-
Notifications
You must be signed in to change notification settings - Fork 0
/
PhysRevAccelBeams.23.064001.nb
3368 lines (3329 loc) · 146 KB
/
PhysRevAccelBeams.23.064001.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 149359, 3360]
NotebookOptionsPosition[ 146531, 3304]
NotebookOutlinePosition[ 146921, 3320]
CellTagsIndexPosition[ 146878, 3317]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[TextData[StyleBox["Model-independent inference of laser intensity", \
"Title",
FontWeight->"Regular",
FontColor->RGBColor[
0.2964217593652247, 0.6292210269321736, 0.2727702754253452]]], "Text",
CellChangeTimes->{{3.822636147120782*^9, 3.822636149053595*^9}, {
3.822636240732341*^9, 3.82263625191656*^9}, {3.822637212068983*^9,
3.822637212721833*^9}, {3.8370505560603237`*^9, 3.83705055679113*^9}, {
3.837050599508451*^9, 3.8370506004619293`*^9}, 3.8629143517829733`*^9,
3.862976929690419*^9},ExpressionUUID->"d694cee5-9c16-428e-91c8-\
e62ad6733d79"],
Cell[TextData[{
StyleBox["T. G. Blackburn, E. Gerstmayr, S. P. D. Mangles, and M. Marklund,\n\
PHYSICAL REVIEW ACCELERATORS AND BEAMS ", "Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox["23", "Section",
FontSize->24,
FontWeight->"Bold",
FontColor->GrayLevel[0]],
StyleBox[", 064001 (2020)", "Section",
FontSize->24,
FontColor->GrayLevel[0]]
}], "Text",
CellChangeTimes->{{3.853385722669046*^9, 3.853385735792059*^9}, {
3.859957315418047*^9, 3.8599573162489147`*^9}, {3.8629143834043207`*^9,
3.8629143973866158`*^9}, {3.8629769538942137`*^9, 3.86297696789814*^9}},
FontSize->14,ExpressionUUID->"a3180e12-7795-4ee9-9bec-265f6fc249ce"],
Cell[TextData[{
StyleBox["Notebook: \[CapitalOAcute]scar Amaro, 2021 + June 2022, @",
"Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox[ButtonBox[" ",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://epp.ist.utl.pt/"], None},
ButtonNote->"http://epp.ist.utl.pt/"], "Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox[ButtonBox["GoLP-EPP",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://epp.ist.utl.pt/"], None},
ButtonNote->"http://epp.ist.utl.pt/"], "Section",
FontSize->24,
FontVariations->{"Underline"->True},
FontColor->GrayLevel[0]]
}], "Text",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9},
3.822636391632341*^9, {3.8226372468331547`*^9, 3.822637246833611*^9},
3.8370505427931337`*^9, {3.8629143291085377`*^9, 3.862914339745529*^9}, {
3.862976964550023*^9, 3.862976965406479*^9}},
FontSize->14,ExpressionUUID->"5a376d06-55be-496d-9bce-f8a1ae32732b"],
Cell[TextData[{
StyleBox["Abstract", "Section",
FontSize->24,
FontWeight->"Bold",
FontColor->GrayLevel[0]],
StyleBox["\n\[OpenCurlyDoubleQuote]measurement of the variances of this \
profile in the planes parallel and perpendicular to the laser polarization, \
and the mean initial and final energies of the electron beam, allows the \
intensity of the laser pulse to be inferred in a way that is independent of \
the model of the electron dynamics\[CloseCurlyDoubleQuote]", "Section",
FontSize->24,
FontColor->GrayLevel[0]]
}], "Text",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9}, {
3.822636391632341*^9, 3.8226364148286*^9}, {3.822636632459257*^9,
3.82263666754714*^9}, {3.8226367225529222`*^9, 3.822636739164402*^9}, {
3.837050546673011*^9, 3.837050596860178*^9}, {3.86291812853481*^9,
3.862918130139956*^9}, {3.862928158750032*^9, 3.862928162338756*^9}, {
3.862969717288615*^9, 3.862969767023841*^9}, {3.862976995851549*^9,
3.8629769980303383`*^9}},
FontSize->14,ExpressionUUID->"93da2d59-f277-43e1-965a-51636c71d1a4"],
Cell[CellGroupData[{
Cell[TextData[StyleBox["Figure 1", "Section",
FontSize->24,
FontColor->GrayLevel[0]]], "Chapter",
CellChangeTimes->{{3.862928225660325*^9, 3.8629282569900227`*^9}, {
3.862969798101722*^9, 3.86296980880818*^9}, {3.862977008318039*^9,
3.862977023626945*^9}, {3.862977838854087*^9, 3.862977839919753*^9}},
FontSize->14,ExpressionUUID->"35a2bcfc-9b4d-470e-bd65-99a37163e238"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"Clear", "[",
RowBox[{
"\[Sigma]pll", ",", "\[Sigma]prp", ",", "\[Gamma]i", ",", "\[Gamma]f", ",",
"a0", ",", "f2", ",", "f4", ",", "R", ",", "\[Omega]0", ",",
"\[Omega]0eV", ",", "\[Tau]"}], "]"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"m", "=",
RowBox[{"0.511", " ",
RowBox[{"10", "^", "6"}]}]}], ";",
RowBox[{"(*",
RowBox[{"[", "eV", "]"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"\[Alpha]", "=",
RowBox[{"1", "/", "137"}]}], ";"}],
RowBox[{"(*",
RowBox[{"[", "]"}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"f2", "=",
RowBox[{"\[Omega]0", " ", "\[Tau]", " ",
RowBox[{"Sqrt", "[",
RowBox[{"\[Pi]", "/",
RowBox[{"(",
RowBox[{"4",
RowBox[{"Log", "[", "2", "]"}]}], ")"}]}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"f4", "=",
RowBox[{"f2", "/",
RowBox[{"Sqrt", "[", "2", "]"}]}]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"equation", " ", "1"}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Sigma]prp", "=",
RowBox[{"Sqrt", "[",
RowBox[{
FractionBox["5",
RowBox[{"8", "\[Gamma]i", " ", "\[Gamma]f"}]], "+",
RowBox[{"\[Delta]", "^", "2"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"equation", " ", "2"}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Sigma]pll", "=",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"a0", "^", "2"}],
RowBox[{"4", "\[Gamma]i", " ", "\[Gamma]f"}]],
FractionBox["f4", "f2"]}], "+",
RowBox[{"\[Sigma]prp", "^", "2"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Lambda]\[Mu]m", "=", "0.8"}], ";",
RowBox[{"(*",
RowBox[{"[", "\[Mu]m", "]"}], "*)"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"\[Omega]0", "=",
RowBox[{"2", "\[Pi]", " ", "3", " ",
RowBox[{
RowBox[{"10", "^", "8"}], "/",
RowBox[{"(",
RowBox[{"\[Lambda]\[Mu]m", " ",
RowBox[{"10", "^",
RowBox[{"-", "6"}]}]}], ")"}]}]}]}], ";",
RowBox[{"(*",
RowBox[{"[",
RowBox[{"s", "-", "1"}], "]"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"\[Omega]0eV", "=",
RowBox[{"\[Omega]0", " ", "1.05", " ",
RowBox[{
RowBox[{"10", "^",
RowBox[{"-", "34"}]}], " ", "/",
RowBox[{"(",
RowBox[{"9.11", " ",
RowBox[{"10", "^",
RowBox[{"-", "31"}]}], " ",
RowBox[{
RowBox[{"(",
RowBox[{"3", " ",
RowBox[{"10", "^", "8"}]}], ")"}], "^", "2"}]}], ")"}]}], " ",
"m"}]}], ";", " ",
RowBox[{"(*",
RowBox[{"[", "eV", "]"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"\[Tau]", "=",
RowBox[{"40", " ",
RowBox[{"10", "^",
RowBox[{"-", "15"}]}]}]}], ";",
RowBox[{"(*",
RowBox[{"[", "s", "]"}], "*)"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"\[Delta]", "=",
RowBox[{"2", " ",
RowBox[{"10", "^",
RowBox[{"-", "3"}]}]}]}], ";",
RowBox[{"(*",
RowBox[{"[", "rad", "]"}], "*)"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"equation", " ", "3"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"\[Gamma]f", "=",
FractionBox["\[Gamma]i",
RowBox[{"1", "+",
RowBox[{"R", " ", "\[Gamma]i"}]}]]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"R", "=",
RowBox[{
FractionBox[
RowBox[{"2", "\[Alpha]", " ",
RowBox[{"a0", "^", "2"}], " ", "\[Omega]0eV"}],
RowBox[{"3", "m"}]], "f2"}]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ", "plot", " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{"GraphicsRow", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"LogPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"10", "^", "3"}], " ", "\[Sigma]pll"}], "/.",
RowBox[{"{",
RowBox[{"\[Gamma]i", "->",
RowBox[{"500", " ",
RowBox[{
RowBox[{"10", "^", "6"}], " ", "/", "m"}]}]}], "}"}]}], ",",
RowBox[{
RowBox[{
RowBox[{"10", "^", "3"}], " ", "\[Sigma]pll"}], "/.",
RowBox[{"{",
RowBox[{"\[Gamma]i", "->",
RowBox[{"1000", " ",
RowBox[{
RowBox[{"10", "^", "6"}], " ", "/", "m"}]}]}], "}"}]}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"a0", ",", "0", ",", "53"}], "}"}], ",",
RowBox[{"AspectRatio", "\[Rule]", "1"}], ",",
RowBox[{"ImageSize", "\[Rule]", "200"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Orange", ",", "Blue"}], "}"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<a0\>\"", ",", "\"\<\[Sigma]||[mrad]\>\""}], "}"}]}],
",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<500MeV\>\"", ",", "\"\<1GeV\>\""}], "}"}]}]}], "]"}],
",",
RowBox[{"LogPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"10", "^", "3"}], " ", "\[Sigma]prp"}], "/.",
RowBox[{"{",
RowBox[{"\[Gamma]i", "->",
RowBox[{"500", " ",
RowBox[{
RowBox[{"10", "^", "6"}], " ", "/", "m"}]}]}], "}"}]}], ",",
RowBox[{
RowBox[{
RowBox[{"10", "^", "3"}], " ", "\[Sigma]prp"}], "/.",
RowBox[{"{",
RowBox[{"\[Gamma]i", "->",
RowBox[{"1000", " ",
RowBox[{
RowBox[{"10", "^", "6"}], " ", "/", "m"}]}]}], "}"}]}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"a0", ",", "0", ",", "53"}], "}"}], ",",
RowBox[{"AspectRatio", "\[Rule]", "1"}], ",",
RowBox[{"ImageSize", "\[Rule]", "200"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Orange", ",", "Blue"}], "}"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<a0\>\"", ",", "\"\<\[Sigma]\[Perpendicular][mrad]\>\""}],
"}"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<500MeV\>\"", ",", "\"\<1GeV\>\""}], "}"}]}]}], "]"}]}],
"}"}], ",",
RowBox[{"ImageSize", "\[Rule]", "700"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.862977841497758*^9, 3.8629779360097446`*^9}, {
3.862977969029088*^9, 3.862978192601326*^9}, 3.8629782526317043`*^9,
3.862978399527492*^9, {3.862978516430929*^9, 3.862978626939012*^9},
3.862978717378928*^9, 3.86297875185461*^9, {3.862979049740759*^9,
3.862979050628273*^9}},
CellLabel->
"In[395]:=",ExpressionUUID->"0eb940ca-d117-4b12-ac0d-b5ed0e726be8"],
Cell[BoxData[
GraphicsBox[{{}, {InsetBox[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1, 0.5, 0]],
LineBox[CompressedData["
1:eJwVz3k81AkfB3CDcgx+ROXY5FZWIUfu71dox6RQVue4clVKkZEYKuzTWlet
jYyEjA5CVo5aNRU9YtmQUh7k7DeDKfcZ6/nj8/q83v99Puq+Ifv9hYWEhC6v
5v/dH/bu4e/a5bb+b6ldkTdJiH3eIX6akwblnwPI+FW/P15SS+PkgnRzElG4
6rEv4zOfZu+B7IZll+5VC1cqZ5pxykDMcfieXhYJMhf+qohtqYCVGRWllFUr
WXq2NsxWg+ao2m0xNglaSytjcuq1wFbRsMhYtWKva8I2DhceNc0OWmeToMrN
k2+reQlBJdq5c6vWypvIY7bUQaBwV2DjLRL0rtgbqgy8BufqCfPyHBIMjqc/
ez7bADbZk0TZbRJMHIac/aSaoCtOlvcqlwRLbbMucfVmiLm0hTuWR8KdyZHF
LZy3MBmm5RFXQIKOn4J9VGkrPKrSpn7lkHDvnXVic00bROkzHpy9S0LJ42TF
0JZ3oBmmkvb4AQlGOpVedZ0dEO35Y+OFYhIqbvQUbhh4D8pu8R1uJSQ8iTAw
fTrbCdn2d+wdy0mwIQ9GSwt/grxjQRleFSRwD1165SXVBbGh4TmplSTUW7S6
iap3w++D0wWGT0kgWRZVOpzPwJIwzgyvX/1b2fzJRa8PBgalkq0bSDgl8Fm+
UNoH9mEefMUmEgSeiY5NNf3glarwp1wrCVPQ1R7SMggMvR5b4R4SzC6EzGYe
GIItm79ahvWREFEmovKycwjG4m/ZzQ+SsKCm76swMAyy8gmWDqMkrFBY36pn
SdDQk2K8WyQBLeUU+qN5IDufvGN0hYQroZydVGE+jG0Wv6MoygPRgeYYhtQI
5L2QVSyV4oFknaq0sPoYnFmOy3qrygOq/ed0bc43CAhICv+wmweCfYofD4x9
g2oFfybHmQdtR1w3XTEdh5l+xzOJ+3mQFcrl9NSPw+j1lP5MTx7o5edWZgxP
gE07Z2t9BA9oFJ9OiS3TUHPMs9qhhAf60jd/MD87De2ih/YwH6/uVGr1Dqie
BmbxlEntXzz4YGjHe0mbgdrpTnZiEw8CvNUXok7MQrLBVbYanwfxz/tUBA/m
oaySMrj5Rz4ENSl5/zA5Dw+/lh+8acwH5w9uBXSrBZjX9HPWseaD/NcX+neb
FmDirYLtxb18yFfNt/EeXQT3RKe+tef4wGX5erVtW4bCza2vM57yYfnWObej
hyjIfT9hX8MYAc3dKYYyFyk4V9RjXhY4AjTBA+IFm4Knz3JqKs6NwHXbwWad
XgpKanGnhxJGQLvXgz7hL4zibkuRwyUj4Kxmbf9rmAhm/FHaQRMZhaz8taZV
KWtwnYPGcnfFKOy8y1aUr5fA6Nog/05TARgfHbJ+JiKHt5MmGNeffoPFnqMK
KTHrMWkgpHoqawK07g//1lGshNG8rTJHGVPACnHVqzZRxbpiExMdqxk4cayn
seaAOlovdWPqyiw4FOS4tgdoIpE5FVCZPg9mJ1tOPCnURp+cUy+TLRbh8AHx
AwyuLlbsuWba/mgJFliv8oP/2Yq63xNXdBWWoVxHkOBE1UfJ45aT1xJWgD2h
YdGvth2//fd8150gIXTJGYACI0MMrC/4bWw9BWX8mDeS9xrhH+c2ZVGeUNDf
SqbD3WMHlpS2qkrvE8Y3rYzuK+HGeLz8NTODJ4z1keXNKZdN8LrGl0JPpgg2
f372H0qBKepmLQpCJEUxnaSG670ww/UVxUfSMkRxkuJJN2raiSeLpU7e3bgG
PT8F8nJGzLHtalRgV84a9KljnuXPWWB8f/DhNqW1qOnyWm9UyAr71fiXwlPX
4nhmc4n7Zms89yizfo4qhgenPiqz9WxwMcFMw5clhm9kclxpzrYo/zECAqfF
cOFNfk1REOBgydGi00Hi6LvHI2HGHLGg1XetW6s47pWrut7YgFi4o+RhMkqg
qLdyurSLHWZEeN9VK5RAlZVNpUVtdpgrHS95X0wSq1nft7N8diFbm9FFD5FE
9YTe/NrhXdhq4LxuuVkSZYNvRRlF2KOG0an51B1UbOpi0BSW7XH+1Wm59BQq
DrGfbd9/xQEf5ik3y3+hYoLVYuQrOUek5U7uM3eUwvHjljV3MhzRUCzucCBb
CgdP/cyo2rIbL6+0x4rNSqFZnayKTtVuPMnnBdq5SKM7p+VvEeufMMu4donI
lcY5/6ABhb9/wucHbTaozEhjUKmoIH0/Dc0vaZcKOcqguZPdurPvaajXcmyT
1DUZTHl5mB3j74QCtnuVZr8MltWdV1ziO2GYg5fIL/oEMgsFuq5jTnjf3sfv
n20EWl8N2lnw1Qk3Ggc9VDQgsGHPMQ/nKSdUvnlt9oERgb1t9unZ353womdR
cIsZgTJ962RtZOmY0/L8f7J2BAZ/LxOLMaVjGpXJj/uZwB29ehvbdtJRkGS8
v9GDwDlugY6OJR1dbh7Jlz1EYHx8pmOLLR2tuOOL2UcIZFMvxanS6KihyU6v
8CKwUcll5dkROqrSUj17TxCYttggI8+gI1vp8D6tUwR6dO9SDfSiYySvVudE
MIH9uWY2hB8ds5r9rk2cIXBBVzXK6zQdt/3K2id6nkCuRGbinyF0dDUOj6OF
E/jLiFyWWCgd+V5qeUlMAteVrqkpZdKReuHWDYVIAjvTYhtEIuk4xQo/c+gi
gTmh8x8ORtFxvZW0QXYUgX7uYV+KWHS0exrY2RtN4FazsZmVWDpWS1w9qRlD
4L8XuMcO
"]]},
Annotation[#, "Charting`Private`Tag$116648#1"]& ],
TagBox[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0, 0, 1]],
LineBox[CompressedData["
1:eJwV0nk01YkXAHD79l70LEUkimfNpOxL99q9RxFGGyXZIkM0UkJJy9QvmmFi
MhnklVavzZYsUSN67zeEpF+EfL9PsifLs8z398c993zOuefc5Vzt4BifUDER
EZHfqPh/7o9vv5+l+2jrdZFn/gptBKTWdshEc64AzDkdUaTcefDBc3dOAcgu
3KxTpzxCTnzvnimB6ooeZyPKYmVrci04XPDw619EyvKJ1U9S+U9gMYIzHEBZ
zWZfa9NMBRyTUpVPpayzsDzC0H4OAw+Zobcoq/Z6n93IqQPFsKrxDsqadYVK
bZUvoDirgiv3lqovnCxM4DcCaItzXCgbpjltUh94BdVRibxzlH84mF1TO9ME
ca5TBnzKZs6DniH0FkgSsqvU2wmw0bX4IKPNg0kP35QYyjemhoX6nH+gU/Vx
gUEHAcwQZaek0laoii5YyqRc0m53kVfZBg0KkZkLlB88vawax28Hb/Ucd0En
AabMsv2NXR3A1TkaG/6OgCdXe26uGuiEsWdazV8pVx37wfzZTBcUrX7KkHtP
gL1g58kVYt0w5zO/VEi5btephv30D2BEa9bAbgJeWrfukND+CCL21wUZHwgQ
JFuXMzmfwCU4oCyhh9q3jNftZdgHu9/vXIu9BESNHlhKLO2DDN+7DxU+ETC6
76JLS2U/jJSmBNX3EfANPryN4X+GuIeKr38aJMAiMWYm13cQnPauv3yIIOAY
V1z9Rdcg3ApKPBFJEjCvZRysPED1fXOPnzJEwLJo8njFjADitaI8J0YIQBuG
cv/JIah7P8daO0ZAWhzHkib2BWyFvVFe4wRIDPBSAunDENU4p/ZqkgC5Rs0V
YtojYHEkh7Y4QwDN6VO2LmcchpO+X7siTsLodtX3viPj8Ovffc4oSULbHu+1
aeYToFK2WnVGioRrcXWcnpcTkCrsMD8hR4JhUUFZDjEJ1/qrN3YySHAXPdAl
qz8NhyNZcwPaJBiv+EPDKnYaPJq6OJI6JKxUaw0Kq5iGS7HR4SZMEt5tchh6
4f4djhrNbvjdkISwIO35pEMzcFrm3e7yLSSk1/apj96Zg2nJ1JBtbiREtKgF
aUzNgbCz534viwTPdzuK2bbzcKMtcyrRkwSlsXrjWy3zMNGnHV23g4QizSL7
oK9CaJRrEBQFkFCXHLy/beMS8E9ZxT2JJ2Hp+pEde3eJ4izX68TCTRI2uGZs
kj8hiveKP3tvukPtM3pHoT5PFNUlWmUi75Pw29bPPGavKBZ2XVEZe0yCbq8/
ezJUDI2qzWKhnppHy87pl3hxPM3deHnmf9S9iqTMyzMkUZOlOFGuKoBa9gbl
SK4kXthR61GsIYDPkzCl0SaJjIUi1lUtAZg4HX+YpiKF0Xb5zEv6AqgfGN64
/U8pFBfyDCqsBCDQaWUO3pZG++jC2LV7BGB5K09V6aUsetx3CJUsFMDRg1o1
GoQs8mlppRc5AuCu4xxkSsth03rBOpU7AjDMffDAmiWHHkkGkdaPBaDxS71z
EE8OTactQ2tfCkAsioy930HDqr8TpmuGBcA32fLajViBws4F3ZO2Q7Bl76Bd
jTgDo7296OFDQ+Bo7nTytgoDH1y50/rX2BD4KBQ+y9Zj4Gmd86Mfp4cgtiHA
JsqDgZW66dqR1F/eM2q3VM1i4B+v0xReqH8B3YUXm+PWK2J/psa6aK8vsPp6
gT7TQQmdV/lE51Z9AWHPXuWMFBU8V53TeuavYdC5TVzquKeGPt57434/PgLJ
Md6GFWaa6CIyvyTxdAwOBfQ0V/pqY8EB/2vPZCfAuTjf+23YBlT62lH755ZJ
sIjkH6q6qYvGF596SKZNwW5fGd/AOj30Cg3fKVL/DeaTG4oO/9cAs26sNZNd
nIZHzNGzLJoxTtq0xw/7zUDe5Hrrfi0TXDWS6XYvexa88geg2HQTuo7k9zh/
nQP5kISrl7eZ4uPu1d83Wgsh1Fa+w89/MzLHx9XeRi7A69bAj2k/b8HVx+MV
AriL8PL4I17GaTNkyWSe0+9eAt6nmvOixeaYdnkkZkZOBLMFtJ8N6y2wV+/O
jpAiEZwS3cc2bbHE0crFo1HGorivO3wof9gK9c9pHLlUI4oHGhNiv8xaI0Nq
685HTmK4weuV4VcRW3zuK73ZvEEMJ3J5D/zW2eEbWsF2K7Y47vz2fk2eoT06
BHw0M34pjq/l873dPbdiqvL5Q+ZuEjj/uqjybgTg2I9E+NMGCQz28D/73Qqx
SZlmq2YuidsY5b81NyGWF28PNLkviRJBa7JXeDlgzAUxsmSNFKovry292+aA
JZMR666fkcKK5EWT5AOOaBQ7i+OTUqh9trfoOeGICXHDWSd3SePKw9eTTI85
oV/KOZn1jdLY8iHQXXnJCScyW/AIUwYH82pMfNKcMTjs6vr2dBk8ays83sBw
wduqbp9XDMngxEGbyhs5LmhyYoFf7CyLn6N+DCzXd8Xg26/SuziyaNG4Up1Z
7oplSu9LXMXl0I/DfyNu54amUen4dJcczoZGDCi/cUPpfrOfzj+Ww4hSidFs
H3esVUppvidFQyuWg2Jspzs6ijheeORPw4wXu/NSQll4ex9vjLxLQ27jUdWF
Lyz0ORG4+dscDRNujup5j7CwJOxh5jYhDe0uRFgWj7GwQuWf1psLNGzyCPD3
/MZC9dPJEruXadjb5pT95yILJV5J6VRL0FG+T3Gl/Uo2cv0dvZIV6Hh4kSud
Ys7G+P9wjwzr0HFzr+HqNks2TshMxjgw6ThbV8xk2rDxjWiSb44eHdPTc134
W9n4Dy+u2dGQjnm0U2c03dn4U2RoYu4PdGxW81qu2cNGoe7Dd1tt6HhF2CSv
FEjV11gYZ9nS0f+jo2b4fjb+quQQRtrRsb/Awl4hhI3KelMXM4GO83qaSfuj
2fjV3TKnx5mOdbK5Fx/HsJGhtk11sysdzw0zrknHsbFkSTL1rBsdFUslK0sT
2KhvELtoxKZj15XUJvHjbHwm1FdJ9aBjftzcu51JbFRZzlJs86RjiF88eTeZ
jTD7ZFpnOx0NLEa+L6ey8czdzJpjXnT8F8FFR/4=
"]]},
Annotation[#, "Charting`Private`Tag$116648#2"]& ]}}, {}}, {
DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2},
"HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None}, DisplayFunction -> Identity, DisplayFunction -> Identity,
Ticks -> {Automatic, Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& },
AxesOrigin -> {0, 0.7131420797304774}, FrameTicks -> {{Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2},
"HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "ClippingRange" -> {{{1.0816326530612245`*^-6,
52.999998918367346`}, {0.7131420797304774,
3.9365909884229175`}}, {{1.0816326530612245`*^-6,
52.999998918367346`}, {0.7131420797304774,
3.9365909884229175`}}}}, DisplayFunction -> Identity, AspectRatio ->
1, Axes -> {True, True}, AxesLabel -> {None, None},
AxesOrigin -> {0, 0.7131420797304774},
CoordinatesToolOptions -> {"DisplayFunction" -> ({
Part[#, 1],
Exp[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Part[#, 1],
Exp[
Part[#, 2]]}& )}, DisplayFunction :> Identity,
Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox["\"\[Sigma]||[mrad]\"", TraditionalForm], None}, {
FormBox["\"a0\"", TraditionalForm], None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> 200,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2},
"HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None}, PlotRange -> {{0, 53}, {0.7131420797304774,
3.9365909884229175`}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"\"500MeV\"", "\"1GeV\""}, "LineLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1, 0.5, 0]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1, 0.5, 0]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0, 0, 1]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0, 0, 1]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {
"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[1, 0.5, 0],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[0.6666666666666666, 0.33333333333333337`, 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"1", ",", "0.5`", ",", "0"}], "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[1, 0.5, 0];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[1, 0.5, 0], Editable -> False, Selectable ->
False]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0, 0, 1],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0., 0., 0.6666666666666666],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0", ",", "0", ",", "1"}], "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0, 0, 1];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0, 0, 1], Editable -> False, Selectable ->
False]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(FormBox[
GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"],
Alignment -> {Center, Baseline}, BaselinePosition -> Baseline],
DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}], TraditionalForm]& ),
Editable->True,
InterpretationFunction->(FormBox[
RowBox[{"Legended", "(",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], ")"}],
TraditionalForm]& )], {157.33333333333334, -105.525}, {
Center, Center}, {295.00000000000006, 201.}], InsetBox[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1, 0.5, 0]],
LineBox[CompressedData["
1:eJwV1Hk41VkYB3B7ZV8bInUzJCOirOE9st/I1mhBlywxyNKCuDTKLGSZmEnd
rLmkssVYUrZormxRliJCuNfl/lASiTn+OM95Ps/7Pud5zjnf5yWdDXby4eHi
4srEa3Mfv/CmOE35sUl6t9BQ5G0mxDb0bQ2ip8IDC2/Wpvu9Sp5Z03MguDhQ
+gr23PTCl3fL92GFX9lt0zxVOzJ06WXAsEtq3LRoxNPK2K5KqI+jm0Zhyxme
6WEs14BKXtDopn9c25iTID2DkvuTt6OxZUcd4vfTGyHopkgoFVuxMVeqt7YZ
hk5Pesds9ucu5l7uaoH3a4GXYrHV4swOyE+8gIqw/Lyr2Jpe6fUNywwQrUqc
/RX7kPmkrbdwO6w17HG+hm2orDu0ldQJy3/491/HvveJ/U2V/gqmdQUO/oGt
4i1tFlXaA23b3IQTsO+/MUrorO2FlHBPnhvYJf8myYZ1vYH5r1fMU7G1VKoo
LYN9ULCUnHoTu/KfkYLtE/0QSnFaScd+Eq6pU7c8CN0W07vvYBszT0SL8LyD
ooKa0bvYjSevPqcID4GysUFdNnarQY8jH+k9sDusGHRsJtWgWoX+AbzvZRhW
bN63qvOdvdoYHBobG6nCDuB4rkeUjkEv4232E2zOmQSL9tpxUDLvC2/G/gxD
r4O7PsLrlK+xr7F1I4KXM5wnYWdr5bZB7PAyXvnmwUnoW1AsG8Ze3a1+Vnpi
CpY61pymsDe4qfM1y0zoLhyaX8VGhhLS49EsKHnC58F1hwlxYXQ9IZ4ZkJp9
x+bH5pvojHEXZkOydvIpCWzBFkURHtIcGE8KJ+3DFjL7kK5Mn4cjOXbHKdic
Y7JvnefmQW5yz0/nsHtPO+yM01kAteIipWDsO2GN9JHWBXi69jIyFlstL6fq
1tQi7JlweZKLbc3tObhNdQliKV43ZrHVRW4r6IcsQXKAXswXbHG5Hg/fmiXw
C639i4vGhIEDpqxm6y8gFfBipwy2rwdpNcp/GT6z19oA+3rDmDznwQoMyuaE
0bD92uU8FD6twAv5Q7GF2LYDjvnkw6tQ9iS0uAJbimhSL2xfhW+3mOc7sPMU
84w9Zr/BtPbT+A3sRupZSu/+dbC2rOAJvMuE9cxQR9eT3MjxdITemUwmKFkm
HxC9wo2kdV55BWFbcx6INdG4UfTd8OJo7JsmHztVRrnRz40VGTRs5VEX8qIP
D6rmGex6h22728jszwu86O+Ma7VnsvB75QnoVCfzo3ueo/HR2UxoICtJ/1LG
j3Q6I11TsD8uwieFXn7ULXzyWB62hllkeZyMAFI/N5LIwG6aYO8/dlcA7dsQ
8N2eg/P3Y4/KZNEWxPDx/6caW6+QJivVug3NllI+iuUx4aLX7nqFqW3oaPe5
eWXssl10L5Utgqhf4pqsEbZaRkmJgY0gqlNfeOqHrfBnk7lHpyBy6c5yeY7N
EzAdUtwnhEh/93dQ7zGhS+Ngm9WUCApMc2jaQsd5YVefd9wiioyfdh8jYVsX
Gkm7qoqiNGenr4bYTbssKed/EUVS5ZTs89iV4qeW0jmiyN3khvEA9p3FGNL4
FzF0kVpRW1zAhIOuk0b1vBJI5IFzcfB9JhzRMYsukpFAI/s6tVKwncRy69L3
4rq46kAJdshzN8OAoxKIyhV7nYP96Kc3erJpEshtmOYfXIT/Y61ZO2yPJLK3
HncLf8CEHzJzVFVMpVCh18ZY9iMmfBtxlU6OkUGKXMO6zuV4fgkaalulyKDh
lkqLCGxbHVkHrhwZ9J88d2gmdlbim8SwJhnk4bWgwMRG+na8J/i2o9TgHS9j
HjPht79MFnclbEcnLN9HlFfgfJuTXpX//QNirFP3qFfh84umEvseyaESR8Hw
y3VMoAY7qNUcUkTBq+JCoQwm+LuNvKx1JiF6VjRFY4AJ5vlZDq99ldCBWP2l
8ik8H37p8n9SoIwKXT0SAlaYcMp5q7N7416kniw6ViTMglXq87zA7n1o/Wjt
flUSCx6rcOJthNSRflAdoWnAAtriHoPx3RooOw9xmTuywD5rAvK1DiBeZoWy
UhALRL0v/5Nkp4UoBYKXTBNY4HNYtO+4izZ6W4sMFgtY0Nbj/j7u0kF0rFJT
o+I/FrRGPu5M/vUQEkp0cm+dZkHnh/rfufN10MBRJbudwjOQzhS6pNaki1p3
vZJz15qBT9xnyFrtesh3ge0e+fMMnHl3jpXF1kf3z8XcF4+ZAc+WyyEzXw3Q
7Y1xC0v6DCjZv1Cb5TqM1By8IqY7ZmAho7Pk+C4jpF3eFaG5MgMnPr/dQVMz
Rmm0FN9iJTa0iWY5WNuaoIdJbd5LTmxYbcurfegHiJareP1mHBvOHnWJ/6KP
UIPJbWueMjbYSVTffMnAHtYMdR1nA5/HjnQRe1NU6CnB7yw5C/IbO0sf9poi
pl7WT3pHZqGG+l2D6nkEJf8ZtaQQPguk+NG8Z1NH0JW7zQ52RbMgHpgZpRVu
hoZbk/9K+zAL7UPu1tLrZqiCz1ZyWXoOJmn1Gk5x5mjdoMqfz2YO4g9/i3wu
YYE0TjzcrRs3BwtehrX3blkg3tdmdiY1c/Ax4Gf3alVLZNUYHx/+aQ50W8Tl
VaotUUuU0j6kwYHj9K4OXiMrpNG7cCPbhwNfffwmpDus0KplQ75uHgf8Svk4
6U7WaLXqapLZEAf0bUwlQ/qt0bHv9/oypQhIbj5Fi/GxQYTm/LC2IwFlLRdl
12ZskPLJyGvCiQRcLuDsdZizQWe1QnLFbhBg9IefXj5hg+wLrF5IJhHAOOrm
YvvZBmXwp/wol0LAaK9Z+t3vNqhYweSgShoBomOS4sbiZKTeL3nLlEZA4Pey
LTE6ZKTGcfCjPiRAe1Tth149MqoTG3T/9REBXxvzVVQMySgidulUfDEB169n
WHSZkFGNzIxPUikBNKGr1xStyYjUGtmRWUHASzn7jfrTZNR3Vau3oY6A1G8M
USl3MtpJEjzQ8pQAl/dHFM9RyMjV93g64xkB4zm6xmLeZPSh8VBITwMBq3sV
oyhBZKQ9//HixHMCGrdlJFQEk5HcvKAAs4WA39gSd7aEkdG/lNTM2VYCJEv5
a0svk1FuZNno0n8EDKbGMngjySjhjmXCKoOArLCVgRNRZOQue/DwRhsB3scv
TD+kkpFO6YVF3nYC9unOfdmIJaPf5QXKtnYQ8D9G3dIv
"]]},
Annotation[#, "Charting`Private`Tag$116720#1"]& ],
TagBox[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0, 0, 1]],
LineBox[CompressedData["
1:eJwV1Hk01mkUB3BbVLLvEd7KklRU9uVeEa83FSnGrgihlCYxQpm0MFmGykQG
USRLjWxNIjRKFNlC1ryLX4hEpMzjj+fc8znnnnuee849X9qRoANHebi4uG6T
t1yHT7cXJqs8MvXmeuIg0saEqGcdK4/nJsKhLc/cl93pVfSUnpsJFupNIcse
Z03N9szlAedzf8ayecrWpurmlsB/lxY6ly0c+m9pVEspGHLWKYkSyxm6tzbO
VYCfjPXZZW9cXBoXoz0FK9FzA8uWHbCN2ZJbA+ltZY5ixIo1WRJtlc+B121+
YNkbs6azQlrqob/QPFScWCPaXEt+5AUcrbuuLEG8zSul+tlcI6SnTXYve6fF
qI33miZw32mXJUlsqKLbu5LWDIy4qjAp4jtfqO/quW/hwLEcZxliVW9J8/Di
Vng5ttFLljiv3Ti2ubINlJQKw+WIix5fkw1uaQe55PY+eWJt1TKP+u4OuNF0
WmUdcemN/rvSI52Qk7c2UpG46uw2nSdz3UDDKA8asQnb8ZwQTw+MThmz1xPX
/HK+zmNNL0zq8lzYSNxg0GrHR/sAgb53htWI2REG5aq5g/DyDfhsW963rLln
v8YQ1McaBGkTB0wc/hlaPAROhYZXdhBPuMfubqocBo6I/Zge8Qz0vgtq+QiW
8b0nzIh1Q4PmUu1Hga9J5Js58dkSXvnn3aOQp7cnyZJ4QVnziOQIE7QudH3Z
Q7zEHfG5Yo4N3RMWYY7EaCgmOXyOA0kND6OdiaODc/UEecbgzBWVdDdivpHm
SLc1FBgV0pa8iFfXKwrx0MbB8EhAzCliQfPBFJXcz1DtYJScsPzffbLv7cc/
g5hO3UwycZuz7bponSlwOat8LJX4VnBNbn/DFOSynWOzlvfPziy7yZwGo8fN
RaXEdO7D3avUv8KDjrSofmJNob8U9E9+BTpPsPBHYlG5Vk+fiq/AE6pQwiHu
0jLjPKfPwuLE+OavxD6etIXwY3Mw13x+hdA7Jlx8NiQ/cX8eTK7ZIxL7Ncl5
KnyZh51+3ouWxDZddjkMowXg3UZv2kssMVmrea9pASqUrmS5EGcrZpt4fvoO
Fn3MbaHENRFHPNq2/IQlt1XtpcQ/b5+yc/mFGz800QyM25mwwTJeS/g3btz+
5u9SC2L6xH2R2jRuNNC8iHuJ/zT92Kw6wI3SsVFX3YlVBhwY00d5MJRtMniB
2EbZ2PzqaV5cqVab2UR8K5tfpzx+BYpIyRwP6GDCM8YGSf+SFRiZtOnrGeKP
0/BFoW0FLv6bce088VbzsIfRUvx4N6Nk8jpx7Qi1ZV86PwZ/PhFaS8ze2Ko6
mi+A3Zb66fKdTNC7lyYr0bAKZ0FAs4/4Vy/lagXmKrRveX+eTVyilOulKrAa
81t9R2eINVKLigysV2NzzuMPQl1MULhaa+HZvBqVTknGITFPAOtkYYcg5j94
2p1H3LJ1x0srphDuTSg0jekm90KVn7ATEEZnt5zYZGL6PWNJF3VhtC21Y2YR
1ypZepzwF8ZA+zevq4lLRZ2+pkyQ/nw7h3niW9ORtOFZETR6bONy6j0TdriM
GlfziiE3Nbz5eA8TdumYn8uXEsNa5543kcQHRLKepKiJoUkw/VIi8ck6V8OA
PWJ4PfuyRinxg83terLJYvjJLM52kVhl8fn24PXi6P/rSfHEXibI3M5UVzWT
QN2w8YCGPiZ873eRjI+UQiv/Sh/fAZJfqw23WyVIYWLXnU3niG10ZG25MqWw
QyRlMZE4I649LrhWCg8yL7ZVEaP+Xl5HPmkUtsgyFRlkwqUk02mlWGk0Hf9D
5gmxqAXt7cPrMph33feV4jCZn8+M63ggh9rrbVSkR5kQEWSrUbFTEbPtA0fd
PzHhmGv/q0p7Gpa3/lV/b4YJFjkZtu98NmD1UEGR1w+SD/4tx6ruqmDhtsuM
LwIscLJfae9Wo4Z3Wg95vRNnwUJEXXbgm00ovaE04YQiCx6pTsRYC2qiY3Hv
v+KaLEibXm8wrLwVe10H/3thwIL9GSOQo62F9IM5SUXWLBD2Drlxba82hvjr
aDs5s+CokXDHQYft2D32qKnVnwUvW90+RJ/ZgZ4F3yaLIljQEPaoOf7CTiyb
a7TSS2RB82D1Ze4cHTyUynWLkcuCFLbgGY1aXbRRqTCar2LBF253hnaTHkpm
xzHE37LAvceXk0HpY5LvQ6UhFgsO14ecHPtmgIbFtTu//WTBhv0vND5xGaFy
QfIuH2k2TKU2Fx1UMsa1SW89S7TY4Djzfm2ahgnqRLzex89gw0vhDFu6jSnm
289tdvRhw8LL7MoCP0C5/JrRxWg2HNnjEDOrjxhUcJMTnMGGvWLlf75qRJxF
iT6+p2zg81ybIrTfDC8khLyy6mGD/NK64oI2M9xUcGEmk+RsRcSPrRGHd2HV
tN/SdlkO0GIGsp8yd6H9j18sUY8DooG3w7XPmmO335Wp204caOp1o0v+NEfB
zJKHTr9xYDSteuuBaAuMqOp0F0jjQIzR97A6sd3o4Z/Fu+4ZB6a8DCvv3NyN
9/eZJXoMceBjwCG3cnVL3Kpl77pOYAx060XlVcstMVzIL7BBcwwO5ra85jW2
QnPpuN8CbMfg21G/EcnXVnig7Pw/f58dA79ivomUA3T07k7wqkwfA31rM/GT
nXQcrK00+qN2DOKfO6VFHrXGTJ01m35wxqCk/lfZxTFrXIjgN9ssSkHI3Qk1
23FrpCSlijuJja/46eVMWuO8rKtKtBgFjXtcHWxmrFFIMl7jvTgFA23mKek/
rDE3zvXmZSkKhIfERU1EGcgTGDY/upaCwB8lApE6DLTY5dOZp0LB9gENmTY9
Bs6umqQfUqXgW02OqqohA6/VxNRxq1Fw8WLq7hZTBtYWd711VqcgTfD874p0
Br5IYO8R2kzBK7n9S9XOpN/rxvPTWhQkfm8UlnBjoEK0x2NlbQocPuxS9PVg
YPNxWkkz8XCmromINwOHfWKfqu2gYEFNMdzjOAP5F5v0+nQoqFmVGvtPEAN9
/tb1v6pLwSVK7JZAMAPPXUrI0dWjQLx4RWVxCAPj+/i1k/Qp6E6MauQNY6DS
/fW/mxpQkBE83+UYzsDEULUPFLH3wdOsgggGus9JwF+GFGzSHZ9dimKgXCcz
z9KIgv8BluzN3Q==
"]]},
Annotation[#, "Charting`Private`Tag$116720#2"]& ]}}, {}}, {
DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2},
"HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None}, DisplayFunction -> Identity, DisplayFunction -> Identity,
Ticks -> {Automatic, Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& },
AxesOrigin -> {0, 0.7131420797304711}, FrameTicks -> {{Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2},
"HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "ClippingRange" -> {{{1.0816326530612245`*^-6,
52.999998918367346`}, {0.7131420797304711, 0.99365648631725}}, {{
1.0816326530612245`*^-6, 52.999998918367346`}, {
0.7131420797304711, 0.99365648631725}}}}, DisplayFunction ->
Identity, AspectRatio -> 1, Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0.7131420797304711},
CoordinatesToolOptions -> {"DisplayFunction" -> ({
Part[#, 1],
Exp[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Part[#, 1],
Exp[
Part[#, 2]]}& )}, DisplayFunction :> Identity,
Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox["\"\[Sigma]\[Perpendicular][mrad]\"", TraditionalForm],
None}, {
FormBox["\"a0\"", TraditionalForm], None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> 200,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2},
"HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None}, PlotRange -> {{0, 53}, {0.7131420797304711,
0.99365648631725}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"\"500MeV\"", "\"1GeV\""}, "LineLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1, 0.5, 0]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1, 0.5, 0]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0, 0, 1]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0, 0, 1]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {
"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[1, 0.5, 0],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,