-
Notifications
You must be signed in to change notification settings - Fork 0
/
3D_visualization_Napari.py
250 lines (116 loc) · 4.97 KB
/
3D_visualization_Napari.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#!/usr/bin/env python
# coding: utf-8
# In[2]:
gui qt5
# In[3]:
import napari
import skimage
import sys
import os
import cv2
from napari_ome_zarr import napari_get_reader
import PIL
from PIL import Image
import tifffile
import numpy as np
from PIL import TiffImagePlugin
import zarr as z
import tifffile as tiff
# In[4]:
import apoc
import os
from skimage.io import imread
import pyclesperanto_prototype as cle
import matplotlib.pyplot as plt
# In[ ]:
napari.run()
# In[ ]:
input_directory = "/home/rajalakshmi/Segmentation/mv_heart/2020_01_21_Rat_4_Heart_Rec/"
# In[ ]:
# In[ ]:
sorted(os.listdir(input_directory))
# In[ ]:
output = '/home/rajalakshmi/Segmentation/mv_heart/2020_01_21_Rat_4_Heart_Rec_tiff/'
# In[ ]:
for filename in sorted(os.listdir(input_directory)):
filepath = '/home/rajalakshmi/Segmentation/mv_heart/2020_01_21_Rat_4_Heart_Rec/' + filename
if filename.endswith(".bmp"):
img = Image.open(filepath).convert('RGB')
#tiff.imwrite(file_name, img, bigtiff=True, photometric='rgb')
img.save('/home/rajalakshmi/Segmentation/mv_heart/2020_01_21_Rat_4_Heart_Rec_tiff/' + filename.replace('.bmp' , '.tiff'), format='TIFF', compression='tiff_lzw')
# In[32]:
bf2raw_dir = '/home/rajalakshmi/Segmentation/bioformats2raw-0.2.0/'
bf2raw = os.path.join(bf2raw_dir, "bioformats2raw")
tifffile = "/home/rajalakshmi/Segmentation/mv_heart/trainned_classifier/result_merged.tif"
os.chdir(bf2raw_dir)
cmd = 'bioformats2raw /home/rajalakshmi/Segmentation/mv_heart/trainned_classifier/result_merged.tif /home/rajalakshmi/Segmentation/mv_heart/trainned_classifier/result_merged.zarr/'
print('Command String : ', cmd)
# In[33]:
os.system(cmd)
# In[34]:
def napari_view():
path = '/home/rajalakshmi/Segmentation/mv_heart/trainned_classifier/result_merged.zarr/0'
viewer = napari.Viewer()
viewer.open('/home/rajalakshmi/Segmentation/mv_heart/trainned_classifier/result_merged.zarr/0')
napari.run()
napari_view()
# In[ ]:
print('PIL',PIL.__version__)
# In[ ]:
print(apoc.__version__)
# In[ ]:
def napari_view():
path = '/home/rajalakshmi/Segmentation/mv_heart/trainned_classifier/trainning_slices(red).tif'
viewer = napari.Viewer()
viewer.open('/home/rajalakshmi/Segmentation/mv_heart/trainned_classifier/trainning_slices(red).tif')
napari.run()
napari_view()
# In[31]:
def napari_view():
path = '/home/rajalakshmi/Segmentation/mv_heart/2020_01_21_Rat_4_Heart_Rec_tiff_merged_red.zarr/0'
viewer = napari.Viewer()
viewer.open('/home/rajalakshmi/Segmentation/mv_heart/2020_01_21_Rat_4_Heart_Rec_tiff_merged_red.zarr/0', channel_axis = 1)
napari.run()
napari_view()
# In[5]:
from apoc import PixelClassifier
from skimage.io import imshow, imread
#test image
image0 = imread('/home/rajalakshmi/Segmentation/mv_heart/2020_01_21_Rat_4_Heart_Rec_tiff_merged_red1180.tif')
imshow(image0)
#trainned classifier model
segmenter = PixelClassifier(opencl_filename='/home/rajalakshmi/Segmentation/mv_heart/trainned_classifier/PixelClassifier.cl')
#imply model on test data
result = PixelClassifier(opencl_filename='/home/rajalakshmi/Segmentation/mv_heart/trainned_classifier/PixelClassifier.cl').predict(image=image0)
cle.imshow(result)
# In[7]:
#segmentation with Ilastik - install ilastik and move it to segmentation folder
ilastik_dir = '/home/rajalakshmi/Segmentation/ilastik-1.4.0b27post1-gpu-Linux'
#Trian the random forest classifier with few slices (as individual images) from the whole stack
#save the project as specific classifier model
ilastik_project = '/home/rajalakshmi/Segmentation/mv_heart/trainned_classifier/classifier_ilastik.ilp'
#path for test files
input_dir = '/home/rajalakshmi/Segmentation/mv_heart/2020_01_21_Rat_4_Heart_Rec_tiff_red/'
#make test files as input files for batch processing
infiles =os.listdir(input_dir)
# In[ ]:
print (infiles)
# In[30]:
os.chdir(ilastik_dir)
for infile in infiles:
if infile[-4:] != '.tif':
print ("skipping %s".format(infile))
continue
# probabilities, simple segmentation, uncertainity, labels
export_source_type = "probabilities"
#refer ilastik headless mode documentation for building the command
command = './run_ilastik.sh --headless --project="%s" --export_source="%s" --output_format="tif" --output_filename_format="/home/rajalakshmi/Segmentation/mv_heart/trainned_classifier/ilastik_output/{nickname}_results.tif" --raw_data="%s%s"' %(
ilastik_project,
export_source_type,
input_dir,
infile)
#run the command
os.system(command)
# In[ ]:
command = './run_ilastik.sh --headless --project=/home/rajalakshmi/Segmentation/mv_heart/trainned_classifier/classifier_ilastik.ilp --export_source=probabilities --output_format=tif --output_filename_format=/home/rajalakshmi/Segmentation/mv_heart/trainned_classifier/ilastik_output/{nickname}_results.tif '
# In[ ]: