-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
224 lines (200 loc) · 7.69 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import tensorflow as tf
from tensorflow.contrib.framework.python.ops import arg_scope
import nn
def model_arg_scope(**kwargs):
"""Create new counter and apply arg scope to all arg scoped nn
operations."""
counters = {}
return arg_scope(
[nn.conv2d, nn.deconv2d, nn.residual_block, nn.dense, nn.activate],
counters = counters, **kwargs)
def make_model(name, template, **kwargs):
"""Create model with fixed kwargs."""
run = lambda *args, **kw: template(*args, **dict((k, v) for kws in (kw, kwargs) for k, v in kws.items()))
return tf.make_template(name, run, unique_name_ = name)
def dec_up(
c, init = False, dropout_p = 0.5,
n_scales = 1, n_residual_blocks = 2, activation = "elu", n_filters = 64, max_filters = 128):
with model_arg_scope(
init = init, dropout_p = dropout_p, activation = activation):
# outputs
hs = []
# prepare input
h = nn.nin(c, n_filters)
for l in range(n_scales):
# level module
for i in range(n_residual_blocks):
h = nn.residual_block(h)
hs.append(h)
# prepare input to next level
if l + 1 < n_scales:
n_filters = min(2*n_filters, max_filters)
h = nn.downsample(h, n_filters)
return hs
def dec_down(
gs, zs_posterior, training, init = False, dropout_p = 0.5,
n_scales = 1, n_residual_blocks = 2, activation = "elu",
n_latent_scales = 2):
assert n_residual_blocks % 2 == 0
gs = list(gs)
zs_posterior = list(zs_posterior)
with model_arg_scope(
init = init, dropout_p = dropout_p, activation = activation):
# outputs
hs = [] # hidden units
ps = [] # priors
zs = [] # prior samples
# prepare input
n_filters = gs[-1].shape.as_list()[-1]
h = nn.nin(gs[-1], n_filters)
for l in range(n_scales):
# level module
## hidden units
for i in range(n_residual_blocks // 2):
h = nn.residual_block(h, gs.pop())
hs.append(h)
if l < n_latent_scales:
## prior
spatial_shape = h.shape.as_list()[1]
n_h_channels = h.shape.as_list()[-1]
if spatial_shape == 1:
### no spatial correlations
p = latent_parameters(h)
ps.append(p)
z_prior = latent_sample(p)
zs.append(z_prior)
else:
### four autoregressively modeled groups
if training:
z_posterior_groups = nn.split_groups(zs_posterior[0])
p_groups = []
z_groups = []
p_features = tf.space_to_depth(nn.residual_block(h), 2)
for i in range(4):
p_group = latent_parameters(p_features, num_filters = n_h_channels)
p_groups.append(p_group)
z_group = latent_sample(p_group)
z_groups.append(z_group)
# ar feedback sampled from
if training:
feedback = z_posterior_groups.pop(0)
else:
feedback = z_group
# prepare input for next group
if i + 1 < 4:
p_features = nn.residual_block(p_features, feedback)
if training:
assert not z_posterior_groups
# complete prior parameters
p = nn.merge_groups(p_groups)
ps.append(p)
# complete prior sample
z_prior = nn.merge_groups(z_groups)
zs.append(z_prior)
## vae feedback sampled from
if training:
## posterior
z = zs_posterior.pop(0)
else:
## prior
z = z_prior
for i in range(n_residual_blocks // 2):
n_h_channels = h.shape.as_list()[-1]
h = tf.concat([h, z], axis = -1)
h = nn.nin(h, n_h_channels)
h = nn.residual_block(h, gs.pop())
hs.append(h)
else:
for i in range(n_residual_blocks // 2):
h = nn.residual_block(h, gs.pop())
hs.append(h)
# prepare input to next level
if l + 1 < n_scales:
n_filters = gs[-1].shape.as_list()[-1]
h = nn.upsample(h, n_filters)
assert not gs
if training:
assert not zs_posterior
return hs, ps, zs
def enc_up(
x, c, init = False, dropout_p = 0.5,
n_scales = 1, n_residual_blocks = 2, activation = "elu", n_filters = 64, max_filters = 128):
with model_arg_scope(
init = init, dropout_p = dropout_p, activation = activation):
# outputs
hs = []
# prepare input
#xc = tf.concat([x,c], axis = -1)
xc = x
h = nn.nin(xc, n_filters)
for l in range(n_scales):
# level module
for i in range(n_residual_blocks):
h = nn.residual_block(h)
hs.append(h)
# prepare input to next level
if l + 1 < n_scales:
n_filters = min(2*n_filters, max_filters)
h = nn.downsample(h, n_filters)
return hs
def enc_down(
gs, init = False, dropout_p = 0.5,
n_scales = 1, n_residual_blocks = 2, activation = "elu",
n_latent_scales = 2):
assert n_residual_blocks % 2 == 0
gs = list(gs)
with model_arg_scope(
init = init, dropout_p = dropout_p, activation = activation):
# outputs
hs = [] # hidden units
qs = [] # posteriors
zs = [] # samples from posterior
# prepare input
n_filters = gs[-1].shape.as_list()[-1]
h = nn.nin(gs[-1], n_filters)
for l in range(n_scales):
# level module
## hidden units
for i in range(n_residual_blocks // 2):
h = nn.residual_block(h, gs.pop())
hs.append(h)
if l < n_latent_scales:
## posterior parameters
q = latent_parameters(h)
qs.append(q)
## posterior sample
z = latent_sample(q)
zs.append(z)
## sample feedback
for i in range(n_residual_blocks // 2):
gz = tf.concat([gs.pop(), z], axis = -1)
h = nn.residual_block(h, gz)
hs.append(h)
else:
break
# prepare input to next level
if l + 1 < n_scales:
n_filters = gs[-1].shape.as_list()[-1]
h = nn.upsample(h, n_filters)
return hs, qs, zs
def dec_parameters(
h, init = False, **kwargs):
with model_arg_scope(init = init):
num_filters = 3
return nn.conv2d(h, num_filters)
def latent_parameters(
h, init = False, **kwargs):
num_filters = kwargs.get("num_filters", h.shape.as_list()[-1])
return nn.conv2d(h, num_filters)
def latent_sample(p):
mean = p
stddev = 1.0
eps = tf.random_normal(mean.shape, mean = 0.0, stddev = 1.0)
return mean + stddev * eps
def latent_kl(q, p):
mean1 = q
mean2 = p
kl = 0.5 * tf.square(mean2 - mean1)
kl = tf.reduce_sum(kl, axis = [1,2,3])
kl = tf.reduce_mean(kl)
return kl