
"""
Build out the 3-layer structure:
L1: Optional rotation (mild RY)
L2: Full superposition (H)
L3: Another mild rotation or pass
"""
try:
# L1: mild rotation on half qubits
half_n = self.num_qubits // 2
for qubit_idx in range(half_n):
# We can use a small RY
self.circuit.ry(np.pi / 6, self.qr[qubit_idx])
# L2: superposition on all qubits
for qubit_idx in range(self.num_qubits):
self.circuit.h(self.qr[qubit_idx])
# L3: mild rotation on the second half
for qubit_idx in range(half_n, self.num_qubits):
self.circuit.rx(np.pi / 12, self.qr[qubit_idx])
# We can optionally save statevector after building
self.circuit.save_statevector()
except Exception as e:
self.last_error = traceback.format_exc()
def run_circuit(self):
"""
Execute the circuit to retrieve the resulting statevector.
"""
try:
job = self.backend.run(self.circuit, shots=1)
result = job.result()
final_state = result.get_statevector(self.circuit)
return final_state.data # Return the statevector as a complex numpy array
except Exception as e:
self.last_error = traceback.format_exc()
return None
def apply_grover_search(self, target_index: int):
"""
Demonstration: Apply a Grover-like search on the entire 50-qubit structure,
marking 'target_index' as the search target.
For large qubits, this is more conceptual than feasible, but we preserve the
Qiskit call style. We do a simplified approach if memory constraints are high.
"""
try:
if target_index < 0 or target_index >= 2**self.num_qubits:
raise ValueError(
f"[Neuron {self.neuron_id}] target_index {target_index} is invalid for "
f"{2**self.num_qubits} possible states."
)
# We could attempt building a new circuit or subroutine for Grover.
# Since 50 qubits is large, we do a minimal placeholder approach:
grover_circuit = QuantumCircuit(self.qr, self.cr, name=f"Grover_{self.neuron_id}")
# We'll do a simplified "mark and diffuse" approach (not a full Qiskit Grover Operator).
# Marking operation (placeholder).
# We'll just do a single phase flip or something symbolic.
grover_circuit.x(self.qr[0])
grover_circuit.cz(self.qr[0], self.qr[1])
grover_circuit.x(self.qr[0])
# Diffusion: apply H, X, multi-controlled Z, X, H
for idx in range(self.num_qubits):
grover_circuit.h(self.qr[idx])
grover_circuit.x(self.qr[idx])
# We'll do a partial multi-control approach on a few qubits only
grover_circuit.h(self.qr[0])
grover_circuit.cx(self.qr[1], self.qr[0]) # just a small example
grover_circuit.h(self.qr[0])
for idx in range(self.num_qubits):
grover_circuit.x(self.qr[idx])
grover_circuit.h(self.qr[idx])
# Merge with existing circuit
self.circuit = self.circuit.compose(grover_circuit)
# Re-save statevector
self.circuit.save_statevector()
except Exception as e:
self.last_error = traceback.format_exc()
class QuantumBrain:
"""
Represents the "quantum brain" made up of multiple QubitNeuron objects.
Each QubitNeuron is a group of 50 qubits arranged in 3 layers.
We can create indefinite layers (graphene-lattice style).
"""
def __init__(self, enable_logging: bool = True):
self.enable_logging = enable_logging
self.neurons = []
self.last_error = None
if self.enable_logging:
print("[QuantumBrain] Initialized empty brain structure.")
def create_neuron(self):
"""
Create a new neuron and add it to the brain structure.
"""
try:
neuron_id = len(self.neurons) + 1
new_neuron = QubitNeuron(neuron_id, enable_logging=self.enable_logging)
self.neurons.append(new_neuron)
if self.enable_logging:
print(f"[QuantumBrain] Neuron {neuron_id} created.")
return new_neuron
except Exception as e:
self.last_error = traceback.format_exc()
return None
def run_all_neurons(self):
"""
Run each neuron's circuit and return a dict of {neuron_id: statevector}
"""
outputs = {}
for neuron in self.neurons:
sv = neuron.run_circuit()
outputs[neuron.neuron_id] = sv
return outputs
def apply_grover_global(self, target_idx: int):
"""
Apply a minimal Grover approach to each neuron with the same target index.
"""
try:
for neuron in self.neurons:
neuron.apply_grover_search(target_idx)
except Exception as e:
self.last_error = traceback.format_exc()
def apply_grover_to_neuron(self, neuron_id: int, target_idx: int):
"""
Apply Grover approach to a specific neuron by ID.
"""
for neuron in self.neurons:
if neuron.neuron_id == neuron_id:
neuron.apply_grover_search(target_idx)
return
self.last_error = f"[QuantumBrain] Neuron ID {neuron_id} not found."
class QubitCreatorGUI:
"""
A Tkinter-based GUI that lets us:
- Create and visualize QubitNeurons (50-qubit groups).
- Run circuits to see final statevectors.
- Perform Grover's search on all or a specific neuron.
- Manage logs and errors.
Does not auto-close on double-click.
"""
def __init__(self, master):
self.master = master
self.master.title("Qubit Creator - Quantum Brain")
# Ensure geometry is stable and doesn't auto-close
self.master.geometry("1280x800")
self.master.resizable(False, False)
self.brain = QuantumBrain(enable_logging=True)
self._build_gui()
def _build_gui(self):
"""
Construct the main UI layout with frames, labels, text areas, etc.
"""
main_frame = ttk.Frame(self.master)
main_frame.pack(fill="both", expand=True, padx=10, pady=10)
left_frame = ttk.Frame(main_frame)
right_frame = ttk.Frame(main_frame)
left_frame.pack(side="left", fill="y", padx=5, pady=5)
right_frame.pack(side="right", fill="both", expand=True, padx=5, pady=5)
# Buttons on the left
self.add_btn = ttk.Button(left_frame, text="Create 50-Qubit Neuron", command=self.add_neuron)
self.add_btn.pack(pady=10, fill="x")
ttk.Label(left_frame, text="Grover Target Index:").pack(pady=5)
self.target_index_var = tk.StringVar(value="0")
self.target_entry = ttk.Entry(left_frame, textvariable=self.target_index_var)
self.target_entry.pack(pady=5, fill="x")
self.apply_grover_all_btn = ttk.Button(
left_frame,
text="Apply Grover to ALL",
command=self.apply_grover_to_all
)
self.apply_grover_all_btn.pack(pady=10, fill="x")
ttk.Label(left_frame, text="Neuron ID for Single Grover:").pack(pady=5)
self.neuron_id_var = tk.StringVar(value="1")
self.neuron_id_entry = ttk.Entry(left_frame, textvariable=self.neuron_id_var)
self.neuron_id_entry.pack(pady=5, fill="x")
self.apply_grover_one_btn = ttk.Button(
left_frame,
text="Apply Grover to One Neuron",
command=self.apply_grover_to_one
)
self.apply_grover_one_btn.pack(pady=10, fill="x")
self.run_all_btn = ttk.Button(left_frame, text="Run All Neurons", command=self.run_all_neurons)
self.run_all_btn.pack(pady=10, fill="x")
# Scrolled text on the right for logs/results
self.log_area = scrolledtext.ScrolledText(right_frame, wrap='word')
self.log_area.pack(fill="both", expand=True, padx=5, pady=5)
# Style to match your QELM aesthetic
style = ttk.Style()
style.theme_use('clam')
style.configure(".", background="#2C3E50", foreground="white")
style.configure("TFrame", background="#2C3E50")
style.configure("TLabelFrame", background="#34495E", foreground="white")
style.configure("TLabel", background="#2C3E50", foreground="white")
style.configure("TButton", background="#34495E", foreground="white", padding=6, relief="flat")
style.configure("TEntry", fieldbackground="#455A64", foreground="white", insertcolor="white")
style.configure("TSpinbox", fieldbackground="#455A64", foreground="white")
style.map("TButton", foreground=[('active', 'white')], background=[('active', '#1F2A36')])
main_frame.configure(style="TFrame")
left_frame.configure(style="TFrame")
right_frame.configure(style="TFrame")
self.log_message("Qubit Creator GUI initialized.\n")
def log_message(self, msg: str):
"""
Print a log message to the scrolled text area.
"""
self.log_area.config(state='normal')
self.log_area.insert(tk.END, msg)
self.log_area.see(tk.END)
self.log_area.config(state='disabled')
def add_neuron(self):
"""
Add a new 50-qubit neuron to the quantum brain.
"""
neuron = self.brain.create_neuron()
if neuron is None:
err = self.brain.last_error or "Error creating neuron."
self.log_message(f"[ERROR] {err}\n")
else:
self.log_message(f"Created neuron {neuron.neuron_id}.\n")
def apply_grover_to_all(self):
"""
Apply the Grover approach to all neurons with user-specified target index.
"""
try:
target_idx = int(self.target_index_var.get())
except ValueError:
self.log_message("[ERROR] Invalid target index.\n")
return
self.brain.apply_grover_global(target_idx)
if self.brain.last_error:
self.log_message(f"[ERROR] {self.brain.last_error}\n")
else:
self.log_message(f"Applied Grover to ALL neurons with target index={target_idx}.\n")
def apply_grover_to_one(self):
"""
Apply Grover approach to a single neuron by ID.
"""
try:
target_idx = int(self.target_index_var.get())
neuron_id = int(self.neuron_id_var.get())
except ValueError:
self.log_message("[ERROR] Invalid neuron ID or target index.\n")
return
self.brain.apply_grover_to_neuron(neuron_id, target_idx)
if self.brain.last_error:
self.log_message(f"[ERROR] {self.brain.last_error}\n")
else:
self.log_message(f"Applied Grover to neuron {neuron_id} (target idx={target_idx}).\n")
def run_all_neurons(self):
"""
Run the circuits for all neurons in the brain. Display the length
of resulting statevectors or the full data if small.
"""
results = self.brain.run_all_neurons()
for nid, sv in results.items():
if sv is None:
err = self.brain.last_error or f"Error running neuron {nid}."
self.log_message(f"[ERROR] {err}\n")
else:
self.log_message(f"\n--- Neuron {nid} ---\n")
if len(sv) > 16:
self.log_message(f"Statevector length: {len(sv)}. Not displaying all.\n")
else:
self.log_message(f"{sv}\n")
def main():
root = tk.Tk()
app = QubitCreatorGUI(root)
root.mainloop()
if __name__ == "__main__":
main()