-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsvmkernellda.py
152 lines (116 loc) · 3.9 KB
/
svmkernellda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import numpy as np
from copy import deepcopy
import random, math, sys
from scipy.spatial.distance import pdist, squareform
from scipy import exp
from scipy.linalg import eigh
import matplotlib.pyplot as plt
from sklearn import svm
# numoffeatures = 10000
# newnumoffeatures = 1
# numofdata = 100
# numofvaliddata = 100
numoffeatures = 500
newnumoffeatures = 1
numofdata = 2000
numofvaliddata = 600
def populatedata(values, filename, num):
fp = open(filename)
data = fp.readlines()
for i in range(num):
line = data[i].split(' ')
line = line[:len(line) - 1]
if line == ['']:
continue
line = [int(x) for x in line]
for j in range(len(line)):
values[i][j] = line[j]
def getlabels(filename, ranges):
fp = open(filename)
data = fp.readlines()
labels = []
class1 = 0
class2 = 0
for i in range(ranges):
label = int(data[i])
if label == 1:
class1 += 1
else:
class2 += 1
labels.append(label)
return labels, class1, class2
def kernellda(data, gamma, class1, class2, labels):
squaredistances = pdist(data, 'sqeuclidean')
sqdistmatrix = squareform(squaredistances)
kernel = exp(-gamma * sqdistmatrix)
onen = np.ones((numofdata, numofdata)) / numofdata
kernel = kernel - onen.dot(kernel) - kernel.dot(onen) + onen.dot(kernel).dot(onen)
#within class N
K1 = np.zeros((numofdata, class1))
K2 = np.zeros((numofdata, class2))
for i in range(numofdata):
K1count = 0
K2count = 0
for j in range(numofdata):
if labels[j] == 1:
K1[i][K1count] = kernel[i][j]
K1count += 1
else:
K2[i][K2count] = kernel[i][j]
K2count += 1
oneK1 = np.ones((class1, class1))/class1
oneK2 = np.ones((class2, class2))/class2
N = K1.dot(np.identity(class1) - oneK1).dot(K1.T) + K2.dot(np.identity(class2) - oneK2).dot(K2.T)
N = N + (np.identity(numofdata) * 0)
#between class M
M1 = np.zeros((numofdata, 1))
M2 = np.zeros((numofdata, 1))
for i in range(numofdata):
sum1 = 0
sum2 = 0
for j in range(class1):
sum1 += K1[i][j]
for j in range(class2):
sum2 += K2[i][j]
M1[i] = float(sum1)/class1
M2[i] = float(sum2)/class2
product = np.linalg.inv(N).dot(M2 - M1)
return product, kernel
def projvaliddata(X, alpha, gamma, data, labels):
validproj = []
for i in data:
dist = np.array([np.sum((i - row)**2) for row in X])
k = np.exp(-gamma * dist)
validproj.append(k)
validpoints = []
for i in validproj:
validpoints.append(i.dot(alpha))
return np.array(validpoints)
if __name__ == '__main__':
random.seed()
data = np.zeros((numofdata, numoffeatures))
# populatedata(data, 'arcene_train.data', numofdata)
populatedata(data, 'madelon_train.data', numofdata)
#class1 = +1 and class2 = -1
# labels, class1, class2 = getlabels('arcene_train.labels', numofdata)
labels, class1, class2 = getlabels('madelon_train.labels', numofdata)
projection, kernel = kernellda(data, 0.00001, class1, class2, labels)
newdata = kernel.dot(projection)
validdata = np.zeros((numofvaliddata, numoffeatures))
# populatedata(validdata, 'arcene_valid.data', numofdata)
populatedata(validdata, 'madelon_valid.data', numofvaliddata)
# validlabels, class1, class2 = getlabels('arcene_valid.labels', numofvaliddata)
validlabels, class1, class2 = getlabels('madelon_valid.labels', numofvaliddata)
projvaliddata = projvaliddata(data, projection, 0.00001, validdata, validlabels)
C = 1.0
clf = svm.SVC(kernel='rbf', gamma=0.00001, C=C)
svc = clf.fit(newdata, labels)
results = clf.predict(projvaliddata)
count = 0
for i in range(len(results)):
if results[i] == validlabels[i]:
count += 1
print (float(count)/numofvaliddata)*100,"%"
# plt.scatter([newdata[i][0] for i in range(len(newdata)) if labels[i] == 1], [1 for i in range(len(newdata)) if labels[i] == 1], color='red', alpha=0.5)
# plt.scatter([newdata[i][0] for i in range(len(newdata)) if labels[i] == -1], [1 for i in range(len(newdata)) if labels[i] == -1], color='blue', alpha=0.5)
# plt.show()