-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
156 lines (112 loc) · 4.78 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import numpy as np
import matplotlib.pyplot as plt
#%matplotlib inline
import pandas as pd
import seaborn as sns
import tensorflow as tf
import tensorflow.keras
from tensorflow.keras import backend as K
from tensorflow.keras.models import Model, Sequential, load_model
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
from tensorflow.keras import layers as layers
from mpl_toolkits.basemap import Basemap
import sklearn
from sklearn import preprocessing
from sklearn.metrics import confusion_matrix
from sklearn.neighbors import KernelDensity
from scipy.stats import gaussian_kde
#---------------------------------------------------------------------
def data_preprocessor(train_data, test_data):
# MinMax scaler
scaler = preprocessing.MinMaxScaler().fit(train_data[0])
scaled_data = []
for i in train_data:
scaled_data.append(scaler.transform(i))
scaled_test_data = []
for i in test_data:
scaled_test_data.append(scaler.transform(i))
x_train_scaled = np.array(scaled_data)
x_test_scaled = np.array(scaled_test_data)
return x_train_scaled, x_test_scaled
#---------------------------------------------------------------------
def label_preprocessor(train_label, test_label):
scaler_label = preprocessing.MinMaxScaler().fit(train_label)
#scaler_label = preprocessing.StandardScaler().fit(train_label)
y_train_scaled = scaler_label.transform(train_label)
y_test_scaled = scaler_label.transform(test_label)
return y_train_scaled, y_test_scaled, scaler_label
#---------------------------------------------------------------------
def tf_atan2(y, x):
angle = tf.where(tf.greater(x,0.0), tf.atan(y/x), tf.zeros_like(x))
angle = tf.where(tf.logical_and(tf.less(x,0.0), tf.greater_equal(y,0.0)), tf.atan(y/x) + np.pi, angle)
angle = tf.where(tf.logical_and(tf.less(x,0.0), tf.less(y,0.0)), tf.atan(y/x) - np.pi, angle)
angle = tf.where(tf.logical_and(tf.equal(x,0.0), tf.greater(y,0.0)), 0.5*np.pi * tf.ones_like(x), angle)
angle = tf.where(tf.logical_and(tf.equal(x,0.0), tf.less(y,0.0)), -0.5*np.pi * tf.ones_like(x), angle)
angle = tf.where(tf.logical_and(tf.equal(x,0.0), tf.equal(y,0.0)), np.nan * tf.zeros_like(x), angle)
return angle
#---------------------------------------------------------------------
def tf_haversine(latlon1, latlon2):
lat1 = latlon1[:, 0]
lon1 = latlon1[:, 1]
lat2 = latlon2[:, 0]
lon2 = latlon2[:, 1]
REarth = 6371
lat = tf.abs(lat1 - lat2) * np.pi / 180
lon = tf.abs(lon1 - lon2) * np.pi / 180
lat1 = lat1 * np.pi / 180
lat2 = lat2 * np.pi / 180
a = tf.sin(lat / 2) * tf.sin(lat / 2) + tf.cos(lat1) * tf.cos(lat2) * tf.sin(lon / 2) * tf.sin(lon / 2)
d = 2 * tf_atan2(tf.sqrt(a), tf.sqrt(1 - a))
return REarth * d
#---------------------------------------------------------------------
lr_schedule = tf.keras.optimizers.schedules.InverseTimeDecay(
0.001,
decay_steps=1000,
decay_rate=1,
staircase=False)
def get_optimizer():
return tf.keras.optimizers.Adam(lr_schedule)
#---------------------------------------------------------------------
def plot_loss(loss, val_loss, accuracy, val_accuracy):
plt.figure(figsize=(16, 6))
plt.subplot(121)
plt.plot(loss)
plt.plot(val_loss)
plt.title('Model loss', fontsize=17)
plt.ylabel('Loss', fontsize=15)
plt.xlabel('Epoch', fontsize=15)
plt.legend(['Train', 'Val'], loc='upper right', fontsize=12)
plt.subplot(122)
plt.plot(accuracy)
plt.plot(val_accuracy)
plt.title('Model accuracy', fontsize=17)
plt.ylabel('Accuracy', fontsize=15)
plt.xlabel('Epoch', fontsize=15)
plt.legend(['Train', 'Val'], loc='lower right', fontsize=12)
#plt.savefig('all_2conv_37epocch_2.4h_loc.png')
plt.show()
#---------------------------------------------------------------------
def distance(s_lat, s_lng, e_lat, e_lng):
# approximate radius of earth in km
R = 6373.0
s_lat = s_lat*np.pi/180.0
s_lng = np.deg2rad(s_lng)
e_lat = np.deg2rad(e_lat)
e_lng = np.deg2rad(e_lng)
d = np.sin((e_lat - s_lat)/2)**2 + np.cos(s_lat)*np.cos(e_lat) * np.sin((e_lng - s_lng)/2)**2
return 2 * R * np.arcsin(np.sqrt(d))
#---------------------------------------------------------------------
def get_contour(dataframe):
x = dataframe.long_pred.values
y = dataframe.lat_pred.values
k = gaussian_kde(np.vstack([x, y]))
xi, yi = np.mgrid[-15:95:x.size**1*1j,30:72:y.size**1*1j]
zi = k(np.vstack([xi.flatten(), yi.flatten()]))
#set zi to 0-1 scale
zi = (zi-zi.min())/(zi.max() - zi.min())
zi =zi.reshape(xi.shape)
#set up plot
origin = 'lower'
levels = [0.05, 0.5]
return xi, yi, zi, levels, origin