-
Notifications
You must be signed in to change notification settings - Fork 0
/
1.1949632.nb
3931 lines (3890 loc) · 201 KB
/
1.1949632.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 13.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 205627, 3923]
NotebookOptionsPosition[ 202665, 3862]
NotebookOutlinePosition[ 203060, 3878]
CellTagsIndexPosition[ 203017, 3875]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[TextData[StyleBox["Analytical results for a Fokker\[Dash]Planck equation \
in the small noise limit", "Title",
FontWeight->"Regular",
FontColor->RGBColor[
0.2964217593652247, 0.6292210269321736, 0.2727702754253452]]], "Text",
CellChangeTimes->{{3.822636147120782*^9, 3.822636149053595*^9}, {
3.822636240732341*^9, 3.82263625191656*^9}, {3.822637212068983*^9,
3.822637212721833*^9}, 3.822770593869432*^9, {3.826178767410568*^9,
3.826178778145874*^9}, {3.826179988252692*^9, 3.826179992414234*^9}, {
3.826184450410564*^9, 3.82618446511765*^9},
3.913256827468412*^9},ExpressionUUID->"315c8734-2f92-4710-8026-\
b102825d540d"],
Cell[TextData[{
StyleBox["Author of paper: Eric Lutz\nLink to paper: \
https://doi.org/10.1119/1.1949632\nNotebook: \[CapitalOAcute]scar Amaro, \
January 2024 @", "Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox[ButtonBox[" ",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://epp.ist.utl.pt/"], None},
ButtonNote->"http://epp.ist.utl.pt/"], "Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox[ButtonBox["GoLP-EPP",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://epp.ist.utl.pt/"], None},
ButtonNote->"http://epp.ist.utl.pt/"], "Section",
FontSize->24,
FontVariations->{"Underline"->True},
FontColor->GrayLevel[0]]
}], "Text",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9},
3.822636391632341*^9, {3.8226372468331547`*^9, 3.822637246833611*^9}, {
3.8261788451108313`*^9, 3.826178845735269*^9}, {3.834760298433559*^9,
3.834760300152108*^9}, {3.869650177398939*^9, 3.8696501809348793`*^9}, {
3.913256829265239*^9, 3.913256837312339*^9}, {3.913256897324574*^9,
3.9132569065447817`*^9}},
FontSize->14,ExpressionUUID->"f12890ef-db14-4fd9-a7ee-b1835c47f1a8"],
Cell[CellGroupData[{
Cell["Asymptotics", "Chapter",
CellChangeTimes->{{3.912154555547112*^9,
3.9121545572032423`*^9}},ExpressionUUID->"9a560546-9e83-4d36-9246-\
9a2c33132c88"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Asymptotic", "[",
RowBox[{
RowBox[{"LambertW", "[", "v", "]"}], ",",
RowBox[{"v", "->", "0"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"Asymptotic", "[",
RowBox[{
RowBox[{"LambertW", "[", "v", "]"}], ",",
RowBox[{"v", "->", "\[Infinity]"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.912154533476994*^9, 3.91215454386663*^9}},
CellLabel->"In[31]:=",ExpressionUUID->"5eafb836-f463-452c-aae9-a58b6569b3e5"],
Cell[BoxData["v"], "Output",
CellChangeTimes->{{3.912154538342267*^9, 3.912154544166181*^9}},
CellLabel->"Out[31]=",ExpressionUUID->"b641ac0c-b1bf-4c05-8669-714d56e436ef"],
Cell[BoxData[
RowBox[{"Log", "[", "v", "]"}]], "Output",
CellChangeTimes->{{3.912154538342267*^9, 3.9121545471862707`*^9}},
CellLabel->"Out[32]=",ExpressionUUID->"6293058f-788e-4621-a842-d516cdaa0720"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["K", "Chapter",
CellChangeTimes->{{3.912154555547112*^9, 3.9121545572032423`*^9},
3.9121573587167187`*^9},ExpressionUUID->"933d722c-8ad8-4e16-9891-\
75533b34f356"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[",
RowBox[{"\[CapitalKappa]", ",", "v"}], "]"}], "\[IndentingNewLine]",
RowBox[{"\[CapitalKappa]", "=",
RowBox[{
RowBox[{"-", "v"}], "/",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"v", "^", "2"}]}], ")"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"D", "[",
RowBox[{"\[CapitalKappa]", ",", "v"}], "]"}], "//",
"Simplify"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.9121573613336906`*^9, 3.912157389102247*^9}},
CellLabel->"In[39]:=",ExpressionUUID->"79be39c7-59dd-4aec-b045-068b22a95663"],
Cell[BoxData[
RowBox[{"-",
FractionBox["v",
RowBox[{"1", "+",
SuperscriptBox["v", "2"]}]]}]], "Output",
CellChangeTimes->{{3.912157381861013*^9, 3.912157389474825*^9}},
CellLabel->"Out[40]=",ExpressionUUID->"021fd928-e3c1-401d-b06a-905ffd4b1489"],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["v", "2"]}], ")"}], "2"]]], "Output",
CellChangeTimes->{{3.912157381861013*^9, 3.912157389476324*^9}},
CellLabel->"Out[41]=",ExpressionUUID->"a7492929-103e-4800-a7f9-81a81ba2e4f1"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Figure 1", "Chapter",
CellChangeTimes->{{3.912154561186861*^9,
3.912154562987219*^9}},ExpressionUUID->"2f3888ec-11e4-4371-bb1a-\
4007c870aaa3"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[",
RowBox[{"t", ",", "\[ScriptCapitalC]"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[ScriptCapitalC]", "=", "3"}], ";"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"LambertW", "[",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], "t"}], "+", "\[ScriptCapitalC]"}], "]"}], "]"}],
"]"}], ",",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "t"}], "+",
RowBox[{"\[ScriptCapitalC]", "/", "2"}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "5"}], "}"}], ",",
RowBox[{"PlotRange", "->",
RowBox[{"{",
RowBox[{"0", ",", "5"}], "}"}]}], ",",
RowBox[{"PlotStyle", "->",
RowBox[{"{",
RowBox[{"Default", ",", "Dashed"}], "}"}]}], ",",
RowBox[{"AxesLabel", "->",
RowBox[{"{",
RowBox[{
"\"\<Time t\>\"", ",", "\"\<Deterministic trajectory <x(t)>\>\""}],
"}"}]}]}], "]"}]}], "Input",
CellChangeTimes->{{3.91215416065665*^9, 3.912154293877743*^9}, {
3.912154348925809*^9, 3.912154387435944*^9}, {3.912154418606409*^9,
3.912154421621551*^9}},
CellLabel->
"In[187]:=",ExpressionUUID->"fdb697fb-3029-43ac-bf6b-3c96fcc750b5"],
Cell[BoxData[
GraphicsBox[
InterpretationBox[{
TagBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJwVxX1cy3kcAPCeVLZU69clhz3getIDXq87dNXne+VwPb2k8hCh6QkpYR42
kUR1V91QiuS3maTTenDZ2aKbmu16Wqe1cFuklYcuD2vWmp7u/PF+vWn0tI0J
ZiYmJmH/+3L5Sbrl8nhWACzruhAmNYBEQQ3dTN0Kc8Pj6uNbDDAjbTpDpe6B
pEM8PktsgHJxAWUW9TgI2xFUiQyQ4s/Yb6DkgTKDIjOrNYBiIrnoI+UyrOth
7qstMYCVasD1HaUKUlucnD8kG4Dbhqf/SxGCktp61ZpogJraPFWKdxv8XNNx
/ob/GCTB48sjBxWQ4TO9SsDSQ+qQu6ah5hm4+GyJ/a3xExBo2a4vVvWDDR74
ctNbHRTat3twd2nATcmZ3LJYB3RV1J/mHa8gSmM95BUyCumPsulprsNwqMFB
W8nQQv0Bm0jnn97B/bCLpnz+R+Cy9g0v2/wRmHOjsrpufYAsfDLi04gWtufG
hG7D3oOJoh/dZ+qg7mnPtHvOCLgcTjwW5aEHn52h+AL1MAzqSzYRH4xB501/
yr2ItxA8tDfjQvo4vN+q6E6pfg3hg+ylZPJnqAhtvGo29xUMt9Az/+JPgCTf
RTRaMQjepN6FQTungB014B1P0wAB9HFq3TQcve6btrvlJax7F2NYFG2CEnTH
Ynmb++Fpc7xpjKcp+pvdXLnF6jnczZXsoOpN0cY+EUPOV0HiLEa/XG6Gvm9j
OE6tfQa7D7Lu2lwxRzULT7uOej4Bn6Sl8tA4CzQxMeLEAiV0OXgSGatnoaX5
bmptmAIaa7LKPM0tkaO7XUcC5zGwTD02dPRZIi8KWH541QUENXN9aoMVmjol
JRVpOmDoJq0IP2GNpMR53xA2tEGR2zwLYfRsRKA9yF3ZLAP2lURZHJWAxA/n
t0uKH0FMUazc5jUB1c9R0VfyWmB8TYURbyKijYH+xheCh6AZCjzWnGODRAER
zJKvxHDdf/n8zrg5KL3t0I7CsfvAP8sgJXnZokyCxz9sJIKc6N0h5npb5EtR
Jzv2/gHfqrlVOZ12iODHuphw5C6UupfxO0PskbozN2gN43c4JS4oDRHaI7ok
40jZyXoImx9d0baEhGR9wYOLs2vhh1TZNlIeCTV6ZPqNF1cDvoC+pENPQgH6
O2SRoAqWtFReCt/mgOiM3BU9wZXA9mr26G5yQLXjQqeyxRWQqLN43OqBIdKK
S9lqSx7Q60epeb9iqIeVTzMBLqRkRU4Gn8dQq4G598BKLjAiG57YXMRQdPVy
s0EfLuTqGYXsSxg6V7fKWUnlQs1q40RJOYZ2aYsFz824YHw403vzNoaOOndn
FMo4wO62KZDIMJStst21KZIDV3j7k8+1YmjEakjiFcoB3mF50Pp2DNmL60Ks
f+SAwIn9uV2OIaGbQCj9jgPqGCxZocSQTHBEm/w1B1w184IGNBhqJq8NOiPB
YVkDk3xjCEN5q92tigU4+J5VGRNeY6ja8o2m+hYOoa7ldW+HMWQ3ur3vfT4O
B/dRyVothvzsaecao3E44XfaeEeHIWJbr3RqHQ5n5wz0HNZj6LhdOHGtLw6l
tbxfxscxJC6YXfyGjMP1TIsk0WcM7Wl0VAaScLgdkRB4YhJDKbFptjxzHBoW
SRcGTGOo9N6pgNlj16BJ52KcmcHQPW8+nfHmGvwH0v9KIA==
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2],
Opacity[1.], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwVkXs01AkcxccrdlDGb6slmWFtooceu4XS91s6Ka9ItkWrDKEVoRmn0EsU
p7RTIanpN0Mpb2pUplJeYTAtE1tnhBiKHaHZ2Yzn6o977rnnfM65555rxjy6
55A6hUJxm9M3555izlsbFLdFZEnWwzANayUM130MHzj3qO7ixgEazr6qPMdg
HIbkAmPDdd005L5MpWsxTkDOT1MHbVppeMSBHf6VngKx2WGDzuU0lEyGpo3S
b4DPjlaB5ikaakt7LYfpeSAGZ1EcjYZ8ERn1D70Cjis/yB3QAItLUqRHVoug
doNNcb6tPoZA6w15tARuCBJ3/8ymYkS/VZ+g+B1QykWsWxQdpJolWnbb9kDe
ErOO85laeNmgyZp/sA8w5dZg6BUNZEr3vtBoHgClZMT3SboaRtUlMo9aDsGl
dOPxF/mzUBap5/XDrmEYTSeYGo+ngB8XNrRm3ygs3d+eMNymggRyyvNf+Ric
5hgXhAV+BYqkB5/FKqCQOZ/haqeEZazg43utlSA2sqfLjRQgU17/Vff5fwCX
8sO1PcbAuf+Pk1ejxuFqkWOjij4C7jLOClPTCZDcSco9piOHoRrmmYaiSVAl
659wDh+E1bSOpY4HpiG1jPflVvcAUEEZ0KmYgaqKw5/ePZGB07DvV3NvCvYq
pU8CbvfC2+ogNd+Vari7oyFGXt0D5cm1/gylGg56JOmygrogWIvdIxar48KG
TfYfvaQQGB1XrpelgWXco3tUlW/BJmSF2DVAE1vzXncVHuuA14Yrddl2Wui1
PitSsf4NPC1OuLlSYx7Kp6PMJO5tEKdm7dH8fh7GdyWZ7GL9BdTO2J0RAm2U
VTq4+WW3QH+uWRoZr4OPX9lv+tAtgrTlRpoV3t9hkN7EqoEVDcDJCq4PYFDR
M1Rtpl9WB75pv4v1PlJRPX17sbCrBsa331WRlboY0G7yLqG3Cvr6tx2vvqCH
UQse5tpveAnZDmuXtAToozt3sY/VsudQlMSmhayaj5H2Cz/NBArhgnegi4Zy
Pjr91p+RMfoYfunk511oWYCFn5+dep5SDplWN4taXAwwonTMqujcQzj9MjXT
pcIA17YL6omUMnBb4n1XZEFDWb7pzchrJbA1ot6PlkLDOqPdB5j8QiBNmBbN
ShrePzv2QOdFHljU3Mtw9zPEBUYxXIrnPeCsqrZuqzREn/sT/rbL70KwQrO1
0ZrAoc09bXbUHGCWfWGk/EngzIjJ6bNb+XAkwWvK+QqBT0OFJz/b8YHtJfhb
7xqBIzlRr/3X8SFZyb7MySAwWrAveNePfCi2U01e585lD3e7HVp8UFXNduQW
ELjJbv+a94084LTppdbWE3N/VITEePMgKyc89HwjgVUW6uou7jzIYYkddzYR
aLB4qMrciQePFnEmmsQE1tQYFkltedDpS4RK2gncsQipx0x4YNln5Njb943P
8AtvIGGNINb0Tj+BDokbJ08ISbBPkqoOfZzrz2YJLxWS4GrJLR0cItCmWT21
lkNCdBjDdGyMQP+mmI0nfUiI33xW9UBBYOlhZbLQhYQk/d43LCWB22ZLZNMO
JGSW5FwcHydwfQSUZpiTkH1GM0Q4QaDcX2Qs/56EAs9D2+KnCLzCmk500iZB
YP5q6ZYZAp/xNsjvq25DpWKZanZ2bv/UGzcD+W34HxWoSe4=
"]]},
Annotation[#, "Charting`Private`Tag#2"]& ]}, {}},
{"WolframDynamicHighlight", <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}],
DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {},
Slot["HighlightElements"],
Slot["LayoutOptions"],
Slot["Meta"],
Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwVxX1cy3kcAPCeVLZU69clhz3getIDXq87dNXne+VwPb2k8hCh6QkpYR42
kUR1V91QiuS3maTTenDZ2aKbmu16Wqe1cFuklYcuD2vWmp7u/PF+vWn0tI0J
ZiYmJmH/+3L5Sbrl8nhWACzruhAmNYBEQQ3dTN0Kc8Pj6uNbDDAjbTpDpe6B
pEM8PktsgHJxAWUW9TgI2xFUiQyQ4s/Yb6DkgTKDIjOrNYBiIrnoI+UyrOth
7qstMYCVasD1HaUKUlucnD8kG4Dbhqf/SxGCktp61ZpogJraPFWKdxv8XNNx
/ob/GCTB48sjBxWQ4TO9SsDSQ+qQu6ah5hm4+GyJ/a3xExBo2a4vVvWDDR74
ctNbHRTat3twd2nATcmZ3LJYB3RV1J/mHa8gSmM95BUyCumPsulprsNwqMFB
W8nQQv0Bm0jnn97B/bCLpnz+R+Cy9g0v2/wRmHOjsrpufYAsfDLi04gWtufG
hG7D3oOJoh/dZ+qg7mnPtHvOCLgcTjwW5aEHn52h+AL1MAzqSzYRH4xB501/
yr2ItxA8tDfjQvo4vN+q6E6pfg3hg+ylZPJnqAhtvGo29xUMt9Az/+JPgCTf
RTRaMQjepN6FQTungB014B1P0wAB9HFq3TQcve6btrvlJax7F2NYFG2CEnTH
Ynmb++Fpc7xpjKcp+pvdXLnF6jnczZXsoOpN0cY+EUPOV0HiLEa/XG6Gvm9j
OE6tfQa7D7Lu2lwxRzULT7uOej4Bn6Sl8tA4CzQxMeLEAiV0OXgSGatnoaX5
bmptmAIaa7LKPM0tkaO7XUcC5zGwTD02dPRZIi8KWH541QUENXN9aoMVmjol
JRVpOmDoJq0IP2GNpMR53xA2tEGR2zwLYfRsRKA9yF3ZLAP2lURZHJWAxA/n
t0uKH0FMUazc5jUB1c9R0VfyWmB8TYURbyKijYH+xheCh6AZCjzWnGODRAER
zJKvxHDdf/n8zrg5KL3t0I7CsfvAP8sgJXnZokyCxz9sJIKc6N0h5npb5EtR
Jzv2/gHfqrlVOZ12iODHuphw5C6UupfxO0PskbozN2gN43c4JS4oDRHaI7ok
40jZyXoImx9d0baEhGR9wYOLs2vhh1TZNlIeCTV6ZPqNF1cDvoC+pENPQgH6
O2SRoAqWtFReCt/mgOiM3BU9wZXA9mr26G5yQLXjQqeyxRWQqLN43OqBIdKK
S9lqSx7Q60epeb9iqIeVTzMBLqRkRU4Gn8dQq4G598BKLjAiG57YXMRQdPVy
s0EfLuTqGYXsSxg6V7fKWUnlQs1q40RJOYZ2aYsFz824YHw403vzNoaOOndn
FMo4wO62KZDIMJStst21KZIDV3j7k8+1YmjEakjiFcoB3mF50Pp2DNmL60Ks
f+SAwIn9uV2OIaGbQCj9jgPqGCxZocSQTHBEm/w1B1w184IGNBhqJq8NOiPB
YVkDk3xjCEN5q92tigU4+J5VGRNeY6ja8o2m+hYOoa7ldW+HMWQ3ur3vfT4O
B/dRyVothvzsaecao3E44XfaeEeHIWJbr3RqHQ5n5wz0HNZj6LhdOHGtLw6l
tbxfxscxJC6YXfyGjMP1TIsk0WcM7Wl0VAaScLgdkRB4YhJDKbFptjxzHBoW
SRcGTGOo9N6pgNlj16BJ52KcmcHQPW8+nfHmGvwH0v9KIA==
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2],
Dashing[{Small, Small}]],
Line[CompressedData["
1:eJwVkXs01AkcxccrdlDGb6slmWFtooceu4XS91s6Ka9ItkWrDKEVoRmn0EsU
p7RTIanpN0Mpb2pUplJeYTAtE1tnhBiKHaHZ2Yzn6o977rnnfM65555rxjy6
55A6hUJxm9M3555izlsbFLdFZEnWwzANayUM130MHzj3qO7ixgEazr6qPMdg
HIbkAmPDdd005L5MpWsxTkDOT1MHbVppeMSBHf6VngKx2WGDzuU0lEyGpo3S
b4DPjlaB5ikaakt7LYfpeSAGZ1EcjYZ8ERn1D70Cjis/yB3QAItLUqRHVoug
doNNcb6tPoZA6w15tARuCBJ3/8ymYkS/VZ+g+B1QykWsWxQdpJolWnbb9kDe
ErOO85laeNmgyZp/sA8w5dZg6BUNZEr3vtBoHgClZMT3SboaRtUlMo9aDsGl
dOPxF/mzUBap5/XDrmEYTSeYGo+ngB8XNrRm3ygs3d+eMNymggRyyvNf+Ric
5hgXhAV+BYqkB5/FKqCQOZ/haqeEZazg43utlSA2sqfLjRQgU17/Vff5fwCX
8sO1PcbAuf+Pk1ejxuFqkWOjij4C7jLOClPTCZDcSco9piOHoRrmmYaiSVAl
659wDh+E1bSOpY4HpiG1jPflVvcAUEEZ0KmYgaqKw5/ePZGB07DvV3NvCvYq
pU8CbvfC2+ogNd+Vari7oyFGXt0D5cm1/gylGg56JOmygrogWIvdIxar48KG
TfYfvaQQGB1XrpelgWXco3tUlW/BJmSF2DVAE1vzXncVHuuA14Yrddl2Wui1
PitSsf4NPC1OuLlSYx7Kp6PMJO5tEKdm7dH8fh7GdyWZ7GL9BdTO2J0RAm2U
VTq4+WW3QH+uWRoZr4OPX9lv+tAtgrTlRpoV3t9hkN7EqoEVDcDJCq4PYFDR
M1Rtpl9WB75pv4v1PlJRPX17sbCrBsa331WRlboY0G7yLqG3Cvr6tx2vvqCH
UQse5tpveAnZDmuXtAToozt3sY/VsudQlMSmhayaj5H2Cz/NBArhgnegi4Zy
Pjr91p+RMfoYfunk511oWYCFn5+dep5SDplWN4taXAwwonTMqujcQzj9MjXT
pcIA17YL6omUMnBb4n1XZEFDWb7pzchrJbA1ot6PlkLDOqPdB5j8QiBNmBbN
ShrePzv2QOdFHljU3Mtw9zPEBUYxXIrnPeCsqrZuqzREn/sT/rbL70KwQrO1
0ZrAoc09bXbUHGCWfWGk/EngzIjJ6bNb+XAkwWvK+QqBT0OFJz/b8YHtJfhb
7xqBIzlRr/3X8SFZyb7MySAwWrAveNePfCi2U01e585lD3e7HVp8UFXNduQW
ELjJbv+a94084LTppdbWE3N/VITEePMgKyc89HwjgVUW6uou7jzIYYkddzYR
aLB4qMrciQePFnEmmsQE1tQYFkltedDpS4RK2gncsQipx0x4YNln5Njb943P
8AtvIGGNINb0Tj+BDokbJ08ISbBPkqoOfZzrz2YJLxWS4GrJLR0cItCmWT21
lkNCdBjDdGyMQP+mmI0nfUiI33xW9UBBYOlhZbLQhYQk/d43LCWB22ZLZNMO
JGSW5FwcHydwfQSUZpiTkH1GM0Q4QaDcX2Qs/56EAs9D2+KnCLzCmk500iZB
YP5q6ZYZAp/xNsjvq25DpWKZanZ2bv/UGzcD+W34HxWoSe4=
"]]}, "Charting`Private`Tag#2"]}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PlotRange" -> {{0., 4.999999897959183}, {0., 5.}},
"Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True},
"LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1),
"DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2],
Dashing[{Small, Small}]],
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>]]& )[<|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PlotRange" -> {{0., 4.999999897959183}, {0., 5.}},
"Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True},
"LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1),
"DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2],
Dashing[{Small, Small}]],
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>],
ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, {
4.503599627370496*^15, -4.503599627370496*^15}}]},
Annotation[{{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwVxX1cy3kcAPCeVLZU69clhz3getIDXq87dNXne+VwPb2k8hCh6QkpYR42
kUR1V91QiuS3maTTenDZ2aKbmu16Wqe1cFuklYcuD2vWmp7u/PF+vWn0tI0J
ZiYmJmH/+3L5Sbrl8nhWACzruhAmNYBEQQ3dTN0Kc8Pj6uNbDDAjbTpDpe6B
pEM8PktsgHJxAWUW9TgI2xFUiQyQ4s/Yb6DkgTKDIjOrNYBiIrnoI+UyrOth
7qstMYCVasD1HaUKUlucnD8kG4Dbhqf/SxGCktp61ZpogJraPFWKdxv8XNNx
/ob/GCTB48sjBxWQ4TO9SsDSQ+qQu6ah5hm4+GyJ/a3xExBo2a4vVvWDDR74
ctNbHRTat3twd2nATcmZ3LJYB3RV1J/mHa8gSmM95BUyCumPsulprsNwqMFB
W8nQQv0Bm0jnn97B/bCLpnz+R+Cy9g0v2/wRmHOjsrpufYAsfDLi04gWtufG
hG7D3oOJoh/dZ+qg7mnPtHvOCLgcTjwW5aEHn52h+AL1MAzqSzYRH4xB501/
yr2ItxA8tDfjQvo4vN+q6E6pfg3hg+ylZPJnqAhtvGo29xUMt9Az/+JPgCTf
RTRaMQjepN6FQTungB014B1P0wAB9HFq3TQcve6btrvlJax7F2NYFG2CEnTH
Ynmb++Fpc7xpjKcp+pvdXLnF6jnczZXsoOpN0cY+EUPOV0HiLEa/XG6Gvm9j
OE6tfQa7D7Lu2lwxRzULT7uOej4Bn6Sl8tA4CzQxMeLEAiV0OXgSGatnoaX5
bmptmAIaa7LKPM0tkaO7XUcC5zGwTD02dPRZIi8KWH541QUENXN9aoMVmjol
JRVpOmDoJq0IP2GNpMR53xA2tEGR2zwLYfRsRKA9yF3ZLAP2lURZHJWAxA/n
t0uKH0FMUazc5jUB1c9R0VfyWmB8TYURbyKijYH+xheCh6AZCjzWnGODRAER
zJKvxHDdf/n8zrg5KL3t0I7CsfvAP8sgJXnZokyCxz9sJIKc6N0h5npb5EtR
Jzv2/gHfqrlVOZ12iODHuphw5C6UupfxO0PskbozN2gN43c4JS4oDRHaI7ok
40jZyXoImx9d0baEhGR9wYOLs2vhh1TZNlIeCTV6ZPqNF1cDvoC+pENPQgH6
O2SRoAqWtFReCt/mgOiM3BU9wZXA9mr26G5yQLXjQqeyxRWQqLN43OqBIdKK
S9lqSx7Q60epeb9iqIeVTzMBLqRkRU4Gn8dQq4G598BKLjAiG57YXMRQdPVy
s0EfLuTqGYXsSxg6V7fKWUnlQs1q40RJOYZ2aYsFz824YHw403vzNoaOOndn
FMo4wO62KZDIMJStst21KZIDV3j7k8+1YmjEakjiFcoB3mF50Pp2DNmL60Ks
f+SAwIn9uV2OIaGbQCj9jgPqGCxZocSQTHBEm/w1B1w184IGNBhqJq8NOiPB
YVkDk3xjCEN5q92tigU4+J5VGRNeY6ja8o2m+hYOoa7ldW+HMWQ3ur3vfT4O
B/dRyVothvzsaecao3E44XfaeEeHIWJbr3RqHQ5n5wz0HNZj6LhdOHGtLw6l
tbxfxscxJC6YXfyGjMP1TIsk0WcM7Wl0VAaScLgdkRB4YhJDKbFptjxzHBoW
SRcGTGOo9N6pgNlj16BJ52KcmcHQPW8+nfHmGvwH0v9KIA==
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2],
Dashing[{Small, Small}]],
Line[CompressedData["
1:eJwVkXs01AkcxccrdlDGb6slmWFtooceu4XS91s6Ka9ItkWrDKEVoRmn0EsU
p7RTIanpN0Mpb2pUplJeYTAtE1tnhBiKHaHZ2Yzn6o977rnnfM65555rxjy6
55A6hUJxm9M3555izlsbFLdFZEnWwzANayUM130MHzj3qO7ixgEazr6qPMdg
HIbkAmPDdd005L5MpWsxTkDOT1MHbVppeMSBHf6VngKx2WGDzuU0lEyGpo3S
b4DPjlaB5ikaakt7LYfpeSAGZ1EcjYZ8ERn1D70Cjis/yB3QAItLUqRHVoug
doNNcb6tPoZA6w15tARuCBJ3/8ymYkS/VZ+g+B1QykWsWxQdpJolWnbb9kDe
ErOO85laeNmgyZp/sA8w5dZg6BUNZEr3vtBoHgClZMT3SboaRtUlMo9aDsGl
dOPxF/mzUBap5/XDrmEYTSeYGo+ngB8XNrRm3ygs3d+eMNymggRyyvNf+Ric
5hgXhAV+BYqkB5/FKqCQOZ/haqeEZazg43utlSA2sqfLjRQgU17/Vff5fwCX
8sO1PcbAuf+Pk1ejxuFqkWOjij4C7jLOClPTCZDcSco9piOHoRrmmYaiSVAl
659wDh+E1bSOpY4HpiG1jPflVvcAUEEZ0KmYgaqKw5/ePZGB07DvV3NvCvYq
pU8CbvfC2+ogNd+Vari7oyFGXt0D5cm1/gylGg56JOmygrogWIvdIxar48KG
TfYfvaQQGB1XrpelgWXco3tUlW/BJmSF2DVAE1vzXncVHuuA14Yrddl2Wui1
PitSsf4NPC1OuLlSYx7Kp6PMJO5tEKdm7dH8fh7GdyWZ7GL9BdTO2J0RAm2U
VTq4+WW3QH+uWRoZr4OPX9lv+tAtgrTlRpoV3t9hkN7EqoEVDcDJCq4PYFDR
M1Rtpl9WB75pv4v1PlJRPX17sbCrBsa331WRlboY0G7yLqG3Cvr6tx2vvqCH
UQse5tpveAnZDmuXtAToozt3sY/VsudQlMSmhayaj5H2Cz/NBArhgnegi4Zy
Pjr91p+RMfoYfunk511oWYCFn5+dep5SDplWN4taXAwwonTMqujcQzj9MjXT
pcIA17YL6omUMnBb4n1XZEFDWb7pzchrJbA1ot6PlkLDOqPdB5j8QiBNmBbN
ShrePzv2QOdFHljU3Mtw9zPEBUYxXIrnPeCsqrZuqzREn/sT/rbL70KwQrO1
0ZrAoc09bXbUHGCWfWGk/EngzIjJ6bNb+XAkwWvK+QqBT0OFJz/b8YHtJfhb
7xqBIzlRr/3X8SFZyb7MySAwWrAveNePfCi2U01e585lD3e7HVp8UFXNduQW
ELjJbv+a94084LTppdbWE3N/VITEePMgKyc89HwjgVUW6uou7jzIYYkddzYR
aLB4qMrciQePFnEmmsQE1tQYFkltedDpS4RK2gncsQipx0x4YNln5Njb943P
8AtvIGGNINb0Tj+BDokbJ08ISbBPkqoOfZzrz2YJLxWS4GrJLR0cItCmWT21
lkNCdBjDdGyMQP+mmI0nfUiI33xW9UBBYOlhZbLQhYQk/d43LCWB22ZLZNMO
JGSW5FwcHydwfQSUZpiTkH1GM0Q4QaDcX2Qs/56EAs9D2+KnCLzCmk500iZB
YP5q6ZYZAp/xNsjvq25DpWKZanZ2bv/UGzcD+W34HxWoSe4=
"]]}, "Charting`Private`Tag#2"]}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PlotRange" -> {{0., 4.999999897959183}, {0., 5.}},
"Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True},
"LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2],
Dashing[{Small, Small}]],
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>,
"Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]],
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
TagBox["\"Time t\"", HoldForm], TraditionalForm],
FormBox[
TagBox["\"Deterministic trajectory <x(t)>\"", HoldForm],
TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 4.999999897959183}, {0., 5.}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.9121541976851797`*^9, 3.912154224145823*^9}, {
3.912154271987193*^9, 3.912154294251523*^9}, {3.912154369388261*^9,
3.912154387764958*^9}, 3.912154422463228*^9, 3.9121579423763523`*^9},
CellLabel->
"Out[189]=",ExpressionUUID->"bc34b6b7-8ac9-4689-9d0b-a76fb51226e4"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Figure 2 average contribution of noise", "Chapter",
CellChangeTimes->{{3.912154561186861*^9, 3.912154562987219*^9}, {
3.912156989179769*^9,
3.912156995067627*^9}},ExpressionUUID->"9fc466da-c694-4de9-adef-\
4e35d076fdb2"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[",
RowBox[{
"z0", ",", "\[ScriptCapitalC]", ",", "v", ",", "t", ",", "v0", ",", "eq17",
",", "\[CapitalKappa]"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalKappa]", "[", "v_", "]"}], ":=",
RowBox[{
RowBox[{"-", "v"}], "/",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"v", "^", "2"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"v", "[",
RowBox[{"t_", ",", "\[ScriptCapitalC]_"}], "]"}], ":=",
RowBox[{"Sqrt", "[",
RowBox[{"LambertW", "[",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], "t"}], "+", "\[ScriptCapitalC]"}], "]"}], "]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"eq17", "[",
RowBox[{"t_", ",", "\[ScriptCapitalC]_"}], "]"}], ":=",
RowBox[{
RowBox[{"\[CapitalKappa]", "[",
RowBox[{"v", "[",
RowBox[{"t", ",", "\[ScriptCapitalC]"}], "]"}], "]"}], "/",
RowBox[{"\[CapitalKappa]", "[",
RowBox[{"Sqrt", "[",
RowBox[{"Exp", "[",
RowBox[{"LambertW", "[", "\[ScriptCapitalC]", "]"}], "]"}], "]"}],
"]"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"eq17", "[",
RowBox[{"0", ",", "0.8"}], "]"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"eq17", "[",
RowBox[{"t", ",", "8"}], "]"}], ",",
RowBox[{"eq17", "[",
RowBox[{"t", ",", "0.8"}], "]"}], ",",
RowBox[{"Exp", "[",
RowBox[{"-", "t"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "10"}], "}"}], ",",
RowBox[{"PlotRange", "->",
RowBox[{"{",
RowBox[{"0", ",", "1.5"}], "}"}]}], ",",
RowBox[{"PlotStyle", "->",
RowBox[{"{",
RowBox[{"Default", ",", "Dashed", ",", "Dotted"}], "}"}]}]}],
"]"}]}], "Input",
CellChangeTimes->{{3.912157439765439*^9, 3.912157766440507*^9}, {
3.912157803649384*^9, 3.912157896408038*^9}, {3.912157982873466*^9,
3.9121579971996527`*^9}, {3.912158051032487*^9, 3.912158090350976*^9}, {
3.912158179152412*^9, 3.912158279838193*^9}, {3.91215831056896*^9,
3.912158338894917*^9}},
CellLabel->
"In[294]:=",ExpressionUUID->"d65989a6-6e62-4e38-a4c4-b65b59375c84"],
Cell[BoxData["1.0288188146103567`"], "Output",
CellChangeTimes->{{3.9121575449903383`*^9, 3.912157573233803*^9}, {
3.912157604947074*^9, 3.91215776683095*^9}, 3.912157799183743*^9, {
3.912157842154162*^9, 3.9121578967259808`*^9}, {3.912157984702592*^9,
3.9121579974597807`*^9}, {3.912158051970479*^9, 3.9121580907043533`*^9}, {
3.912158223522067*^9, 3.912158280277212*^9}, {3.9121583193098507`*^9,
3.912158339216117*^9}},
CellLabel->
"Out[298]=",ExpressionUUID->"cd292245-4246-438a-b287-14949d5bcb73"],
Cell[BoxData[
GraphicsBox[
InterpretationBox[{
TagBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJwV1nk8VN8bB3BLWWYxY0m2mDGiEKEULc+TRNZEKktCtihJKllKqBBCQuFb
ihYqhFR22bIXodCGFlGYGdnK7/7+uq/363XPvfec83yec5mux6zd+Xh4eBx5
eXj+f8086yqg5XZ5690XlgWkJ+NQ18Uw38c4DNdPuT11LR6HxYbKCAbjDOgt
btQqezoOmdVxCksZ0eC6N+7C0bJxOLLl5NE/CtcBU37m9daNQ9e8V/KEwgMI
k24UrO0dB8H+LyrjCs+hI+585e+/45DVfPP4T4VX4HgjamuJ2S94nB/df0Tj
PRhlZwqT5n+BJ7y+PuY/BB+NhAyO3vsNviOrh4of/4B4L+PqEPUJIDEjVT5u
nIDuie3dtYkTEE9vUc1yZoPF+pFsMe4EuPbvqeJvnQZOG23VtPskHK+PdD2m
MgdBHzfh7LtJKPSj2EiZ/IUrjMhdJ0ynICvYZ3TtPh70aLoqub1pCsJvLuzm
jPFi63g1l4Rs4On6hOVB/FgqVLTseQkblAM8AveoLsVTLDsVB20ODHNT95Ir
BNB1JEB95U0O3N6mc2LwpQCuPsUkD9/iwMG49iv5zQJYM5/2I+s2B94rLX1l
0yeAUyVOGTJ3OfDaxn9TBlsAjYdqri0+5EBloTljjaoglkYUFlx7wYHUo7yj
lqmC2CyhmfapmwN7nmcIMP8TxOuFdxOCejggtnQji50tiF4f+XXF+zgQn+Hr
mPpEEIvKWCHYz4HIlv72j22C2K6/4m7MZw74rX5a5LdECJWf/hp5P84B0xHv
0KTjQuhd2vbHdikXjEJZDw0DhdBoXGfdcwEuGCwbeD99Vgi3mn5pkRHigv4O
i40OsUKYs5DJ847EBdUcTTbrnhDG5AeobKNzgezO8SoZEMKZE+8yK2S4IPT3
YarnkBBuogqJLpXjwpJr7g3So0LYVMHJM13BhYW6HtbZP0IYnnfXrFOBC2NK
zz8YiQmjbwKnq06JC63DoXv6jIUR75wXstLgQlOIbkSMpTC6+Cc5BWpyoU7i
d+FmW2GMb9bJ+W8tF8oNnWlZrsLI6zjIHdbmwsNsg+bDocKYumQa9m/gQpyb
IM4/EcZhj2LDHuCC5XCCmrw8CY/mWFcv20W8T22421GJhByo4P1K2OzEhrPp
qiQU7zOmFVtxYSffh06pDSS8IvzsvIk1sT4MtVPiViS0VrXxsrPlwnrH+mqh
cBKersjbS3LgQvEdKW/jKBKm55m0lxDW/ukjfjGehMvUXw84OXJBI0jMgz+d
hNoVswUPDnBhVdpB8r8iEv7jL33LdOaCXPesLXuEhL0RwcLX3bhwQ9ZiUWuM
hBt06nfLuXNB+tCt+35TJLT85TybQVhyymh+/B8J0yQc9qd4cIFOT771fTkZ
rc6HTHp5cSF+3zcTFXkykpZEdfYQpt7UZ7srkTGkeOfUtsNcIGl83jG0loyi
1QG/ad5c4DfX+DloQsbMX33eMT5cCL96PlnOioz6Vn9nPxPm6e/e4rCXjG4+
ZY91jxD7eTg4oc+VjLeHbIJ6CQcVtustP0zGMqfX0ayjXJidYQ7ZHiNjdb9G
wRHC05ea1ncFk/GhcoX2NOGADtmPouFkfHwk4pKuLxfYkseirKLIOF64Z/gE
4YmcZf1tyWQM2qd1b4Sw77hXJCWdjN8d6pfKHOPC+LryNWZZZHxScvKAGeHR
l65hTY/IaEZV/5FNWCGxzzu+mIzdtzL2dRLe42Rpu6eMjCu1/JVmCEer1YFM
LRkPig6ayvlxoXJGT/VTExkflJIbNhNm1+dL3O0gY2mTaqId4VVXVy769JAx
jOV+z5/wAef0H1qDZJQaH+KPIpy0RrT7zxAZSzLas64Tbpy7WFkxSsZeQbOQ
e4QXGhfuR0wS8/UNjS8krHXN/6rJDBkTo6K6Sgl7uH4PpS0S80mIM3pBOF3T
yevtUgpOWj/88oxw50KXdTqFgiMb+e8UERZoNtniIk5B3n354bmEN6VWqajI
EPefaQ3JJOzntl5snEFBuXUnY2MJ39XKW3iiQkGbn7UPTxPu/8f4FqhBwQdf
2/qcCNNbU15vXU/BQMdHZAPCO65TypdspmBq2GlkEg7yCL/bbEDBwqRt/gvE
+uXrzCQkmFCwZUwho4vwMI9v8F4rCvKLKT+/S1i6fchdbh8FPSo86k4Stky3
s/pygIJLJtnPkHCEV4f+fTcKrlz6MVGQ8LP1O1b6+lAwr3SjaTOx3+N8ZbR1
/hQs2iQ6GEVYsXPt3GwgBdEkcMd2wrHech0XLlLQ+Z1GRB5RTzUbkp6bxVGw
k5Nuaff/elsilC2aTMH1Y2/6+Qg732QHZmZRsMOlV8WEqNdrRw4fOnSfgsrq
NQMjRH036320WJ1PwdbYR3CW8LruZsWScgoy9jTOZxH5OJyF1OCXxPwGRM3W
EP7P9+kfbKbgGufr64qJPAkJ325t7SXut8msLSbyNrjlzKnhKQrSZowxjMin
GPm3c+4sBVOsjXu/Efnd2edm5sdDxSZP2mdTwk/8rRgLVCqumbXU4yfyf/Ge
SrP4aioelFc4sdmFC2UBmcXvNKl4J2RS8hzRLya2id+8qUtFw6S9AhUHuWA/
8O+EmiEV9/LYFas6Ef1GtGfF9oNU3BmrWN9qz4WvcV/Dr7lTscX4aeyMHRcy
SX++ffOhYjXzjDSDMGWJ1JPYQCrqM4f9XfcReZq2M+pJpKIqyD8rsuHC7RPe
eavSqBht+GtTBdEP7SaC6MH/Ed+j2uFeu5vo1z/S3yvkUYn1dMyoIvppzsCg
7+E6KupI2qy+YMYFR7tfXWXNVMyUMPP3MeWCRM+/jSKvqTjuVmdgYUL0mw4F
/qJBKuYOKPnwGxP7VeuSujBNRZnAbD89A6I/3h+purJaBAs+iIu+Ivp7t9K0
0hdNEaQNfxb30OXC5SyBmHW6IthVYHzo3zouzN1Q2fPOQATjMeMdgzgf+uIO
f1d0FEGZtpQadXUuXD0xTn8aL4LN1J2nDhDnkenE35NC10Rw+0OeW4+I84rv
qEi/fboI9p2w+DgjS+TJQzNn8Z4IOuhGJYZJEfVsd1zPpEYETZeMHt4jSvRT
4LoMsEXQlfZYhczHhcBtq4Sezomg2/cBlU+LHPi63eHxFV4amgpmqOT/5UDt
zpo5AxoNl8fOSW6a5UCQddzVB6o05Nc8u4s0wYGf7ivrT7nQUPH5famIAQ7Y
e+33sfKi4a/NxV7T7zjQ5H1ZVPUYDdXy7M4f6uVA9rHJA4MhNNQfleRRe8MB
xzMV09vTiOe/hY++jRxojbVdJdpBw8iJpPuNBRzQvxLVPvqWhplDdco9jzhw
P7EsoG6Ahtmm5ts+5BL/EynMmtOjNFzb9mtbfzYH5Dun1X/z0VFjeK92VBoH
et7V1tvK0/GfbgTvw7McMB63/6NoS8dzsmKVNCMO/CcR0XVuPx13vLBoOGjA
Ac6mvPwBBzpuUL166sFWDtyKmfdMcaXjT2XZttUbODCnktEn7EdHKcUwow8q
HHjoOvh8IoaOFA8HkBTiAL3vYEhlNR3LlZOYdS/Z4LF4ab9sHR23r6ncYVLF
hnLlgnWBjXQc1L0m3/SCDYdP8oxrtdPR4cQyzpNCNtSKZR3I6aejv2St/Zab
bAiw+LI1dpqOnZ7mhcpn2NBX68Zrry6KDas/djusYhP5ei8TqimKPNVNPKdY
bBCs2bXulrYo2ou9no6RZ4Nulb7n142ieLm/3zxHgg3JZfQ2/x2ieJbnHyed
hw27isvTLjuJYsn0c57k3iloyJFYW5EgiltpBXON56egJKrOicEVRTVSI2o2
TYLH0pOf2tvFsH+1taw17wQc8g8uodwQxxdN5O/LXMdA01Ot3dxFAi2XtVTQ
6r9Dh5g6+aTeMlzzq9VVl28Eyh6Hp6vzS2LAt+4jL5s/QzCvqlXroCQaK1yZ
OuIzCKSBoJ2+xctxbYx/aLx+H+iefkC9Uroc73rlMhtW9YGLWN+b/BfLkeLH
UBFe3gfPdq4/MFm9HDNvBxgXsnvBo+T38YC25Xi5set09KNeqIl3Sw/6uhzn
W5St9rJ6iXq3/HVRSgqT4tYaGC3vgZG7zOSbIVLIZ+nsf0WhG8YiP8/yh0lh
TG0hnz6tG6Zcsw56RUjhwoMbBRP/uoBHgammFSOFK397mod/6AKZVEZtbaoU
ltdffrv+vy6wuqQwMfJECm+vpOT3KXRBuecKc/UfUjhQcG7kk9obSF4lveS5
rTQeeKYbcMW9ExydlO8N7ZfG9oOMQM7+TlBK1jEVcZTG5N5DWa7mnVC8aJFw
yFUat8idsrTX6YTunnA5kWPSuCCxI+QpbyeIXxhbdyhKGn8EzH7Vxw5I+lzl
Ti2TRgM1nmyexjZIuOHR6MKQweuXZlQ/C7TA6VPhJ0JYMvjh+IVIm6lmcLL+
TyFVWQZDP5h/7x5sBnVSz+lWdRlUp47dW1LSDK/O7Fi1QU8GXayrZiXdmoHP
TimaYi2D3mNtkf/qXsHJ5V9MSyNk8FLQ/c6UxCawTz7QTvkmg+Y8ZV3DNg0g
V0SS9RmVQfItYwvHbQ3w8XWp56txGTTUdqr7otEAbjQx3oscYrz09bNypAbw
jWnQWeSVxZyYjLFtNfUQHqZ5fVJOFn3zBihm2vXw4AivW4+1LNrbv79IUqiD
GcOc2ZuVshgqnBjOZtRCSNnNiLoaWXSL9VzzTqwWeLRvUH/UyWJ/a0nWqyW1
IKhwhandIot+MQGNzd9rQHI20KSuVxblzDLXWBTWgM4j8+vfJ2TR7vRMtplh
Dfgu42zUYsmhpfAD3bnj1TA0YhBYe0kOd3j9PSX8tgIMbrbfVr0sh3qv5kw7
yyrg1n77tqR4Oax9377u4e0KcGo5rnjomhzOSvxZesevAt4X3GrlvyOHDbJv
62KoFfAm+B9jR6UcDnZ+pa8zK4da0RevGjlymMfnuTH47Qu4vUVLts1lBSam
Lvw6ovgMai1JEfNuK/BB1c3Pe2jP4MvBodHVXitwwmHgjdlCKbDCr7246LsC
WWPyER49pZDdMGuHwSvwJ+Xce4vLpZCzqzatKHkF9otRQt//eQr3XWwkbzSu
QIVMwbnM/hJ4dOGkqOcaeeyZT6sKaimCsc0Hwi+slcf9sjy7ZcuLQJ1jyL6j
I4/P9MJfNj4sglxXibef9ORxy9wTFcP4IrgPRWn2RvJ4onP95KvdRZA9O6Fg
eVAedcov1/D2P4EbR49orE+Ux6yvr46OcAvhku0hM36uPEod4xPINSuA27sG
HN1nCL9qCR/fUgDlJra+jfPyyGV/it68tgCmthgnXuZTwMHFJPpfiQJwVFbr
FacrYL7lpVFqZT5o/5lyVVJTwE+pBeU+o4/hQ1p40A4XBWzYL5J+zuYRrB/I
enCpTQHVOwILtA7lAl3Daya/UwG3FloG+1jmwtg5DeO+LgXc0tGVWqKXC9ms
suFV7xVQzWzp1SB6Lkj4dCs0f1VA9odezYbKBzAXwm8mwMPAS3puonbyD+Ad
WbdmpzQDzxR+e7v8xz1IW53+qM2MgXmaG328c3OAwzbKibBgoHvqy6PjqTmw
q3IqQ28XA49EamiFXcgBARvT2BxrBu6Z1Kvvds6BkyGz3qF2DHQ4/+zxRqkc
sO7Yt2qNJwN99JbTP0VnA+WkxJ3YcAZm11bG2ATegXPVcWlmzxlY8PtpCOtc
FowOVifPvmDghSu3u874ZcHeeXbCvXIGxt7SOT7gkgXquvbR/NUMbHhkta/B
MAv68pSDyhqI7+e58USNnAXaqVUOat0MrOqaf6dz4xZ8PTopT/7NwPOfPp8d
PX8TLGRtc5qVmCi082+7i1MGpA1rVDsoM/Fz35fv2jszYPiRUP+YChNtN97Z
v0w7A0KwnE5TY+JljQf8IgIZ8NCdFWKjxUS/f3W0tsfpQCqYtB7YwsR4EZrr
Kf50aDSM5/m1l4k9/Cgu+/w6bPNtdBCNZqKpc/ck1zoV5vp+GNXFMFHxXryX
JqRC8XaK9ulYJh5Se5l1Ri0VlKV3Cw1eYeLqse+KuCQVKHXvi++nMHHV9+G3
V5+mQJ/0LypmM3Hd1LYuE/kU8KuXqPatYuLXrUWaibPJcFPOVamVy8QjzkF8
LwaSQF9HTcP1DxOZPLeXtbQlQbcJZ8PMDBN330+Y+1aZBEKnL5opLTBRQtpT
YkdWEvi9zvUP4VPES1b0yMseSYAX2dXqNEWUW8k128ZOhC+/Iw/ErSIsQX0h
uiwRlF7eS7F0UMSU7QZ8bRPx0K4+kz3gqIhn+9d9aeqLh8CUnUXeTopoa3TU
vbc6HloO/+i46KKI76W/y6onxoM/XU24ypMYv5Ov9Il2PFQdeBysGaCIdocn
9VadiQP7mWJnepwi/q2OtbARj4WENbWqbyoVcXH3z/baM9Fwf6ODcHi1IhbK
cVm73KKhajvnm1atIhZVPYoat4yGX3bKOYn1iqhb5W3orBQNZhdjFHa3KuLC
ltQPsp1RIPDRWqLznSKWJGtf/aAaBcEJQ3/bOIrYXZurpT5+ETzYS16/UmXh
ANn1zaesSHDKNWx3VGdhl36ceG5iJOx1iWz5vYaF81FmYmHnI8Gog79hmRYL
33uHMaxdIkE5j6/MZQMLfSHocBwzEkZceXJmt7MQTlyX2J8dAW5v5gNXH2Dh
Be+AlLkn4eBaOMWIvsJCb97UWP+pMDgSbrNgmsjCquk7VteGwuCkTXEv5SoL
+e+IyNd3h0EU92R8QgoL3wpa3DMrDYPHerPzqZks3B3Zup4dEgazNYs9d/NY
mJ+nfeo2KQwS3lDi6hpZGHDEVtfb6SzcuHPU6+IrFn4jORs2bj8LdwLat+9s
YWHkNDl/0+qz8FQyYa6lnYUxfJ47vTmhMGAv7tX1loV65r93D1wOBZUh6e1f
hlhoXhi9lq8qBNYWB8lnj7Cw1k38WktOCOhf6J91/8bC9a/KJfNiQ8BcJbPg
xygLH1mPsx7ah4C/D0N+cpKFIWMTpsV/giFk8/nZJ2zi/YNqoeofg+EC9Ut3
AJeFYrf0dV40BENa/p3LMzMsFHHy+bgsJRhuhy3xfDHHQs9LfAVDocGQt9vd
IGSBhZtr9j1vcA+GYsWGFVv/sVDlUfv3SotgqGQrzy4usjBtS79a6/pg+B8R
pAsE
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2],
Opacity[1.], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwV1Hc4FQ4XB3CSkb2yude9QrZIqJxjhKwyE7JXhfBDhSREMstsyg6F0CAr
exOSpJIZiRsqpLy9f53n8zzf53zPX0fU+ZyZ2w4qKipbaiqq/897Yc50iq5x
GqrlhGeMQRRoGSIanSCehkyI2lseSIHttvpIIvEilDrxPDb753uNCQRaYiyE
rT0cTQyggNfhQO9fhFswLzbtNeVPgcrhibw17btgpsLO4vfPm2eNxr97ZIGg
Pub/9qOATu+NPT/f5oDwdPYT+n8e+u2ZSiEUQQBFf3bThwJB7SIKy0+KQWDS
Z+XcPwukDHd/034EkX4ZHz97U8BZCmm+epRBhA6VYa0XBS48YqpeeVsBn5PH
iIZnKED/flLiG6Ea0uK/7u1zpcBoY13g4pdq8F25NMj2z8UFmc1fn9QA28kJ
aRMXCpj4mzgsaNfCx98hM41OFEjfVZM+59EAtuta5DB7CnDe7djx/W0TFBgI
H7U8QYHfrM+KfA81A/FdVYGjFQWmr+QepzxoBnmT+zGelhR45hF2f/l0C+wK
t+rwNqeAjZKy+tLvVqjICFk3PkaB7K4sv6+ETjgmUfvUWZcCa5lPpT7Fd0LK
1dUgwSMU0PXonhrc6ITCSfXFfm0KLNL8sqwZ6oLR2yMz0poUUD1soh4b0wMn
p+xqyg5SYKBsa4fEcj/UDxwjTcv/uxd22bPIDcBm+5c8KzkKHBRPVY9xHYAj
HA5FLTIUSFwrWg1+PQDMd4RkUvZSQPnGGzfnktdwzbejfYNEgctdMgaKDkMQ
JVU9vcBNgYdPnouXpA1Bw/EDitxcFBjM1KLZ0zMEA/T/DalyUEDMw7qWT20Y
+C9xsgWwUKCLJkqOiusN3MiSEqmgpQDP4fec/W0jsPnXmJC2sAylZbHvveTG
gHPF9WBt9jIscC7EGziNQSKLW6vcvWWQCDLQkEwdgz3887WZmcvw4BBT9tTG
GEg+tf9qlrQMNzvj3W1a34MhOWeXY+gyBE0lfdez+wAOpU/vvbdYhiym7kiO
IxNQ5qAqZbK9BBqHQ+zC7ScgYQP3lWwswbiP9P7l8xPgFjYXtr26BHyDcbM9
xRNgzvlgJuHLEtzINDp6jf0ziG1OzWu+XoLIPX2s2+8/g3ggPQ999hJ4wOtb
i/5TwLK58yiz+hJQ5fyseR83BV/aU34FKC1B5k6h8a68KfDUOOT8RmYJOjrd
RYpGpsDC513AJcISSFps5bipT8PUwcDBMzuX4IunxKOP1DMQJsXTUdvzDc7c
vFQ/kDwLKnvm7S1OfAOfmb1TVaXzYP/lTZ+e5SJM2L9jeNU5D56yrS9ojBbB
fPSaXO/0POxs+q79XGsRVLvnLs4ILEA81jrRKiwCzZN8dp6YBYie8KjRYFyE
zFBRjfMOX2FX2LyEXN1XeMXFf0uN/RvcpOka1hX+CoyiURKfVClgGdbu/q5j
HhLZu6WyHVdB61buth/vHDi/t2ig6fkJyY0a6QKM0+DXGuV8TmITGMZ3ptkJ
foYnvszmfEf/gH97wJQT4QNkh5xdUDhBhTyabMbTcqMQkbVlurZIjcsyvmF0
ssNANTSBtcE0aFSYdzisbwCi5uuzg6/QIHgxUDG+GoBdVPd2qF2jwaWsMK+s
ygHglD3Z8jSNBlX3x+ybyxyAPTGv9crKaVDF8vDmvMsAGBxsMsmZpUGmw51H
/H71Q0purt01s53IpMtQ9tS1D8QD3C9YSNGipqOmtXVgN8iqfzLPUqDF8V9H
9UMcu0GZylp+QYUWRV6L7nhs2A1a8UdnL2vTYn4PY+UhUjfY58lYlNjR4vFz
jJLMA12QPrwivyOJFqMvBxi7ynUB7f7Lc2WrtCi7RDfS+KMDpn9kWDHV0eGf
+ScH3B63QY6m0n8fmumwsFBH8urtNnBI6Esq66LD+B8k/qqYNhgTo+00H6VD
2r3SQxrObfDa3P/g3VU6THzQF0/H1wb1T4yIslL06BEzo2kV3QoZ3tQLJhn0
uEa8nVvu3QIGM2cu3fRjQI9CxXRptybQvUR+pHOBAYU1XpbRWjWB1u7xsZ9h
DHhoMmf6q24TqB8xVrWNZ8D4naGXxiWbQCpffpVcyICGNp1Bxt9eAZPbmufT
cQZk3c/63f3CK+iZvmQxqrcL3bWbZQ5lNILJdLK0iAgjOvb0NWt8rYMe6elh
OzFGfHL2TJT4cB0Y/ncg7I4UI4ZUuzYS6upAf8fHAb4DjFjbUX9BN6kOtIjS
QVzHGVFg7Eayi3Id7LdrbWSIYMTQ/ctZr6/UgtDwhuXqDCOa1Xe0Se59CQvN
zuEdj5mQ7p7nGZXCF0C4MXomsYoJq0+11UXcfAEW9iaWFi+ZcKNSRm3i0guo
X1eTmuhgwsbcaL8+ixdwU5Zj+NcUEz4ILvAKonkBBzMaJCQEmPHPc7reLy7P
If6MUP/VaGbcrIsV/a3wDOQ4RoS1HViw0F7KnWujEmYTZiPS3FhwYybezXm+
Eu4x/pqbO8uCDX/b79W9qwTmnXwV8RdYUD7oRUpmTSUs/DypO3KDBQWGwlI+
hVZC/vgHn9MtLFjeGz5XRFMJQg9nGpL2sqKAg7jFd/4KYIQfTuOrrLjjz36O
sx7lcEFTkuHZJivq5f9KP3eyHGa1bUuTqNlQuFv+52XDcmjSf7WpxcaGPgMp
/C3y5RBslpBSJMWGvbN3m598L4Ovbntag5zYUL29Y+uEQBn0xFtKcvSz4eEk
xuNeoY9B75vNL5IlO7p/cEpuvFwM97kjhy5bs+NdMtvDhNPFsHawpGzclh0l
NuJ1vc2L4cH13x7pzuzYNzYx5iJRDJsSd0d3+bLjKNen5zIDRfDI+UM15To7
1lyxJxH3FAH7qENofSM7Fh0oJUiMF8Jokyu1jQwHMgpqnSkIyQeK5pjAJXkO
tL7FI/DuTD7Qvzqm/GAfB245Vszw2eSDSoO6x6wqB/a9fVTYoJoPqS/Ze/2P
cKBym2Xtw595cKyqNjPOngOrHAt8JgLyoC2fW6EumQP/e1VRnh2cC0+vtdgT
f3CgLdmW5FSUDQ8Nuvli1v/1k7YE3W9nw23mwcFvvzlQ6whL6/m4bAhP/qT7
cgcnXj7RsdnonQ1GmZtyVuycuMs+rnt+XzZMFipsx0lz4pSq0UhcwwNgbb+b
9cuJE2m4CuZSmrPAnTZwoq+PE+E/Wmb+5LsgQOh8+/s1J94/rMp84eJd6FMV
7pd8w4kyC1/WvjjfBRWv1rqI95wou2WsR6VyF+iGdt9R+cKJFVctPWg+3IH8
B88s71NzYc/BJL9jcndg+uB6l7cyF+qIb3dmfbgFLv4hT5lvc6H3ZNAhI68M
UNn38enee1wY3Ozyh98mAxhX8JnuAy5UJPl+/KGXAeV+dM/DC7jQ5aP0m7fk
DNjyvfFirYILWZhnXLXH0yH9XOHL8W4u9KS2LCg7lg6dXkOvHv3hwq6rcXtS
MA3kPaT7jJy48cvrpARz/RT4eJpw7rErNy5dSHDnUk2BeC8udlZPbnwvMbQ8
IZEC836/Tft9uJE7Yd9MHn0K5IZ2vzEN/ZffA4L97TeB9+bZD1YZ3GitUjGU
Y3ATtmtLFh17ubGZOdp68+QN6OeUYQpU240yeSZWh9STQMPbe/7Ood14sVt5
uUQ0CUrbS9ubYDfq6bG9k9uVBImhilHsuruxTHnT2Wc0EYxmVf6UmO3GNZPS
osHzidBVrbk8eXY3npvX2SDVJECr44mh4/d3o0NmZGWoUTy8LI24I0PDg82f
IHFXfizQGVkKZNDxIB95eEMmKRZM5yVuUTPyYMuKNb3LxViYI/emj7Dz4HRn
WwedSSxw3eK9GS7Cg38txGWk16/B2chH14bVeLChX3n03bFrIGg9Ehjqy4OD
sBznyhwDIdRSx3s+8CDr0/V8uudRMKvDNCr+mQd/yrWQyvOj4Pi1RYcr0zz4
oPinqGdqFIixlZ1T+cqDZWdYz9P4R0GPkHLSg/V/+xzLpGZlo0BEVaMvgIsX
s+NfGps+jIQmHzMj4aO82E/dsd+7MAIYx4P1fap48Y32GuPxnnBQOV/EkvSc
F48P3Aze1xAOTpyjg2U1vHhQxFeCUBEOL/T3n/reyIsZiz/4eDPDwf3psl9A
Ly96tq6EhruGw6tE1zvBs7yo8IZxxPXv5X//ymQpmo8PH/O72NecD4OZAtHU
rFA+PDTyfNgjOwQWoz5v0ITz4aBMjjPN9RBYcc528IzkwwU20foK/xCgIohK
K17nw3nBT7eNdEJAIIPY1JTBh3s5o/nPfgmG4zEEykwFHyZMl3XpKAdDrYew
kcw8H54MPNK6+e4CpEry76y25MfPdW7xAjZBYGcvXjhlzY+zVcV95/SDQCxV
yYDVjh9LxhLoh1SCoGrbONnFmR9z+7gUm7mCYHgkQoj1HD/6tukrHO0LBK6r
i8ou1/jxV+6s6+SRQLj5ucGN5SU/XqooTtzWCIDk2+7tTkQB3OSz6C218ofz
QRH/hZIF8PM9Ea6L+v5gb3afkCEugPAk2dZE3R9kGEfO98gIIN+I2SC/iD90
XjwieUBNAPdrc51RmvWDHSfFYpnNBPDDKdal0xf8IJB30uB5pAD6vvRYK87z
BZvUU33McwLo93BUNWG/DwhVMgqeXRDA8Gr9PAkhH/j0+rlH5zcBDIsMOf12
hw+4snFSR68J4J9o7+qgAW/wud6mtE0tiH0yJaEVXt4QES5/67uQIH4Xvi/F
VuQFRV7UriNmglhdb7syrXAW1nXyN7LqBZHBOfWmz0VPCH2ZFdnyShDXjY5E
HHT3BKp9t1nmWwSx+WjBFV5zT6AnJInu6xbEK3cgfEvGE3g2LhxteSuIRxZ0
lS9+9gClx0a3vlAEsUzEw1TJ2AN8dq+pKpKFUMtFitZW3h2mZrQuNMUIYZp3
zDt+IVfQyurLkYoTQnqxOy5UTK7wwNqm92aiEL5meXP+x4YL2Hf7kVzS/uUT
zViYRl1grPxBD02uEKoGTqROprrAYMhf4pF6Icw3fBSiyuECTRw1ne1rQljZ
o/tFhtsZcg4rCvY6CSOLSdrBJnSEJhPGyN+uwpjVLohjSo4w6TC1sNdTGJuO
YdSWuCOQI9Jqon2E8Ur1eLEDiyPktW2cxBBhbJ44IAJPHSD/WFNmZaowfv05
6PXnmz08dDLnud0ujDzFb2rpfU7B46uBHB6yIpivzpzMnm8Di4dORVxVEMHh
gHBes2QbkFnTWc1VEkG+NJvW3BAbKHbmfjOhJoL1lttO581s4CFUZtroiqD6
iqvmRyobyNugEEwcRFBeT6I7y/Ek3Pb2ktt/QwS3SgqS70lbQ4yliyHNDxG8
JrHM8nfREnKOjdu5rYtg4An5zOAxS6g9aunT/lsEZWyNWug6LGHlsN6NuB0E
rJm07TXOtQQ7cem3XOwE9CWtK6XZWMK+XyvOYtIEzG05R/W32wI+ZkYEH3Ei
4MyV3Sqfqs1h/3h2UUwvAekVFaigwRTY5TzXywYI+Cf3qabWE1NYvCynNzpE
wKA8x9jjuaaQR345LTlGwP3i3gyJMabAfXaY0DVLwJOO7UNxx01hM5TGkI6K
iAK+XyTjpo/DOyaVV/r8RAQ3wwB77uOQuffO415DIi59lrmkRDaGtVXd/Ehj
IubK2IabMhrDsfqVu2rHiLjx2aY56rsR0JkbxOebEdFZWb9RqtEIAkM3zlw6
SUT59cR7/vZGYNZ/QlLWg4j1w6mWk/cNgTmQOzc+goi0cncNO+QM4HJjQqZh
NRFHLvWvcsTowcKHxtSNGiIy/krfPPGfHlj9Xk0urCXihHxgXKmDHsio2MTS
NBJRLmAXd4KqHoyWiAe/bCMisx4ZWL/qwr6MBlvpYSLGiBrz7jbXhVnv7yJM
y0SkLtpeeit3BIwFLfO7xERxa19kjg+nNmROyzXaiosir01zXCSNNkw/Zni/
KCGK5wZOEPPWtCAUa9nZpEVxzwq1BMNbLXjkRg41VxRFpsyYRzZ3tYCx/LvZ
+GFRnH//oVF0rxa06yRSLVmJ4iMXmvpNA03Q9Gm35YgVRavB0QY6O4DN0Xnd
luuiSJP2Ms9HE6BKm3nf+XhR/FAqy/tNHECc35ThQ5Io5mgds5Zd0QDmlrGq
h+n/XLx1oDpWA0b5l1gwTxRF80m0S7WHwbeVu9GnQRRnzrn3GSodgiwhZ7Ge
H//uY9RS3WWnBupK0nLOv0SxzsDpxZqeGgwfXTuwvi6Kf1nfiFCU1IDhfLSh
2JYouhp5evEwq4Hv62L/0B0k7NOXfUSoUwWMXm2UYSOhi9X6N36SKkwuR51K
kCThVOztVetfKiDWXJhuYktCgZZpo5AeZeiTWc8btyMhh2MHk1WtMlxI1688
Y0/CYoH95ocfKUP36fn+aCcSej5qs1CMVwZ/duldDR4kfK6gxl1qpAwNp0pD
5AP+9fEZSq70K4HNepUjewIJdeaGdVw+7YNk2SapwXoSVvhs+vwgKMJDVdtd
EY0kbBPuKonlUIQG7bU5xSYSHnoYyCJFowhLJ8Xzb7SSUPpHOE/SrAIYRl8n
mPaQsLxAljz/WAHoPplxD7wj4bXhOcdhDQUISZ7607tGwmdTYrNXB+XAfXXn
604pMjYeUCv+VisN9sU6fXYyZPyzlqcgWigNVk5R3cuyZOS7nD/qdkMadPtp
2nYrkjHMI+0EyV0axEt2vHQ6QMa7KoO33dmlYcaZKn9Dm4x+45wF7J5S4Dr4
+8LeU2TM/2rqmkzeC85PVoixSWRM31d5Na5DHLwizLcMbpDx5kf6x0lV4hBo
XvWWOYWMg4kptvkPxOHaj8DE5HQyRkl8ZKe9KA6lahu/M+6RsYiKWzFVShw2
Xm2PFJSQ0fqQhsB08h5IHmROaGkno4FFfs/UaTG4nevtGd1JxlOlvOxbJ8Qg
N6BPW7+bjMQUegYxXTF4xpO82d1HxmQw+5hDEoNxGy7PoTdkFNN/k28zTgaJ
KX7tySkymiQ8f11gRgaFqmCRvBkybvkQdlRpkkH96vsNtzkytsYrsA8okMFI
4l75/AIZhYYVbyizkcH/LFHk+3cy6h10r33cQ4LQQ1c2KlbJaMdy6ZxCLQmu
skwOB/wg49xPqVuvSkiQWZYbt75OxpjnmcJscSTICd/pUbNJxk9FAg7dwSQo
MXXTCt0iY+3I8+m0MySoIrUJa/wlY9zcYraPDQnqV8U3trfJ+N9lzeuWBiT4
HzQ4yYU=
"]]},
Annotation[#, "Charting`Private`Tag#2"]& ],
TagBox[
{RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2],
Opacity[1.], Dashing[{0, Small}], LineBox[CompressedData["
1:eJwVlHc0Fo4bxY0IEa+93/f1WlllREo9T1aDCBmhjIyyKSGKKCNkpMxs0RCK
kmRlZa/shqxIIWQVv+/vr/vHPed+7jn3nEu2dTe0p6GionKkpqL6vz68YUsv
bxd5JFvNPX57ex7qe0m6pqRLsLlyOWRmah62G6tCSCQ/mInZFp5un4eHNdFE
OlIE+Fgw8wqlzYPLYW/XVWIy7GnTsvdSnYfezYsJC8TH8DnqiWyZzy/YOfJN
4ifxDWiv+HxXpPkJWS0Znj+IH2A4SOnBls4sLCeVSX2J+gDxX0Rm8vbPgrZj
63jP+ge4OHRW1Zo4C3O0q8YVvS2wZU6JY1magQOH9Q5GhLWBM9/zcydSZ6Cr
6C+NxHwnmJSfuqcy/x0CW2ROylv1wsS/eNfg3Gl4XhQx4iI3DOU7bAJTj07C
LPts1EmbYThiZWTwbt8kSFw9eUQyYRi8Dq3cniNOQqbarqzx9WG4Ot8z57U1
AfEfohzMG0bAnOthhHDlBFwdj1k8ZvkJXErnv0yrTkDGrtYQgtZXUBKXLt48
Mg6O0J085zUOHS1/pHa6jgFV9p+Kkchx+JTKc9XXagySdgiOtuSOg6Hb5VPL
BmPQ/MFB+HH/OKjrsAbtUhkDyTN/s+0PToBXXTbba+ox+H5R4tln6kkghx/p
2Uz6Ck7x16u6YqdA64//Rcb0L+A2uWe89PkMFGJQ1+jzUfh6foih9sMMmM2M
pxc8GAWjwXC59okZUE75PBR+YxQOtE77TfLPwkWt16dD9UaBtiSPjTtsFh72
L9tenh+BpADyER+rHxBF8+T0zv0jUMvBl6zK9hMKdvD/yO4YAibyLYkvBxag
UPOc0sEDA9CsFrf3htYCjL+q9V4QG4BQs3QVIcMF+MccJVzGMQA0seXHLJwX
oM5qw/fSfD9sbM05DjxcgBSDZq7r+f3wY9S4oJNmEbjlPfZp8/dDW5LEnpq2
RThdd6OCg+kj3GVrlcqyXoLpFoZ/xmy98EZFqEzPbQnO8NBNs1H9t/N5d/jr
vwRhJU9eDs33wKFCjjOmiUsQQ7rfkNDZA99PWF5n6ViCtLT44KKYHtAI+dnp
d2gZIre1VVzZe2BthdXbkHsFpJsVDleQu8F25Ew1bdsfiC6S473R0gFMqWOu
nkN/gDTma1RS3AEvzN0Ev0z9Ab2KHzIbDzqAdjjMr4J6Fa4pTnm2XeiA3MEK
RU+VVQjif6PrudUOUx9JBZ+zVyHlnu7bZyrt4NQ1F/vGbw0GiIxSnm9awbPh
lq27xAa4JT5Zu/enGYQntOn/KG6AmKL3Q7bxZmilYXwSgBvg174VnNbZDGIY
vRhxdgO+meR/HStohqGK+0G5kRuw4l+TQrZshqPFj9KH5jfg3PehVqeGJiCk
Ng9rlG/C7Jdxxr7sRijxYDbiPfEPCoyUqh+G1kNbCodfock/UGqdcz7gXQ9T
9fwZ6nb/4Prm5/6xC/XAz7fnh0vgP9C3CSqzPloPt2q1QmrL/sFVXe+DLP/e
gwl74EsnkS14f9ryKbfPe9h4ucjxbnMLFI//DEn0roMsf+fZfaZUWO51h9yX
XAP7ahjXws5RYSwh2LAkqgZqdhTQfblAhZVzDt+TAmvga/QEKdqDCh2KeUXC
7GtAOPOc6UwEFbpJO33/LF8DKfX69VmVVLh+4a71TFI1xLMopbOLUGORYsU0
LXsVBGf8NVieo0Y7l8C+jUNv4fS+ck/pJWo8H7xtPyz+FoRrL8fZrlPjk0x6
ixbCW6j4NtvVRUeDUbpDaiPTFfBbbEi/UJgGPSxoblQnVIDts7JTDqdpkFA2
xRi2+AaOvnE7MfiSBmfutQ9VvioHqt6vWHmNFtPKqYWVXV/BrZmqrGs3aVEs
9pGfifkrYKR6SKMaToslSz6vQ4+9AnbZs/Vl92kxukwxl1vkFYiFdR8rKqbF
rYt3On4PlMHJQ3V62VO0uJH551esdhncy8mxDDfcgWkbGSNMe0tB/IqD7xkp
OnxxNC9KR+oFyB78YpSxjw7vFzv77BR8AUpUZntnlenwVZbJgw6WF6AedWIq
UIMOMxjcT91YLIHzuTJnnlrSYWDW1lPbNyXwoO/3XpoYOkyczkxV0SkBuv2B
00VLdGhbkCgzcLUYJlYSTXa9o8e9hn4LhoOFkH1U8fKn9/RICJl6/qOqEKyi
O2KKWuhRQPIdc0peIQyL0n0wGqTHV7t4z6lcLoRuI69DaUv0eEx9p4EXayFU
leiSZKV2IsU+oXJI5xkkulLP6iXuRP881ctLvU/g5KTT9XhPBnxtfSmmQKgA
tK9Tnmn6MuA7yuXMm4wFoM41OvznBgPqLl4Ld17Jh4Napw5YRDHg0SrtPM/2
fJDK27tEyWfA8M3CO1o38mGX/fLFslEG/ElTu7j97RG0TVw/M3iMEQmE+Z/W
5XmgNxErLSzMhCLa/87SxeZAm/REn6UoE+o3bbA2BuWAzmWVG6lSTHiBRrUg
3jMHjtN87uJVYcLf4GWub5QD6iTpqxynmZDCo1VvzJMD+y0bahiCmbBhn2r5
3axsEOxbN16aZELVsdUpr6osmH1vG9RcuAuJT+7lS/JmAjFu0Olu6S5kdL9N
vsuUCWfO6xmfebsLQ3IJylvrGVC1pir1tXkXbooPtdLXZ0C8LKFvdXwXRjRw
p0iezYBDidUSEvzMaKxVyJkelg5RToKdt0OZMaG+6XzHchrIEfqFNKxYMFI5
S86eOQWmoqeC79uzoDXTvYqB1WR4yLQ6Pe3MguImX6+bjycD8w7eF1G+LNhz
+5JPbEUyzP45q90fx4KN+9x7Ki8lQ97oJ7dL9Sx4jqVOirk1CQQLJqtj9uzG
7cVHfnuTE4EJVmxGl3bjyzhJwTXr++B7VJLh1cZupPXpuleidx+mNCyex1Cz
orPatyfX1O5D3fHaDXVWViSfGb95iPc+XDOMvvdYihVvWR2wvtqVAD/sxRqu
2rBi2yVapwaNBGiLMpYkdLLioEu5kfv+e3Dsp/mqiDEbJu+l1T6pHgfpnCG9
gWZsmJJgsNmuGAfLh54WjVqwYdMWzdA5sTjIvLPp+MCWDc0CGieyGOJgQyJt
kNGDDWvNFEUqOmPhme2nNwt32NBf9OplEetYYBu0CqiqYcO5/EB5QY4YGKyz
ozaXIWA71Z2UuPVIWDg6zH99LwFf+3RFPh6PhJ21+kqZCgQkLGTm9rRHgnL1
QcepAwSUrJfjMcuOhIS3bO1eWgQcsfC8I6cbCfqllUmR5wk4UI3Erew70JjH
ue9dLAGT//g1tltGQFl4/XnSCgEdzFdtrm+FQsHJVt6wNQIW3W87uTYbCinM
PT0/NwmoCaUNIQOhEBT7RfstDTtmHw9WbSsOBd2kDTkTNnY0zZeIJ9uFwrf8
fduR0uxIMi36091+G3Y3pWWs2rBjbpvYhR/PboEDnffXjg525BRN6lNMDAZ+
4oeBzW52lBY+peMTHgwdB4Q6JT+y421fN49Gv2BQdml4FzzCjivdS5lhlsFA
38uVqvydHSV94pITRIIhL/OVcTo1Bx53JK90Fd+EiUNrLa5KHKiqRS19/2MQ
XPDyL2NO4cBezRWrsYAboKzwuWzPQw7c3wQTe+1vANNvfKWdyYFeTZo9sadu
QLEn/eugRxxI5af7IkL4Bvz1iCtffsGB3tu2y8a11+GBe/7b0VYO3OOpvF+X
6Tp8cOmtffaPA/d+9AvRf+wPex2lO3RtODH1zSn5Hl4/+HyJ6F5ox4mSzp8P
P6H1gygXDrbdFzlRTGOemPDLF2Y8Nw063TjR84W/5MN6X8gJaP1oEMCJmX+d
Hgd7+gJPvPMnk0ROPFhJfftuhw9sVz6ds27nRMsb62ua969CJ7vMLm9VLrxx
J49PzvAKHHF1nUlV48InilF68upX4HnT86Y64MKnLe48RxWuwN0A+Vts2lxY
pZN5OJT9CuhOKf97asiFwTT+zXm9l6HlzdH5b85cuMftt6m82WVosDbtPZ3O
hde687+rOHnB2+fBqTK03Djst7JOX+wB9LrG/In03DguQ1PdluUBBjMSydRM
3MidaJKXfs8DpintD/rZuNHO9eYzBx8P4EjmiQ8S5sZn2j63Q8EDnEOehfep
cuOlt2b06znuIGDW7x3gwY3v5Ux/rW25gj+11Om2T9zYn/ql+tqKE0xp7hoU
H+PG5omypZnPTnA6fM7q5gQ38jxbZHJpdgJR1iJ35R/ceEb/Um5BqhO0CSrF
ZK7917fxeyu1hhMIHzjScYWDBx9JB1iK378EdW6GukIneHD+ulh6h/ZFYBq9
dtytlAd7jL40XBm1B2Wfxywxr3mwSc+D5kKrPdiwD/YUVfBgY8Fy/PkKeyg/
vv/cYg0PimlD6PUke3Aom/e80s6DfTa+CWeN7aH2rl3qtSkejIt5fv5mt91/
f6X3K5SXFwvseGtP9F6AyUfkhIwAXpQXnDbO37CBuVtj67RBvLjlsxLh9sMG
fttmWV0M4UUNJaUs9VEboCKSpeXv8OJHYv4pQpUN8CeS6uoSedE3RdT9WLAN
nA4jLky+4MXVUE9fFhYbqHQU0pWZ4cU+kTtJr6WtIUGSb8cbYz4ceeH/sIj7
HFieF88fN+PDgbLO3JJtSxBNUDy525IP7coCBxu+W0Lp9qnYC7Z8+GogIlL0
rSX09QcL7nbnQ+b3I7FvrC2B4/ac0oVwPhy0m6zdX2QB8WPV9ixv+VAn8NRJ
7rPmEJvi0GRD4sed0c+5Ej+Zgs/V4MsBFH7MiGGZ5201hfOG6cREcX7k5P4g
+LjcFGSY+n3aZPhx95Hl48v3TOGDn5akiio/OqgbFCnpmALNWdEIZkN+HNIr
33Om0gS8eb6dfB3Cj/1Dt1TeFxiDecK5DuZpfgzicBWVKDACwZdMAs6z/BgX
PZ2QmWgEX7pfO374yY+HdZhmJcKMwI6VnTp0+T/eRjKHtYMRuN1pVNymFsB7
vEj0FjOC4KC9yYuCAqhhdZ5D8pEhPHahtus3FECBu4PKF0oMYE0zbz2jSgCH
FPeJlg3pQ8DbjJD6WgFsLTOvLK/RByqFFJaZegFMc7D81ZmvDzuJMWSFVgE8
NOT+7cBVfeBe9z1RPyCACmzqVksc+qBYqJv8fUEAQ+W2vf8Z6oEb1/IBeYog
fnZ53LX1WRfGJ9V968IEMV3MYS5T+iSoZ3RkS0UKovwPGylrrpOQaWbeHn9X
EB3vWZ1R2D4B51s9RS7cF8RXKewyrL0nYLg4s402RxC7wuSlH/ufgB7/LZJW
lSDKfXRMPd11HOoIFR+algWRq0UznjrsGGQflhdotxFCiRr7+dfiWlCnxxSy
aSeETq4N8nNcWvDNanx2z0UhLFkMbJGl0wJK8P2KUDchVG8o7hsc14TcxvWz
6C+EZjtCxdqzNCFPvy7pZYIQ7jOwyhQjaUKBjRF3SpMQEpnOjumJa0DhbW+C
o6wwltcXBlwwOQpzaueCb+8Txiv+GTsmjh8FmWXNpRxFYXw/2bLb/dBReGLL
+fGrqjCetheIyCUdhQJ4mWSuLYx70oUVon4g5K4vEPWshFFnXUbvWAhCiquL
3P44YeQUaHRxvgIQZnxBh3ZFGK2HCtnSw9UgW3/U0n5NGD05uNRCPdSg8oSx
W9OmMAaoe1YHm6nB78PH4iJpiLggahNRLqkGluLSAxxsRPzJUabL1XIIFFZ/
24pKE/GSQ0ffLbZD8Dkp+JqWDREHuXOmm5+qwv7RrMdh7URcOiYu4cerAmxy
F9eKuoiYJN6PWvQqMBcod2ywl4jJi/tfEpeVIZfydkJymIg/KnuvbHcqA6dz
H7FliohFVcLyl8KVYSOAVoeeioTFtbcGRjb3w9Au5drjfCRk/K79c3FOCZL2
pBa265DQSz9i98MVBVhe0s4LOUVC3TeTsi6TCqBf9TtNVZ+E7OQJ0omPCkBv
dDIqz5CEYz/vG8qUKYB3wLrT9bMkbLN5nPbAWwEMO00lZR1J2CLD+nRhTR6Y
vTlzooJJ6PRL9pkzozwE1kQn6bwhYZOsa/SxdDmY/VSTsF5BwgbH9OzUW3Jg
srkUm19JQl7GP4fpnOVARtk8graGhOK/V6t4D8jB4FPxa28bSSi69Xz5SK8s
KCRWW0j3kXDYQeKlL4ssTLkuCu+aJ6GazN+HknHScErAOK9FlIyKdCynx7ol
IWlCrsZCnIxp3woO+1RJwkQhw8icBBkDVWbMBZ9KQgBWsrFKk7G1ZnT53i1J
eGZPCTCSJ6OIlZqlygFJYCpeNBw9TEahV1b1mtkS0KR5l+qXCRlXzgzJSd0U
h6NuTRaECDLSKZiFvHMUhY3BGe36O//5jZox7iaiUKrBrOATRcbw/ZvH9mmJ
gjifAcOnGDLeDWG4+0lEFJjrh0sLHpCRSbaRfeozBQb5frFgLhm7u7cMcs9S
wKOBs8atmozNaVpmwWdFIEPQVrRthYwZI/RSJ4NIcFBRWs52lfzff/idUr1M
gr4Tyypra2Rs/OHxQcGBBAw+oTqif8n46IjsE01dEnh0P/EKoBHBl5rc0uO8
JMDQpRoZVhHU+NWjznCRCN/mb52LlhTB2Mri6sPjQiD6Pv+BnoUIst/eWBQn
CECHzFruqKUImkav0Yv+5QffB8dfOp0Xwf0lfs7y0/zQemmmM9RGBKffX1oI
eMcPXmzSjNWOIignOBnx0Ykfqs899997RQSpw5E/uJkPzNdKrdmi/+NRnUq7
HMMLsbJ1Uj1VIvjF4kq67AluKDhgwRhcI4L8ETfhkjI3VGssT8vXiaCehPnz
Ugo3/DornhfXIIJ2S2o117a4QCf0DtGgTQS1qSbV60q5gP6LIWfXkAhuhk+a
KYpygX/s+L/2ZRFcafF/rLmbExyWdnR/kKKg73tu5uvM7HD+iWaHpQwFDcwO
T53aIoCJza3WeVkK3uFlnNqzQADtTtpGLnkK/gqKUqTtI4D4U5q3NioUnON4
wn4wjQCTtlR56xoUTD3caF4iRwC7nk3fPecoqBLUohZpwQa2Jb9JETEUDDpz