forked from NREL/dw-tap-api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpowercurve.py
80 lines (61 loc) · 3.13 KB
/
powercurve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import pandas as pd
import numpy as np
from scipy import interpolate
class PowerCurve(object):
def __init__(self, power_curve_path):
# Load data and minimal preprocessing
if ".xslx" in power_curve_path:
self.raw_data = pd.read_excel(power_curve_path)
self.raw_data.rename(columns={"Wind Speed (m/s)": "ws", "Turbine Output": "kw"}, inplace=True)
elif ".csv" in power_curve_path:
self.raw_data = pd.read_csv(power_curve_path)
self.raw_data.rename(columns={"Wind Speed (m/s)": "ws", "Turbine Output": "kw"}, inplace=True)
#print(self.raw_data.columns)
else:
raise ValueError("Unsupported powercurve file format (should be .xslx or .csv).")
# Add (0,0) if not there already
if self.raw_data["ws"].min() > 0:
self.raw_data.loc[len(self.raw_data)] = [0, 0]
self.raw_data = self.raw_data.sort_values("ws", ascending=True)
self.raw_data.reset_index(drop=True, inplace=True)
# Create vectors for interpolation
self.interp_x = self.raw_data.ws
self.interp_y = self.raw_data.kw
# Cubic interpolation
#self.powercurve_intrp = interp1d(self.interp_x, self.interp_y, kind='cubic')
# Switched back to linear to avoid bad interpolation with negative values
self.powercurve_intrp = interpolate.interp1d(self.interp_x, self.interp_y, kind='linear')
# Saving a list of instances where windspeeds are higher/lower than what is in the curve
self.above_curve = []
self.below_curve = []
self.max_ws = max(self.raw_data.ws)
self.reset_counters()
def windspeed_to_kw(self, df, ws_column="ws-adjusted", dt_column="datetime", trim=True):
""" Converts wind speed to kw """
# by default round down/up values below or under the range of the curve
if trim:
ws = df[ws_column].apply(lambda x: 0 if x < 0 else x).apply(lambda x: self.max_ws if x > self.max_ws else x)
else:
ws = df[ws_column]
kw = self.powercurve_intrp(ws)
below_curve = df[kw < 0]
above_curve = df[kw > self.max_ws]
self.below_curve.extend(zip(below_curve[dt_column].tolist(), below_curve[ws_column].tolist()))
self.above_curve.extend(zip(above_curve[dt_column].tolist(), above_curve[ws_column].tolist()))
return kw
def reset_counters(self):
self.above_curve = []
self.below_curve = []
def plot(self):
fig = px.line(y=self.powercurve_intrp(self.interp_x), x=self.interp_x,
labels={"x":"Windspeed (m/s)","y":"Power (kW)"})
fig.add_trace(go.Scatter(y=self.interp_y, x=self.interp_x,
mode='markers',
name='Data'))
fig.show()
def kw_to_windspeed(self, df, kw_column="output_power_mean"):
# Sampling a hundred points from the interpolated function
# allows us to invert with an approximate accuracy of 12/100 or 0.1
ws2 = np.linspace(0, 12, num=100)
pc2 = self.powercurve_intrp(ws2)
return df[kw_column].map(lambda x: ws2[np.abs(pc2 - x).argmin()] )