From d4afd827574ffadfdf0e4444a990492c70c86e13 Mon Sep 17 00:00:00 2001 From: Phillip Alday Date: Thu, 12 Sep 2024 10:39:08 +0200 Subject: [PATCH] power analysis example --- live_coding_sessions/power_analysis.jl | 100 +++++++++++++++++++++++++ 1 file changed, 100 insertions(+) create mode 100644 live_coding_sessions/power_analysis.jl diff --git a/live_coding_sessions/power_analysis.jl b/live_coding_sessions/power_analysis.jl new file mode 100644 index 0000000..35f7696 --- /dev/null +++ b/live_coding_sessions/power_analysis.jl @@ -0,0 +1,100 @@ +using DataFrames +using MixedModels +using MixedModelsSim +using Random +using Statistics +using SMLP2024: dataset + +fm1 = fit(MixedModel, + @formula(reaction ~ 1 + days + (1 + days|subj)), + dataset(:sleepstudy)) + +parametricbootstrap(MersenneTwister(42), 1000, fm1) + +slpsim = DataFrame(dataset(:sleepstudy); copycols=true) + +slpsim[:, :reaction] .= 0.0 + +slpsimmod = LinearMixedModel(@formula(reaction ~ 1 + days + (1 + days|subj)), slpsim) + +# coefnames(slpsimmod) +simulate!(MersenneTwister(42), slpsimmod; β=[500, 50], σ=250) +response(slpsimmod) +fit!(slpsimmod) + +slpsimpow = parametricbootstrap(MersenneTwister(42), 1000, slpsimmod; β=[500, 50], σ=250) + +combine(groupby(DataFrame(slpsimpow.coefpvalues), :coefname), + :p => (p -> mean(<(0.05), p)) => :power) + +# now let's do random effects! +# these are expressed _relative_ to the residual standard deviation +# so we devide by 250, which is what we set as the residual standard deviation +# TODO: add a named argument "relative=true" +subj_re = create_re(100/250, 20/250) +update!(slpsimmod; subj=subj_re) + +simulate!(MersenneTwister(42), slpsimmod; β=[500, 50], σ=250, θ=slpsimmod.θ) +fit!(slpsimmod) + +slpsimpow = parametricbootstrap(MersenneTwister(42), 1000, slpsimmod; β=[500, 50], σ=250) + +combine(groupby(DataFrame(slpsimpow.coefpvalues), :coefname), + :p => (p -> mean(<(0.05), p)) => :power) + + +# big questions: +# where do we get these numbers from? + +# holding the RE and residual and FE-intercept constant, what is the smallest +# days-effect that I could detect with the given sample size? + +to_consider = [10, 20, 30, 50] +# initialize an empty array of dataframes +considerations = DataFrame[] +for eff_size in to_consider + slpsimpow = parametricbootstrap(MersenneTwister(42), 1000, slpsimmod; + β=[500, eff_size], σ=250) + power_at_size = combine(groupby(DataFrame(slpsimpow.coefpvalues), :coefname), + :p => (p -> mean(<(0.05), p)) => :power) + power_at_size[:, :eff_size] .= eff_size + push!(considerations, power_at_size) +end + +# put it all together in one dataframe +power = reduce(vcat, considerations) + +# for a given sample size, now we know what size effects we can detect +# what happens if we have an effect size and what to know what sample size we need? + +# for this study, there are no items +# and the number of observations per subject is given by the design +# so we only have one n to worry about +days = 0:9 +rng = MersenneTwister(42) +subj_re = create_re(100/250, 20/250) + +considerations = DataFrame[] +for n_subj in [10, 20, 30, 40] + subj_ids = "S" .* lpad.(string.(1:n_subj), 3, '0') + + subj_data = DataFrame[] + for subj in subj_ids + sdat = DataFrame(; subj, days) + push!(subj_data, sdat) + end + simdat = reduce(vcat, subj_data) + # initialize the response with normally distributed noise + simdat[:, :reaction] .= randn(nrow(simdat)) + + slpsimmod = LinearMixedModel(@formula(reaction ~ 1 + days + (1 + days|subj)), simdat) + + update!(slpsimmod; subj=subj_re) + slpsimpow = parametricbootstrap(rng, 1000, slpsimmod; β=[500, 10], σ=250) + power_at_size = combine(groupby(DataFrame(slpsimpow.coefpvalues), :coefname), + :p => (p -> mean(<(0.05), p)) => :power) + power_at_size[:, :n_subj] .= n_subj + push!(considerations, power_at_size) +end + +power = reduce(vcat, considerations)