-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnn.py
204 lines (167 loc) · 7.61 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
"""
modified from pixelcnn++
Various tensorflow utilities
"""
import numpy as np
import tensorflow as tf
from tensorflow.contrib.framework.python.ops import add_arg_scope
def int_shape(x):
return x.shape.as_list()
def get_name(layer_name, counters):
''' utlity for keeping track of layer names '''
if not layer_name in counters:
counters[layer_name] = 0
name = layer_name + '_' + str(counters[layer_name])
counters[layer_name] += 1
return name
@add_arg_scope
def dense(x, num_units, init_scale=1., counters={}, init=False, **kwargs):
''' fully connected layer '''
name = get_name('dense', counters)
with tf.variable_scope(name):
if init:
xs = x.shape.as_list()
# data based initialization of parameters
V = tf.get_variable('V', [xs[1], num_units], tf.float32, tf.random_normal_initializer(0, 0.05))
V_norm = tf.nn.l2_normalize(V.initialized_value(), [0])
x_init = tf.matmul(x, V_norm)
m_init, v_init = tf.nn.moments(x_init, [0])
scale_init = init_scale / tf.sqrt(v_init + 1e-10)
g = tf.get_variable('g', dtype=tf.float32, initializer=scale_init)
b = tf.get_variable('b', dtype=tf.float32, initializer=-m_init * scale_init)
x_init = tf.reshape(scale_init, [1, num_units]) * (x_init - tf.reshape(m_init, [1, num_units]))
return x_init
else:
V = tf.get_variable("V")
g = tf.get_variable("g")
b = tf.get_variable("b")
with tf.control_dependencies([tf.assert_variables_initialized([V, g, b])]):
# use weight normalization (Salimans & Kingma, 2016)
x = tf.matmul(x, V)
scaler = g / tf.sqrt(tf.reduce_sum(tf.square(V), [0]))
x = tf.reshape(scaler, [1, num_units]) * x + tf.reshape(b, [1, num_units])
return x
@add_arg_scope
def conv2d(x, num_filters, filter_size=[3, 3], stride=[1, 1], pad='SAME', init_scale=1., counters={}, init=False, **kwargs):
''' convolutional layer '''
num_filters = int(num_filters)
strides = [1] + stride + [1]
name = get_name('conv2d', counters)
with tf.variable_scope(name):
if init:
xs = x.shape.as_list()
# data based initialization of parameters
V = tf.get_variable('V', filter_size + [xs[-1], num_filters],
tf.float32, tf.random_normal_initializer(0, 0.05))
V_norm = tf.nn.l2_normalize(V.initialized_value(), [0, 1, 2])
x_init = tf.nn.conv2d(x, V_norm, strides, pad)
m_init, v_init = tf.nn.moments(x_init, [0, 1, 2])
scale_init = init_scale / tf.sqrt(v_init + 1e-8)
g = tf.get_variable('g', dtype=tf.float32, initializer = scale_init)
b = tf.get_variable('b', dtype=tf.float32, initializer = -m_init * scale_init)
x_init = tf.reshape(scale_init, [1, 1, 1, num_filters]) * (x_init - tf.reshape(m_init, [1, 1, 1, num_filters]))
return x_init
else:
V = tf.get_variable("V")
g = tf.get_variable("g")
b = tf.get_variable("b")
with tf.control_dependencies([tf.assert_variables_initialized([V, g, b])]):
# use weight normalization (Salimans & Kingma, 2016)
W = tf.reshape(g, [1, 1, 1, num_filters]) * tf.nn.l2_normalize(V, [0, 1, 2])
# calculate convolutional layer output
x = tf.nn.bias_add(tf.nn.conv2d(x, W, strides, pad), b)
return x
@add_arg_scope
def deconv2d(x, num_filters, filter_size=[3, 3], stride=[1, 1], pad='SAME', init_scale=1., counters={}, init=False, **kwargs):
''' transposed convolutional layer '''
num_filters = int(num_filters)
name = get_name('deconv2d', counters)
xs = int_shape(x)
strides = [1] + stride + [1]
if pad == 'SAME':
target_shape = [xs[0], xs[1] * stride[0],
xs[2] * stride[1], num_filters]
else:
target_shape = [xs[0], xs[1] * stride[0] + filter_size[0] -
1, xs[2] * stride[1] + filter_size[1] - 1, num_filters]
with tf.variable_scope(name):
if init:
# data based initialization of parameters
V = tf.get_variable('V', filter_size + [num_filters, xs[-1]], tf.float32, tf.random_normal_initializer(0, 0.05))
V_norm = tf.nn.l2_normalize(V.initialized_value(), [0, 1, 3])
x_init = tf.nn.conv2d_transpose(x, V_norm, target_shape, strides, padding=pad)
m_init, v_init = tf.nn.moments(x_init, [0, 1, 2])
scale_init = init_scale / tf.sqrt(v_init + 1e-8)
g = tf.get_variable('g', dtype=tf.float32, initializer=scale_init)
b = tf.get_variable('b', dtype=tf.float32, initializer=-m_init * scale_init)
x_init = tf.reshape(scale_init, [1, 1, 1, num_filters]) * (x_init - tf.reshape(m_init, [1, 1, 1, num_filters]))
return x_init
else:
V = tf.get_variable("V")
g = tf.get_variable("g")
b = tf.get_variable("b")
with tf.control_dependencies([tf.assert_variables_initialized([V, g, b])]):
# use weight normalization (Salimans & Kingma, 2016)
W = tf.reshape(g, [1, 1, num_filters, 1]) * tf.nn.l2_normalize(V, [0, 1, 3])
# calculate convolutional layer output
x = tf.nn.conv2d_transpose(x, W, target_shape, strides, padding=pad)
x = tf.nn.bias_add(x, b)
return x
@add_arg_scope
def activate(x, activation, **kwargs):
if activation == None:
return x
elif activation == "elu":
return tf.nn.elu(x)
else:
raise NotImplemented(activation)
def nin(x, num_units):
""" a network in network layer (1x1 CONV) """
s = int_shape(x)
x = tf.reshape(x, [np.prod(s[:-1]), s[-1]])
x = dense(x, num_units)
return tf.reshape(x, s[:-1] + [num_units])
def downsample(x, num_units):
return conv2d(x, num_units, stride = [2, 2])
def upsample(x, num_units, method = "subpixel"):
if method == "conv_transposed":
return deconv2d(x, num_units, stride = [2, 2])
elif method == "subpixel":
x = conv2d(x, 4*num_units)
x = tf.depth_to_space(x, 2)
return x
@add_arg_scope
def residual_block(x, a = None, conv=conv2d, init=False, dropout_p=0.0, gated = False, **kwargs):
"""Slight variation of original."""
xs = int_shape(x)
num_filters = xs[-1]
residual = x
if a is not None:
a = nin(activate(a), num_filters)
residual = tf.concat([residual, a], axis = -1)
residual = activate(residual)
residual = tf.nn.dropout(residual, keep_prob = 1.0 - dropout_p)
residual = conv(residual, num_filters)
if gated:
residual = activate(residual)
residual = tf.nn.dropout(residual, keep_prob = 1.0 - dropout_p)
residual = conv(residual, 2*num_filters)
a, b = tf.split(residual, 2, 3)
residual = a * tf.nn.sigmoid(b)
return x + residual
def make_linear_var(
step,
start, end,
start_value, end_value,
clip_min = 0.0, clip_max = 1.0):
"""linear from (a, alpha) to (b, beta), i.e.
(beta - alpha)/(b - a) * (x - a) + alpha"""
linear = (
(end_value - start_value) /
(end - start) *
(tf.cast(step, tf.float32) - start) + start_value)
return tf.clip_by_value(linear, clip_min, clip_max)
def split_groups(x, bs = 2):
return tf.split(tf.space_to_depth(x, bs), bs**2, axis = 3)
def merge_groups(xs, bs = 2):
return tf.depth_to_space(tf.concat(xs, axis = 3), bs)