-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsplit_data.py
100 lines (82 loc) · 3.88 KB
/
split_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import pandas as pd
from pathlib import Path
from fastprogress.fastprogress import progress_bar
import numpy as np
import os
import argparse
import torch
THIS_DIR = Path(__file__).parent
def make_librispeech_df(root_path: Path) -> pd.DataFrame:
all_files = []
folders = ['train-clean-100', 'train-clean-360', 'train-other-500', 'dev-clean', 'dev-other', 'test-clean', 'test-other']
for f in folders:
all_files.extend(list((root_path/f).rglob('**/*.flac')))
speakers = ['ls-' + f.stem.split('-')[0] for f in all_files]
subset = [f.parents[2].stem for f in all_files]
df = pd.DataFrame({'path': all_files, 'speaker': speakers, 'subset': subset})
return df
def get_transcriptions(df: pd.DataFrame) -> pd.DataFrame:
transcripts = {}
out_transcripts = []
for i, row in progress_bar(df.iterrows(), total=len(df)):
p = Path(row.path)
if p.stem in transcripts:
out_transcripts.append(transcripts[p.stem])
else:
with open(p.parent/f'{p.parents[1].stem}-{p.parents[0].stem}.trans.txt', 'r') as file:
lines = file.readlines()
for l in lines:
uttr_id, transcrip = l.split(' ', maxsplit=1)
transcripts[uttr_id] = transcrip.strip()
out_transcripts.append(transcripts[p.stem])
df['transcription'] = out_transcripts
return df
def get_wavlm_feat_paths(df: pd.DataFrame, ls_path, wavlm_path) -> pd.DataFrame:
pb = progress_bar(df.iterrows(), total=len(df))
targ_paths = []
for i, row in pb:
rel_path = Path(row.path).relative_to(ls_path)
targ_path = (wavlm_path/rel_path).with_suffix('.pt')
assert targ_path.is_file()
targ_paths.append(targ_path)
df['wavlm_path'] = targ_paths
return df
def get_vocab(df: pd.DataFrame, eps_idx=0):
vocab = set(('eps',))
for i, row in progress_bar(df.iterrows(), total=len(df)):
chars = list(str(row.transcription).strip().upper())
vocab |= set(chars)
vocab = sorted(list(vocab), key=lambda x: ord(x) if x != 'eps' else -1)
return vocab
def main():
parser = argparse.ArgumentParser(description="Generate train & valid csvs from dataset directories")
parser.add_argument('--librispeech_path', required=True, type=str, help="path to root of librispeech dataset")
parser.add_argument('--ls_wavlm_path', required=True, type=str, help="path to root of WavLM features extracted using extract.py")
parser.add_argument('--include_test', action='store_true', default=False, help="include processing and saving test.csv for test subsets")
args = parser.parse_args()
if args.librispeech_path is not None:
ls_df = make_librispeech_df(Path(args.librispeech_path))
ls_df = get_transcriptions(ls_df)
ls_df = get_wavlm_feat_paths(ls_df, Path(args.librispeech_path), Path(args.ls_wavlm_path))
ls_df.rename(columns={'path': 'audio_path'}, inplace=True)
train_csv = ls_df[ls_df.subset.str.contains('train')]
valid_csv = ls_df[ls_df.subset.str.contains('dev')]
train_csv = train_csv.sort_values('audio_path')
valid_csv = valid_csv.sort_values('audio_path')
os.makedirs('splits/', exist_ok=True)
train_csv.to_csv('splits/train.csv', index=False)
valid_csv.to_csv('splits/valid.csv', index=False)
print(f"Saved train csv (N={len(train_csv)}) and valid csv (N={len(valid_csv)} to splits/")
if args.include_test:
test_csv = ls_df[ls_df.subset.str.contains('test')]
test_csv = test_csv.sort_values('audio_path')
test_csv.to_csv('splits/test.csv', index=False)
print(f"Saved test csv (N={len(test_csv)}) to splits/test.csv")
# save vocab as well, fairseq style
vocab = get_vocab(ls_df)
i2s = vocab
s2i = {s: i for i, s in enumerate(vocab)}
torch.save({'i2s': i2s, 's2i': s2i}, 'splits/vocab.pt')
print("Vocab: ", s2i)
if __name__ == '__main__':
main()