-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathhubconf.py
215 lines (175 loc) · 8.26 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
dependencies = ['torch', 'torchaudio', 'numpy', 'omegaconf', 'fastprogress', 'pandas', 'jiwer']
import torch
from torch import Tensor
import torch.nn as nn
import torch.nn.functional as F
import logging
from omegaconf import OmegaConf
from fastprogress.fastprogress import progress_bar
from transfusion.model import TransFusion
from transfusion.diffusion import MultinomialDiffusion, index_to_log_onehot
from transfusion.score import DSH, get_schedule, to_text
from wavlm.WavLM import WavLM, WavLMConfig
from wavlm.extract import WEIGHTINGS
def extract_transfusion_features(wav: Tensor, wavlm: WavLM) -> Tensor:
""" Convert a 16kHz normalized floating point waveform to TransFusion-compatible WavLM features.
Concretely, the input:
- `wav`: (1, T) 16kHz waveform.
- `wavlm`: WavLM module loaded from wavlm_large()
Returns:
- `wavlm_features`: (seq_len, dim)
"""
weighting = torch.tensor(WEIGHTINGS, device=wav.device)[:, None]
# extract the representation of each layer
wav_input_16khz = wav.to(next(wavlm.parameters()).device)
rep, layer_results = wavlm.extract_features(wav_input_16khz, output_layer=wavlm.cfg.encoder_layers, ret_layer_results=True)[0]
features = torch.cat([x.transpose(0, 1) for x, _ in layer_results], dim=0) # (n_layers, seq_len, dim)
features = ( features*weighting[:, None] ).sum(dim=0) # (seq_len, dim)
return features
# ---------------------------
# Functions adapted from the full score.py
def forward_diffusion(cfg, diff, dtype, x, t, c=None):
"""Simple forward diffusion process p"""
log_x_t = index_to_log_onehot(x, cfg.vocab_size, dtype=dtype)
if c is not None:
x = diff.q_pred_one_timestep_scaled(log_x_t, t, c, DSH.jump_len)
else:
x = diff.q_pred_one_timestep(log_x_t, t)
x = diff.log_sample_categorical(x)
return x
def reverse_diffusion(diff, model, batch, x_known=None, m=None, last_greedy=False, temperature=1.0, alphas=None, ensemble_size=1):
"""Reverse diffusion process q: predict x_{t-1} given x, t, x_known, m. Optionally do not sample model output
for t=0, but rather use the greedy argmax with `last_greedy`.
"""
x = batch[0]
t = batch[1]
if x_known is None: x_known = torch.zeros_like(x)
if m is None: m = torch.zeros_like(x)
# Equation 8b
x_0_pred = model(*batch)
if DSH.guidance_w != 1:
uncond_x_0_pred = model(x, t, torch.zeros_like(batch[2]), torch.ones_like(batch[3]), batch[-1])
x_0_pred = DSH.guidance_w*x_0_pred + (1-DSH.guidance_w)*uncond_x_0_pred
x_0_pred = x_0_pred / temperature
log_x_0_pred = F.log_softmax(x_0_pred, dim=-1)
log_x_t = index_to_log_onehot(x, diff.num_classes, dtype=x_0_pred.dtype)
log_model_pred = diff.p_pred(log_x_t, t, log_x_0_pred) # p(x_{t-1} | x_{t})
a_t = alphas[t[0]] if alphas is not None else 0
mat = torch.eye(ensemble_size, device=x.device)*(1-a_t)
mat += 1/ensemble_size * a_t
mat = torch.block_diag(*([mat]*(x.shape[0]//ensemble_size)))
log_model_pred = ( (mat[..., None, None] ).log().to(x.dtype) + log_model_pred[None])
log_model_pred = torch.logsumexp(log_model_pred, dim=1)
if (t==0).all() and last_greedy: # Do not sample at t=0
x_tm1_unknown = log_model_pred.argmax(dim=-1)
else:
x_tm1_unknown = diff.log_sample_categorical(log_model_pred)
# Equation 8a
x_known_log = index_to_log_onehot(x_known, diff.num_classes, dtype=x_0_pred.dtype)
if (t==0).all(): # Do not sample at t=0
x_tm1_known = x_known
else:
x_tm1_known = diff.q_sample(x_known_log, t)
# Equation 8c
x_tm1 = x_tm1_known * m.long() + x_tm1_unknown * (1 - m.long())
return x_tm1, x_0_pred
@torch.inference_mode()
def perform_simple_inference(model: TransFusion, cond_emb: Tensor, diff: MultinomialDiffusion, vocab, cfg):
device = cond_emb.device
dtype = torch.float32
bs = cond_emb.shape[0]
x = torch.randint(0, diff.num_classes, (cond_emb.shape[0], DSH.T_override), dtype=torch.long, device=cond_emb.device)
cond_emb = cond_emb.to(device, non_blocking=True)
cond_padding_mask = torch.zeros_like(cond_emb, dtype=torch.bool)[..., 0]
cond_padding_mask = cond_padding_mask.to(device, non_blocking=True)
cond_emb = cond_emb.to(dtype)
# RePaint paper resample scheduling
times = get_schedule(cfg.T, jump_n_sample=DSH.jump_n_sample, jump_len=DSH.jump_len)
x_known = torch.zeros_like(x)
m = torch.zeros_like(x).bool()
c = 0 # sequentially progressive diffusion offset (Section 4.2)
# ensemble bs (not in paper)
alphas = torch.linspace(1, 0, cfg.T).to(device)
# See RePaint paper algorithm
for t_last, t_cur in progress_bar(zip(times[:-1], times[1:]), total=len(times)-1):
t = torch.ones((bs,), dtype=torch.long, device=x.device) * (t_last)
if t_cur < t_last:
if c > DSH.jump_n_sample:
c = 0
c += 1/DSH.jump_len
# Reverse diffusion: q
xx = (x, t, cond_emb, cond_padding_mask, None)
x, x_0_pred = reverse_diffusion(diff, model, xx, x_known, m, temperature=DSH.x_0_temp, alphas=alphas, ensemble_size=1)
else:
# Forward diffusion: p
if DSH.enable_kevin_scaled_inference:
x = forward_diffusion(cfg, diff, dtype, x, t, c=c)
else:
x = forward_diffusion(cfg, diff, dtype, x, t, c=None)
text_preds = [to_text(p, vocab['i2s']) for p in x]
return x, text_preds
# ------------------
# torch hub integration functions
def transfusion_small_462k(pretrained=True, progress=True, device='cuda') -> TransFusion:
""" Best TransFusion model described in the paper, ~250M parameters and trained for
462 000 updates. A multinomial diffusion ASR model transcribing utterances from their WavLM embeddings.
"""
if torch.cuda.is_available() == False:
if str(device) != 'cpu':
logging.warning(f"Overriding device {device} to cpu since no GPU is available.")
device = 'cpu'
# load checkpoints
ckpt = torch.hub.load_state_dict_from_url(
"https://github.com/RF5/transfusion-asr/releases/download/v1.0/transfusion_462k_slim.pt",
map_location=device,
progress=progress
)
device = torch.device(device)
vocab = torch.hub.load_state_dict_from_url(
"https://github.com/RF5/transfusion-asr/releases/download/v1.0/transfusion-vocab.pt",
map_location='cpu',
progress=progress
)
# load config
cfg = OmegaConf.structured(ckpt['cfg_yaml'])
logging.debug(f"CKPT CONFIG:\n{OmegaConf.to_yaml(cfg)}")
logging.debug(f"Default diffusion sampling hyperparameters:\n{OmegaConf.to_yaml(OmegaConf.create(DSH))}")
# load model
model = TransFusion(cfg.model_cfg, cfg.max_transcript_length).to(device)
if pretrained:
model.load_state_dict(ckpt['module'])
model.eval()
print(f"TransFusion-small 462k update model loaded with {sum([p.numel() for p in model.parameters()]):,d} parameters.")
# create diffusion
diffuser = MultinomialDiffusion(cfg.model_cfg.vocab_size,
cfg.model_cfg.T,
cfg.model_cfg.diffusion_s,
device=device
)
model.vocab = vocab
model.diffuser = diffuser
model.perform_simple_inference = perform_simple_inference
model.forward_diffusion = forward_diffusion
model.reverse_diffusion = reverse_diffusion
return model
def wavlm_large(pretrained=True, progress=True, device='cuda') -> WavLM:
"""Load the WavLM large checkpoint from the original paper. """
if torch.cuda.is_available() == False:
if str(device) != 'cpu':
logging.warning(f"Overriding device {device} to cpu since no GPU is available.")
device = 'cpu'
checkpoint = torch.hub.load_state_dict_from_url(
"https://github.com/RF5/transfusion-asr/releases/download/v1.0/WavLM-Large.pt",
map_location=device,
progress=progress
)
cfg = WavLMConfig(checkpoint['cfg'])
device = torch.device(device)
model = WavLM(cfg)
if pretrained:
model.load_state_dict(checkpoint['model'])
model = model.to(device)
model.eval()
model.extract_transfusion_features = extract_transfusion_features
print(f"WavLM-Large loaded with {sum([p.numel() for p in model.parameters()]):,d} parameters")
return model